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Abstract

The goal of this paper is to remove the irreducibility hypothesis in a theorem of
Richard Taylor describing the image of complex conjugations by p-adic Galois repre-
sentations associated with regular, algebraic, essentially self-dual, cuspidal automor-
phic representations of GL2n+1 over a totally real number �eld F . We also extend it
to the case of representations of GL2n/F whose multiplicative character is �odd�. We
use a p-adic deformation argument, more precisely we prove that on the eigenvarieties
for symplectic and even orthogonal groups, there are �many� points corresponding to
(quasi-)irreducible Galois representations. Recent work of James Arthur describing
the automorphic spectrum for these groups is used to de�ne these Galois representa-
tions, and also to transfer self-dual automorphic representations of the general linear
group to these classical groups.
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1 Introduction

Let p be a prime. Let us choose once and for all algebraic closures Q,Qp,C and embeddings
ιp : Q ↪→ Qp, ι∞ : Q ↪→ C. Let F be a totally real number �eld. A regular, L-algebraic,
essentially self-dual, cuspidal (RLAESDC) representation of GLn(AF ) is a cuspidal auto-
morphic representation π together with an algebraic character χ = η || · ||q of A×F /F× (η
being an Artin character, and q an integer) such that

• π∨ ' (χ ◦ det)⊗ π,

• For any real place v of F , LL(πv)|WC '
⊕

i

(
z 7→ zav,i z̄bv,i

)
where LL denotes the

local Langlands correspondence, WC ' C× is the Weil group of C, and av,i, bv,i are
integers satisfying av,i 6= av,j for i 6= j.

By de�nition, π is regular, L-algebraic (in the sense of [BG10]), essentially self-dual, cuspi-
dal (RLAESDC) if and only if π⊗||det ||(n−1)/2 is regular, algebraic (in the sense of Clozel),
essentially self-dual, cuspidal (RAESDC). The latter is the notion of �algebraic� usually
found in the literature, and is called �C-algebraic� in [BG10]. For example, any cuspidal
eigenform of weight k ≥ 2, level N ≥ 1 and Nebentypus α : (Z/NZ)× → C× gives rise to
an RLAESDC representation π of GL2(AQ) which is essentially self-dual with respect to
α−1|| · ||k−1 and such that LL(π∞)|WC '

(
z 7→ diag(z1−k, z̄1−k)

)
, where∞ denotes the real

place of Q. Up to twisting by a character, any regular L-algebraic cuspidal automorphic
representation of GL2(AQ) arises in this way.

Let GalF denote the absolute Galois group of F . Given a RLAESDC representation π of
GLn(AF ), there is (Theorem 3.1.2) a unique continuous, semisimple Galois representation
ριp,ι∞(π) : GalF → GLn(Qp) such that ριp,ι∞(π) is unrami�ed at any �nite place v of F
not lying above p and for which πv is unrami�ed, and ι∞ι−1

p Tr
(
ριp,ι∞(π)(Frobv)

)
is equal

to the trace of the Satake parameter of πv (implicit in this assertion is the fact that this
trace is algebraic over Q). It is natural to ask if for other places v of F , the restriction of
ριp,ι∞(π) to a decomposition group at v is also determined by πv via the local Langlands
correspondence. This problem is usually called �local-global compatibility�. At any �nite
place v of F not dividing p, local-global compatibility is known (see [CH13], [Car12]), up to
semisimpli�cation in some cases. At p-adic places the Galois representation ριp,ι∞(π)|GalFv

is known to be de Rham and its associated Weil-Deligne representation coincides with the
local Langlands parameter of πv, up to semisimpli�cation in some cases ([BLGGT14a],
[Car14]). Moreover the Hodge-Tate weights of the representations (ριp,ι∞(π)|GalFv

)v|p are
the integers (ai,v)v|∞ de�ned above (see Theorem 3.1.2 for a more precise statement). Thus
the only remaining case of local-global compatibility is that of a real place v of F , where
the only non-trivial element of the decomposition group GalFv is a complex conjugation
cv. It is conjectured that the conjugacy class of ριp,ι∞(π)(cv) is determined by LL(πv)

(see [BG10][Lemma 2.3.2] for the case of an arbitrary reductive group). In the present
case, by Clozel's purity lemma and by regularity, LL(πv) is determined by its restriction
to WC, and since det

(
ριp,ι∞(π)

)
is known, the determination of ριp,ι∞(π)(cv) amounts to

the following
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Conjecture. Under the above hypotheses,
∣∣Tr
(
ριp,ι∞(π)(cv)

)∣∣ ≤ 1.

There are several cases for which this is known. For example, if π is a RLAESDC
automorphic representation of GL2(AQ) corresponding to a cuspidal eigenform of weight
k ≥ 2, level N ≥ 1 and Nebentypus α : (Z/NZ)× → C×, then necessarily α(−1)(−1)k = 1

and so det ριp,ι∞(π)(c∞) = −1 (�ριp,ι∞(π) is odd�), which implies the conjecture because
the dimension is 2. More generally, according to [Pat15], for v an in�nite place of F the
value of ηv(−1) ∈ {±1} does not depend on v, and we denote the common value by η∞(−1).
When η∞(−1)(−1)q = −1 (this happens only if n is even, and by [BC11] this means that
ριp,ι∞(π) together with the character ριp,ι∞(η || · ||q) = (η ◦ rec)cycloq, is �symplectic�),
ριp,ι∞(π)(cv) is conjugate to −ριp,ι∞(π)(cv), so the trace is obviously zero. In all other
cases, essential self-duality of ριp,ι∞(π) does not yield information at the real places and
the conjecture is non-trivial.

Solving this conjecture is important to formulate, and probably also to prove, generali-
sations of Serre's modularity conjecture [Ser87] stating that any odd irreducible continuous
Galois representation GalQ → GL2(Fp) is modular, i.e. comes from a cuspidal eigenform.

In [Tay12], Richard Taylor proves the following.

Theorem (Taylor). Let F be a totally real number �eld, n ≥ 1 an integer. Let π be a reg-

ular, L-algebraic, essentially self-dual, cuspidal automorphic representation of GL2n+1/F .

Assume that the attached Galois representation ριp,ι∞(π) : GalF → GL2n+1(Qp) is irre-

ducible. Then for any real place v of F ,

Tr
(
ριp,ι∞(π)(cv)

)
= ±1.

Although one expects ριp,ι∞(π) to be always irreducible, this is not known in general.
Nevertheless it is known when n ≤ 2 by [CG13], and for arbitrary n but only for p in a set
of positive Dirichlet density by [PT15].

In this paper, the following cases are proved:

Theorem A (Theorem 5.3.4). Let n ≥ 2, F a totally real number �eld, π a regular,

L-algebraic, essentially self-dual, cuspidal representation of GLn(AF ), such that π∨ '
(χ ◦ det) ⊗ π, where χ = η || · ||q for an Artin character η and an integer q. Suppose that

one of the following conditions holds

1. n is odd.

2. n is even, q is even, and η∞(−1) = 1.

Then for any complex conjugation c ∈ GalF , |Tr(ριp,ι∞(π)(c))| ≤ 1.

This is achieved thanks to the result of Taylor, Arthur's endoscopic transfer between
twisted general linear groups and symplectic or orthogonal groups, and using eigenvarieties
for these groups. Let us describe the natural strategy that one might consider to prove the
odd-dimensional case using these tools, to explain why it fails and how a detour through
the even-dimensional case allows us to conclude.
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Let π be a RLAESDC representation of GL2n+1(AF ). Up to a twist by an alge-
braic character π is self-dual and has trivial central character. Conjecturally, there should
be an associated self-dual Langlands parameter φπ : LF → GL2n+1(C) where LF is the
conjectural Langlands group. Up to conjugation, φπ takes values in SO2n+1(C), and by
functoriality there should be a discrete automorphic representation Π of Sp2n(AF ) such
that LL(Πv) is equal to LL(πv) via the inclusion SO2n+1(C) ↪→ GL2n+1(C) for any place
of F which is either archimedean or such that πv is unrami�ed. Arthur's results [Art13]
imply that this (in fact, much more) holds. To construct p-adic families of automorphic
representations, that is eigenvarieties, containing Π, it is preferable to work with a group
which is compact at the real places of F , and work with representations having Iwahori-
invariants at the p-adic places. A suitable solvable base change allows us to assume that
[F : Q] is even and that πv has Iwahori-invariants for v|p. Using [Taï] we can �transfer�
π to an automorphic representation Π of G, the inner form of the split reductive group
Sp2n/F which is split at the �nite places and compact at the real places of F . By [Loe11],
generalizing [Che04], there is an eigenvariety X for G. Using [Art13] and [Taï] again,
one can associate p-adic Galois representations ριp,ι∞(Π) to automorphic representations
Π of G, yielding a family of Galois representations on X , that is to say a continuous map
T : GalF → O(X ) which specializes to Tr

(
ριp,ι∞(·)

)
at the points of X corresponding

to automorphic representations of G(AF ). One can then hope to prove a result similar
to [BC11, Lemma 3.3], i.e. show that one can �p-adically deform� Π to reach a point on
X corresponding to an automorphic representation Π′ whose Galois representation is ir-
reducible (even when restricted to the decomposition group of a p-adic place of F ). Since
ριp,ι∞(Π′) comes from an automorphic representation π′ of GL2n+1(AF ), π′ is necessarily
cuspidal and satis�es the hypotheses of Taylor's theorem. Since T (cv) is locally constant
on X , we would be done.

Unfortunately, it does not appear to be possible to reach a representation Π′ whose
Galois representation is irreducible by using local arguments on the eigenvariety. However
we will prove the following, which includes the case of some even-dimensional special
orthogonal groups as it will be needed later:

Theorem B (Theorem 3.2.2, Theorem 4.0.1). Let G be an inner form of Sp2n or SO4n

over a totally real number �eld, compact at the real places and split at the p-adic ones.

Let Π be an irreducible automorphic representation of G(AF ) having Iwahori invariants at

all the places of F above p, and having invariants under an open subgroup U of G(A(p)
F,f ).

Let ριp,ι∞(Π) denote the p-adic representation of the absolute Galois group GalF of F

associated with Π and embeddings ιp : Q ↪→ Qp, ι∞ : Q ↪→ C. Let N be an integer. There

exists an automorphic representation Π′ of G(AF ) such that:

• Π′ is unrami�ed at the places above p, and has invariants under U ;

• The restriction of ριp,ι∞(Π′) to the decomposition group at any place above p is either

irreducible or the sum of an Artin character and an irreducible representation of

dimension 2n (the latter occurring only in the symplectic case);

• For all g in GalF , Tr(ριp,ι∞(Π′)(g)) ≡ Tr(ριp,ι∞(Π)(g)) mod pN .
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The possible presence of an Artin character (in the case of inner forms of Sp2n) comes
from the fact that the standard representation of SO2n+1(C) is not minuscule: the set of
characters of a torus T (C) of SO2n+1(C) in this representation has two orbits under the
Weyl group, one of which contains only the trivial character. The key fact allowing us
to prove the above theorem is that classical points on the eigenvariety for G correspond
to automorphic representations Π of G(AF ) (say, unrami�ed at the p-adic places) and a
re�nement of each Πv, v|p, that is to say a particular element in T (C) in the conjugacy
class of the Satake parameter of Πv. The variation of the crystalline Frobenius of ριp,ι∞(·)
on the eigenvariety with respect to the weight and the freedom to change the re�nement
(by the action of the Weyl group) are at the heart of the proof of Theorem B. The proof
is more delicate than that of [BC11, Lemma 3.3], essentially because the dimension of the
Galois representations is greater than the dimension of the eigenvariety X . In fact we will
be able to strengthen Theorem B, to show that for any p-adic place v the Lie algebra of
ριp,ι∞(Π′)(GalFv) can be assumed to be as large as one can expect: Corollaries 3.2.3 and
4.0.2. This could be useful in future applications.

Although the strategy outlined above fails because of the possible presence of an Artin
character in Theorem B, Theorem A can still be deduced from Theorem B. Indeed, [Art13]
and [Taï] imply that certain formal sums of distinct cuspidal self-dual representations of
general linear groups �contribute� to the automorphic spectrum of inner forms of Sp2n or
SO4n as above. The even-dimensional case in Theorem A will be proved by transferring
π�π0, where π, π0 are regular, L-algebraic, self-dual, cuspidal representations ofGL2n(AF )

(resp. GL3(AF )) with distinct weights at any real place of F , to an automorphic represen-
tation Π of an inner form G of Sp2n+2/F . Since ριp,ι∞(π) ⊕ ριp,ι∞(π0) does not contain
any Artin character (the zero Hodge-Tate weights come from ριp,ι∞(π0), which is known to
be irreducible), for big enough N any representation Π′ as in B has an irreducible Galois
representation.

To treat the original case of a regular, L-algebraic, self-dual, cuspidal representation of
GL2n+1(AF ) having trivial central character, we appeal to Theorem B for special orthog-
onal groups. For example, if n is odd, π � π0, where π0 is the trivial character of A×F /F

×,
contributes to the automorphic spectrum of G, which is now the special orthogonal group
of a quadratic form on F 2n+2 which is de�nite at the real places and split at the �nite
places of F . Note that π � π0 is not regular: the zero weight appears twice at each real
place of F . However the Langlands parameters of representations of the compact group
SO2n+2(R) are of the form

n+1⊕
i=1

IndWC
WR

(
z 7→ (z/z̄)ki

)
when composed with SO2n+2(C) ↪→ GL2n+2(C), with k1 > . . . > kn+1 ≥ 0; and LL ((π � π0)v)

is of this form, with kn+1 = 0. The rest of the proof is identical to the even-dimensional
case.

After the �rst version of this paper was written, Harris-Lan-Taylor-Thorne [HLTT] and
Scholze [Sch15] have attached Galois representations to (not necessarily essentially self-
dual) L-algebraic regular automorphic cuspidal representations of general linear groups
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over totally real number �elds. Ana Caraiani and Bao Viet Le Hung [CLH], following
Scholze's construction and using Theorem A, have proved that the above Conjecture also
holds for these Galois representations.

We now �x some notations for the rest of the article. The valuation vp of Qp is the one
sending p to 1, and | · | will denote the norm p−vp(·). All the number �elds in the paper
will sit inside Q. We have chosen arbitrary embeddings ιp : Q ↪→ Qp, ι∞ : Q ↪→ C. In fact,
the constructions will only depend on the identi�cation between the algebraic closures of
Q in Qp and C (informally, ιpι−1

∞ ). Observe that the choice of a p-adic place v of a number
�eld F and of an embedding Fv ↪→ Qp is equivalent, via ιp, to the choice of an embedding
F ↪→ Q. The same holds for the in�nite places and ι∞. Thus if F is totally real, ιpι−1

∞
de�nes a bijection between the set of in�nite places of F and the set of p-adic places v of
F together with an embedding Fv ↪→ Qp. The eigenvarieties will be rigid analytic spaces
(in the sense of Tate). If X is a rigid analytic space over a �nite extension E of Qp, |X |
will denote its points.

I would like to thank Gaëtan Chenevier for introducing me to this fascinating subject,
Colette M÷glin and Jean-Loup Waldspurger for Lemma 5.1.1, and James Arthur for his
help.

2 The eigenvariety for de�nite symplectic groups

In this section we recall the main result of [Loe11] in our particular case (existence of the
eigenvariety for symplectic groups), and show that the points corresponding to unrami�ed,
�completely re�nable� automorphic forms, with weight far from the walls, are �dense� in
this eigenvariety.

2.1 The eigenvariety

2.1.1 Inner forms of symplectic groups compact at the archimedean places

Let F be a totally real number �eld of even degree over Q, and let D be a quaternion
algebra over F , unrami�ed at all the �nite places of F (Fv ⊗F D ' M2(Fv)), and de�nite
at all the real places of F . Such a D exists thanks to the exact sequence relating the
Brauer groups of F and the Fv. Let n be a positive integer, and let G be the algebraic
group over F de�ned by the equation M∗M = In for M ∈ Mn(D), where (M∗)i,j = M∗j,i,
and ·∗ denotes conjugation in D.

Then G (F ⊗Q R) is a compact Lie group, and for all �nite places v of F , G ×F
Fv ' Sp2n/Fv. The connected reductive group G is an inner form of the split group
G∗ := Sp2n/F .

Fix a prime p. We will apply the results of [Loe11] to the group G′ = ResFQ(G). Let
E be a �nite and Galois extension of Qp, containing all the Fv (v over p).
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2.1.2 The Atkin-Lehner algebra

The algebraic group G′ ×Q Qp =
∏
v|pG ×Q Fv (where v runs over the places of F )

is isomorphic to
∏
v|p ResFvQpSp2n/Fv, which is quasi-split but not split in general. The

algebraic group Sp2n is de�ned over Z by the equation tMJM = J in M2n, where J =(
0 Jn
−Jn 0

)
and Jn =

0 1

. .
.

1 0

. We de�ne its algebraic subgroups Tv, Bv, B̄v,

Nv, N̄v of diagonal, upper triangular, lower triangular, unipotent upper triangular, and
unipotent lower triangular matrices of ResFvQpSp2n/Fv, and let T =

∏
v|pTv, B =

∏
v|pBv,

and so on. In [Loe11, 2.4], only the action of the maximal split torus of G′ ×Q Qp is
considered. For our purpose, we will need to extend this and consider the action of a
maximal (non-split in general) torus, that is T, instead of a maximal split torus S ⊂ T.
The results in [Loe11] are easily extended to this bigger torus, essentially because T(Qp)/

S(Qp) is compact. Moreover, we let Iv be the compact subgroup of Sp2n (Ov) consisting
of matrices with invertible diagonal elements and elements of positive valuation below
the diagonal. Finally, following Loe�er's notation, we let G0 =

∏
v|p Iv. It is an Iwahori

sugroup ofG′(Qp) having an Iwahori decomposition: G0 ' N̄0T0N0 where ∗0 = ∗(Qp)∩G0.
For each place v of F above p, let us choose a uniformizer $v of Fv. Let Σv be the

subgroup of Sp2n(Fv) consisting of diagonal matrices whose diagonal elements are powers
of $v, i.e. matrices of the form

$r1
v

. . .

$rn
v

$−rnv

. . .

$−r1v


Let Σ+

v be the submonoid of Σv whose elements satisfy r1 ≤ . . . ≤ rn ≤ 0, and Σ++
v the

one whose elements satisfy r1 < . . . < rn < 0. Naturally, we set Σ =
∏
v|p Σv, and similarly

for Σ+ and Σ++.
The Atkin-Lehner algebra H+

p is de�ned as the subalgebra of the Hecke-Iwahori algebra
H(G0\G′(Qp)/G0) (over Q) generated by the characteristic functions [G0uG0], for u ∈ Σ+.
Let Hp be the subalgebra of H(G0\G′(Qp)/G0) generated by the characteristic functions
[G0uG0] and their inverses, for u ∈ Σ+ (in [IM65], a presentation of the Hecke-Iwahori
algebra is given, which shows that [G0uG0] is invertible if p is invertible in the ring of
coe�cients).

If Sp is a �nite set of �nite places of F not containing those over p, let HS be the Hecke
algebra (over Q) ⊗′

w/∈Sp∪Sp∪S∞

H(G(OFw)\G(Fw)/G(OFw))

where S∗ denotes the set of places above ∗. This Hecke algebra has unit eS . Let HpS be a
commutative subalgebra of

⊗
w∈Sp H(G(Fw)), with unit eSp .
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Finally, we let H+ = H+
p ⊗HSp ⊗HS , H = Hp ⊗HSp ⊗HS and e = eG0 ⊗ eSp ⊗ eS .

2.1.3 p-adic automorphic forms

The construction in [Loe11] depends on the choice of a parabolic subgroup P of G′ and
a representation V of a compact subgroup of the Levi quotient M of P. The parabolic
subgroup we consider here is the Borel subgroup B, and thus, using Loe�er's notation,
T = M is a maximal (non-split in general) torus contained in B. The representation V is
taken to be trivial.

The weight space W is the rigid space (over E, but it is well-de�ned overQp) parametriz-

ing locally Qp-analytic (equivalently, continuous) characters of T0 '
(∏

v|pO×v
)n

. As

1 +$vOv is isomorphic to (µp∞ ∩ F×v )×Z[Fv :Qp]
p , W is the product of an open polydisc of

dimension n[F : Q] and a rigid space �nite over E.
The construction in [Loe11] de�nes the k-analytic ((Gk)k≥0 being a �ltration of G0)

parabolic induction from T0 toG0 of the �universal character� χ : T0 → O(W )×, denoted by
C(U , k) (k big enough such that χ is k-analytic on the open a�noid U ), which interpolates
p-adically the restriction to G′(Qp) of algebraic representations of G′(Qp). From there
one can de�ne the spaces M(e,U , k) ([Loe11, De�nition 3.7.1]) of p-adic automorphic
forms (or overconvergent automorphic forms, by analogy with the rigid-geometric case of
modular forms) above an open a�noid or a point U of W which are k-analytic and �xed
by the idempotent e. This space has an action of H+. By [Loe11, Corollary 3.7.3], when
considering p-adic automorphic forms which are eigenvectors for [G0uG0] for some u ∈ Σ++

and for a non-zero eigenvalue (��nite slope� p-adic eigenforms), one can forget about k,
and we will do so in the sequel.

2.1.4 Existence and properties of the eigenvariety

We choose the element

η =





$−nv
. . .

$−1
v

$v

. . .

$n
v




v

∈ Σ++

Theorem 2.1.1. There exists a reduced rigid space X over E, together with an E-algebra

morphism Ψ : H+ → O(X )× and a morphism of rigid spaces w : X → W such that:

1. The morphism
(
w,Ψ([G0ηG0])−1

)
: X → W ×Gm is �nite

2. For each point x of X , Ψ⊗ w\ : H+ ⊗E Ow(x) → Ox is surjective

3. For every �nite extension E′/E, X (E′) is in bijection with the �nite slope systems

of eigenvalues of H+ acting on the space of �overconvergent� automorphic forms, via

evaluation of the image of Ψ at a given point.

9



Moreover, for any point x ∈ |X |, there is an arbitrarily small open a�noid V containing

x and an open a�noid U of W such that V ⊂ w−1(U ), the morphism w|V : V → U is

�nite, and surjective when restricted to any irreducible component of V .

Proof. This is [Loe11, Theorems 3.11.2 and 3.12.3], except for the last assertion. To prove
it, we need to go back to the construction of the eigenvariety in [Buz07]. Buzzard begins
by constructing the Fredholm hypersurface Z (encoding only the value of Ψ([G0ηG0])),
together with a �at morphism Z → W , before de�ning the �nite morphism X → Z . By
[Buz07, Theorem 4.6], Z can be admissibly covered by its open a�noids V0 such that w
restricted to V0 induces a �nite, surjective morphism to an open a�noid U of W , and V0

is a connected component of the pullback of U . We can assume that U is connected, and
hence irreducible, since W is normal. The morphism V0 → U is both open (since it is �at:
[Bos09, Corollary 7.2]) and closed (since it is �nite), so that any irreducible component of
V0 is mapped onto U . This can be seen more naturally by observing that the irreducible
components of V0 are also Fredholm hypersurfaces, by [Con99, Theorem 4.3.2].

By [Che04, Proposition 6.4.2], if V denotes the pullback to X of V0, each irreducible
component of V is mapped onto an irreducible component of V0 (more precisely, this is a
consequence of [Che04, Lemme 6.2.10]). To conclude, we only need to show that if x ∈ V ,
up to restricting U , the connected component of V containing x can be arbitrarily small.
This is a consequence of the following lemma.

Lemma 2.1.2. Let f : X1 → X2 be a �nite morphism of rigid analytic spaces. Then

the connected components of f−1(U), for U admissible open of X2, form a basis for the

canonical topology on X1.

Proof. It is enough to consider the case X1 = SpA1, X2 = SpA2. Let x1 be a maximal
ideal of A1. Then f−1 ({f(x1)}) = {x1, . . . , xm}. We choose generators t1, . . . , tn of f(x1),
and r(i)

1 , . . . , r
(i)
ki

of xi. Using the maximum modulus principle, it is easily seen that Ωj,N :={
y ∈X2 | |tj(y)| ≥ p−N

}
j,N

is an admissible covering of the admissible open X2 \ {f(x)}

of X2. Let VM be the admissible open
{
x ∈X1 | ∀i,∃k, |r(i)

k (x)| ≥ p−M
}
, which is a �nite

union of open a�noids, hence quasi-compact. Consequently, the admissible open sets

Uj,N := VM ∩ f−1 (Ωj,N )

=
{
x ∈X1 | ∀i,∃k, |r(i)

k (x)| ≥ p−M and |f \(tj)(x)| ≥ p−N
}
j,N

form an admissible covering of VM . Therefore there is an N big enough so that

VM =
r⋃
j=1

Uj,N

which implies that

f−1
({
y ∈X2 | |tj(y)| ≤ p−N−1

})
⊂
⋃
i

{
x ∈X1 | ∀k, |r(i)

k (x)| ≤ p−M
}

and when M goes to in�nity, the right hand side is the disjoint union of arbitrarily small
a�noid neighbourhoods of the xi.
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We de�ne the algebraic points of W (E) to be the ones of the form

(xv,i)v,i 7→
∏
v,σ

σ

(
n∏
i=1

x
kv,σ,i
v,i

)

where kv,σ,i are integers, and such a point is called dominant if kv,σ,1 ≥ kv,σ,2 ≥ . . . ≥
kv,σ,n ≥ 0.

Recall that a set S ⊂ |X | is said to accumulate at a point x ∈ |X | if x has a basis of
a�noid neighbourhoods in which S is Zariski dense.

Proposition 2.1.3. Let (φr)r be a �nite family of linear forms on RA where A is the set of

triples (v, σ, i) for v a place of F above p, σ : Fv → E and 1 ≤ i ≤ n, and let (cr)r be a fam-

ily of elements in R≥0. Assume that the open a�ne cone C =
{
y ∈ RA | ∀r, φr(y) > cr

}
is nonempty. Then the set of algebraic characters in C yields a Zariski dense set in the

weight space W , which accumulates at all the algebraic points.

Proof. [Che09, Lemma 2.7].

In particular the property of being dominant or �very regular� can be expressed in this
way.

By �niteness of G(F )\G(AF,f )/U for any open subgroup U of G(AF,f ), if Π is an au-
tomorphic representation of G(AF ), the representation Πf is de�ned over ι∞(Q̄). Loe�er
de�nes ([Loe11, De�nition 3.9.1]) the classical subspace of the space of p-adic automor-
phic forms above an algebraic and dominant point w of the weight space. This subspace
is isomorphic to ιpι−1

∞

(
e (C∞(G(F )\G(AF ))⊗W ∗)G(F⊗QR)

)
as H+-module, with W the

representation of G(F ⊗Q R) which is the restriction of the algebraic representation of
G′ ×Q C having highest weight ι−1

∞ ιp(w). The classical points of the eigenvariety are the
ones having eigenvectors in the classical subspace.

We need to give an interpretation of classical points on the eigenvariety X , in terms
of automorphic representations of G(AF ). Namely, there is a classical point x ∈ X (E′)

de�ning a character Ψx : H → E′ (here E ⊂ E′ ⊂ Qp) if and only if there is an automorphic
representation Π = ⊗′vΠv = Π∞ ⊗Πp ⊗Π

(p)
f of G(AF ) such that:

• ιpι−1
∞
(
⊗v|∞Πv

)
is the algebraic representation having highest weight w(x);

• ιp
(

(eS ⊗ eS)Π
(p)
f

)
contains a non-zero vector on which HS ⊗ HS acts according to

Ψx;

• ιp(eG0Πp) contains a non-zero vector on which Hp acts according to µw(x)Ψx, where
µw(x)([G0ξG0]) = w(x)(ξ) if ξ ∈ Σ+.

The twist by the character µw(x) is explained by the fact that the classical overconvergent
automorphic forms are constructed by induction of characters of the torus extended from
T0 (on which they are de�ned by w) to T trivially on Σ.

11



2.2 Unrami�ed and �completely re�nable� points

2.2.1 Small slope p-adic eigenforms are classical

The algebraic and dominant points of W are the ones of the form

(xv,i)v,i 7→
∏
v,σ

σ

(
n∏
i=1

x
kv,σ,i
v,i

)
where kv,σ,1 ≥ kv,σ,2 ≥ . . . ≥ kv,σ,n ≥ 0 are integers. The proof of the criterion given
in [Loe11, Theorem 3.9.6] contains a minor error, because it �sees� only the restriction of
these characters to the maximal split torus S (over Qp), and the BGG resolution has to
be applied to split semi-simple Lie algebras.

We correct it in the case of quasi-split reductive groups (in particular the restriction to
a sub�eld of a quasi-split group remains quasi-split), and give a stronger criterion. This
criterion could be used on an eigenvariety for which only the weights corresponding to a
given p-adic place of F vary. For this purpose we use the �dual BGG resolution� given in
[Jon11]. We follow closely the proof of [Loe11, Propositions 2.6.3-2.6.4]. In the following
G′ could be any quasi-split reductive group over Qp, and we could replace E/Qp by any
extension splitting G′.

Let B be a Borel subgroup of G′, S a maximal split torus in B, T the centralizer of S,
a maximal torus. This determines an opposite Borel subgroup B̄ such that B̄ ∩ B = T.
Let Φ+ (resp. ∆) be the set of positive (resp. simple) roots of G′ ×Qp E, with respect to
the maximal torus T of the Borel subgroup B. One can split ∆ = ti∆i where α, β belong
to the same ∆i if and only if α|S = β|S (equivalently, the ∆i are the Galois orbits of ∆).
Let Σ be a subgroup of T(Qp) supplementary to its maximal compact subgroup, and Σ+

the submonoid consisting of the z ∈ T(Qp) such that |α(z)| ≥ 1 for all α ∈ ∆. For each
i, de�ne ηi to be the element of Σ+/ (Z(G′)(Qp) ∩ Σ) generating ∩j 6=i ker |αj(·)| (here αj
denotes any element of ∆j , and |αj(·)| does not depend on this choice).

Assume that G0 is a compact open subgroup of G′(Qp) having an Iwahori factorization
N̄0T0N0. Using a lattice in the Lie algebra of N and the exponential map, it is easily seen
that N0 admits a decreasing, exhaustive �ltration by open subgroups (Nk)k≥1 having a
canonical rigid-analytic structure. Moreover any ordering of Φ+ endows the Banach space
of Qp-analytic functions on Nk taking values in E with an orthonormal basis consisting of
monomials on the weight spaces.

Let λ be an algebraic and dominant weight of T×Qp E. By [Jon11], there is an exact
sequence of E[I]-modules, where I = G0Σ+G0 = B̄0Σ+N0 is the monoid generated by G0

and Σ+:

0→ alg-IndGB̄(λ)⊗ sm-IndB̄0N0

B̄0
1→ la-IndB̄N0

B̄
(λ)→

⊕
α∈∆

la-IndB̄N0

B̄
(sα(λ+ ρ)− ρ) (2.2.1)

where 2ρ =
∑

α∈Φ+ α, �sm� stands for �smooth� and �la� for �locally analytic�. The relation
with Loe�er's Ind(V )k is la-IndB̄N0

B̄
(λ)⊗ λ−1

sm = lim−→
k

Ind(Eλ)k, where λsm is the character

on T which is trivial on its maximal compact subgroup and agrees with λ on Σ. Naturally
IndG

B̄(λ)⊗ sm-IndB̄0N0

B̄0
1⊗ λ−1

sm = lim−→
k

Ind(Eλ)cl
k .

12



To prove a classicity criterion, we need to bound the action of ηi on the factors of the
RHS of (2.2.1) twisted by λ−1

sm . Let nα = α∨(λ) ∈ N for α ∈ ∆, then sα(λ+ ρ)− λ− ρ =

−(1+nα)α. The Banach space of k-analytic functions on N0 is the direct sum of the spaces
of analytic functions on xNk, x ∈ N0/Nk, and each of these spaces has an orthonormal
(with respect to the supremum norm) basis (vj,x)j∈J where J = NΦ+

(monomials on the
weights spaces). This basis depends on the choice of a representative x, but if we �x i and
x0 ∈ N0, we can choose η−1

i x0ηi as a representative of its class. Then if φ =
∑

j ajvj,η−1
i x0ηi

(with aj → 0) is an element of la-IndB̄N0

B̄
(sα(λ+ ρ)− ρ)⊗ λ−1

sm , and ξ ∈ Nk,

(ηi · φ)(x0ξ) = η
−(1+nα)α
i

∑
j∈J

ajvj,η−1
i x0ηi

(η−1
i x0ξηi)

=
∑
j∈J

ajη
−(1+nα)α−s(j)
i vj,x0(x0ξ)

where s(j) =
∑

β∈Φ+ j(β)β. This shows that |ηi ·φ| ≤ |α(ηi)|−(1+nα)|φ|, and so the operator
ηi has norm less than or equal to |α(ηi)|−(1+nα) on la-IndB̄N0

B̄
(sα(λ+ ρ)− ρ)⊗ λ−1

sm .
We can then apply the exact functor which to an E[I]-module W associates the auto-

morphic forms taking values in W , and take the invariants under the idempotent e (this
functor is left exact). We obtain that M(e, Eλ)/M(e, Eλ)cl (the space of p-adic automor-
phic forms modulo the classical automorphic forms) embeds in

⊕
α∈∆Mα where eachMα is

a Banach space on which the operator [G0ηiG0] has norm ≤ |α(ηi)|−(1+nα). The following
criterion follows:

Lemma 2.2.1. If an overconvergent eigenform f ∈ M(e, Eλ) satis�es [G0ηiG0] f = µif

with µi 6= 0 and

vp(µi) < inf
α∈∆i

−(1 + nα)vp(α(ηi))

for all i, then f is classical.

In the case of the symplectic group G′, the family (ηi)i can be indexed by the couples
(v, i) where v is a place of F above p and 1 ≤ i ≤ n, and ∆v,i is indexed by the embeddings
Fv ↪→ E. Speci�cally, ηv,i is trivial at all the places except for v, where it equals

Diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 )

with xj =

{
$−1
v if j ≤ i

1 if j > i
.

The conditions in the previous lemma can be written{
vp(µv,i) <

1
ev

infσ(1 + kv,σ,i − kv,σ,i+1) for i < n

vp(µv,n) < 1
ev

infσ (2 + 2kv,σ,n) .

2.2.2 Representations having Iwahori-invariants and unrami�ed principal se-

ries

We recall results of Casselman showing that irreducible representations having Iwahori-
invariants appear in unrami�ed principal series, and giving the Atkin-Lehner eigenvalues
in terms of the unrami�ed character being induced.
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In this subsection, we �x a place v of F above p. Recall Iv has an Iwahori decomposition
Iv = Nv,0Tv,0N̄v,0. As in [Cas], if (Π, V ) is a smooth representation of G(Fv), V (N̄v) is
the subspace of V spanned by the Π(n̄)(x) − x, n̄ ∈ N̄v, VN̄v = V/V (N̄v) and if N̄v,i is a

compact subgroup of N̄v, V (N̄v,i) =
{
v ∈ V |

∫
N̄v,i

Π(n̄)(v)dn̄ = 0
}
.

Lemma 2.2.2. Let (Π, V ) be an admissible representation of G(Fv) over C. Then the

natural (vector space) morphism from V Iv to
(
VN̄v

)Tv,0 is an isomorphism, inducing a

Σ+
v -equivariant isomorphism

ΠIv ∼−→
(
ΠN̄v

)Tv,0 ⊗ δ−1
B̄v

where δB̄v denotes the modulus morphism of B̄v, and u ∈ Σ+
v acts on ΠIv by [IvuIv].

Proof. Let N̄v,1 be a compact subgroup of N̄v such that V Iv ∩ V (N̄v) ⊂ V (N̄v,1). There
is a u ∈ Σ+

v such that uN̄v,1u
−1 ⊂ N̄v,0. By [Cas, Prop. 4.1.4], and using the fact that

[IvuIv] is invertible in the Hecke-Iwahori algebra, the natural morphism from V Iv to V Tv,0
N̄

is an isomorphism (of vector spaces).
Lemmas 4.1.1 and 1.5.1 in [Cas] allow one to compute the action of Σ+

v .

Corollary 2.2.3. Any smooth irreducible representation of G(Fv) over C having Iwahori

invariants is a subquotient of the parabolic induction (from B̄v) of a character of the torus

Tv, which is unique up to the action of W (Tv,G(Fv)), and unrami�ed.

Proof. Π is a subquotient of the parabolic induction of a character of the torus Tv if and
only if ΠN̄v 6= 0, which is true by the previous lemma. The geometrical lemma [BZ77, 2.12]
shows that if χ is a smooth character of Tv,(

Ind
G(Fv)

B̄v
χ
)ss

N̄v
'

⊕
w∈W (Tv ,G(Fv))

χwδ
1/2

B̄v

Since ∗N̄ is left adjoint to non-normalized induction, the �rst argument in the proof
shows that Π is actually a subrepresentation of Ind

G(Fv)

B̄v
for at least one χ in the orbit

under W (Tv,G(Fv)). In that case we will say that (Π, χ) is a re�nement of Π. Note that
up to the action of W (Tv,G(Fv)), there is a unique χ such that Π is a subquotient of
Ind

G(Fv)

B̄v
.

2.2.3 Most points of the eigenvariety arise from unrami�ed, completely re�n-

able representations

We will need a result of Tadi¢, characterizing the irreducible principal series. If χ1, . . . , χn

are characters of F×v , we denote simply by χ = (χ1, . . . , χn) the character of Tv which
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maps 

x1

. . .

xn
x−1
n

. . .

x−1
1


to
∏n
i=1 χi(xi). Let ν be the unrami�ed character of F×v such that ν($v) = |Fv|−1.

The following Theorem is [Tad94, Theorem 7.1].

Theorem 2.2.4 (Tadi¢). Let χ = (χ1, . . . , χn) be a character of Tv. Then Ind
Sp2n(Fv)

B̄v
χ is

irreducible if and only if the following conditions are satis�ed

1. For all i, χi is not of order 2.

2. For all i, χi 6= ν±1.

3. For all distinct i, j, χiχ
−1
j 6= ν±1 and χiχj 6= ν±1.

De�nition 2.2.5. An irreducible representation Πv of G(Fv) is completely re�nable if it

is isomorphic to Ind
Sp2n(Fv)

B̄v
χ for some unrami�ed character χ.

An automorphic representation Π of G(AF ) is completely re�nable if Πv is completely

re�nable for any v|p.

Note that completely re�nable representations are unrami�ed (for any choice of hyper-
special subgroup). A representation Πv is completely re�nable if and only if (Πv)

ss
N̄v

is the
sum of |W (Tv,G(Fv))| unrami�ed characters.

Recall that classical points on the eigenvariety are determined by an automorphic repre-
sentation Π together with a re�nement of each Πv, v|p. Completely re�nable automorphic
representations are the ones giving the greatest number of points on the eigenvariety. When
one can associate Galois representations to automorphic representations, each re�nement
of Π comes with a �p-adic family� of Galois representations going through the same one.

Proposition 2.2.6. Let f1, . . . , fr ∈ O(X )×, and let (Λj)j∈J be a �nite family of non-

constant a�ne functions on (Qn)HomQ(F,R). The set S of points of X corresponding to

classical, unrami�ed and completely re�nable points at which

min
v,σ

min{kv,σ,1 − kv,σ,2, . . . , kv,σ,n−1 − kv,σ,n, kv,σ,n} ≥ max{vp(f1), . . . , vp(fn)} (2.2.2)

and Λj((kv,σ,1, . . . , kv,σ,n)v,σ) 6= 0 for all v, σ, j, is Zariski dense and accumulates at all the

algebraic points.

Compare [Che04, Proposition 6.4.7], [Loe11, Corollary 3.13.3]. To evaluate Λj at
(kv,σ,1, . . . , kv,σ,n)v,σ we have used the bijection between HomQ(F,R) and HomQ(F,Qp)

given by ιp, ι∞.
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Proof. The hypotheses in the classicality criterion 2.2.1 and the ones in Theorem 2.2.4 are
implied by inequalities of the form 2.2.2. First we prove the accumulation property. We
can restrict to open a�noids V of the eigenvariety, and hence assume that the right hand
side of 2.2.2 is replaced by a constant. By Theorem 2.1.1, V can be an arbitrarily small
open a�noid containing an algebraic point x of X , such that there is open a�noid U of
W such that V ⊂ w−1(U ), the morphism w|V : V → U is �nite, and surjective when
restricted to any irreducible component of V . By Proposition 2.1.3, the algebraic weights
satisfying 2.2.2 and such that Λj(kv,σ,1, . . . , kv,σ,n) 6= 0 for all v, σ, j are Zariski dense in the
weight space W and accumulate at all the algebraic points of W . [Che04, Lemme 6.2.8]
shows that S ∩ V is Zariski-dense in V .

Each irreducible component X ′ of X is mapped onto a Zariski-open subset of a con-
nected component of W , by [Che04, Corollaire 6.4.4] (which is a consequence of the de-
composition of a Fredholm series into a product of irreducible Fredholm series, [Con99,
Corollary 4.2.3]), so X ′ contains at least one algebraic point (the algebraic weights inter-
sect all the connected components of W ), and hence the Zariski closure of S ∩X ′ contains
an open a�noid of X ′, which is Zariski dense in X ′.

3 Galois representations associated with automorphic repre-

sentations of symplectic groups

3.1 Existence of Galois representations

3.1.1 Automorphic self-dual representations of GL2n+1 of orthogonal type

If Π = ⊗vΠv is an automorphic representation of G(AF ), then for any Archimedean place
v of F , the local Langlands parameter of Πv (composed with SO2n+1(C) ↪→ GL2n+1(C))
is of the form:

LL(Πv) ' εn ⊕
n⊕
i=1

IndWR
WC

(z 7→ (z/z̄)ri)

where ε is the only non-trivial character of WC/WR, and the ri are integers, with rn >

rn−1 > . . . > r1 > 0. We de�ne Avr
G to be the set of automorphic representations such

that for each in�nite place v of F , r1 ≥ 2 and ri+1 ≥ ri + 2. The equivalence above is
meant as representations of WR (i.e. morphisms WR → GL2n+1(C)), although LL(Πv) is a
parameter taking values in SO2n+1(C). These two notions of conjugacy actually coincide.

Similarly, let AGL2n+1 be the set of formal sums of self-dual cuspidal representations
π = �iπi of GL2n+1(AF ) such that for each in�nite place v of F , the local Langlands
parameter LL(πv) :=

⊕
i LL(πi,v) is isomorphic to

εn ⊕
n⊕
i=1

IndWR
WC

(z 7→ (z/z̄)ri)

where the ri's are integers such that r1 ≥ 2, ri+1 ≥ ri + 2, and such that the product of
the central characters of the πi's is trivial.
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These inequalities between the ri's are imposed to ensure that the corresponding global
parameters are trivial on Arthur's SL2(C), to simplify the statement of Proposition 3.1.1
below. That is why we take formal sums of cuspidal (not discrete) representations.

Note that there is no non-zero alternate bilinear form preserved by such a parameter
(one could say that the parameter is �completely orthogonal�).

Proposition 3.1.1. For any Π ∈ Avr
G, there is a π ∈ AGL2n+1, such that the local Langlands

parameters match at the in�nite places, and for any �nite place v of F , πv is unrami�ed

if Πv is unrami�ed, and in that case the local parameters match, by means of the inclusion

SO2n+1(C) ⊂ GL2n+1(C).

Here �Πv is unrami�ed� means that there exists a hyperspecial maximal compact sub-
group Kv of G(Fv) such that ΠKv

v 6= 0.

Proof. This follows from [Taï]: to any Π ∈ Avr
G one can associate a formal sum �iπi[di]

where the πi's are self-dual cuspidal representations ofGLni/F and di ≥ 1 are integers, and
by compatibility with in�nitesimal characters and the assumption on the ri's associated to
Π at any Archimedean place, all di's are equal to 1.

3.1.2 p-adic Galois representations associated with RLASDC representations

of GLN

An automorphic cuspidal representation π of GLN (AF ) is said to be L-algebraic if for any
in�nite place v of F , the restriction of the Langlands parameter LL(πv) to WC ' C× is of
the form

z 7→ Diag
((
zav,i z̄bv,i

)
i

)
where ai, bi ∈ Z. By the �purity lemma� [Clo88, Lemme 4.9], av,i + bv,i does not depend
on v, i. We will say that π is L-algebraic regular if for any v as above, the av,i are distinct.
By purity, this implies that if v is real,

LL(πv)| · |−s =

ε
e ⊕i IndWR

WC

(
z 7→ (z/z̄)a

′
v,i

)
if N is odd, with e = 0, 1

⊕iIndWR
WC

(
z 7→ (z/z̄)a

′
v,i

)
if N is even

for some integer s, and integers 0 < a′v,1 < . . . < a′v,bN/2c.
As a special case of [CH13, Theorem 4.2] (which builds on previous work of Clozel,

Harris, Kottwitz, Labesse, Shin, Taylor), we have the following theorem.

Theorem 3.1.2. Let π be a regular L-algebraic, self-dual, cuspidal (RLASDC) representa-

tion of GLN (AF ). Then π is L-arithmetic, and there is a continuous Galois representation

ριp,ι∞(π) : GalF −→ GLN (Qp)

such that if v is a �nite place of F and πv is unrami�ed,

1. if v is coprime to p, then ριp,ι∞(π)|GalFv
is unrami�ed, and

det
(
T Id− ριp,ι∞(π)(Frobv)

)
= ιpι

−1
∞ det (T Id−A)
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where A is the semisimple conjugacy class in GLN (C) associated with πv via the

Satake isomorphism.

2. if v lies above p, ριp,ι∞(π)|GalFv
is crystalline. The associated �ltered ϕ-module (over

Fv,0 ⊗Qp Qp) is such that

det Qp

(
T Id− ϕfv

)
= ιpι

−1
∞ det (T Id−A)fv

where A is the semisimple conjugacy class in GLN (C) associated with πv via the

Satake isomorphism. For any σ : Fv → Qp, the σ-Hodge-Tate weights are the aw,i,

where w is the real place of F de�ned by σ, ιp and ι∞.

The power fv appearing at places above p may seem more natural to the reader after
reading section 3.2.1, where we give an equivalent formulation which does not involve this
power.

Combining this theorem with Proposition 3.1.1, we obtain

Corollary 3.1.3. Let Π be an automorphic representation of G(AF ), whose highest weights

kw,1 ≥ kw,2 ≥ · · · ≥ kw,n ≥ 0 at the real places w are far from the walls (Π ∈ AGvr is

enough), and unrami�ed at all the p-adic places of F . There exists a continuous semisimple

Galois representation

ριp,ι∞(Π) : GalF −→ GL2n+1(Qp)

such that for any �nite place v of F such that Πv is unrami�ed

1. if v is coprime to p, then ριp,ι∞(Π)|GalFv
is unrami�ed, and

det
(
T Id− ριp,ι∞(Π)(Frobv)

)
= ιpι

−1
∞ det (T Id−A)

where A ∈ GLN (C) is associated with Πv via the Satake isomorphism.

2. if v lies above p, ριp,ι∞(Π)|GalFv
is crystalline. The associated �ltered ϕ-module is

such that

det Qp

(
T Id− ϕfv

)
= ιpι

−1
∞ det (T Id−A)fv

where A ∈ SO2n+1(C) ⊂ GL2n+1(C) is associated with Πv via the Satake isomor-

phism. For any σ : Fv → Qp, the σ-Hodge-Tate weights are kw,1 +n > kw,2 +n−1 >

. . . > kw,1 + 1 > 0 > −kw,1 − 1 > . . . > −kw,1 − n, where w is the real place of F

de�ned by σ, ιp and ι∞.

Proof. There is a formal sum of self-dual cuspidal automorphic representations of gen-
eral linear groups π = �iπi corresponding to Π by Proposition 3.1.1. Let ριp,ι∞(Π) =⊕

i ριp,ι∞(πi).

Note that in that case, since Π∞ is C-algebraic, Π is obviously C-arithmetic (which is
equivalent to L-arithmetic in the case of Sp2n), and thus the coe�cients of the polynomials
appearing in the corollary lie in a �nite extension of Q.
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Using [BC11, Corollary 1.3] one sees that ριp,ι∞(Π) is orthogonal, i.e. factors as the
composition of a continuous morphism GalF → SO2n+1(Qp) and the standard representa-
tions SO2n+1(Qp)→ GL2n+1(Qp). We will not need this fact in order to reach our goal of
determining the image of complex conjugations in certain Galois representations, but we
will use it in the proof of Corollaries 3.2.3 and 4.0.2.

3.1.3 The Galois pseudocharacter on the eigenvariety

To study families of representations, it is convenient to use pseudorepresentations (or pseu-
docharacters), which are simply the traces of semi-simple representations when the coe�-
cient ring is an algebraically closed �eld of characteristic zero. We refer to [Tay91] for the
de�nition, and [Tay91, Theorem 1] is the �converse theorem� we will need.

On O(X ), we put the topology of uniform convergence on open a�noids.
The Zariski-density of the classical points at which we can de�ne an attached Galois

representation implies the following

Proposition 3.1.4. There is a continuous pseudocharacter T : GalF → O(X ), such that

at every classical unrami�ed point of the eigenvariety having weight far from the walls, T

specializes to the character of the Galois representation associated with the automorphic

representation by Corollary 3.1.3.

Proof. This is identical to the unitary case, and thus is a consequence of [Che04, Proposi-
tion 7.1.1], by Proposition 2.2.6.

Thus at any (classical or not) point of the eigenvariety, there is an attached Galois
representation.

3.2 Galois representations stemming from symplectic forms are generi-

cally almost irreducible

3.2.1 Crystalline representations over Qp

We �x a �nite extension K of Qp, and denote by K0 the maximal unrami�ed subextension,
e = [K : K0], f = [K0 : Qp]. Let ρ : GalK → GL(V ) be a continuous representation of
the absolute Galois group of K, where V is a �nite dimensional vector space over L, a
�nite Galois extension of Qp. We will take L to be big enough so as to be able to assume
in many situations that L = Qp. For example, we can assume that L is an extension of
K, and that ρ has a composition series 0 = V1 ⊂ . . . ⊂ Vr = V such that each quotient
Vi+1/Vi is absolutely irreducible.

For any such ρ, let Dcris(V ) =
(
Bcris ⊗Qp V

)GalK . From now on we assume that ρ is a
crystalline representation, which means that dimK0 Dcris(V ) = dimQp V . It is well-known
that Dcris(V ) is a �ltered ϕ-module over K, and since V is a vector space over L, Dcris(V )

is a ϕ-module over K0 ⊗Qp L, and DdR(V ) = K ⊗K0 Dcris(V ) is a module over K ⊗Qp L

with a �ltration by projective submodules.
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We have a natural decompositionK0⊗QpL '
∏
σ0∈Υ0

Lσ0 with Υ0 = HomQp−alg.(K0, L)

and Lσ0 ' L, given by the morphisms σ0 ⊗ IdL. Similarly, K ⊗Qp L '
∏
σ∈Υ Lσ with

Υ = HomQp−alg.(K,L).
Hence we have decompositions

Dcris(V ) =
∏

σ0∈Υ0

Dcris(V )σ0 , DdR(V ) =
∏
σ∈Υ

DdR(V )σ.

The operator ϕ restricts as linear isomorphisms from Dcris(V )σ0 to Dcris(V )σ0◦ϕ−1 , and so
ϕf is a Lσ0-linear automorphism on each Dcris(V )σ0 , which are isomorphic as vector spaces
over L equipped with the linear automorphism ϕf .

Each DdR(V )σ comes with a �ltration, and hence de�nes dimL V = N Hodge-Tate
weights kσ,1 ≤ . . . ≤ kσ,N (the jumps of the �ltration).

Although we will not use it, it should be noted that by [BM02, Proposition 3.1.1.5],
to verify the weak admissibility of a �ltered ϕ-module D over K with an action of L
commuting with ϕ and leaving the �ltration stable, it is enough to check the inequality
tN (D′) ≥ tH(D′) for sub-K0 ⊗ L-modules stable under ϕ.

If ϕf has eigenvalues ϕ1, . . . , ϕN , with vp(ϕ1) ≤ . . . ≤ vp(ϕn), we can in particular
choose D′ = ⊕i≤j ker(ϕf − ϕi) (if the eigenvalues are distinct, but even if they are not,
we can choose D′ such that ϕf |D′ has eigenvalues ϕ1, . . . , ϕj , counted with multiplicities).
The worst case for the �ltration yields the inequalities

vp(ϕ1) ≥ 1

e

∑
σ

kσ,1

vp(ϕ1ϕ2) ≥ 1

e

∑
σ

kσ,1 + kσ,2

...

In the sequel, we will only use these inequalities, and we will not be concerned with the
subtleties of the �ltrations.

It will be useful to know how these objects behave when ρ is restricted to an open
subgroup of GalK . Let K ′/K be a �nite extension and denote by K ′0 the maximal unram-
i�ed subextension of K ′/Qp, e′ = [K ′ : K ′0], f ′ = [K ′0 : Qp]. Denote by V ′ the L-vector
space V considered only with its GalK′-action. Then Dcris(V

′) = K ′0 ⊗K0 Dcris(V ) as
ϕ-modules, and so for σ′0 ∈ HomQp−alg.(K

′
0, L) the eigenvalues of ϕf

′
on Dcris(V

′)σ′0 are
the f ′/f -powers of the eigenvalues of ϕf on Dcris(V )σ0 , where σ0 is the restriction of σ′0
to K0. Similarly, DdR(V ′) = K ′⊗K DdR(V ) and thus for any σ′ ∈ HomQp−alg.(K

′, L), the
σ′-Hodge-Tate weights of V ′ are simply the σ-Hodge-Tate weights of V , where σ = σ′|K .
Note that the inequalities above remain unchanged when replacing ρ with ρ|GalK′ .

3.2.2 Variation of the crystalline Frobenius on the eigenvariety

In this section we make explicit the formulae relating the eigenvalues of the crystalline
Frobenius at classical, unrami�ed points of the eigenvariety and the eigenvalues of the
Hecke-Iwahori operators acting on p-adic automorphic forms. Let x be a classical point on
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the eigenvariety. There is an automorphic representation Π of G(AF ) such that ιpι−1
∞ (Π∞)

is the representation having highest weight w(x). Assume that Πp is unrami�ed. The
point x de�nes a re�nement of Πp, that is an unrami�ed character χx : T0 → C× such that
Πp ↪→ Ind

G′(Qp)

B̄
χx, or equivalently the character δ1/2

B̄
χx appearing in (Πp)N̄ . By 2.2.2, for

any u ∈ Σ+, µw(x)Ψx|Hp = (ιp ◦ ι−1
∞ ◦ χx)δ

1/2
B .

The diagonal torus in SO2n+1(C) and the identi�cation of it with the dual of the diago-
nal torus of Sp2n/Fv being �xed, the character χx is mapped by the unrami�ed Langlands
correspondence for tori to y = (yv)v|p with yv = Diag(y1,v, . . . , yn,v, 1, y

−1
n,v, . . . , y

−1
1,v), and

yv,i = χx(Diag(1, . . . , $v, . . . , 1, 1, . . . , $
−1
v , . . . , 1)) ($v being the i-th element). Thus the

linearization of the crystalline Frobenius ϕfv on Dcris(ριp,ι∞(π)|GalFv
)σ0 (for any choice of

σ0 : Fv → E in Υ0,v) has eigenvalues

ιpι
−1
∞ (yv,i) = qn+1−i

v φv,n+1−i(x)
∏
σ∈Υv

σ($v)
kv,σ,i

and their inverses, together with the eigenvalue 1. Here φv,n+1−i ∈ O(X ) is de�ned by

φv,n+1−i =
Ψ ([G0ui−1G0])

Ψ ([G0uiG0])

with ui = Diag($−1
v , . . . , $−1

v , 1, . . . , 1, $v, . . . , $v) (the last $−1
v is the i-th element), and

kv,σ,i the integers de�ning the weight w(x).
Assume furthermore that Πp admits another re�nement χx′ = χax for some a = (av)v|p

in the Weyl group W (G′(Qp),T(Qp)) =
∏
vW (G(Fv), Tv). Each W (G(Fv), Tv) can be

identi�ed with the group of permutations av : {−n, . . . , n} → {−n, . . . , n} such that
av(−i) = −av(i) for all i, acting by

av(Diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 )) = Diag(xa−1
v (1), . . . , xa−1

v (n), xa−1
v (−n), . . . , xa−1

v (1))

on Tv, where by convention x−i = x−1
i for i < 0. Similarly we de�ne kv,σ,−i = −kv,σ,i and

φv,−i = φ−1
v,i . We also set kv,σ,0 = 0, φv,0 = 1. The equality χx′ = χax can also be written

q(n+1)sign(w(i))−w(i)
v φv,n+1−w(i)(x)

∏
σ∈Υv

σ($v)
kv,σ,w(i) = q(n+1)sign(i)−i

v φv,n+1−i(x
′)
∏
σ∈Υv

σ($v)
kv,σ,i

for all −n ≤ i ≤ n, where sign(j) = +1 (resp. 0, −1) if j > 0 (resp. j = 0, j < 0).
Equivalently,

φv,n+1−i(x
′) = φv,n+1−w(i)(x)qi−w(i)+(n+1)(sign(i)−sign(w(i)))

v

∏
σ∈Υv

σ($v)
kv,σ,w(i)−kv,σ,i .

This last formula will be useful in the proof of the main result.

3.2.3 Main result

Lemma 3.2.1. Let K be a �nite extension of Qp, and let ρ : GalK → GLN (Qp) be

a continuous and crystalline representation. Let (D,ϕ,FiliD ⊗K0 K) be the associated

�ltered ϕ-module. Denote by κσ,1 ≤ . . . ≤ κσ,N the Hodge-Tate weights associated with the
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embedding σ : K ↪→ Qp. Let ϕ1, . . . , ϕN be the eigenvalues of the linear operator ϕf (on

any of the Dσ0, σ0 ∈ Υ0), and suppose they are distinct. Finally, assume that for some

τ ∈ Υ, for all i, ∣∣∣∣∣vp(ϕi)− 1

e

∑
σ∈Υ

κσ,i

∣∣∣∣∣ ≤ 1

eN
min

1≤j≤N−1
κτ,j+1 − κτ,j .

Then if D′ ⊂ D is an admissible sub-ϕ-module over K0⊗QpQp (corresponding to a subrep-

resentation of ρ), there is a subset I of {1, . . . , N} such that D′ has ϕf -eigenvalues (ϕi)i∈I
and τ -Hodge-Tate weights (κσ,i)i∈I .

Proof. Since the eigenvalues of ϕf are distinct, and D′ is stable under ϕ, there is a subset
I of {1, . . . , N} such that D′ = ker

∏
i∈I
(
ϕf − ϕi

)
. There are unique increasing functions

θ1,σ : I → {1, . . . , N} such that the σ-weights of D′ are the κσ,θ1,σ(i), for i ∈ I. By ordering
similarly the weights of D/D′, we de�ne increasing functions θ2,σ : {1, . . . , N} \ I →
{1, . . . , N}, and we can glue the θ·,σ to get bijective maps θσ : {1, . . . , N} → {1, . . . , N}.
We will show that θτ = Id.

We now write the admissibility condition for D′ and D/D′. Let i1 be the smallest
element of I. Then ker

(
ϕf − ϕi1

)
is a sub-ϕ-module of D′. Its induced σ-weight is one

of the κσ,θσ(i) for i ∈ I, thus it is greater than or equal to κσ,θσ(i1). This implies that
vp(ϕi1) ≥ 1/e

∑
σ∈Υ κσ,θσ(i1). We can proceed similarly for the submodules

ker
((
ϕf − ϕi1

)
. . .
(
ϕf − ϕir

))
(where the i· are the ordered elements of I), to get the inequality∑

1≤x≤r
vp(ϕix) ≥ 1

e

∑
1≤x≤r

∑
σ∈Υ

κσ,θσ(ix)

The same applies to D/D′, and by adding both inequalities, we �nally get∑
1≤i≤s

vp(ϕi) ≥
1

e

∑
1≤i≤s

∑
σ∈Υ

κσ,θσ(i)

We now isolate τ , using the fact that
∑

1≤i≤s κσ,θσ(i) ≥
∑

1≤i≤s κσ,i for σ 6= τ , and obtain
the inequality ∑

1≤i≤s
vp(ϕi)−

1

e

∑
1≤i≤s

∑
σ∈Υ

κσ,i ≥
1

e

∑
1≤i≤s

κτ,θτ (i) − κτ,i

Let r be minimal such that θτ (s) 6= s (if no such s exists, we are done). In that case, we
necessarily have θτ (s) ≥ s+ 1, and the previous inequality yields∑

1≤i≤s
vp(ϕi)−

1

e

∑
1≤i≤s

∑
σ∈Υ

κσ,i ≥
κτ,s+1 − κτ,s

e

but the hypothesis implies that the left hand side is less than minj (κτ,j+1 − κτ,j) /e, and
we get a contradiction.
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Theorem 3.2.2. Let Π be an irreducible automorphic representation of G(AF ) having

Iwahori invariants at all the places of F above p, and having invariants under an open

subgroup U of G(A(p)
F,f ). For each p-adic place v of F , let K(v)/Fv be a �nite extension.

Let (Λj)j∈J be a �nite family of non-constant a�ne functions on (Qn)HomQ(F,R). Let N be

an integer.

There exists an automorphic representation Π′ = ⊗′wΠ′w of G(AF ) such that:

• Π′ is unrami�ed at the places above p, and has invariants under U .

• For any p-adic place v of F , the restriction of ριp,ι∞(Π′) to GalK(v) is either irre-

ducible or the sum of an Artin character and an irreducible representation of dimen-

sion 2n.

• For any j ∈ J , Λj((k
′
w,1, . . . , k

′
w,n)w) 6= 0 where for w a real place of F k′w,1 ≥ · · · ≥

k′w,n ≥ 0 denotes the highest weight of Π′w.

• For all g in GalF , Tr(ριp,ι∞(Π′)(g)) ≡ Tr(ριp,ι∞(Π)(g)) mod pN .

Proof. We will write Π′ ≡ Π mod pN for the last property. For simplicity we only give the
proof in the case where K(v) = Fv for all v, the proof in the general case being identical
up to notational changes.

Recall that for v a place of F above p, there are elements φv,1, . . . , φv,n ∈ O(X )× such
that for any unrami�ed classical point x ∈X (Qp) re�ning an automorphic representation
Π, the �ltered ϕ-module associated with the crystalline representation ριp,ι∞(Π)|GalFv

has
ϕfv -eigenvalues(

φv,−n(x)q−nv
∏
σ

σ($v)
kv,σ,−1 , . . . , φv,−1(x)q−1

v

∏
σ

σ($v)
kv,σ,−n , 1,

φv,1(x)qv
∏
σ

σ($v)
kv,σ,n , . . . , φv,n(x)qnv

∏
σ

σ($v)
kv,σ,1

)

and σ-Hodge-Tate weights

kv,σ,−1 − n, . . . , kv,σ,−n − 1, 0, kv,σ,n + 1, . . . , kv,σ,1 + n

In the following if xb or x′b is a classical point, k(b)
v,σ,i will be the weights de�ning w(xb).

The representation Π corresponds to at least one point x of the eigenvariety X for G′ and
the idempotent eU ⊗ eG0 . By Proposition 2.2.6, and since GalF is compact, there exists
a point x1 ∈ X (E′) (near x, and for some �nite extension E′ of E) corresponding to an
unrami�ed, completely re�nable automorphic representation Π1 and a re�nement χ, such
that for any v,

2

ev

n∑
i=1

∑
σ

k
(1)
v,σ,i > −vp (φv,1(x1) . . . φv,n(x1)) + 3n(n+ 1)fv

and Π1 ≡ Π mod pN . Since Π1 is completely re�nable, there is a point x′1 ∈ X (E′)

associated with the representation Π1 and the character χa, where a is the element of the
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Weyl group acting as −Id on the roots. Speci�cally, Ψx1 |HS⊗HS⊗eG0
= Ψx′1

|HS⊗HS⊗eG0
,

but
φv,n+1−i(x

′
1) = φv,−n−1+i(x1)q2i+(2n+2)

v

∏
σ

σ($v)
−2k

(1)
v,σ,i

for i = 1, . . . , n, and all places v. There exists a point x2 ∈ X (E′) (near x′1, and up to
enlarging E′) corresponding to an unrami�ed, completely re�nable automorphic represen-
tation Π2 and a re�nement, such that for any v and any j < 0,

1

ev

∑
σ

(
k

(2)
v,σ,n+j − k

(2)
v,σ,n+j+1

)
> −vp(φv,−j+1(x2))− fv

and Π2 ≡ Π1 ≡ Π mod pN . Like before, since Π2 is completely re�nable, there is a point
x′2 ∈X (E′) such that Ψx2 |HS⊗HS⊗eG0

= Ψx′2
|HS⊗HS⊗eG0

, and

φv,n(x′2) = φv,1(x2)q1−n
v

∏
σ

σ($v)
k
(2)
v,σ,n−k

(2)
v,σ,1

φv,i(x
′
2) = φv,i+1(x2)qv

∏
σ

σ($v)
k
(2)
v,σ,n−i−k

(2)
v,σ,n−i+1 for i = 1, . . . , n− 1.

Here we used the element of the Weyl group corresponding (at each v) to the permutation(
−n −n+ 1 . . . −2 −1 1 . . . n
−n+ 1 −n+ 2 . . . −1 −n n . . . n− 1

)
.

Again, we can choose a point x3 ∈X (E′) (near x′1, and up to enlarging E′) corresponding
to an unrami�ed automorphic representation Π3 and a re�nement, such that for any v and
any τ ∈ Υ,

1

ev(2n+ 1)
min

{
k

(3)
v,τ,1 − k

(3)
v,τ,2, . . . , k

(3)
v,τ,n−1 − k

(3)
v,τ,n, k

(3)
v,τ,n

}
>

max {0, |vp(φv,τ,1(x3))|, . . . , |vp(φv,τ,n(x3))|}

and Π3 ≡ Π mod pN . By Proposition 2.2.6 we can also assume that none of the a�ne
functions Λj vanishes at the highest weight of (Π3,w)w|∞. Let us show that Π3 has the
desired properties. First we apply the previous lemma to the crystalline representation
ριp,ι∞(Π3)|GalFv

where v is any p-adic place of F . Since the di�erences vp(ϕi)− 1
e

∑
σ∈Υ κσ,i

in the hypotheses of the lemma are equal in our case to

−vp(φv,n(x3)), . . . ,−vp(φv,1(x3)), 0, vp(φv,1(x3)), . . . , vp(φv,n(x3)),

the hypotheses of the lemma are satis�ed for all τ ∈ Υ. Thus if ριp,ι∞(π3)|GalFv
is not

irreducible, there is a subset ∅ ( I ( {−n, . . . , n} such that if i1 < . . . < ir are the

24



elements of I and j1 < . . . < j2n+1−r those of J = {−n, . . . , n} \ I,

vp(φv,i1(x3)) ≥ 0

vp(φv,i1(x3)) + vp(φv,i2(x3)) ≥ 0

...

vp(φv,i1(x3)) + . . .+ vp(φv,ir(x3)) = 0

vp(φv,j1(x3)) ≥ 0

vp(φv,j1(x3)) + vp(φv,j2(x3)) ≥ 0

...

vp(φv,j1(x3)) + . . .+ vp(φv,j2n+1−r(x3)) = 0

by the admissibility of the corresponding �ltered ϕ-modules. For all i, vp(φv,i(x′2)) =

vp(φv,i(x3)), so all these conditions hold also at x′2. Up to exchanging I and J , we can
assume that i1 = −n. If j1 < 0,

vp(φv,j1(x′2)) = −vp(φv,−j1(x′2)) = −vp(φv,−j1+1(x2))− fv −
1

ev

∑
σ

k
(2)
v,σ,n+j1

− k(2)
v,σ,n+j1+1

and x2 was chosen to ensure that this quantity is negative, so we are facing a contradiction.
Thus J has only nonnegative elements, and {−n, . . . ,−1} ⊂ I. If we do not assume that
i1 = −n, we have in general that {−n, . . . ,−1} is contained in I or J . Similarly, suppose
ir = n. If j2n+1−r > 0,

vp(φv,j2n+1−r(x
′
2)) = vp(φv,j2n+1−r(x

′
2))

= vp(φv,j2n+1−r(x2)) + fv +
1

ev

∑
σ

k
(2)
v,σ,n−j2n+1−r

− k(2)
v,σ,n−j2n+1−r+1

is positive, another contradiction. Therefore {1, . . . , n} is contained in I or J .
Assume for example that {−n, . . . ,−1} ⊂ I and {1, . . . , n} ⊂ J . In that case

vp(φv,j1(x3) . . . φv,j2n+1−r(x3)) = vp(φv,1(x2) . . . φv,n(x2))

= vp(φv,1(x′1) . . . φv,n(x′1))

= −vp(φv,1(x1) . . . φv,n(x1)) + 3n(n+ 1)fv

− 2

ev

n∑
i=1

∑
σ

k
(1)
v,σ,i

is negative, which is yet another contradiction.
As a consequence, we can conclude that I or J is equal to {0}, and this shows that at

each place v of F above p, the semisimpli�cation of ριp,ι∞(Π3)|GalFv
is either irreducible

or the sum of an Artin character and an irreducible representation of dimension 2n. Con-
sequently Π3 has the required properties.
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3.2.4 From irreducibility to large image

Theorem 3.2.2 can be strengthened as follows, although we will not need this stronger
result in this paper.

Corollary 3.2.3. Let Π be an irreducible automorphic representation of G(AF ) having

Iwahori invariants at all the places of F above p, and having invariants under an open

subgroup U of G(A(p)
F,f ). Let N be an integer.

There exists an automorphic representation Π′ = ⊗′wΠ′w of G(AF ) such that:

• Π′ is unrami�ed at the places above p, and has invariants under U .

• For any p-adic place v of F , there exists a �nite extension E0 of Qp in Qp and a Lie

algebra h0 over E0 such that either

� Qp⊗E0 h0 ' so2n+1 and the Lie algebra of ριp,ι∞(Π′)(GalFv) is conjugate under

GL2n+1(Qp) to the image of h0 in the standard representation of so2n+1, or

� Qp ⊗E0 h0 ' so2n and the Lie algebra of ριp,ι∞(Π′)(GalFv) is conjugate under

GL2n+1(Qp) to the image of h0 in the direct sum of the standard representation

of so2n and the one-dimensional trivial representation,

• For all g in GalF , Tr(ριp,ι∞(Π′)(g)) ≡ Tr(ριp,ι∞(Π)(g)) mod pN .

Proof. For any p-adic place v of F , let K(v) be the compositum of all �nite extensions of
Fv of degree dividing 2n + 1 or 2n, so that K(v)/Fv is a �nite Galois extension. We will
apply Theorem 3.2.2 using these extensions and for a �nite family (Λj)j∈J that we will
determine below.

Let Π′ ∈ Avr
G. As we observed after Corollary 3.1.3, [BC11, Corollary 1.3] implies that

the Galois representation ρ := ριp,ι∞(Π′) is orthogonal, i.e. there exists a non-degenerate
quadratic form Q on Qp

2n+1
preserved by ρ(GalF ). We abusively still denote by ρ the

resulting continuous morphism GalF → SO(Qp
2n+1

, Q). Assume that for any p-adic place
v, ρ|GalK(v)

is either an irreducible representation of dimension 2n+1 or the direct sum of an
irreducible 2n-dimensional representation and a character. Consequently if ρv := ρ|GalFv

is
not irreducible, it is isomorphic to the direct sum of an irreducible representation ρv,0 and
det ρv,0 : GalFv → {±1}. If ρv is irreducible then ρ|GalK(v)

is the direct sum of irreducible
representations in the same Gal(K(v)/Fv)-orbit, in particular having same dimension, and
so ρ|GalK(v)

is irreducible. If ρv is irreducible (resp. ρv = ρv,0⊕det(ρv,0)), we claim that for
any �nite extension L/Fv, the orthogonal representation ρv|GalL (resp. ρv,0|GalL) remains
irreducible. This follows from [CG13][Lemma 4.3] and the de�nition of K(v). Let E ⊂ Qp

be a �nite extension of Qp such that Q takes values in E on E2n+1 and ρ takes values in
SO(E2n+1, Q). In the case where ρv = ρv,0 ⊕ det(ρv,0) we can also assume that the line in
Qp

2n+1
corresponding to det(ρv,0) is de�ned over E, i.e.⋂

γ∈GalFv

ker(ρv(γ)− det(ρv,0(γ))) = Qp ⊗E D
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for a well-de�ned line D ⊂ E2n+1. Let V be E2n+1 if ρv is irreducible, and V = D⊥ if
ρv = ρv,0 ⊕ det(ρv,0). The Lie algebra h = Lie(ρv(GalFv)) is a sub-Qp-Lie algebra of the
E-Lie algebra so(V,Q). Let g be the E-span of h. The representation V of g is faithful,
traceless, and absolutely irreducible by the above. Therefore g is a semi-simple E-Lie
algebra, and the rank of Qp ⊗E g is at most n. Note that dimE V = 2 is impossible.

We use Sen theory to relate g to the weights of Π′, in order to de�ne a family (Λj)j

forcing this rank to be n. Recall that DSen(V ) is a free Fv,∞ ⊗Qp E-module of rank
dimE V , where Fv,∞ = Fv(µp∞). It can be de�ned as the subspace of Qp[Gal(Fv,∞/Fv)]-

�nite vectors in
(
F̂v ⊗Qp V

)Gal(Fv/Fv,∞)

where F̂v is the completion of an algebraic closure

Fv of Fv,∞. In particular DSen(V ) is equipped with a continuous semi-linear action of
Gal(Fv,∞/Fv), which the cyclotomic character identi�es with a �nite index subgroup of
Z×p . This action is locally described by the linear operator Θ ∈ EndFv,∞⊗QpE(DSen(V )).
There is a natural decomposition

Fv,∞ ⊗Qp E =
∏

σ:Fv ↪→E
Fv,∞ ⊗Fv Eσ

inducing a similar decomposition of DSen(V ) and Θ, and the characteristic polynomial of
Θσ has coe�cients in Eσ ⊂ Fv,∞⊗Fv Eσ. Since V is de Rham, the roots of this polynomial
are the σ-Hodge-Tate weights of V . By [Sen73, Theorem 1], the endomorphism 1⊗Θ of

F̂v ⊗Fv,∞ DSen(V ) = F̂v ⊗Qp V

belongs to F̂v ⊗Qp h. In particular, for any Qp-embedding σ : Fv ↪→ E we have that

1 ⊗ Θσ belongs to F̂v ⊗Fv ,σ g, and so Qp ⊗E g contains an element whose eigenvalues on
Qp ⊗E V are the σ-Hodge-Tate weights of V . Recall that the σ-Hodge-Tate weights of ρv
are ±(kv,σ,1 + n), . . . ,±(kv,σ,n + 1) and 0, where kv,σ,1 ≥ · · · ≥ kv,σ,n ≥ 0 is the weight of
Π′w. Here w denotes the real place of F corresponding to (v, σ) via ιp, ι∞.

Let R be the set of isomorphism classes of pairs (k, u) where k is a semi-simple Qp-Lie
algebra of rank less than n and u is a faithful irreducible orthogonal representation of
k → Qp of dimension 2n or 2n + 1. From the classi�cation of simple Lie algebras and
the Weyl dimension formula one can deduce that R is �nite. Consider such a pair (k, u),
and �x a Cartan subalgebra c of k. There are �nitely many n-tuples (f1, . . . , fn) of linear
forms on c such that for any x ∈ c, the eigenvalues of u(x) (counted with multiplicity)
are f1(x),−f1(x), . . . , fn(x),−fn(x), along with 0 if dimu = 2n + 1. Since dim c < n,
there is a non-zero linear form F on Qp

n
killing (f1(x), . . . , fn(x)) for all x ∈ c, and from

the classi�cation of representations of k we see that we can take F to be (induced from)
a linear form on Qn. Then Λ(x1, . . . , xn) = F (x1 + n, . . . , xn + 1) de�nes a non-constant
a�ne form Λ on Qn, and considering all elements of R and all n-tuples of linear forms on a
Cartan subalgebra, we get a �nite family (Λj)j . If we apply Theorem 3.2.2 with (K(v))v|p

as above and this family (Λj)j , we see that for any p-adic place v of F , the Lie algebra g

de�ned above has rank n over Qp. We will see that this family (Λj)j is enough to conclude,
except perhaps in the case where dimE V = 4.
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By examining [Dyn00, Table 9 on p.147], which classi�es sub-Lie algebras containing a
Cartan subalgebra of any given simple Lie algebra, and using the fact that the represen-
tation V of g is absolutely irreducible, we see that g = so(V,Q). We now distinguish two
cases:

• If dimE V 6= 4, then so(V,Q) is absolutely simple and by Lemma 3.2.4 below, this
implies that h ↪→ ResE/Qp(g) is isomorphic to ResE0/K(h0) ↪→ ResE/K (E ⊗E0 h0)

where E0/K is the subextension of E/K de�ned by E0 = Endh(adh).

• If dimE V = 4, then so(V,Q) ' sl2×sl2 as Lie algebras over E. The proof of Lemma
3.2.4 below still shows that h is semi-simple. If either projection h → ResE/Qp(sl2)

is not injective, it is easy to conclude that h ↪→ ResE/Qp(g) is canonically isomor-
phic to ResE1/Qp(sl2)× ResE2/Qp(sl2) ↪→ ResE/Qp(g) for canonical E1, E2 as before.
Otherwise we can apply the lemma to the images of h in both projections, and con-
clude that h ↪→ ResE/Qp(g) is isomorphic to ResE0/Qp(h0) ↪→ ResE/Qp((Eτ1⊗E0 h0)×
(Eτ2 ⊗E0 h0)) given by two distinct Qp-embeddings τ1, τ2 : E0 → E. Here Eτ de-
notes E seen as an extension of E0 using τ . For σ : Fv ↪→ E denote by κσ the
non-negative eigenvalue of Θσ in the 2-dimensional representation of h0 de�ned by
h0 ↪→ Eτ1 ⊗E0 h0 ' sl2 (over E). Let γ ∈ Gal(E/Qp) be such that τ1 = γ ◦ τ2. Then
the eigenvalues of Θσ for the representation ρv,0 on V are ±κσ ± κγ◦σ. This yields a
relation between the σ-Hodge-Tate weights of ρv,0, of the form∑

σ:Fv ↪→E
εσ(kv,σ,2 + 1) = 0

for signs εσ ∈ {±1}. By adding these relations (for all choices of signs εσ) to the
family (Λj)j we prevent this special case from occurring.

Lemma 3.2.4. Let g be an absolutely simple Lie algebra over a �eld E of characteristic

0. Let K be a sub�eld of E over which E has �nite dimension, and let h be a sub-K-Lie

algebra of ResE/K(g) such that g, considered as a vector space over E, is generated by

h. Then there exists a canonical subextension E0/K of E/K such that the K-Lie algebra

embedding h ↪→ ResE/K(g) is isomorphic to ResE0/K(h0) ↪→ ResE/K (E ⊗E0 h0) for an

absolutely simple Lie algebra h0 over E0.

Proof. First we observe that h is semi-simple: let r be the radical of h, then the E-span of
r is a solvable ideal in the E-span of h, that is g, and thus r = 0.

Furthermore, h is simple. Otherwise h = a⊕ b where a and b are non-zero ideals of h,
and so their E-spans a′ and b′ are non-zero ideals of g such that [a′, b′] = 0, in contradiction
with the assumption that g is simple.

Therefore h = ResE0/K(h0), where the (commutative) �eld E0 is the endomorphism
K-algebra of the adjoint representation of h, and h0 is absolutely simple. To lighten
notation we will denote g′ = ResE/K(g). As K-representations of h, E ⊗K adh � adg′ and
thus adg′ = V ⊗E0 adh where V is the space of h-invariants in adg′ ⊗K (adh)

∗ endowed

28



with the natural action of E0 on (adh)
∗. This action is naturally a right action, but the

distinction is irrelevant because E0 is commutative. Thus Endh(adg′) = EndE0(V ) and
E0 is canonically identi�ed with the center of Endh(adg′). Note that E = Endg′(adg′)

is contained in Endh(adg′), and thus any element of the center of Endh(adg′) is E-linear.
Since h spans g over E, Endh(adg′) ∩ EndE(adg′) = Endg′(adg′) = E, and thus E0/K is a
subextension of E/K.

The natural morphism E ⊗E0 h0 → g is surjective, and also injective because E ⊗E0 h0

is simple.

4 Similar results for even orthogonal groups

In this section we explain (very) brie�y how the same method as in the previous sections
applies to orthogonal groups.

Let F be a totally real number �eld of even degree over Q. Then F has an even number
of 2-adic places of odd degree over Q2, and as these are the only �nite places of F at which
(−1,−1)v = −1 (where (·, ·)v denotes the Hilbert symbol), we have

∏
v(−1,−1)v = 1 where

the product ranges over the �nite places of F . Consequently, there is a unique quadratic
form on F 4 which is positive de�nite at the real places of F , and split (isomorphic to
(x, y, z, t) 7→ xy + zt) at the �nite places. It has Hasse invariant (−1,−1)v at each �nite
place v of F , and its discriminant is 1. As a consequence, for any integer n ≥ 1, there is a
connected reductive group G over F which is compact (and connected) at the real places
(isomorphic to SO4n/R) and split at all the �nite places (isomorphic to the split reductive
group SO4n). As before, we let G′ = ResFQ(G). The proofs of the existence and properties
of the attached eigenvariety X → W are identical to the symplectic case. We could not
�nd a result as precise as Theorem 2.2.4 in the literature, however by [Cas80, Proposition
3.5] unrami�ed principal series are irreducible on an explicit Zariski-open subset of the
unrami�ed characters. Speci�cally, if SO4n(Fv) =

{
M ∈ M4n(Fv) | tMJ4nM = J4n

}
,

T =





x1

. . .

x2n

x−1
2n

. . .

x−1
1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xi ∈ F×v


and P is any parabolic subgroup containing T , then for an unrami�ed character χ =

(χ1, . . . , χn) of T (χi is a character of the variable xi), Ind
SO4n(Fv)
P (χ) is irreducible if

χi($v)
2 6= 1 for all i and χi($v)χj($v)

±1 6= 1, qv, q
−1
v for all i < j. Note that this is not

an equivalence.
The existence of Galois representations ριp,ι∞(Π) attached to automorphic represen-

tations Π of G(AF ) is identical to Proposition 3.1.1. We now state the main result for
orthogonal groups.
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Theorem 4.0.1. Let Π be an irreducible automorphic representation of G(AF ) having

Iwahori invariants at all the places of F above p, and having invariants under an open

subgroup U of G(A(p)
F,f ). For each p-adic place v of F , let K(v)/Fv be a �nite extension.

Let (Λj)j∈J be a �nite family of non-constant a�ne functions on (Q2n)HomQ(F,R). Let N

be an integer. There exists an automorphic representation Π′ of G(AF ) such that:

• Π′ is unrami�ed at the places above p, and has invariants under U .

• For any p-adic place v of F , the restriction of ριp,ι∞(Π′) to GalK(v) is irreducible.

• For any j ∈ J , Λj((k
′
w,1, . . . , k

′
w,n)w) 6= 0 where for w a real place of F , k′w,1 ≥ · · · ≥

k′w,2n−1 ≥ |k′w,2n| ≥ 0 denotes the highest weight of Π′w.

• For all g in GalF , Tr(ριp,ι∞(Π′)(g)) ≡ Tr(ριp,ι∞(Π)(g)) mod pN .

Proof. The proof is nearly identical to that of Theorem 3.2.2. In the orthogonal case
the Weyl group is a bit smaller: it is the semi-direct product of S2n and a hyperplane
of (Z/2Z)2n. Alternatively, it is the group of permutations w of {−2n, . . . ,−1, 1, . . . , 2n}
such that w(−i) = −w(i) for all i and

∏2n
i=1w(i) > 0. The two elements of the Weyl group

used in the proof of Theorem 3.2.2 have natural counterparts in this Weyl group. The only
di�erence lies in the fact that there is no Hodge-Tate weight equal to 0 in the present case,
at least for generic weights, hence the simpler conclusion �ριp,ι∞(Π′)|GalFv

is irreducible for
v|p�.

As in the previous case, this result can be strengthened as follows.

Corollary 4.0.2. Let Π be an irreducible automorphic representation of G(AF ) having

Iwahori invariants at all the places of F above p, and having invariants under an open

subgroup U of G(A(p)
F,f ). Let N be an integer.

There exists an automorphic representation Π′ = ⊗′wΠ′w of G(AF ) such that:

• Π′ is unrami�ed at the places above p, and has invariants under U .

• For any p-adic place v of F , there exists a �nite extension E0 of Qp in Qp and a Lie

algebra h0 over E0 such that Qp⊗E0h0 ' so4n and the Lie algebra of ριp,ι∞(Π′)(GalFv)

is conjugate under GL4n(Qp) to the image of h0 in the standard representation of so4n.

• For all g in GalF , Tr(ριp,ι∞(Π′)(g)) ≡ Tr(ριp,ι∞(Π)(g)) mod pN .

The proof is similar to that of Corollary 3.2.3, and even simpler.

Remark 4.0.3. For simplicity we chose to work with reductive groups G over F which are

split at all �nite places of F , but with nearly identical proofs one can show similar results

at least for even special orthogonal groups G such that

• G(R⊗Q F ) is compact,

• for any �nite place v of F , GFv is quasi-split,
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• for any p-adic place v of F , GFv is split.

In fact the second assumption, which is only required to apply [Taï] in order to show that

one can attach Galois representations to automorphic representations for G, is unnecessary

since we do not need the precise multiplicity formula [Taï, Theorem 4.0.1], but simply the

analogue of Proposition 3.1.1. This can be proved directly using the stabilization of the

trace formula, similarly to the proof of [Taï, Theorem 4.0.1].

5 The image of complex conjugation: relaxing hypotheses in

Taylor's theorem

Let us apply the previous results to the determination of the image of the complex conjuga-
tions under the p-adic Galois representations associated with regular, algebraic, essentially
self-dual, cuspidal automorphic representations of GLn(AF ), F totally real. Recall that
these representations are constructed by �patching� representations of Galois groups of CM
extensions of F , on Shimura varieties for unitary groups. The complex conjugations are
lost when we restrict to CM �elds. In [Tay12], Taylor proves that the image of any com-
plex conjugation is given by (the �discrete� part of) the local Langlands parameter at the
corresponding real place, assuming n is odd and the Galois representation is irreducible,
by constructing the complex conjugation on the Shimura datum. Of course the Galois
representation associated with a cuspidal representation of GLn is conjectured to be irre-
ducible, but unfortunately this is (at the time of writing) still out of reach in the general
case (however, see [CG13] for n ≤ 5; [BLGGT14b, Theorem D] for a �density one� result for
arbitrary n but under the assumption that F is CM and the automorphic representation
is �extremely regular� at the archimedean places; and [PT15] for a �positive density� result
for arbitrary n and without these assumptions).

The results of the �rst part of this paper allow us to remove the irreducibility hypothesis
in Taylor's theorem, and to extend it to some (�half�) cases of even n, using Arthur's
endoscopic transfer. Unfortunately some even-dimensional cases are out of reach using
this method, because odd-dimensional essentially self-dual cuspidal representations are
(up to a twist) self-dual, whereas some even-dimensional ones are not.

Since the proof is not direct, let us outline the strategy. First we deduce the even-
dimensional self-dual case from Taylor's theorem by adding a cuspidal self-dual (with
appropriate weights) representation ofGL3, we get an automorphic self-dual representation
ofGL2n+3 which (up to base change) can be �transferred� to a discrete representation of the
symplectic group in dimension 2n+ 2. Since the associated Galois representation contains
no Artin character, it can be deformed irreducibly, and Taylor's theorem applies. Then
the general odd-dimensional case is deduced from the even-dimensional one, by essentially
the same method, using the eigenvariety for orthogonal groups.
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5.1 Regular, L-algebraic, self-dual, cuspidal representations of GL2n(AF )
having Iwahori-invariants

In this subsectionG will denote the symplectic group in dimension 2n+2 de�ned in section
2. The following is due to C. M÷glin and J.-L. Waldspurger.

Lemma 5.1.1. Let K be a �nite extension of Qp. Let φ : WK × SU(2)→ SO2n+3(C) be a

Langlands parameter (equivalently, a generic Arthur parameter). Assume that the subgroup

I × {1} (I being the inertia subgroup of WK) is contained in the kernel of φ.

Then the Arthur packet associated with φ contains a representation having a non-zero

vector �xed under the Iwahori subgroup of Sp2n+2(K).

Proof. Denote by {Π1, . . . ,Πk} this Arthur packet. Since Arthur's construction of the
Πi's is inductive for parameters trivial on the supplementary SL2(C), and subquotients
of parabolic inductions of representations having Iwahori-invariants also have Iwahori-
invariants, it is enough to prove the result in the case where φ is discrete. Let τ be the irre-
ducible smooth representation of GL2n+3(K) having parameter φ, then τ ' Ind

GL2n+3

L (σ),
where σ is the tensor product of (square-integrable) Steinberg representations St(χi, ni)

of GLni(K) (i ∈ {1, . . . , r}), χi are unrami�ed, self-dual characters of K× (thus χi = 1

or (−1)v(·)), and the pairs (χi, ni) are distinct. Here L denotes the standard parabolic
associated with the decomposition 2n + 3 =

∑
i ni. Since φ is self-dual, τ can be ex-

tended (not uniquely, but this will not matter for our purpose) to a representation of
G̃L

+

2n+3 = GL2n+3 o {1, θ}, where

θ(g) =


1

−1

. .
.

1

 tg−1


1

−1

. .
.

1


Let also G̃L2n+3 = GL2n+3 o θ.

Let N0 be the number of i such that ni is odd, and for j ≥ 1 let Nj be the number of i
such that ni ≥ 2j. Then N0 + 2

∑
j≥1Nj = 2n+ 3, and if s is maximal such that Ns > 0,

we let
M = GLNs × . . .×GLN1 ×GLN0 ×GLN1 × . . .×GLNs

which is a θ-stable Levi subgroup of GL2n+3, allowing us to de�ne M̃+ and M̃. Since
the standard (block upper triangular) parabolic containing M is also stable under θ, the
Jacquet module τM is naturally a representation of M̃+, denoted by τ

M̃
. The constituents

of the semi-simpli�cation of τ
M̃

either stay irreducible when restricted to M, in which case
they are of the form σ1 ⊗ σ0 ⊗ θ(σ1) where σ1 is a representation of GLNs(K) × . . . ×
GLN1(K) and σ0 is a representation of G̃LN0(K); or they are induced from M(K) to
M̃+(K), and the restriction of their character to M̃(K) is zero. Since we are precisely
interested in that character, we can forget about the second case. By the geometrical
lemma,

τ ss
M '

⊕
w∈WL,M

IndM
M∩w(L)w (σL∩w−1M)
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where WL,M is the set of w ∈ S2n+3 such that w is increasing on I1 = {1, . . . , n1},
I2 = {n1 +1, . . . , n1 +n2}, etc. and w−1 is increasing on J−s = {1, . . . , Ns}, J−s+1 = {Ns+

1, . . . , Ns +Ns−1}, etc. Fix the irreducible representation of GLNs(K)× . . .×GLN1(K)

σ1 =
s⊗
j=1

Ind
GLNj
Tj

⊗
i | ni≥2j

χi| · |j−νi

where Tj is the standard maximal torus of GLNj , νi =

{
0 ni odd

1/2 ni even
.

There is a unique w such that IndM
M∩w(L)w

(
σL∩w−1(M)

)
admits a subquotient of the

form σ1 ⊗ σ0 ⊗ θ(σ1) as above, moreover IndM
M∩w(L)w

(
σL∩w−1(M)

)
is irreducible, and

σ0 = Ind
GLN0
T0

⊗
i | ni odd

χi

Speci�cally, w maps the �rst element of Ii in J−b(ni+1)/2c, the second in J−b(ni+1)/2c + 1,
. . . , the central element (if ni is odd) in J0, etc.

Let M′ be the parabolic subgroup of Sp2n+2/K corresponding to M, i.e.

M′ = GLNs × . . .×GLN1 × SpN0−1

By [Art13, 2.2.6],
∑

i TrΠi is a stable transfer of TrGL+
2n+3

τ . By [MW06, Lemme 4.2.1]
(more accurately, the proof of the lemma),∑

i

Tr ((Πi)
ss
M′ [σ1])

is a stable transfer of Tr
(
τ ss
M̃

[σ1]
)
(where ·[·] denotes the isotypical component on the

factor GLNs × . . .×GLN1).
Since τ ss

M̃
[σ1] = σ1⊗σ0⊗θ(σ1), the stable transfer of Tr

(
τ ss
M̃

[σ1]
)
is equal to the product

of Tr(σ1) and
∑

l TrΠ′l where the Π′l are the elements of the Arthur packet associated with
the parameter ⊕

i | ni odd
χi

At least one representation Π′l is unrami�ed for some hyperspecial compact subgroup of
SpN0−1(K), and so a Jacquet module of a Πi contains a nonzero vector �xed by an Iwahori
subgroup. This proves that at least one of the Πi has Iwahori-invariant vectors.

Proposition 5.1.2. Let F0 be a totally real �eld, and let π be a regular, L-algebraic, self-

dual, cuspidal (RLASDC) representation of GL2n(AF0). Assume that for any place v|p of

F0, πv has vectors �xed under an Iwahori subgroup of GL2n(AF0,v). Then there exists a

RLASDC representation π0 of GL3(AF0), a totally real quadratic extension F/F0, and an

automorphic representation Π of G(AF ) such that

1. for any place v|p of F0, π0,v is unrami�ed,

2. BCF/F0
(π) and BCF/F0

(π0) remain cuspidal,
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3. for any place v of F above p, Πv has invariants under the action of the Iwahori

subgroup of G(Fv),

4. for any �nite place v of F such that BCF/F0
(π)v and BCF/F0

(π0)v are unrami�ed, Πv

is unrami�ed, and via the inclusion SO2n+3(C) ↪→ GL2n+3(C), the Satake parameter

of Πv is equal to the direct sum of those of BCF/F0
(π)v and BCF/F0

(π0)v.

Proof. First we construct π0. Let δ be a cuspidal automorphic representation of PGL2/F0

which is unrami�ed at the p-adic places, Steinberg at some �nite place not lying above p,
and whose local langlands parameters at the real places are of the form IndWR

WC
(z 7→ (z/z̄)a)

where a is a half-integer big enough with respects to the weights appearing in the local
Langlands parameters of π. Such a representation exists thanks to [Clo86, Theorem 1B].
Let π0 be the automorphic representation of GL3/F0 obtained by functoriality from δ

through the adjoint representation of P̂GL2 = SL2(C) on its Lie algebra. The representa-
tion π0 exists and is cuspidal by [GJ78, Theorem 9.3]. The Steinberg condition ensures that
no twist of δ by a non-trivial character (seen as a representation of GL2/F0) is isomorphic
to δ, and cuspidality of π0 follows. We can twist π0 by the central character of π to ensure
that π and π0 have the same central character. Clearly π0 is a RLASDC representation of
GL3/F0.

Note that if F/F0 is a quadratic extension, for BCF/F0
(π) and BCF/F0

(π0) to remain
cuspidal it is enough for F/F0 to be rami�ed above a �nite place of F0 at which π and π0

are unrami�ed. Fix a totally real quadratic extension F/F0 satisfying this condition and
which is split at any p-adic place of F0. Since [F : Q] is even we can de�ne the connected
reductive group G over F as before, which is an inner form of Sp2n+2. We use [Taï] to
check the existence of Π. For the rest of the proof we use notations from [Taï].

We claim that ψ := BCF/F0
(π) � BCF/F0

(π0) de�nes an element of Ψdisc(G). The
only non-obvious property that we have to check is that the quasi-split reductive group H

over F associated to BCF/F0
(π) by [Art13, Theorem 1.4.1] is such that Ĥ ' SO2n(C), not

Sp2n(C). By [Art13, Theorem 1.4.2], for any real place w of F the Langlands parameter
of BCF/F0

(π)w, that is the Langlands parameter of πw0 where w0 is the place of F0 below
w, factors through the dual group of H and the standard representation LH→ GL2n(C).
The Langlands parameter of πw0 is the direct sum of distinct orthogonal 2-dimensional
irreducible representations of WFw , and so Ĥ cannot be symplectic.

We now apply Arthur's multiplicity formula, proved in [Taï] for the group G: we will
choose an element Π = ⊗′wΠw of the adélic packet Πψ(G), and check that it is automorphic.
Note that Cψ = Sψ = Z/2Z, and that εψ is the trivial character of Sψ (see [Art13, (1.5.6)]),
and recall that C+

ψ denotes the preimage of Cψ in Ĝsc = Spin2n+1(C). Realise G as a rigid
inner twist (G,Ξ, z) ofG∗ := Sp2n+2. The multiplicity formula depends on the choice of an
isomorphism class (for G∗(F )-conjugacy) of global Whittaker data w for G∗ := Sp2n+2/F

and on the choice of a realisation of G as a rigid inner twist (G,Ξ, z) of G∗, a notion
introduced in [Kal]. Let us �x the Whittaker datum w, and realise G as an inner twist
(G,Ξ) of G∗, i.e. choose an isomorphism Ξ : G∗

F
→ GF such that for any σ ∈ GalF ,

the automorphism Ξ−1σ(Ξ) of G∗
F
is inner. This de�nes zad ∈ Z1(F,G∗ad), and below
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we will choose a lift z of zad in Z1(PF,V̇ → EF,V̇ ,Z → G∗), where Z = Z(G∗) ' µ2.
For any place v of F0 splitting into v1 and v2 in F , Fv1 = Fv2 = F0,v and we claim
that there exists an isomorphism fv : (G∗Fv1

,wv1) ' (G∗Fv2
,wv2). Indeed, there exists an

isomorphism G∗Fv1
' G∗Fv2

, well-de�ned up to G∗ad(Fv2), and this group acts transitively
on the set of isomorphism classes of Whittaker data for G∗Fv2 . This isomorphism fv is well-
de�ned up to composing with Ad(g) for some g ∈ G∗(Fv2), and fv induces an isomorphism
H1(uv1 → Ev1 ,Z → G∗Fv1

) ' H1(uv2 → Ev2 ,Z → G∗Fv2
). Recall [Taï, �3.1.1] that there

are two elements of H1(uvi → Evi ,Z → G∗Fvi
) lifting cl(zad,vi) ∈ H1(Fvi ,G

∗
Fvi

). By [Taï,
Proposition 3.1.2] there exists z ∈ Z1(PF,V̇ → EF,V̇ ,Z→ G∗) lifting zad and such that for
any real place v of F0, the classes of the localizations zvi in H

1(uvi → Evi ,Z→ G∗) di�er.
Recall also that for any �nite place w of F the class of zw in H1(uw → Ew,Z → G∗Fw) is
trivial. We now choose Πw at each place w of F .

• For any real place v of F0, splitting into v1, v2 in F , the localizations ψvi : WFvi
→

SO2n+1(C) for i = 1, 2 are conjugated under SO2n+1(C), giving rise to an isomor-
phism between the abelian groups S+

ψvi
= C+

ψvi
which is compatible with the mor-

phisms C+
ψ → S

+
ψvi

. These localizations ψvi are discrete Langlands parameters, by
the choice of π0. As explained in [Taï, �3.1.1] each L-packet Πψvi

(GFvi
) has one

element Πvi , and the associated characters 〈·,Πvi〉 of S+
ψvi

are opposite of each other,
so that 〈·,Πv1〉|C+

ψ
× 〈·,Πv2〉|C+

ψ
is the trivial character of C+

ψ .

• For any p-adic place v of F0, splitting into v1, v2 in F , the localizations ψvi :

WFvi
×SU(2)→ SO2n+1(C) for i = 1, 2 are conjugated under SO2n+1(C), giving rise

to an isomorphism between the abelian groups Sψvi which is compatible with the mor-
phisms Sψ → Sψvi . Furthermore, since the class of zvi in H

1(uvi → Evi ,Z → G∗Fvi
)

is trivial we obtain an isomorphism G∗Fvi
' GFvi

well-de�ned up to composing
with Ad(g) for some g ∈ G(Fvi), and by de�nition ([Taï, �3.4]) this isomorphism is
compatible with the internal parametrization of Arthur packets. Using these isomor-
phisms to conjugate fv, we get an isomorphism GFv1

' GFv2
which is compatible

with the internal parametrization of Arthur packets. Thanks to Lemma 5.1.1 we
can choose Πv1 ∈ Πψv1

(GFv1
) having Iwahori-invariants, and we let Πv2 be the

corresponding element of Πψv2
(GFv2

), so that the characters 〈·,Πvi〉 of the abelian
2-torsion groups Sψvi coincide. Thus 〈·,Πv1〉|Sψ × 〈·,Πv2〉|Sψ is the trivial character
of Sψ.

• For any place w of F which is neither real nor p-adic, the class of zw in H1(uw →
Ew,Z → G∗Fw) is trivial and again we obtain an isomorphism G∗Fw ' GFw which
allows to identify ww with a Whittaker datum forGFw . Let Πw be the trivial element
of Πψw(GFw), i.e. the representation Πw such that 〈·,Πw〉 = 1. If ψw is unrami�ed,
then Πw is unrami�ed for the unique G(Fw)-conjugacy class of hyperspecial maximal
compact subgroups of G(Fw) determined by wv (see [CS80]).

The element Π := ⊗′wΠw of Πψ(G) is such that the associated character 〈·,Π〉 of Sψ, that
is
∏
w〈·,Πw〉|C+

ψ
, is trivial, therefore [Taï, Theorem 4.0.1] Π occurs in the automorphic

spectrum of G.
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Proposition 5.1.3. Let F be a totally real �eld, and let π be a regular, L-algebraic, self-

dual, cuspidal representation of GL2n(AF ). Suppose that for any place v of F above p,

πv has invariant vectors under an Iwahori subgroup. Then for any complex conjugation

c ∈ GalF , Tr(ριp,ι∞(π)(c)) = 0.

Proof. By the previous proposition, up to quadratic base change to a totally real extension
(which only restricts the Galois representation to this totally real �eld, so that we get even
more complex conjugations), we can choose a RLASDC representation π0 of GL3(AF ) and
transfer π�π0 to an automorphic representation Π ofG(AF ). The representation Π de�nes
(at least) one point x of the eigenvariety X de�ned by G (and by an open subgroup U of
G(A(p)

F,f )). Of course, by the �ebotarev density theorem and compatibility of transfer at the
unrami�ed places, the representation associated with Π is equal to ριp,ι∞(π)⊕ ριp,ι∞(π0).
Since the Hodge-Tate weights of ριp,ι∞(π)|GalFv

are non-zero for any place v|p, ριp,ι∞(π)

does not contain an Artin character. By [BR92], ριp,ι∞(π0) is irreducible and thus does not
contain any character. There are only �nitely many Artin characters taking values in {±1}
and unrami�ed at all the �nite places at which Π is unrami�ed. For any such character
η, the pseudocharacter T on the eigenvariety is such that Tx − η is not a pseudocharacter,
hence we can �nd gη,1, . . . , gη,2n+3 such that

tη :=
∑

σ∈S2n+3

(Tx − η)σ(gη,1, . . . , gη,2n+3) 6= 0

Let us choose N greater than all the vp(tη) and such that pN > 2n + 4. Let Π′ be an
automorphic representation of G(AF ) satisfying the requirements of Theorem 3.2.2 for
this choice of N . Then the Tr(ριp,ι∞(Π′)) − η are not pseudocharacters, thus ριp,ι∞(Π′)

does not contain an Artin character and by Theorem 3.2.2 it is irreducible. This Galois
representation is (by construction in the proof of Corollary 3.1.3) the direct sum of repre-
sentations associated with cuspidal representations. Since it is irreducible, there is only one
of them, and it has the property that its associated Galois representations is irreducible,
so that the theorem of [Tay12] can be applied: for any complex conjugation c ∈ GalF ,
Tr(ριp,ι∞(Π′)(c)) = ±1. Since det ριp,ι∞(Π′) = 1, Tr(ριp,ι∞(Π′)(c)) = (−1)n+1.

As pN > 2n+4 and |Tr(ριp,ι∞(Π)(c))−Tr(ριp,ι∞(Π′)(c))| ≤ 2n+4, we can conclude that
Tr(ριp,ι∞(Π)(c)) = (−1)n+1, and hence that Tr(ριp,ι∞(π)(c))+Tr(ριp,ι∞(π0)(c)) = (−1)n+1.
We also know that det ριp,ι∞(π0) = det ριp,ι∞(π)(c) = (−1)n, and that Tr(ριp,ι∞(π0)(c)) =

±1 by Taylor's theorem, from which we can conclude that Tr(ριp,ι∞(π0)(c)) = (−1)n+1.
Thus Tr(ριp,ι∞(π)(c)) = 0.

5.2 Regular, L-algebraic, self-dual, cuspidal representations of GL2n+1(AF )
having Iwahori-invariants

In this subsection, G is the orthogonal reductive group de�ned in section 4, in dimension
2n+ 2 if n is odd, 2n+ 4 if n is even.

Lemma 5.2.1. Let K be a �nite extension of Qp, and m ≥ 1 an integer. Let φ : WK ×
SU(2)→ SO2m(C) be a Langlands parameter. Assume that the subgroup I × {1} (I being

the inertia subgroup of WK) is contained in the kernel of φ.
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Then the packet of representations of the split group SO2m(K) associated with φ by

Arthur contains a representation having a non-zero vector �xed under the Iwahori subgroup.

Proof. Of course this result is very similar to Lemma 5.1.1. However, M÷glin and Wald-
spurger have not put their lemma in writing in this case, and the transfer factors are no
longer trivial, so that one needs to modify the de�nition of �stable transfer�. For this one
needs to use the transfer factors ∆

G̃L2m,SO2m
(·, ·) de�ned in [KS99]. They depend in gen-

eral on the choice of an inner class of inner twistings [KS99, 1.2] (in our case an inner class
of isomorphisms between GL2m/K and its quasi-split inner form de�ned over K, which we
just take to be the identity), and a Whittaker datum of the quasi-split inner form. Arthur
chooses the standard splitting of GL2m and an arbitrary character K → C×, but this will
not matter to us since both GL2m and SO2m are split, so that the factor 〈zJ , sJ〉 of [KS99,
4.2] (by which the transfer factors are multiplied when another splitting is chosen) is triv-
ial. Indeed to compute this factor we can choose the split torus TH of SO2m/K, which
is a norm group (see [KS99, Lemma 3.3B]) for the split torus T of GL2m/K, and thus,
using the notations of [KS99, 4.2], Tx is split and H1(K,Tx) is trivial, so that z′ = 1 (zJ
is the image of z′ in H1(K,J), thus it is trivial). Since both groups are split the ε-factor
of [KS99, 5.3] is also trivial, so the transfer factors are canonical.

Let H = SO2m/K, τ̃ the representation of G̃L
+

2m associated with φ, and τH the sum
of the elements of the packet associated with φ by Arthur. Note that by construction, this
packet is only a �nite set of orbits under O2m(K)/H(K) ' Z/2Z of isomorphism classes
of irreducible, square-integrable representations of H(K). Each orbit has either one or two
elements. In the latter case where the orbit is (say) {τ1, τ2} one can still de�ne a �partial�
character (in the sense of Harish-Chandra):

Θτ1(h) + Θτ1(h′) = Θτ2(h) + Θτ2(h′) := Θτ1(h) + Θτ2(h)

whenever h is regular semisimple conjugacy class in H(K) and h′ is the complement of h
in its conjugacy class under O2m(K). Although the individual terms on the left cannot be
distinguished, their sum does not depend on the choice of a particular element (e.g. τ1) in
the orbit. In that setting, Arthur shows ([Art13, 8.3]) that the following character identity
holds: ∑

h

|DH(h)|1/2ΘτH(h)∆(h, g) = |D
G̃L2m

(g)|1/2Θτ̃ (g) (5.2.1)

where the sum on the left runs over the the stable conjugacy classes h in H(K) which are
norms of the conjugacy class g in G̃L2m(K), both assumed to be strongly G̃L

+

2m-regular.
There are two such stable conjugacy classes h, they are conjugate under O2m(K) and the
two transfer factors on the left are equal (this can be seen either by going back to the
de�nition of Kottwitz and Shelstad, or by Waldspurger's formulas recalled below). This
fact together with the stability of the �partial� distribution ΘτH (which is part of Arthur's
results) imply that the expression on the left is well-de�ned. Note that as in [MW06]
and [Art13], the term ∆IV is not included in the product de�ning the transfer factor ∆.
Contrary to the case of symplectic and odd orthogonal groups treated in [MW06], the
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transfer factors are not trivial, and the terms |DH(h)|1/2 and |D
G̃L2m

(g)|1/2 are not equal.
However the latter play no particular role in the proof. This character identity 5.2.1 is the
natural generalization of the notion of �stable transfer� of [MW06].

Let
M = GLNs × . . .×GLN1 ×GLN0 ×GLN1 × . . .×GLNs

be a θ-stable Levi subgroup of GL2m, and M′ = GLNs × . . . ×GLN1 × SON0 the corre-
sponding parabolic subgroup of H. To mimic the proof of Lemma 5.1.1, we only need to
show that Tr

(
τHM′
)
is a stable transfer of Tr

M̃

(
τ
M̃

)
, where �stable transfer� has the above

meaning, that is the character identity 5.2.1 involving transfer factors. Note that M̃+ has
a factor GLm−N0/2×GLm−N0/2 together with the automorphism θ(a, b) = (θ(b), θ(a)), for
which the theory of endoscopy is trivial: θ-conjugacy classes are in bijection with conju-
gacy classes in GLm−N0/2 (over K or K̄) via (a, b) 7→ aθ(b) and the θ-invariant irreducible
representations are the ones of the form σ ⊗ θ(σ).

So we need to check that if g = (g1, g0) is a strongly regularGL2m(K)-conjugacy class in
G̃L2m(K) determined by a conjugacy class g1 inGLm−N0/2(K) and aGLN0(K)-conjugacy
class g0 in G̃LN0(K), and if h0 is the O2m(K̄)-conjugacy class in H(K) corresponding to
g0, then

∆
G̃LN0

,SON0
(h0, g0) = ∆

G̃L2m,H
((g1, h0), (g1, g0)).

Although this is most likely known by the experts (even in a general setting) we will check it.
Fortunately the transfer factors have been computed by Waldspurger in [Wal10]. We recall
his notations and formulas. The conjugacy class g1, being regular enough, is parametrized
by a �nite set I1, a collection of �nite extensions K±i of K for i ∈ I1, and (regular enough,
i.e. generating K±i over K) elements xi,1 ∈ K±i. As in [Wal10], g0 is parametrized by
a �nite set I0, �nite extensions K±i of K, K±i-algebras Ki, and xi ∈ Ki. Each Ki is
either a quadratic �eld extension of K±i or K±i ×K±i, and xi is determined only modulo
NKi/K±iK

×
i . Then g is parametrized by I = I1tI0, with Ki = K±i×K±i and xi = (xi,1, 1)

for i ∈ I1, and the same data for I0. Let τi be the non-trivial K±i-automorphism of Ki,
and yi = −xi/τi(xi). Let I∗ be the set of i ∈ I such that Ki is a �eld (so I∗ ⊂ I0). For any
i ∈ I, let Φi be the set of K-morphisms Ki → K̄, and let PI(T ) =

∏
i∈I
∏
φ∈Φi

(T −φ(yi)).
De�ne PI0 similarly. For i ∈ I∗ (resp. I∗0 ), let Ci = x−1

i P ′I(yi)PI(−1)y1−m
i (1 + yi) (resp.

Ci,0 = x−1
i P ′I0(yi)PI0(−1)y1−m

i (1 + yi)). We have dropped the factor η of [Wal10, 1.10],
because as remarked above, the transfer factors do not depend on the chosen splitting.
Observe also that the factors computed by Waldspurger are really the factors ∆0/∆IV of
[KS99, 5.3], but the ε factor is trivial so they are complete.

Waldspurger shows that

∆
G̃L2m,H

((g1, h0), (g1, g0)) =
∏
i∈I∗

signKi/K±i(Ci)

where signKi/K±i is the nontrivial character of K
×
±i/NKi/K±iK

×
i . We are left to show that
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∏
i∈I∗ signKi/K±i(Ci/Ci,0) = 1.

Ci/Ci,0 = y
N0/2−m
i

∏
j∈I1

∏
φ∈Φj

(yi − φ(yj))(−1− φ(yj))

=
∏
j∈I1

∏
φ∈Φ±j

y−1
i (yi + φ(xj,1))

(
yi + φ(xj,1)−1

)
(φ(xj,1)− 1)

(
φ(xj,1)−1 − 1

)

= (−1)m−N0/2NKi/K±i

∏
j∈I1

∏
φ∈Φ±j

(yi + φ(xj,1))(φ(xj,1)−1 − 1)


where Φ±j is the set of K-morphisms K±j → K̄. Thus∏

i∈I∗
signKi/K±i(Ci/Ci,0) =

∏
i∈I∗

signKi/K±i |K×
(

(−1)m−N0/2
)

= 1

since
∏
i∈I∗ signKi/K±i |K× is easily checked to be equal to the Hilbert symbol with the

discriminant of our special orthogonal group, which is 1 (this is the condition for g0 to
have a norm in the special orthogonal group).

Proposition 5.2.2. Let F0 be a totally real �eld, and let π be a regular, L-algebraic, self-

dual, cuspidal representation of GL2n+1(AF0). Assume that for any place v|p of F0, πv

has vectors �xed under the Iwahori. Then there exists a RLASDC representation π0 of

GL1(AF0) if n is odd (resp. GL3(AF0) if n is even), a totally real extension F/F0 which

is trivial or quadratic, and an automorphic representation Π of G(AF ) such that

1. For any place v|p of F0, π0,v is unrami�ed.

2. BCF/F0
(π) and BCF/F0

(π0) remain cuspidal.

3. For any place v of F above p, Πv has invariants under the action of the Iwahori

subgroup of G(Fv).

4. For any �nite place v of F such that BCF/F0
(π)v and BCF/F0

(π0)v are unrami�ed, Πv

is unrami�ed, and via the inclusion SO2n+2(C) ↪→ GL2n+2(C) (resp. SO2n+4(C) ↪→
GL2n+2(C)), the Satake parameter of Πv is equal to the direct sum of those of

BCF/F0
(π)v and BCF/F0

(π0)v.

Proof. This is very similar to Proposition 5.1.2, and we only give details for the di�er-
ences. Let π0 be the central character of π if n is odd, or a self-dual L-algebraic cuspidal
automorphic representation of GL3(AF0) having central character equal to that of π and
as in the proof of Proposition 5.1.2 if n is even (i.e. Steinberg at some �nite non-p-adic
place and with generic Hodge weights). Let F be any totally real quadratic extension of
F0 such that BCF/F0

(π) remains cuspidal.
The crucial observation is that the direct sum of the local Langlands parameters of

BCF/F0
(π) and BCF/F0

(π0) at the in�nite places correspond to parameters for the compact
groups SO2n+2/R (resp. SO2n+4/R). These parameters are of the form

εn ⊕
n⊕
i=1

IndWR
WC

(z 7→ (z/z̄)ri)
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(r1 > . . . > rn > 0) for BCF/F0
(π), and{

1 if n is odd

ε⊕ IndWR
WC

(z 7→ (z/z̄)r) if n is even, with r > r1

for BCF/F0
(π0), so that the direct sum of the two is always of the form

1⊕ ε⊕
k−1⊕
i=1

IndWR
WC

(z 7→ (z/z̄)ri)

for distinct, positive ri. This is the composition with the standard representation of
SO2m(C) of the Langlands parameter corresponding to the representation of the compact
group SO2m(R) having highest weight

∑m
i=1(ri−(m−i))ei with rm = 0, where the root sys-

tem consists of the±ei±ej (i 6= j) and the simple roots are e1−e2, . . . , em−1−em, em−1+em.
In the present case the group Sψ associated to ψ = BCF/F0

(π)�BCF/F0
(π0) is trivial,

so that the multiplicity formula is trivial as well, and the quadratic extension of F0 is only
necessary in order to be able to de�ne the group G.

Note that, contrary to the symplectic case, there is a non-trivial outer automorphism
of the even orthogonal group, and so there may be two choices for the Satake parameters
of Πv, mapping to the same conjugacy class in the general linear group. Fortunately we
only need the existence.

Proposition 5.2.3. Let F be a totally real �eld, and let π be an L-algebraic, self-dual,

cuspidal representation of GL2n+1(AF ). Suppose that for any place v of F above p, πv has

vectors invariant under an Iwahori subgroup. Then for any complex conjugation c ∈ GalF ,

Tr(ριp,ι∞(π)(c)) = ±1.

Proof. The proof is similar to that of Proposition 5.1.3. We use the previous proposition to
be able to assume (after base change) that there is a representation π0 (of GL1(AF ) if n is
odd, GL3(AF ) if n is even) such that π�π0 transfers to an automorphic representation Π

of G(AF ), with compatibility at the unrami�ed places. The representation Π has Iwahori-
invariants at the p-adic places of F , and thus it de�nes a point of the eigenvariety X

associated with G (and an idempotent de�ned by an open subgroup of G(A(p)
F,f )). By

Theorem 4.0.1, Π is congruent (modulo arbirarily big powers of p) to an automorphic
representation Π′ of G such that ριp,ι∞(Π′) is irreducible. Hence ριp,ι∞(Π′) = ριp,ι∞(π′) for
some RLASDC π′ of GL2m(AF ), which is unrami�ed at all the p-adic places of F , and we
can apply Proposition 5.1.3 to π′. This proves that Tr(ριp,ι∞(π)(c)) = −Tr(ριp,ι∞(π0)(c)) =

±1.

5.3 Almost general case

We will now remove the hypothesis of being Iwahori-spherical at p, and allow more general
similitude characters, using Arthur and Clozel's base change.
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Lemma 5.3.1. Let E be a number �eld, S a �nite set of (possibly in�nite) places of E, and

for each v ∈ S, let K(v) be a �nite abelian extension of Ev. There is an abelian extension

F of E such that for any v ∈ S and any place w of F above v, the extension Fv/Ev is

isomorphic to K(v)/Ev.

Proof. After translation to local and global class �eld theory, this is a consequence of
[Che51, Théorème 1].

Before proving the last theorem, we need to reformulate the statement, in order to
make the induction argument more natural. Let π be a regular, L-algebraic, cuspidal
representation of GL2n+1(AF ). At a real place v of F , the Langlands parameter of πv is
of the form

εe ⊕
⊕
i

IndWC
WR
z 7→ (z/z̄)ni

and according to the recipe given in [BG10, Lemma 2.3.2], ριp,ι∞(π)(cv) should be in the
same conjugacy class as 

(−1)e

0 1
1 0

. . .

0 1
1 0


Since it is known that det ριp,ι∞(π)(cv) = (−1)e+n, ριp,ι∞(π)(cv) ∼ LL(πv)(j) if and only
if |Trριp,ι∞(π)(cv)| = 1. Similarly, in the even-dimensional case, ριp,ι∞(π)(cv) ∼ LL(πv)(j)

if and only if Trριp,ι∞(π)(cv) = 0.

Theorem 5.3.2. Let n ≥ 2, F a totally real number �eld, π a regular, L-algebraic, essen-

tially self-dual, cuspidal representation of GLn(AF ), such that π∨ ' (χ ◦ det) ⊗ π, where
χ = η || · ||q for an Artin character η and an integer q. Suppose that one of the following

conditions holds

1. n is odd.

2. n is even, q is even, and η∞(−1) = 1.

Then for any complex conjugation c ∈ GalF , |Trριp,ι∞(π)(c)| ≤ 1.

Proof. We can twist π by an algebraic character, thus multiplying the similitude character
η || · ||q by the square of an algebraic character. If n is odd, this allows us to assume
η = 1, q = 0 (by comparing central characters, we see that η || · ||q is a square). If n is
even, we can assume that q = 0 (we could also assume that the order of η is a power of
2, but this is not helpful). The Artin character η de�nes a cyclic, totally real extension
F ′/F . Since local Galois groups are pro-solvable, the preceding lemma shows that there
is a totally real, solvable extension F ′′/F ′ such that BCF ′′/F (π) has Iwahori invariants at
all the places of F ′′ above p. In general BCF ′′/F (π) is not cuspidal, but only induced by
cuspidals: BCF ′′/F (π) = π1 � . . .� πk. However it is self-dual, and the particular form of
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the Langlands parameters at the in�nite places imposes that all πi be self-dual. We can
then apply Propositions 5.1.3 and 5.2.3 to the πi, and conclude by induction that for any
complex conjugation c ∈ GalF , the conjugacy class of ριp,ι∞(π)(c) is given by the recipe
found in [BG10, Lemma 2.3.2], that is to say

∣∣Trριp,ι∞(π)(c)
∣∣ ≤ 1.

Remark 5.3.3. The case n even, η∞(−1) = (−1)q+1 is trivial. The case n even, q odd and

η∞(−1) = −1 is not addressed by the present article, but is proved (as a special case) by

Caraiani and Le Hung in [CLH] using Scholze's construction of the Galois representation

associated with π (ignoring the fact that π is essentially self-dual) and Theorem 5.3.2 for

self-dual representations in dimension 2n+ 1.

For the sake of clarity, we state the theorem using the more common normalization of
C-algebraic representations.

Theorem 5.3.4. Let n ≥ 2, F a totally real number �eld, π a regular, algebraic, essentially

self-dual, cuspidal representation of GLn(AF ), such that π∨ ' (χ ◦ det) ⊗ π, where χ =

η || · ||q for an Artin character η and an integer q. Suppose that one of the following

conditions holds

1. n is odd.

2. n is even, q is odd, and η∞(−1) = 1.

Then for any complex conjugation c ∈ GalF , |Tr(rιp,ι∞(π)(c))| ≤ 1.

Proof. Apply the previous theorem to π ⊗ || det ||(n−1)/2.
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