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Abstract

Suppose G is a complex, reductive algebraic group. A real form of G is an anti-
holomorphic involutive automorphism σ, so G(R) = G(C)σ is a real Lie group.
Write H1(σ,G) for the Galois cohomology (pointed) set H1(Gal(C/R), G). A
Cartan involution for σ is an involutive holomorphic automorphism θ of G,
commuting with σ, so that θσ is a compact real form of G. Let H1(θ,G) be
the set H1(Z2, G) where the action of the nontrivial element of Z2 is by θ. By
analogy with the Galois group we refer to H1(θ,G) as Cartan cohomology of G
with respect to θ. Cartan’s classification of real forms of a connected group,
in terms of their maximal compact subgroups, amounts to an isomorphism
H1(σ,Gad) ' H1(θ,Gad) where Gad is the adjoint group. Our main result is a
generalization of this: there is a canonical isomorphism H1(σ,G) ' H1(θ,G).

We apply this result to give simple proofs of some well-known structural
results: the Kostant-Sekiguchi correspondence of nilpotent orbits; Matsuki du-
ality of orbits on the flag variety; conjugacy classes of Cartan subgroups; and
structure of the Weyl group. We also use it to compute H1(σ,G) for all simple,
simply connected groups, and to give a cohomological interpretation of strong
real forms. For the applications it is important that we do not assume G is
connected.

1 Introduction

Suppose G is a complex, reductive algebraic group. A real form of G is an
antiholomorphic involutive automorphism σ of G, in which case G(R) = G(C)σ

is a real Lie group. See Section 3 for more details. Let Γ = Gal(C/R) and write
Hi(Γ, G) for the Galois cohomology of G (if G is nonabelian i ≤ 1). If we want
to specify how the nontrivial element of Γ acts we will write Hi(σ,G). The
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equivalence (i.e., conjugacy) classes of real forms of G, which are inner to σ (see
Section 3) are parametrized by H1(σ,Gad) where Gad is the adjoint group.

On the other hand, at least for G connected, Cartan classified the real forms
of G in terms of holomorphic involutions as follows. We say a Cartan involution
for σ is a holomorphic involutive automorphism θ, commuting with σ, so that
σc = θσ is a compact real form. If G is connected then θ exists, and is unique
up to conjugacy by Gσ. Following Mostow we prove a similar result in general.
See Section 3.

Let Hi(Z2, G) be the group cohomology of G where the nontrivial element
of Z2 = Z/2Z acts by θ. As above we denote this Hi(θ,G), and we refer to this
as Cartan cohomology of G. Conjugacy classes of involutions which are inner
to θ are parametrized by H1(θ,Gad).

Thus the equivalence of the two classifications of real forms amounts to an
isomorphism (for connected G) of the first Galois and Cartan cohomology spaces
H1(σ,Gad) ' H1(θ,Gad). It is natural to ask if the same isomorphism holds
with G in place of Gad. For our applications it is helpful to know the result for
disconnected groups as well.

Theorem 1.1 Suppose G is a complex, reductive algebraic group (not neces-
sarily connected), and σ is a real form of G. Let θ be a Cartan involution for
σ. Then there is a canonical bijection of pointed sets H1(σ,G) ' H1(θ,G).

The proof will be given in Section 4.
The interplay between the σ and θ pictures plays a fundamental role in the

structure and representation theory of real groups, going back at least to Harish
Chandra’s formulation of the representation theory of G(R) in terms of (g,K)-
modules. The theorem is an aspect of this, and we give several applications.

Suppose X is a homogeneous space for G, equipped with a real form σX
which is compatible with σ. Then the space of G(R)-orbits on X(R) = XσX

can be understood in terms of the Galois cohomology of the stabilizer of a point
in X. Similar remarks apply to computing Gθ-orbits on XθX . Note that these
stabilizers may be disconnected, even if G is connected. See Proposition 5.4.

We use this principle to give simple proofs of several well-known results,
including the Kostant-Sekiguchi correspondence [23] and Matsuki duality [20].
Let G(C) be a connected complex reductive group, with real form σ and cor-
responding Cartan involution θ. Let G(R) = G(C)σ, and K(C) = G(C)θ. Let
g0 = gσ and p = g−θ. The Kostant-Sekiguchi correspondence is a bijection
between the nilpotent G(R)-orbits on g0 and the nilpotent K(C)-orbits on p.
Matsuki duality is a bijection between the G(R) and K(C) orbits on the flag
variety of G. See Propositions 6.1.5 and 6.2.8.

On the other hand Theorem 5.8 applied to the space of Cartan subgroups
gives a simple proof of another result of Matsuki: there is a bijection between
G(R)-conjugacy classes of Cartan subgroups of G(R) and K-conjugacy classes
of θ-stable Cartan subgroups of G [20]. Also a well-known result about two
versions of the rational Weyl group (Proposition 6.3.2) follows.
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If G is connected Borovoi proved H1(σ,G) ' H1(σ,Hf )/Wi where Hf is a
fundamental Cartan subgroup, and Wi is a certain subgroup of the Weyl group
[9]. Essentially the same proof carries over to give H1(θ,G) ' H1(θ,Hf )/Wi.
We prove this as a consequence of Theorem 1.1 (Proposition 7.4).

Let Z be the center of G and let Ztor be its torsion subgroup. Associated to a
real form σ is its central invariant, denoted inv(σ) ∈ Zσtor/(1+σ)Ztor (Definition
8.7). The formulation of a precise version of the Langlands classification of
irreducible representations requires the notion of strong real form, refining that
of a real form, and its central invariant, which is an element of Zσtor lifting the
central invariant of the underlying real form (Definition 8.11).

Theorem 1.2 (Proposition 8.14) Suppose σ is a real form of G. Choose a
representative z ∈ Zσtor of inv(σ) ∈ Zσtor/(1 + σ)Ztor. Then there is a bijection

H1(σ,G)
1−1←→ G-conjugacy classes of strong real forms σ with inv(σ) = z

This bijection is useful in both directions. On the one hand it is not difficult
to compute the right hand side, thereby computing H1(σ,G). Over a p-adic
field H1(σ,G) = 1 if G is simply connected. Over R this is not the case, and we
use Theorem 1.1 to compute H1(σ,G) for all such groups. See Section 3 and
the tables in Section 10. We used the Atlas of Lie Groups and Representations
software for some of these calculations. See [11] for another approach.

In the context of the Langlands classification it would be more natural if
strong real forms were described in terms of classical Galois cohomology. The-
orem 1.2 provides such an interpretation. See Corollary 8.15.

The authors would like to thank Michael Rapoport for asking about the
interpretation of strong real forms in terms of Galois cohomology, and apologize
it took so long to get back to him. We are also grateful to Tasho Kaletha for
several helpful discussions during the writing of this paper and of [15], and Skip
Garibaldi for a discussion of the Galois cohomology of the spin groups. Finally
we thank the two referees for carefully reading the manuscript and making a
number of helpful suggestions.

2 Preliminaries on Group Cohomology

See [24] for an overview of group cohomology.
For now suppose τ is an involutive automorphism of an abstract group G.

Define Hi(τ,G) as the set Hi(Z2, G) where the nontrivial element of Z2 acts by
τ 1. If G is abelian these are groups and are defined for all i ≥ 0. Otherwise
these are pointed sets, and defined only for i = 0, 1. Let

Z1(τ,G) = G−τ = {g ∈ G | gτ(g) = 1}.
1There is a small notational issue here. If τ = 1 (the identity automorphism of G), H1(1, G)

denotes the group H1(Z2, G) with Z2 acting trivially.
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Then we have the standard identifications

H0(τ,G) = Gτ , H1(τ,G) = Z1(τ,G)/ ∼

where ∼ is the equivalence relation g ∼ xgτ(x−1) (x ∈ G). For g ∈ G−τ let
cl(g) be the corresponding class in H1(τ,G).

If G is abelian we also have the Tate cohomology groups Ĥi(τ,G) (i ∈ Z).
These satisfy

Ĥ0(τ,G) = Gτ/(1 + τ)G, Ĥ1(τ,G) = H1(τ,G),

and (since the group generated by τ is cyclic), Ĥi(τ,G) ' Ĥi+2(τ,G) for all i,
and these isomorphisms are canonical.

Suppose 1 → A → B → C → 1 is an exact sequence of groups with an
involutive automorphism τ . Then there is an exact sequence
(2.1)

1→ H0(τ,A)→ H0(τ,B)→ H0(τ, C)→ H1(τ,A)→ H1(τ,B)→ H1(τ, C)

Furthermore if A ⊂ Z(B) (Z(∗) denotes the center of a group) then there is one
further step → H2(τ,A) = Aτ/(1 + τ)A.

We will need the following generalization of H1(τ,G).

Definition 2.2 Suppose τ is an involutive automorphism of G, and A is a
subset of Z(G). Define

(2.3)(a) Z1(τ,G;A) = {g ∈ G | gτ(g) ∈ A}

and

(2.3)(b) H1(τ,G;A) = Z1(τ,G;A)/[g ∼ tgτ(t−1) (t ∈ G)].

These are pointed sets if 1 ∈ A. The map g 7→ gτ(g) factors to a map from
H1(τ,G;A) to A.

For z ∈ Z we write H1(τ,G; z) instead of H1(τ, g; {z}). Taking A = {1} gives
ordinary cohomology H1(τ,G). Write cl(g) for the image of g ∈ Z1(τ,G;A) in
H1(τ,G;A).

We make use of twisting in nonabelian cohomology [24, Section III.4.5]. Let
Z = Z(G). For g ∈ G let int(g) be the inner automorphism int(g)(h) = ghg−1.
Fix an involutive automorphism τ of G, and z ∈ Z. Note that int(g) ◦ τ is an
involution if and only if g ∈ Z1(τ,G;Z).

Lemma 2.4 Suppose τ ′ = int(g)◦τ for some g ∈ Z1(τ,G;Z). Let w = gτ(g) ∈
Z. Then the map h 7→ hg−1 induces an isomorphism

H1(τ,G; z)→ H1(τ ′, G; zw−1).

If H1(τ, Z) = 1, this isomorphism is independent of the choice of g ∈ Z1(τ,G;w)
satisfying τ ′ = int(g) ◦ τ .
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In particular H1(τ,G) ' H1(τ ′, G) if τ ′ = int(g) ◦ τ , where g ∈ Z1(τ,G),
and this isomorphism is canonical if H1(τ, Z) = 1.

Finally suppose τ ′ is conjugate to τ by an inner automorphism of G. Then
H1(τ,G) ' H1(τ ′, G), and this isomorphism is canonical if

ker
(
H1(τ, Z)→ H1(τ,G)

)
= 1.

We omit the elementary proof.
Write [τ ] for the G-conjugacy class of τ .

Definition 2.5 Assume ker
(
H1(τ, Z)→ H1(τ,G)

)
= 1. Given a G-conjugacy

class [τ ] of involutive automorphisms of G, define H1([τ ], G) = H1(τ,G).

This is well-defined by Lemma 2.4.

3 Real Forms and Cartan involutions

In the rest of the paper, unless otherwise noted, G will denote a complex, reduc-
tive algebraic group. Except in a few places we do not assume G is connected.
Write G0 for the identity component.

We identify G with its complex points G(C) and use these interchangeably.
We may view G either as an algebraic group or as a complex Lie group. The
identity component of G as an algebraic group is the same as the topological
identity component when viewed as a Lie group, and the component group
G/G0 is finite.

A real form of G is a real algebraic group H endowed with an isomorphism
φ : HC ' G, where HC denotes the base change of H from R to C. By an alge-
braic, conjugate linear, involutive automorphism of HC we mean an algebraic,
involutive automorphism of HC (considered as a scheme over R) such that the
induced morphism between rings of algebraic functions on H is conjugate linear,
and compatible with the morphisms defining the group structure on H. Nat-
urally associated to a real form H is an algebraic, conjugate linear, involutive
automorphism σH of HC. Transporting σH to G via φ this is equivalent to hav-
ing an algebraic, conjugate linear, involutive automorphism σ of G. Conversely,
by Galois descent any such automorphism of G comes from a real form (H,φ),
which is unique up to unique isomorphism. See [12, §6.2, Example B and §6.5]
for details in a much more general situation.

It is convenient to work with a more elementary notion of real form, using
only the structure of G as a complex Lie group. Any algebraic, conjugate
linear, involutive automorphism of G induces an antiholomorphic involutive
automorphism of G. In fact every antiholomorphic automorphism arises this
way:

Lemma 3.1 Let G be a complex reductive algebraic group. Then any anti-
holomorphic involutive automorphism of G is induced by a unique algebraic
conjugate linear involutive automorphism of G(C).
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The reductive hypothesis is necessary. For example suppose G = C×C× and
φ(z, w) = (z, ezw−1). Then φ is an antiholomorphic involutive automorphism
of G, but it is not algebraic.
Proof. First will use the fact that every holomorphic representation of G is
algebraic, so we prove this first.

(1) Consider a finite-dimensional complex vector space V and a holomorphic
morphism ρ : G → GL(V ). Let T be a maximal torus of G0. Then T '
GLr1 for some r ≥ 0, and by a well-known elementary argument we have a
canonical decomposition V =

⊕
χ Vχ where the sum is over the algebraic

morphisms χ : T → GL1 and Vχ = {v ∈ V | ∀t ∈ T, ρ(t)(v) = χ(t)v}.
Fix a Borel subgroup B of G0 containing T . Let N be the unipotent
radical of B. Let α be a root of T acting by conjugation on N , and Uα
the corresponding one-dimensional additive algebraic subgroup of N . For
any X ∈ Lie(Uα), dρ(X) ∈ End(V ) maps Vχ to Vχ+α, and so dρ(X) is
nilpotent. It follows that ρ|Uα is algebraic. Choose an ordering α1, . . . , αk
of the set of roots of T in N . Then the product map Uα1

×· · ·×Uαk → N
is an isomorphism [6, Proposition 14.4], and so ρ|N is algebraic. Let N
the unipotent radical of the Borel subgroup B of G0 opposite to B with
respect to T . There exists g ∈ G0 such that B = gBg−1, and so ρ|N is
also algebraic. The product map N × T ×N → G0 is an open embedding
(in the algebraic sense) [6, Corollary 14.14], and using translation we see
that for any g ∈ G, there is a Zariski-open U of G containing g such that
ρ|U is algebraic. The target GL(V ) is separated, so by glueing we obtain
that ρ is algebraic.

(2) Fix a representation ρ : G → GL(V ), where V is a complex vector space
of finite dimension, such that ρ is a closed immersion [6, Proposition 1.10].
Suppose that ϕ : G→ G is an antiholomorphic involutive automorphism.
Choose an arbitrary real structure on V , and let σV denote complex conju-
gation GL(V )→ GL(V ) with respect to this real structure. Then σV ◦ρ◦ϕ
is a holomorphic representation of G, so it is algebraic and ϕ is algebraic
conjugate linear.

�

Lemma 3.1 justifies the following elementary definition of real forms.

Definition 3.2 A real form of G is an antiholomorphic involutive automor-
phism σ of G. Two real forms are equivalent if they are conjugate by an inner
automorphism. Write [σ] for the equivalence class of σ.

We say two real forms σ1, σ2 are inner to each other, or in the same inner
class, if σ1σ

−1
2 is an inner automorphism of G. This is well defined on the level

of equivalence classes.

See Remark 8.2 for a subtle point regarding this notion of equivalence.
If σ is a real form of G, let G(R) = Gσ be the fixed points of σ. This is a

real Lie group, with finitely many connected components.
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We turn now to compact real forms and Cartan involutions. If G is connected
these results are well-known. The general case is due to Mostow [21].

Definition 3.3 A real form σ of G is said to be a compact real form if Gσ is
compact and meets every component of G.

Mostow defines a compact real form (cf. [21, Section 2]) of G to be a compact
subgroup GK such that Lie(G) = Lie(GK) ⊕ iLie(GK) and GK meets every
component of G. Let us check that our definition is equivalent to this.

Lemma 3.4 For any complex reductive group G, the map σ 7→ Gσ is a bijection
between the set of compact real forms of G, in the sense of Definition 3.3, to
the set of compact real forms of G in the sense of [21].

Proof. If σ is any real form ofG, then dimRG
σ = dimR Lie(Gσ) = dimR Lie(G)σ,

and since Lie(G) = (Lie(G))σ⊕ i(Lie(G))σ we obtain dimRG
σ = dimC Lie(G) =

dimCG. Choose a faithful algebraic representation ρ : G ↪→ GL(V ). If K is
any compact subgroup of G, then V admits a hermitian form for which ρ(K) is
unitary. In particular we see that Lie(K)∩ iLie(K) = 0. These two facts imply
that for any compact real form σ of G, Gσ is a compact real form of G in the
sense of [21].

Let us now check that σ 7→ Gσ is injective. The action of σ on G0 is deter-
mined by its action on Lie(G) = Lie(Gσ)⊕ iLie(Gσ). Once σ|G0 is determined,
σ is determined by the requirement that it fixes Gσ pointwise, since Gσ meets
every connected component of G.

Finally we show that σ 7→ Gσ is surjective. Suppose K is a compact real
form of G in the sense of [21]. Choose ρ and a hermitian form on V as above.
Choosing an orthonormal basis for V , we can view ρ as a closed embedding
G → GLn(C) such that ρ(K) ⊂ U(n). Let τ(g) = tḡ−1 (g ∈ GLn(C)). Then
ρ(G0) is stable under τ , since Lie(ρ(G)) = Lie(ρ(K))⊕ iLie(ρ(K)), and dτ fixes
Lie(ρ(K)) ⊂ u(n) pointwise. Furthermore ρ(G) is stable under τ since τ fixes
ρ(K) pointwise, and G = G0K. Pull back τ to G to define σ = ρ−1 ◦ τ ◦ ρ.
This is a compact real form of G, and K ⊂ Gσ. By the Cartan decomposition
[21, Lemma 2.1] Gσ ∩G0 = K ∩G0, and this implies Gσ = K. �

Using Lemma 3.4 we will refer to σ or K = Gσ as a compact real form of G.
We turn next to the Cartan decomposition of the complex group G. We first

define the Cartan decomposition of a general real Lie group.

Definition 3.5 We say a real Lie group G has a Cartan decomposition (K, p)
if K is a compact subgroup of G, p is a subspace of Lie(G) stable under Ad(K),
and the map (k,X) 7→ k exp(X) is a diffeomorphism from K × p onto G.

It is easy to see that K is necessarily a maximal compact subgroup of G.
The Cartan decomposition holds for a complex reductive group, viewed as

a real group by restriction of scalars:
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Lemma 3.6 (Mostow [21, Lemma 2.1]) Suppose σ is a compact real form of
G. Let K = Gσ and p = Lie(G)−σ = iLie(K). Then (K, p) is a Cartan
decomposition of G considered as a real Lie group. Furthermore K is a maximal
compact subgroup of G.

Although we will not use it, it is not difficult to check that the complexifi-
cation functor [24, Section III.4.5], from the category of compact Lie groups to
that of complex reductive groups endowed with a compact real form, induces
a bijection on the level of isomorphism classes. A key step in the proof is the
existence of compact real forms:

Theorem 3.7 (Weyl, Chevalley, Mostow [21, Lemma 6.1]) Every complex
reductive group has a compact real form.

We turn next to uniqueness of the compact form. See [21, Theorem 3.1],
and [14, Ch. XV] for a proof which handles one case overlooked in [21].

Theorem 3.8 (Cartan, Hochschild, Mostow [14, Ch. XV]) Let σ be a com-
pact real form of a complex reductive group G, and set K = Gσ. Let L be a
compact subgroup of G. Then there exists g ∈ G0 such that gLg−1 ⊂ K. All
compact real forms of G are conjugate under G0.

Fix a compact real form K of G. The center Z(G0) of G0 is a normal sub-
group of G. It follows from the Cartan decomposition that Z(G0) = Z(K0)A
where A = exp(iLie(Z(K0))) ⊂ exp(p) is a vector group (see [21, Lemma
2.4]). Since G = KG0 we have (writing superscript for invariants): Z(G0)K =
Z(G0)G, independent of the choice of K. Also K/K0 ' G/G0 acts on Z(G0),
normalizing A, and

(3.9) Z(G) ∩G0 = Z(G0)G/G
0

= Z(K0)K/K
0

AG/G
0

= (Z(K) ∩K0)AG/G
0

.

Lemma 3.10 Suppose K is a compact real form of G. Then the Cartan de-
composition of NormG(K) is NormG(K) = KAG/G

0

.

Proof. Since G = K exp(p), it suffices to show that NormG(K) ∩ exp(p) =

AG/G
0

. Let X ∈ p be such that exp(X) normalizes K. For k ∈ K, there exists
k′ ∈ K such that exp(X)k exp(−X) = k′. This can be rewritten as

k exp(−X) = k′ exp(−Ad(k′)−1(X))

so by uniqueness of the Cartan decomposition, k′ = k and Ad(k)(X) = X, so
X is invariant under K. The fact that X is invariant under K0 means that X ∈
Lie(A), and since K meets every connected component of G, X ∈ Lie(A)G/G

0

.
�

Lemma 3.11 Let σ be a compact real form of a real reductive group G. Let H
be a σ-stable algebraic subgroup of G. Then H is reductive and σ|H is a compact
real form of H.
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Proof. The algebraic group H is clearly linear. The unipotent radical U of H is
stable under σ and connected, and so Uσ is Zariski-dense in U . Any unipotent
element of Gσ is trivial, thus U = {1} and H is reductive. Clearly Hσ is
compact, and we are left to show that Hσ meets every connected component
of H. For h ∈ H write h = k exp(X) where k ∈ Gσ and X ∈ p. Then
exp(2X) = σ(h)−1h ∈ H, and thus exp(2nX) ∈ H for all n ∈ Z. Since H
is Zariski-closed in G this implies exp(tX) ∈ H for all t ∈ C, which implies
X ∈ h−σ, k ∈ Hσ, and Hσ meets every component of H. �

This argument is classical.

Definition 3.12 Suppose σ is a real form of a complex reductive group G.
A Cartan involution for σ is a holomorphic involutive automorphism θ of G,
commuting with σ, such that θσ is a compact real form of G.

By Lemma 3.1 applied to σ and θσ, any Cartan involution is algebraic. In
fact a simple variant of the proof of Lemma 3.1 shows directly that any holo-
morphic automorphism of a complex reductive group is automatically algebraic.

Theorem 3.13 Let G be a complex reductive group, possibly disconnected.

(1) Suppose σ is a real form of G.

(a) There exists a Cartan involution θ for σ, unique up to conjugation
by an inner automorphism from (Gσ)0.

(b) Suppose (H, θH) is a pair consisting of a σ-stable reductive subgroup
of G and a Cartan involution θH for σ|H . Then there exists a Cartan
involution θ for G such that θ(H) = H and θ|H = θH .

(2) Suppose θ is a holomorphic, involutive automorphism of G.

(a) There is a real form σ of G such that θ is a Cartan involution for σ,
unique up to conjugation by an inner automorphism from (Gθ)0.

(b) Suppose (H,σH) is a pair consisting of a θ-stable reductive subgroup
of G and a real form σH such that θ|H is a Cartan involution for
σH . Then there exists a real form σ of G such that σ(H) = H and
σ|H = σH .

For applications to the classification of real forms and to homogeneous
spaces, the fact that the statement of Theorem 3.13 is symmetric in σ and
θ is crucial.

We will deduce Theorem 3.13 from the next Lemma, whose proof is adapted
from [21, Theorem 4.1].

Lemma 3.14 Suppose τ is an involutive automorphism of G, either holomor-
phic or anti-holomorphic.

(1) There exists a compact real form σc of G which commutes with τ .
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(2) Suppose H is a τ -stable reductive subgroup of G, σcH is a compact real
form of H, and τ |H commutes with σcH . Then we can find σc satisfying
(1) so that σc restricted to H equals σcH .

Proof. Thanks to Theorem 3.7 choose any compact real form σc1 of G and set
K1 = Gσ

c
1 , p1 = Lie(G)−σ

c
1 , and P1 = exp(p1). Then τ(K1) is another compact

real form of G, so by Theorem 3.8 there exists g ∈ G0 so that

(3.15)(a) τ(K1) = gK1g
−1.

Applying τ to both sides we see τ(g)g ∈ NormG(K1). By Lemma 3.10 we can
write

(3.15)(b) τ(g)g = ak (a ∈ AG/G
0

, k ∈ K1).

By (a) g−1τ(K1)g = K1, i.e. int(g−1) ◦ τ stabilizes K1. Since this iso-
morphism is holomorphic or antiholomorphic and p1 = iLie(K1), this implies
g−1τ(P1)g = P1. By the Cartan decomposition G = K1P1 we may assume
g ∈ P1, in which case g−1τ(g)g ∈ P1. Plugging in (b) we conclude g−1ak ∈ P1,
which by uniqueness of the Cartan decomposition implies k = 1, so

(3.15)(c) τ(g)g ∈ AG/G
0

.

Set a = τ(g)g ∈ Z(G). Then τ(a) = gτ(g) = gag−1 = a. After replacing g with

ga−
1
2 we may assume τ(g) = g−1 (we are writing 1

2 for the unique square root

in P1). We observe that g−1τ(g
1
2 )g is an element of P1 and its square equals

g−1τ(g)g = g−1, therefore τ(g
1
2 ) = g−

1
2 .

Now let σc = int(g
1
2 ) ◦ σc1 ◦ int(g−

1
2 ), K = Gσ

c

= g
1
2K1g

− 1
2 , and p =

Lie(G)−σ
c

. Then

τ(K) = τ(g
1
2 )τ(K1)τ(g−

1
2 ) = g−

1
2 gK1g

−1g
1
2 = K.

This also implies τ(p) = p, and τ commutes with σc, as one can check using the
Cartan decomposition.

Now suppose we are given (H,σcH) as in (2), and set KH = HσcH . In the first
step of the preceding argument choose σc1 so that KH ⊂ K1, using Theorem 3.8
(then KH = K1 ∩H since KH is a maximal compact subgroup of H). Suppose
h ∈ KH . Choosing g ∈ P1 as above, recall (int(g−1) ◦ τ)(K1) = K1, so let
k = g−1τ(h)g ∈ K1. Since τ |H commutes with σcH , τ(KH) = KH ⊂ K1, so
τ(h) ∈ K1. Write

(3.15)(d) kg−1 = τ(h) · τ(h−1)g−1τ(h).

By uniqueness of the Cartan decomposition we conclude gτ(h) = τ(h)g for all
h ∈ KH . Since τ is an automorphism of KH we see gh = hg for all h ∈ KH .
Since int(KH) ⊂ int(K1) acts on P1, this implies that g

1
2h = hg

1
2 for all h ∈ KH

as well. Define σc,K and P as before. Then KH = K ∩H and σc(h) = h for
all h ∈ KH . Now (σc)−1 ◦ σcH : H → G is a holomorphic automorphism

10



which is the identity on KH , thus it is the identity on H (recall that Lie(H) =
Lie(KH)⊕ iLie(KH) and that KH meets every connected component of H).

�

Proof of Theorem 3.13. For existence in (1)(a) apply Lemma 3.14 to τ = σ
to construct a compact real form σc, commuting with σ, and set θ = σσc.
For (1)(b) apply Lemma 3.14(2) with τ = σ, σcH = σ|HθH to construct σc,
commuting with σ, and let θ = σσc.

We now prove the uniqueness statement in (1)(a). Suppose θ, θ1 commute
with σ, and σc = σθ and σc1 = σθ1 are compact real forms. By Theorem 3.8
there exists g ∈ G0 so that

σc1 = int(g) ◦ σc ◦ int(g−1) = int(gσc(g−1)) ◦ σc.

Let G = K exp(p) be the Cartan decomposition with respect to σc. Then we
can take g = exp(X) for X ∈ p, so gσc(g−1) = exp(2X). Since σc and σc1
commute with σ, so does int(gσc(g−1)) = int(exp(2X)), so by (3.9)

exp(2σ(X)) exp(−2X) ∈ Z(G) ∩G0 = (Z(K) ∩K0)AG/G
0

.

Applying the Cartan decomposition for σc again we conclude

exp(2σ(X)) exp(−2X) ∈ AG/G
0

,

so σ(X)−X ∈ Lie(AG/G
0

). We are free to multiply g by an element of Z(G)∩G0,

which contains AG/G
0

. In particular we can replace X with X+(σ(X)−X)/2 ∈
pσ. Then g ∈ exp(pσ) ∈ (Gσ)0.

The proof of (2) is similar. We apply Lemma 3.14 with τ = θ. For existence
in (2)(a) apply part (1) of the Lemma to construct σc, commuting with θ, and
let σ = θσc. For (2)(b) apply part (2) of the Lemma with σcH = σHθ|H to
construct σc, commuting with θ, and let σ = θσc. We omit the proof of the
conjugacy statement, which is similar to case (1)(a). �

Remark 3.16 Let G be a complex reductive group, σ a real form and θ a Cartan
involution for (G, σ). Then the images of Gσ, Gθ and Gσ∩Gθ in G/G0 coincide.
In fact it is easy to check that the restriction of the Cartan decomposition for
(G, σθ) to Gσ (resp. Gθ) is a Cartan decomposition, showing that Gσ ∩ Gθ
intersects all connected components of Gσ (resp. Gθ).

Let Int(G) be the group of inner automorphisms of G, Aut(G) the (holo-
morphic) automorphisms, and set Out(G) = Aut(G)/Int(G). Let Int0(G) be
the subgroup of Int(G) consisting of automorphisms induced by elements of G0,
so that Int0(G) ' G0/(Z(G) ∩G0).

Corollary 3.17 The correspondence between real forms and Cartan involutions
induces a bijection between

(3.18)(a) {antiholomorphic involutive automorphisms of G}/Int0(G)

11



and

(3.18)(b) {holomorphic involutive automorphisms of G}/Int0(G).

Both quotients are by the conjugation action of inner automorphisms coming
from G0. The same statement holds with Int0(G) replaced by any group A
satisfying Int0(G) ⊂ A ⊂ Aut(G).

If Int0(G) is replaced by Int(G) = Gad then (a) is the set of equivalence
classes of real forms of G (Definition 3.2). We use this bijection to identify an
equivalence class of real forms with an equivalence class of Cartan involutions
as in (b).

4 Borel-Serre’s Theorem

In this section only G denotes a real Lie group. Since it requires no extra effort
we work in the following generality.

Recall we have a Cartan decomposition in the case that G is the group H(C)
of complex points of a reductive group H viewed as a real group (Definition 3.5):
for any compact real form σc of H, we have H = Hσc exp(Lie(H)−σ

c

). Although
we will not use this fact, it is easy to deduce that if σ is a real form of a complex
reductive group H, then for any Cartan involution θ of (H,σ), the Lie group
H(R) = Hσ has a Cartan decomposition H(R) = H(R)θ exp(Lie(H(R))−θ).

More general real Lie groups G admit a Cartan decomposition, including
many non-linear ones (for example the finite covers of SL2(R)) or non-reductive
ones (for example G = H(R) where H is a real linear algebraic group). On the

other hand the universal cover G̃ of SL2(R) has a decomposition G̃ = L exp(p)
where L ' R is the universal cover of the circle, hence noncompact. For a
generalization of the Cartan decomposition to any real Lie group having finitely
many connected components see [14, Ch. XV] or [21, Theorem 3.2].

Proposition 4.1 Suppose G is a real Lie group admitting a Cartan decompo-
sition (K, p). Let τ be an involutive automorphism of G which preserves K and
p. Let ZK = Z(G) ∩K. The inclusion map K → G induces an isomorphism

(4.2) H1(τ,K;ZK) ' H1(τ,G;ZK)

which respects the maps to ZK .

The proof is adapted from [8, Théorème 6.8] (see also [24, Section III.4.5]).
This specializes to Borel-Serre’s Theorem (see (4.6)).
Proof. It is enough to prove this when ZK is replaced by {z} ⊂ ZK where z is
any single element of ZK . The left hand side of (4.2) is

(4.3)(a) {k ∈ K | kτ(k) = z}/[k ∼ tkτ(t−1) (t ∈ K)]

and the right hand side is

(4.3)(b) {g ∈ G | gτ(g) = z}/[g ∼ tgτ(t−1) (t ∈ G)].

12



Consider the map φ from (a) to (b) induced by inclusion.
We first show that φ is surjective. Suppose g ∈ G satisfies gτ(g) = z. Let

P = exp(p), and write g = kp with k ∈ K, p ∈ P . Then kpτ(kp) = z, which can
be written

kτ(k) · τ(k−1)pτ(k) = z · τ(p−1).

By uniqueness of the Cartan decomposition we conclude kτ(k) = z and τ(k−1)pτ(k) =
τ(p−1). The latter condition is equivalent to kpk−1 = τ(p−1). The set of p ∈ P
satisfying this condition is the exponential of the subspace {Y ∈ p | Ad(k)Y =
−τ(Y )}. Therefore p = q2 for some q ∈ P satisfying kq = τ(q−1)k. Then
g = kq2 = (kq)q = τ(q−1)kq. Therefore φ takes cl(k) in (a) to cl(g) in (b).

We now show that φ is injective. Suppose k, k′ ∈ K, kτ(k) = k′τ(k′) = z,
and k′ = tkτ(t−1) for some t ∈ G. Write t−1 = xp with x ∈ K, p ∈ P . Then
k′ = p−1x−1kτ(x)τ(p), i.e.

k′ · (k′)−1pk′ = x−1kτ(x) · τ(p)

By uniqueness of the Cartan decomposition we conclude k′ = x−1kτ(x) with
x ∈ K, i.e. k and k′ are equivalent in (a). �

Corollary 4.4 Suppose G is a real Lie group admitting a Cartan decomposition
(K, p), and as before let ZK = Z(G)∩K. Let τ, µ be involutive automorphisms
of G which preserve K and p, and assume that τ |K = µ|K . Then there are
bijections of pointed sets

H1(τ,G;ZK) ' H1(τ |K ,K, ZK) ' H1(µ,G;ZK)

compatible with the maps to ZK . In particular there is a canonical bijection of
pointed sets

(4.5) H1(τ,G) ' H1(µ,G).

Now let G be a complex reductive group, viewed as a real group. Recall
(Section 3) G has a compact real form σc, and a Cartan decomposition G =
K exp(p). Hence Proposition 4.1 applies. Taking τ = σc and restricting to the
fibres of {1} ⊂ ZK gives Borel-Serre’s Theorem [8, Théorème 6.8], [24, Section
III.4.5]

(4.6) H1(σc,K) ' H1(σc, G).

This admits the following natural generalization to arbitrary real forms.

Corollary 4.7 Suppose G is a complex, reductive algebraic group G, σ is a real
form of G, and θ is a Cartan involution for σ. Let σc = σθ.

There are canonical bijections of pointed sets

H1(θ,G;Zσ
c

) ' H1(θ,Gσ
c

;Zσ
c

) = H1(σ,Gσ
c

;Zσ
c

) ' H1(σ,G;Zσ
c

).

In particular there is a canonical bijection of pointed sets:

H1(θ,G) ' H1(σ,G).
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This follows from Corollary 4.4 for the Cartan decomposition of G induced by
σc, using the fact that σ and θ agree on K = Gσ

c

.

Example 4.8 Suppose G is connected and θ is the identity, so G(R) is a con-
nected compact Lie group. In this case H1(θ,G) is the set of conjugacy classes
of involutions in G, which is is in bijection with H2/W , where H is a Cartan
subgroup, H2 is the group of involutions in H and W is the Weyl group.

On the other hand H1(θ,G(R)) is the set of conjugacy classes of involutions
in G(R), which is H(R)2/W . Since H(R) is compact this is equal to H2/W . So
we recover [24, Theorem 6.1]: H1(σ,G) ' H1(θ,G(R)) = H(R)2/W .

Example 4.9 Consider the adjoint group G = PSL(2,C). Let σ1 be the ob-
vious real form, so that (G, σ1) = PGL2/R. Via the adjoint action on the Lie
algebra which preserves the Killing form, the real algebraic group (G, σ1) is
also isomorphic to the special orthogonal group of a form with signature (2, 1).
Therefore H1(σ1, G) parametrizes, by Galois descent, equivalence classes of non-
degenerate quadratic forms on 3-dimensional real vector spaces with positive
discriminant. Thus G admits two equivalence classes of real forms, represented
by σ1 as above and a compact form σ2 such that Gσ2 = SO(3). Since G is
adjoint |H1(σ,G)| = 2 for either real form.

Now consider G̃ = SL(2,C). It is the simply connected cover of G and so
both σi’s lift to real forms of G̃, and G̃ also admits two real forms up to equiv-
alence: (G̃, σ1) is isomorphic to SL2/R and (G̃, σ2) is isomorphic to a special
unitary group with signature (2, 0), so that G̃σ2 ' SU(2) ' Spin(3). From
Example 4.8 |H1(σ2, G̃)| = 2. This can also be seen as above by interpreting
H1(σ2, G̃) as parametrizing isomorphism classes of non-degenerate hermitian
forms in dimension 2 with positive discriminant.

On the other hand it is well known that H1(σ1, G̃) = 1, for example see
[16, 29.4]. Thus in contrast to the adjoint case, although (G̃, σ1) and (G̃, σ2)
are inner forms of each other, their cohomology is different. See Lemma 8.10.

5 Rational Orbits

We use the results of the previous section to study rational orbits of G-actions
for real reductive groups.

Write

(5.1)(a) (G, τG, X, τX)

to indicate the following situation, which occurs repeatedly. First of all G is
an abstract group equipped with an involutive automorphism τG, and X is a
set equipped with an involutive automorphism τX . Furthermore there is a left
action of g : x 7→ g · x of G on X. We assume (τG, τX) are compatible:

(5.1)(b) τX(g ·X) = τG(g) · τX(x) (g ∈ G, x ∈ X).

14



When X is a homogeneous space the following description of the set of orbits
for the action of GτG on XτX is well-known.

Lemma 5.2 In the setting of (5.1) suppose X is a homogenous space for G.
Assume that XτX 6= ∅, choose x ∈ XτX and denote by Gx the stabilizer of x.
Then we have a bijection

XτX/GτG → ker
(
H1(τG, G

x)→ H1(τG, G)
)

g · x 7→ cl(g−1τG(g))

We will apply this with G a complex group, X a complex variety, and τG
and τX each acting holomorphically (we will then use the notation σ instead of
τ) or anti-holomorphically (we will the use the notation θ instead of τ).

If σG is a compact real form of G then XσX is either empty of a homogeneous
space for GσG :

Lemma 5.3 In the setting of (5.1), suppose G is a complex reductive algebraic
group, X is a homogeneous space for G, and σG is a compact real form of G.
Let K = GσG .

(1) K acts transitively on XσX .

(2) Suppose H is a σG-stable subgroup of G, and H = Gx for some x ∈ X.
Assume XσX 6= ∅. Then H = Gy for some y ∈ XσX .

Proof.
For (1), if XσX is empty there is nothing to prove, so choose x ∈ XσX . By

the previous lemma we have to show that

(a) ker
(
H1(σG, G

x)→ H1(σG, G)
)

is trivial. By Lemma 3.11 σG restricts to a compact real form of Gx, so Propo-
sition 4.1 implies (a) is isomorphic to

(b) ker
(
H1(σG, (G

x)σG)→ H1(σG, G
σG)
)

which is clearly trivial, proving (1).
For (2) choose x ∈ XσX . The set of subgroups H in (2) is identified with

the set of σG-fixed elements of the homogeneous space G/NormG(Gx). By (1)
GσG acts transitively on this set. Thus for any such H there exists g ∈ GσG
such that H = gGxg−1. Then g · x ∈ XσX and H = Gg·x. �

We next consider homogeneous spaces for noncompact groups.

Proposition 5.4 Suppose G is a complex, reductive algebraic group, possibly
disconnected, acting transitively on a complex algebraic variety X. Suppose we
are given:
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(1) a pair (σG, θG) consisting of a real form, and a corresponding Cartan
involution, of G;

(2) a pair (σX , θX) of commuting involutions of X, with σX antiholomorphic
and θX holomorphic.

Assume (σG, σX) are compatible, and so are (θG, θX) (see (5.1)(b)).
Assume XσX ∩XθX 6= ∅. Then the two natural maps

XσX/GσG ← (XσX ∩XθX )/(GσG ∩GθG)→ XθX/GθG

are bijective.

Proof. Choose x ∈ XσX ∩XθX . Lemma 5.2 applied to (G, σG, X, σX) provides
an identification

XσX/GσG ' ker
(
H1(σG, G

x)→ H1(σG, G)
)

Similarly, Lemma 5.2 applied to (G, θG, X, θX) gives

XθX/GθG ' ker
(
H1(θG, G

x)→ H1(θG, G)
)

Let σcG = σGθG. By Lemma 5.3, Gσ
c
G acts transitively on XσXθX , so that we

can also apply Lemma 5.2 to (Gσ
c
G , σG, X

σXθX , σX):

(XσX ∩XθX )/(GσG ∩GθG) ' ker
(
H1(σG, (G

x)σ
c
G)→ H1(σG, G

σcG)
)
.

By Corollary 4.7 we have the following commutative diagram:

H1(σG, G
x)

��

oo '
H1(σG, (G

x)σ
c
G)

��

' // H1(θG, G
x)

��
H1(σG, G) oo

'
H1(σG, G

σcG)
' // H1(θG, G)

Note that σG and θG coincide on Gσ
c
G so in the middle term we can replace

H1(σG, ∗) with H1(θG, ∗). This gives the two bijections of the Proposition.
These bijections (which involve the choice of x) agree with those of the

Proposition (which are canonical). This comes down to: if g ∈ Gσ
c
G then

g−1σG(g) = g−1θG(g). This completes the proof. �

Remark 5.5 In Proposition 5.4, the hypothesis Xσ ∩ Xθ 6= ∅ is necessary.
Consider for example G = X = C×, with G acting by multiplication, and
σG(z) = 1/z, σX(z) = −1/z, θG(z) = θX(z) = z. Then XσX = ∅ but XθX = X.

To apply the result it would be good to know that XσX 6= ∅ or XθX 6= ∅
implies that XσX ∩XθX 6= ∅. As the Remark shows, this isn’t always the case,
but it holds under a weak additional assumption.

16



Lemma 5.6 In the setting of Proposition 5.4, assume that XσXθX 6= ∅. Then
the following conditions are equivalent: XσX 6= ∅, XθX 6= ∅, and XσX ∩XθX 6=
∅.

Proof. If x ∈ XσXθX then Gx is σc-stable so Gx is reductive by Lemma 3.11.
Since these groups are all conjugate this holds for all x ∈ X.

Let us now show that if XσX 6= ∅ then XσX ∩ XθX 6= ∅. Fix x ∈ XσX .
Then Gx is a reductive group stable under σG, and thus it admits a Cartan
involution θ′x. By Theorem 3.13 it extends to a Cartan involution θ′G of G, and
there exists g ∈ GσG such that θG = int(g) ◦ θ′G ◦ int(g−1), so that g · x ∈ XσX

has the property that Gg·x is θG-stable. In other words, after replacing x by
g · x, we may assume Gx is σc-stable, and σc|Gx is a compact real form of Gx.
By Lemma 5.3 we can find y ∈ XσXθX so that Gy = Gx.

Let Ny = NormG(Gy), and set My = Ny/G
y, By [25, Proposition 5.5.10]

My is a linear algebraic group. Both Ny and My are σc-stable, and therefore
reductive by Lemma 3.11 again.

Since GσX(y) = σG(Gy) = Gy there exists unique m ∈My such that

(5.7)(a) σX(y) = m · y.

Similarly since Gx = Gy there exists unique n ∈My such that

(5.7)(b) x = n · y

Since σXθX fixes both y and σX(y), applying this to both sides of (a) gives
σX(y) = σc(m) ·y, and comparing this with (a) gives m ∈ (My)σ

c

. On the other
hand applying σX to both sides of (a) gives y = σG(m) · σX(y) = σG(m)m · y,
so σG(m)m = 1. Finally apply σX to both sides of (b) to give σX(x) = σG(n) ·
σX(y). Using σX(x) = x and (a) gives x = σG(n)m ·y, and comparing this with
(b) gives σG(n)−1n = m.

These three facts imply that m defines an element of

ker
(
H1(σG, (My)σ

c

)→ H1(σG,My)
)
.

By Corollary 4.7 this kernel is trivial, so there exists u ∈ (My)σ
c

such that
m = σG(u)−1u. Then u · y ∈ XσXθX ∩XσX = XσX ∩XθX .

A similar argument, substituting θ for σ, shows that XθX 6= ∅ implies that
XσX ∩XθX 6= ∅. �

We can now formulate our result in its most useful form.

Theorem 5.8 Suppose G is a complex, reductive algebraic group, possibly dis-
connected, and X is a complex algebraic variety, equipped with an action of G.
Suppose we are given:

(1) a pair (σG, θG) consisting of a real form and a corresponding Cartan in-
volution of G.
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(2) a pair (σX , θX) of commuting involutions, with σX antiholomorphic and
θX holomorphic.

Assume (σG, σX) are compatible, as are (θG, θX) (5.1)(b).
Assume that for all x ∈ XσX ∪XθX the G-orbit of x intersects XσXθX . Then

the two natural maps

XσX/GσG ← (XσX ∩XθX )/(GσG ∩GθG)→ XθX/GθG

are bijective.

Proof. It is enough to prove this with X replaced by the G-orbit G · x of any
x ∈ XσX ∪XθX . By Lemma 5.6 we can apply Proposition 5.4 to G · x, which
gives the conclusion. �

6 Applications

Throughout this section we fix a complex reductive group G, a real form σ of
G, and a corresponding Cartan involution θ. Set G(R) = Gσ and K = Gθ.

6.1 Kostant-Sekiguchi correspondence

Let g = Lie(G). We say that x ∈ g is nilpotent if x ∈ [g, g] and adx is
nilpotent. The Jacobson-Morozov theorem (see [13, ch. VIII, §11]) gives a
bijection between the nilpotent orbits of G on g and G-conjugacy classes of
homomorphisms from sl(2,C) to g:

(6.1.1)(a) {φ : sl(2,C)→ g}/G.

Let g0 = Lie(G(R)) = gσ. Then the same result applies to G(R), and gives
a bijection between the G(R) conjugacy classes of nilpotent elements of g0 and

(6.1.1)(b) {φ : sl(2,R)→ g0}/G(R).

Equivalently if σ0 denotes complex conjugation on sl(2,C) with respect to
sl(2,R), then (b) is naturally in bijection with

(6.1.1)(c) {φ : sl(2,C)→ g | φ(σ0X) = σ(φ(X))}/G(R).

Now write g = k⊕ p where k = gθ = Lie(K) and p = g−θ. For X ∈ sl(2,C)
define θ0(X) = −tX; this is a Cartan involution for σ0. Kostant and Rallis
[17, Prop. 4 on p. 767] showed that the nilpotent K-orbits on p are in bijection
with

(6.1.1)(d) {φ : sl(2,C)→ g | φ(θ0(X)) = θ(φ(X))}/K.

To be precise, in [17] this bijection is stated for K0-orbits, as well as for K-
orbits under the assumption that G connected and adjoint, but the general case
follows in the same way.
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The Kostant-Sekiguchi correspondence is a bijection between the nilpotent
orbits of G(R) on g0 and the nilpotent K-orbits on p [23].

Let X be the set of morphisms sl(2,C)→ g. This has a natural structure of
complex algebraic variety. Define an antiholomorphic involution σX of X by

(6.1.2)(a) σX(ψ)(A) = σ(ψ(σ0(A))) (A ∈ sl(2,C), ψ ∈ X).

Also define a holomorphic involution θX by

(6.1.3) θX(ψ)(A) = θ(ψ(θ0(A))) (A ∈ sl(2,C), ψ ∈ X).

It is straightforward to check that (σG, σX) and (θG, θX) are compatible.

Lemma 6.1.4 Every orbit of G on X contains a σXθX-invariant point. In
particular, σXθX acts trivially on X/G, and an orbit of G on X is σX-stable if
and only if it is θX-stable.

Proof. We need to show that for any morphism φ : sl(2,C) → g, there exists
g ∈ G such that the morphism Ad(g)◦φ is σθ-equivariant. Any such φ integrates
to an algebraic morphism ψ : SL2(C) → G0. Let SU(2) = SL(2,C)σ0θ0 , with
Lie algebra su(2). Since SU(2) is compact, so is its image in G0, so by Theorem
3.8 there exists g ∈ G0 such that gψ(SU(2))g−1 ⊂ (G0)σθ. Since sl(2,C) =
su(2)⊗R C this implies that Ad(g) · φ is σθ-equivariant. �

The Kostant-Sekiguchi correspondence is now an immediate consequence of
Theorem 5.8.

Proposition 6.1.5 For any nilpotent orbit O of G on g, there is a canonical
bijection between (O ∩ g0)/G(R) and (O ∩ p)/K.

Proof. Let φ : sl(2,C) → g be a morphism corresponding to an element of O
as in (a). Let Y ⊂ X be the G-orbit of φ, which only depends on O and not
on the choice of a particular morphism. By Lemma 6.1.4, Y is σX -stable if and
only if it is θX -stable. If it it not the case, both quotient sets are empty.

If it is the case we can apply Theorem 5.8 to Y , and by the Jacobson-Morozov
theorem over R and the result of Kostant and Rallis recalled above, we obtain:

(O ∩ g0)/G(R) ' XσX/Gσ ' XθX/Gθ ' (O ∩ p)/K.

�

Remark 6.1.6 The set of orbits (XσX ∩ XθX )/(Gσ ∩ Gθ) that appears as a
middle term in Theorem 5.8, that is the set of K(R)-conjugacy classes of mor-
phisms sl(2,C) → g equivariant under σ and θ, does not have an obvious link
to nilpotent orbits, since p0 has no non-zero nilpotent elements.
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6.2 Matsuki Duality

Matsuki duality is a bijection between the G(R) and K orbits on the space B
of Borel subgroups of G0 [20].

Unlike in the case of Kostant-Sekiguchi duality, G(R) and K are acting
on the same space B. So to derive this from Theorem 5.8 we need to find
(X,σX , θX) so that XσX ' XθX ' B. This holds if we take X = B × B, and
define σX(B1, B2) = (σ(B2), σ(B1)), θX(B1, B2) = (θ(B2), θ(B1)). However
with this definition the condition XσX ∩XθX 6= ∅ of Theorem 5.8 does not hold.
Also note that the stabilizer of a point in B is the intersection of two Borel
subgroups, which is typically not reductive. Instead we use a variant of X.

Write σG = σ, θG = θ.

Definition 6.2.1 Let

(6.2.2) X = {(B1, B2, T ) | B1, B2 ∈ B, T ⊂ B1∩B2 is a maximal torus of G0}

Let G act on X by conjugation on each factor. Define involutive automorphisms
σX and θX of X as follows:

(6.2.3) σX(B1, B2, T ) = (σG(B2-opp), σG(B1-opp), σG(T ))

where -opp denotes the opposite Borel with respect to T , and

(6.2.4) θX(B1, B2, T ) = (θG(B2), θG(B1), θG(T )).

Thanks to the Bruhat decomposition [6, §14.12], for any (B1, B2) ∈ B × B
the algebraic subgroup B1 ∩B2 of G0 is connected and solvable and contains a
maximal torus of G0. In particular the natural map X → B × B is surjective.

Lemma 6.2.5 The conditions of Theorem 5.8 hold.

Proof. The fact that σX , θX commute, and the facts that (σG, σX) and (θG, θX)
are compatible is immediate. Let us check that each G-orbit in X contains a
σXθX -fixed point. Let (B1, B2, T ) ∈ X. Since the connected real reductive
group (G0, σGθG) has a maximal torus defined over R [6, Theorem 18.2], up
to conjugating by an element of G0 we can assume that T is σGθG-stable.
Since (T, σGθG) is anisotropic we have σGθG(Bi) = Bi-opp for i ∈ {1, 2}, and
(B1, B2, T ) is automatically fixed by σXθX . �

Theorem 5.8 now applies to give a bijection

(6.2.6) XσX/G(R)←→ XθX/K.

Lemma 6.2.7 Consider the projection p on the first factor, taking X to B.

(1) p restricted to XσX is equivariant with respect to G(R) and induces a
bijection XσX/G(R) ' B/G(R).
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(2) p restricted to XθX is equivariant with respect to K and induces a bijection
XθX/K ' B/K.

Proof. The fact that p is G-equivariant, and p|XσX is G(R)-equivariant, are
immediate. Let B be a Borel subgroup of G0. Then B ∩ σG(B) is an algebraic
subgroup of G0 defined over R, and so it contains a maximal torus T which is
defined over R. The Bruhat decomposition implies that T is also a maximal
torus of G0. This shows that B ∈ p(XσX ).

Moreover the unipotent radical U of B acts transitively on the set of maximal
tori of B [6, Theorem 10.6], and since G is reductive this action is also free.
Therefore UσG acts simply transitively on the set of σG-stable maximal tori in
B. This implies that p induces a bijection XσX/G(R) ' B/G(R).

The proof of (2) is similar, except for the fact that B ∩ θG(B) contains a
maximal torus which is θG-stable, which follows from [26, 7.6] applied to θG
acting on B ∩ θG(B). �

Together with (6.2.6) this proves:

Proposition 6.2.8 There is a canonical bijection B/G(R)↔ B/K.

6.3 Weyl groups and conjugacy of Cartan subgroups

We next give short proofs of two well-known facts about Weyl groups and con-
jugacy of Cartan subgroups.

Let X be the set of Cartan subgroups (i.e. maximal tori) of G0. This is a
homogeneous space for the conjugation action of G, with σX , θX coming from
σ and θ. It is well-known [6, Theorem 18.2] that G0 has a σ-stable Cartan
subgroup, that is XσX 6= ∅. This also applies to G0 equipped with its real form
σθ, so that XσXθX 6= ∅.

Matsuki’s result on Cartan subgroups ([20],[5, Proposition 6.18]) now follows
from Theorem 5.8.

Proposition 6.3.1 There are canonical bijections between

• G(R)-conjugacy classes of σ-stable Cartan subgroups of G0,

• K(R)-conjugacy classes of σ- and θ-stable Cartan subgroups of G0,

• K-conjugacy classes of θ-stable Cartan subgroups of G0.

In particular we recover the fact that G admits a θ-stable Cartan subgroup
H in every G(R)-conjugacy class of σ-stable Cartan subgroups.

Next, we recover the following description of the real or rational Weyl group
of H. See also [30, Proposition 1.4.2.1], [27, Definition 0.2.6].

Proposition 6.3.2 Let H be a Cartan subgroup of G0 which is stable under
both σ and θ. Then the two natural morphisms

NormG(R)(H(R))/H(R)← NormK(R)(H(R))/H(R)θ → NormK(H)/(H ∩K)

are isomorphisms.
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Proof. We want to apply Theorem 5.8 with G = H and X = N = NormG(H),
with H acting by multiplication, and σ and θ acting naturally on N and W =
N/H. The three quotients in the conclusion of the Theorem are precisely the
three quotients appearing in the Proposition.

The compatibility conditions of the Theorem are clear. For the final con-
dition, by Lemma 3.11, Nσθ meets every connected component of N (this also
follows from Remark 3.16). This says that every H-orbit on N contains a σθ-
fixed point, so the final condition holds.

�

Remark 6.3.3 In the setting of Proposition 6.3.2, if A is a distinguished sub-
group of N containing H which is σ-stable (equivalently, θ-stable), then the
conclusion also holds with H replaced by A, with the same proof.

7 Relation with Cohomology of Cartan subgroups

In this section we assume G is a connected complex reductive group. Suppose
σ is a real form of G, and θ is a Cartan involution for σ.

We say a σ-stable Cartan subgroup Hf of G is fundamental if Hf (R) is
of minimal split rank. Borovoi computes H1(σ,G) in terms of H1(σ,Hf ) as
follows. Before stating his result we make a few remarks about Weyl groups.

Lemma 7.1 Suppose H is a σ-stable Cartan subgroup. There is an action of
Wσ on H1(σ,H) defined as follows. Suppose w ∈ Wσ and h ∈ H−σ. Choose
n ∈ N mapping to w. Then the action of w on H1(σ,H) is w : cl(h) →
cl(nhσ(n−1)); this is well defined, independent of the choices involved.

The image of H1(σ,H) in H1(σ,N) is isomorphic to H1(σ,H)/Wσ.

This is immediate. See [24, I.5.5, Corollary 1].
Suppose a Cartan subgroup H is σ-stable. Then σ acts on the roots of H

in G. We say a root α of H in G is imaginary, real, or complex if σ(α) = −α,
σ(α) = α, or σ(α) 6= ±α, respectively. The set of imaginary roots is a root
system. Let Wi denote its Weyl group.

Lemma 7.2 H1(σ,H)/Wσ = H1(σ,H)/Wi.

Proof. Let Wr (respectively Wi) be the Weyl group of the set of real (resp.
imaginary) roots. Let ∆C be the root system of [28, Proposition 3.12], and let
WC be its Weyl group. Then σ acts on WC and defines a complex root datum.

For example suppose G = G1 ×G1 and σ(g, h) = (h, g), so that Gσ ' G(C)
(viewed as a real group by restriction of scalars). Then Wi = Wr = 0 and
W = WC = W1 ×W1, and (WC)σ 'W1.
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Now (WC)σ acts naturally on Wi and Wr, and there is an isomorphism
([28, Proposition 3.12])

Wσ = (WC)σ n [Wi ×Wr].

By a calculation in SL(2,R) it is easy to see that sα (for α any real root) acts
trivially on H1(σ,H), hence all of Wr acts trivially. The same holds for (WC)σ,
by a calculation in SL(2,C). See [4, Proposition 12.16]. �

Proposition 7.3 (Borovoi [9], [10]) Suppose Hf is a fundamental σ-stable
Cartan subgroup. The natural map H1(σ,Hf ) → H1(σ,G) induces an iso-
morphism H1(σ,Hf )/Wi ' H1(σ,G).

The Theorem in [9] is stated in terms of Wσ, so we have used Lemma 7.2
to replace this with Wi.

Proposition 7.4 There is a canonical bijection of pointed sets φ : H1(θ,G) '
H1(θ,Hf )/Wi making the following diagram commute:

H1(σ,G)
' //

'
��

H1(σ,Hf )/Wi

'
��

H1(θ,G)
φ

'
// H1(θ,Hf )/Wi

The top arrow is Borovoi’s result and the two vertical arrows are from Theorem
1.1 applied to G and H, respectively.

This is immediate.

Remark 7.5 In an earlier version of this paper we proved the isomorphism
H1(σ,G) ' H1(θ,G) using this diagram. It is simpler to prove this isomorphism
directly as we have done in Section 4 and deduce this as a consequence.

For later use we note that, in the unequal rank case (see Proposition 8.16
for the definition of “being of equal rank”), the cohomology is captured by a
proper subgroup.

Suppose H is a θ-stable Cartan subgroup. Then H = TA where T and A
are connected complex tori, T is the identity component of Hθ, and A is the
identity component of H−θ.

Corollary 7.6 Suppose Hf is a σ and θ-stable fundamental Cartan subgroup.
Let Af be the identity component of H−θf , and let Mf = CentG(Af ). Then

H1(σ,G) ' H1(σ,Mf ) ' H1(θ,Mf ) ' H1(θ,G).

Note that Af ⊂ Z ⇔Mf = G⇔ the derived group of G is of equal rank.
This follows from Proposition 7.4, and the fact that the imaginary Weyl

groups of Hf in G and Mf are the same.
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8 Strong real forms

We continue to assume G is a connected complex reductive group.

Lemma 8.1 Fix a real form σ of G. The set of equivalence classes of real forms
in the inner class of σ is parametrized by H1(σ,Gad).

Explicitly the map is cl(h) 7→ [int(h) ◦ σ] where hσ(h) = 1.
Recall (Definition 2.5) that we have a well-defined pointed set H1([σ], Gad) =

H1(σ,Gad).

Remark 8.2 Our definition of equivalence of real forms (Definition 3.2) is by
conjugation by an inner automorphism of G. The standard definition, for exam-
ple see [24, III.1], allows conjugation by Aut(G). With the standard definition
Lemma 8.1 would hold with H1(σ,Gad) replaced by the image of the map to
H1(σ,Aut(G)).

For example suppose G = SL(2,C)×SL(2,C). In the inner class of the split
real form of G, there are four equivalence classes of real forms according to our
definition: split, compact, split × compact and compact × split. If one allows
conjugation by outer automorphisms there are only three real forms, since the
last two are equivalent.

For simple groups these two notions of equivalence agree except in type D2n.
See [4, Section 3], [2, Example 3.3] and Section 10.3.

We now recall how inner classes are parametrized, and make a natural choice
of base point in each inner class.

Recall that if T ⊂ B are Cartan and Borel subgroups of G, then the cor-
responding based root datum is (X∗(T ),∆, X∗(T ),∆∨), where X∗(T ) (resp.
X∗(T )) is the group of characters (resp. cocharacters) of T and ∆ (resp. ∆∨)
is the basis of the set of roots Φ(G,T ) (resp. coroots Φ∨(G,T )) corresponding
to B. Furthermore the based root datum φ0(G) is the (projective or injective)
limit over all such pairs T ⊂ B. It gives rise to a short exact sequence

1→ Int(G)→ Aut(G)→ Aut(φ0(G))→ 1

identifying Out(G) with Aut(φ0(G)).
The exact sequence splits. A splitting is obtained by choosing a pinning for

G, that is a triple P = (B, T, {Xα}α∈∆) where T ⊂ B are Cartan and Borel
subgroups of G, respectively, and for α a simple root, Xα is a basis vector for
the Lie algebra of the α-root space of T in Lie(B). Then G acts transitively on
the set of pinnings by conjugation, the stabilizer of any pinning is Z(G), and
the subgroup of Aut(G) preserving P is isomorphic to Out(G).

If σ is a real form of G and θ is a Cartan involution for (G, σ), then both σ
and θ naturally act on φ0(G) (see [7] for the case of σ), giving rise to involutions
σ, θ ∈ Aut(φ0(G)), i.e. of elements of the set Out(G)2 of involutions in Out(G).
They are related by σθ = −w0, where w0 is the longest element of the Weyl
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group of φ0(G) and −1 is the inversion automorphism of T . Note that w0 is
invariant under Aut(φ0(G)), and so ι := −w0 is a central involution in Out(G).

If σ and σ′ are real forms of G, they are inner to each other if and only if
σ = σ′ in Out(G). Of course this is equivalent to θ = θ′, where θ (resp. θ′) is
a Cartan involution for (G, σ) (resp. (G, σ′)). In other words, inner classes of
real forms of G are parametrized by involutions in Out(G), in two ways related
by ι. Although in this section we will break the symmetry between Galois and
Cartan and favor the former, it is more convenient to use θ rather than σ since
the definition of θ is simpler. For this reason we will say that σ is in the inner
class defined by δ ∈ Out(G)2 when ιδ = σ.

Recall that a real form σ for G is called quasi-split if it preserves a Borel
subgroup of G. There is a unique equivalence class of quasi-split real forms in a
given inner class, providing a base point. It is constructed explicitly as follows.

Definition 8.3 Suppose δ ∈ Out(G)2. For a pinning P of G, there is a unique
real form σqs(δ,P) of G preserving P and such that σqs(δ,P) = ιδ, and it is
clearly quasi-split.

For g ∈ Gad we have σqs(δ, int(g)(P)) = int(g) ◦ σqs(δ,P) ◦ int(g)−1 and so
the equivalence class [σqs(δ,P)] does not depend on the choice of P and is simply
denoted [σqs(δ)]. The corresponding equivalence class of Cartan involutions is
denoted [θqs(δ)].

If σ is any quasi-split real form of G, then there exists a pinning of G fixed by
σ, so that the above construction yields all quasi-split real forms of G.

Let us reformulate Corollary 3.17 cohomologically. This is just a restatement
of Corollary 4.7.

Lemma 8.4 For δ ∈ Out(G)2, there is a canonical bijection of pointed sets

(8.5) H1([σqs(δ)], Gad) ' H1([θqs(δ)], Gad).

Let Z = Z(G). The action of Aut(G) on Z factors to an action of Out(G)
on Z. Let Ztor be the subgroup of Z consisting of all elements of finite order.

Lemma 8.6 Fix δ ∈ Out(G)2, and suppose σ is a real form in the inner class
defined by δ. Let θ be a Cartan involution for σ. Note that the actions of θ and
δ on Z coincide.

Then Zσtor = Zθtor and there is a canonical isomorphism

Zσ/(1 + σ)Z ' Zδ/(1 + δ)Z.

Proof. The closure Ztor of Ztor is compact, so by Theorem 3.8 Ztor is a subgroup
of every compact real form of G. Therefore σc = θσ acts trivially on Ztor, i.e.
θ, σ and δ all have the same action on Ztor. Observe that Z is a quotient of
Z0 × Z(Gder) where the second factor is finite, so that Ztor surjects to Z/Z0.
Thus multiplication by 2 = card(Z/2Z) is an automorphism of Z/Ztor, which
implies that this module is cohomologically trivial for both actions, and so
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Ztor ↪→ Z induces isomorphisms in Tate cohomology in all degrees. We can
conclude Zσ/(1 +σ)Z ' Zσtor/(1 +σ)Ztor ' Zδtor/(1 + δ)Ztor ' Zδ/(1 + δ)Z. �

Definition 8.7 Fix δ ∈ Out(G)2 and a real form σ in the inner class defined by
δ. Identify [σ] with a class in H1([σqs(δ)], Gad), and define the central invariant

(8.8) inv([σ]) ∈ Zδ/(1 + δ)Z

by the composition of maps:

H1([σqs(δ)], Gad)→ H2(σqs(δ), Z)
'−→ Ĥ0(σ, Z)

'−→ Zσ/(1+σ)Z
'−→ Zδ/(1+δ)Z

The first map is from the connecting homomorphism in (2.1) coming from the
exact sequence 1→ Z → G→ Gad → 1. The second and third arrows are from
properties of Tate cohomology (see Section 2), and the last one is from Lemma
8.6.

Remark 8.9 Alternatively we could define inv : H1([θqs(δ)], Gad) → Zδ/(1 +
δ)Z similarly, with θ, θqs in place of σ, σqs. It is clear from Corollary 4.7, Lemma
8.6 and Definition 8.7 that the following diagram commutes:

H1([σqs(δ)], Gad) //

'
��

Zδ/(1 + δ)Z

H1([θqs(δ)], Gad)

66

The central invariant allows us to see how H1(σ,G) varies in a given inner
class, as in Example 4.9. See [24, Section I.5.7, Remark 1].

Lemma 8.10 Suppose σ1, σ2 are real forms of G in the same inner class. If
inv([σ1]) = inv([σ2]) then H1(σ1, G) ' H1(σ2, G).

Proof. Fix a quasi-split real form σqs in the inner class of σ1 and σ2. Write
σi = int(gi) ◦ σqs, where giσqs(gi) ∈ Z (i = 1, 2). A straightforward calculation
shows that the map h 7→ hg1g

−1
2 induces the desired isomorphism, provided

g1σqs(g1) = g2σqs(g2). Unwinding Definition 8.7 we see this condition is equiv-
alent to inv(σ1) = inv(σ2). We leave the details to the reader. �

This bijection is not canonical in general.
The map H1(σ,G) → H1(σ,Gad) is not necessarily surjective. This failure

of surjectivity causes some difficulties in precise statements of the Langlands
classification. See [3], [29], and for the p-adic case [15]. This leads to the notion
of strong real form of G.

26



Definition 8.11 Fix δ ∈ Out(G)2 and a quasisplit real form σqs in the inner
class defined by δ. A strong real form in the inner class of σqs is an element of
SRFσqs

(G) := Z1(σqs, G;Ztor)/(1 + σqs)Z. Two strong real forms g, h are said
to be equivalent if they map to the same element of H1(σqs, G;Ztor). We will
also write [SRFσqs

(G)] for H1(σqs, G;Ztor).
If g is a strong real form define inv(g) = gσqs(g) ∈ Zδtor (Lemma 8.6). We

refer to inv as the central invariant of a strong real form. This factors to a well
defined map inv : [SRFσqs

(G)]→ Zδtor.

Since the notion of real form does not depend on a choice of base points, we
want to eliminate the dependence of SRFσqs

(G) on the choice of σqs.
Consider quasi-split real forms σqs and σ′qs of G in the inner class defined

by δ. There are pinnings P and P ′ of G such that σqs = σqs(δ,P) and σ′qs =
σqs(δ,P ′). There exists h ∈ G such that P ′ = int(h)(P), and so we obtain a
bijection

SRFσ′
qs

(G) −→ SRFσqs
(G)

g 7−→ ghσqs(h)−1

which does not depend of the choice of h, is compatible with inv and induces
a bijection of pointed sets H1(σ′qs, G;Ztor) ' H1(σqs, G;Ztor). Note however
that this bijection depends on the pinnings and not just on the real forms. This
is due to the fact that in general Gσqs does not act transitively on the set of
pinnings of G fixed by σqs.

Definition 8.12 Fix δ ∈ Out(G)2. We define the set of strong real forms in
the inner class defined by δ as

SRFδ(G) = lim
P

SRFσqs(δ,P)(G)

where the (projective or injective) limit is taken over all pinnings of G. Define
the set [SRFδ(G)] of equivalence classes of strong real forms in the inner class
defined by δ similarly (or as a quotient of SRFδ(G)). We have a well-defined
map inv : [SRFδ(G)]→ Zδtor.

As the pinning varies the maps g ∈ SRFσqs(δ,P) 7→ int(g) ◦ σqs(δ,P) are
compatible and induce a surjection from SRFδ(G) to the set of real forms in the
inner class defined by δ. This induces a surjection from [SRFδ(G)] to the set
H1([σqs(δ)], Gad) of equivalences classes of real forms in the inner class defined
by δ. Moreover this surjection is compatible with the two definitions (8.7 and
8.11) of central invariant.

Remark 8.13 We say that an algebraic automorphism of G is distinguished
if it fixes a pinning of G. We say a real form is quasicompact if one (equiva-
lently, any) of its Cartan involutions is distinguished. In [4] we prefer θ over σ.
Consequently strong involutions are defined in [4, Definition 5.5] with respect
to a distinguished involution θqc of G. Write [SIδ] for the set of G-conjugacy
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classes of strong involutions (as in the Galois case we take a limit to make this
definition only depend on δ).

There is a natural bijection between [SRFδ(G)] and [SIδ(G)]. To state this,
fix a pinning P and g ∈ SRFσqs(δ,P)(G) such that σqc := int(g) ◦ σqs(δ,P) is a
quasicompact real form. Choose a Cartan involution θqc for σqc. Then

[SRFδ(G)] = [SRFσqs(δ,P)(G)] ' H1(σqc, G;Ztor) ' H1(θqc, G;Ztor) ' [SIδ(G)]

by twisting (Lemma 2.4) and Corollary 4.7. Also see [4, Remark 5.17] and
[5, (9.7)].

We now describe equivalence classes of strong real forms in terms of the
usual Galois cohomology pointed sets H1(σ,G).

Proposition 8.14 Suppose σ is a real form of G, in the inner class defined by
δ. Choose a representative z ∈ Zδtor of inv([σ]) ∈ Zδ/(1 + δ)Z (see Lemma 8.6).
Then there is a bijection

H1(σ,G)←→ equivalence classes of strong real forms of central invariant z.

Proof. Choose a strong real form σ̃ lifting σ and having central invariant z,
and use twisting (Lemma 2.4). �

Note that the bijection not only depends on the choice of representative
z ∈ Zδtor of inv([σ]) ∈ Zδtor/(1 + δ)Ztor, but also on the choice of σ̃ in the proof,
which is only unique up to H1(σ, Z).

Corollary 8.15 Suppose δ ∈ Out(G)2. Choose representatives {zi | i ∈ I} for
the image of inv : [SRFδ(G)]→ Zδtor. For each i ∈ I choose a real form σi of G
such that inv([σi]) = zi mod (1 + δ)Ztor. Then there is a bijection

[SRFδ(G)]←→
⋃
i

H1(σi, G).

This gives an interpretation of [SRFδ(G)] in classical cohomological terms. A
similar statement holds in the p-adic case [15].

The set I is finite if and only if the identity component of the center of G is
split (this condition only depends on δ). As in [15] or [4, Section 13] the theory
can be modified to replace this with a finite set even when this condition is not
satisfied. In any case the group Zδtor/(1 + δ)Ztor is finite, and for z ∈ Zδtor and
x ∈ Ztor there is an obvious bijection of pointed sets

H1(σ,G; {z}) ' H1(σ,G; {zxδ(x)}).

Proposition 8.16 Suppose σ is an equal rank real form of G, i.e. that it belongs
to the inner class defined by δ = 1. Choose x ∈ G so that int(x) is a Cartan
involution for σ, and let z = x2 ∈ Z. Then we have an explicit bijection

H1(σ,G)←→ S(z)

28



where S(z) is the set of conjugacy classes of G with square equal to z. If H is
a Cartan subgroup of G, with Weyl group W , then S(z) is equal to

(8.17) {h ∈ H | h2 = z}/W.

This bijection is not canonical in general.
Proof. The assertion does not depend on the choice of x: if x′ = tgxg−1 with
t ∈ Z and g ∈ Gσ, then (x′)2 = t2z and h 7→ th is a bijection from S(z) to
S(t2z).

Now fix θ, and note that σ(x) ∈ xZ. The compact Lie group (Gad)σθ is
connected, and so Gσθ → (Gad)σθ is surjective. Therefore we can take x ∈ Gσθ,
equivalently x ∈ Gσ. Let σc = int(x) ◦ σ. Note that z = x2 ∈ Zσc . By twisting
(Lemma 2.4) and Corollary 4.7 applied to (G, σc),

H1(σ,G) ' H1(σc, G; z−1) ' H1(1, G; z−1) = S(z−1) ' S(z).

The identification of S(z) with (8.17) follows from the well-known fact that
H/W parametrizes semisimple conjugacy classes in G. �

Example 8.18 Taking x = z = I gives G(R) compact and recovers [24, III.4.5]:
H1(σ,G) is the set of conjugacy classes of involutions in G. See Example 4.8.

Example 8.19 Let G(R) = Sp(2n,R). We can take x = diag(iIn,−iIn), z =
−I. It is easy to see that every element of G whose square is −I is conjugate
to x. This gives the classical result H1(σ,G) = 1, which is equivalent to the
classification of nondegenerate symplectic forms [22, Chapter 2].

Example 8.20 Suppose G(R) = SO(Q), the isometry group of a nondegener-
ate real quadratic form. Suppose Q has signature (p, q). If pq is even we can
assume that q is even (up to replacing Q by −Q) and take x = diag(Ip,−Iq)
in Proposition 8.16, and the set (8.17) is equal to {diag(Ir,−Is) | r + s =
p+ q; s even}.

Suppose p and q are odd. Apply Corollary 7.6 with Mf (R) = SO(p− 1, q −
1) × GL(1,R). By the previous case we conclude H1(σ,G) is parametrized by
{diag(Ir, Is) | r + s = p + q − 2; r, s even}. Adding (1, 1) this is the same as
{diag(Ir,−Is) | r + s = p+ q; s odd}.

In all cases we recover the classical fact that H1(σ,G) parametrizes the set of
equivalence classes of quadratic forms of the same dimension and discriminant
as Q [22, Chapter 2], [24, III.3.2].

Example 8.21 Now suppose G(R) = Spin(p, q), which is a (connected) two-
fold cover of the identity component of SO(p, q). A calculation similar to that
in the previous example shows that |H1(σ, Spin(p, q))| = bp+q4 c+ δ(p, q) where
0 ≤ δ(p, q) ≤ 3 depends on p, q (mod 4). See Section 10.2.

Skip Garibaldi pointed out this result can also be derived from the exact
cohomology sequence associated to the exact sequence 1→ Z2 → Spin(n,C)→
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SO(n,C)→ 1; the preceding result; the fact that SO(p, q) is connected if pq = 0
and otherwise has two connected components; and a calculation of the image
of the map from H1(σ, Spin(n,C)) → H1(σ, SO(n,C)). See [16, after (31.41)],
[24, III.3.2] and also section 9. The result is:

|H1(σ, Spin(Q))| equals the number of quadratic forms having the same dimen-
sion, discriminant, and Hasse invariant as Q with each (positive or negative)
definite form counted twice.

Remark 8.22 Kottwitz relates H1(σ,G) to the center of the dual group [19,
Theorem 1.2]. This is a somewhat different type of result. It describes a certain
quotient H1

sc(σ,G) of H1(σ,G) (see [15, 3.4]), but if G is simply connected this
gives no information.

9 Fibers of H1(σ,G)→ H1(σ,G)

In this section G is a connected complex reductive group, and σ is a real form
of G. Suppose A ⊂ Z(G) is σ-stable and let G = G/A. It is helpful to an-
alyze the fibers of the map ψ : H1(σ,G) → H1(σ,G). In particular taking
G = Gsc, G = Gad, and summing over H1(σ,Gad), we obtain a description of
H1(σ,Gsc), complementary to that of Proposition 8.14.

Write G(R, σ) = Gσ and G(R, σ) = G
σ
. Write p for the projection map G→

G. This restricts to a map G(R, σ) → G(R, σ), taking the identity component
of G(R, σ) to that of G(R, σ). Therefore p factors to a map (not necessarily an
injection):

(9.1)(a) p∗ : π0(G(R, σ))→ π0(G(R, σ)).

Define

(9.1)(b) π0(G,G, σ) = π0(G(R, σ))/p∗(π0(G(R, σ))).

There is a natural action of G(R, σ) on H1(σ,A) defined as follows. Suppose
g ∈ G(R, σ). Choose h ∈ G satisfying p(h) = g. Then g : a → haσ(h−1)
factors to a well defined action of G(R, σ) on H1(σ,A). Furthermore the image
of G(R, σ), which includes the identity component, acts trivially, so this factors
to an action of π0(G,G, σ).

Proposition 9.2 Suppose γ ∈ H1(σ,G), and write γ = cl(g) (g ∈ G−σ). Let
σγ = int(g) ◦ σ. Then there is a bijection

H1(σ,G) ⊃ ψ−1(ψ(γ))←→ H1(σ,A)/π0(G,G, σγ).

Proof. First assume γ is trivial, and take g = 1. Consider the exact sequence

H0(σ,G)→ H0(σ,G)→ H1(σ,A)
φ→ H1(σ,G)

ψ→ H1(σ,G).
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This says ψ−1(ψ((γ)) = φ(H1(σ,A)), i.e. the orbit of the group H1(σ,A) acting
on the identity coset. This is H1(σ,A), modulo the action of H0(σ,G), and this
action factors through the image of H0(σ,G). The general case follows from an
easy twisting argument. �

We specialize to the case G = Gsc is simply connected and G = Gad =
Gsc/Zsc is the adjoint group.

Corollary 9.3 Suppose σ is a real form of Gsc and consider the map ψ :
H1(σ,Gsc)→ H1(σ,Gad).

Suppose γ ∈ H1(σ,Gad), and write γ = cl(g) (g ∈ G−σad ). Let σγ = int(g)◦σ,
viewed as an involution of Gsc.

(9.4)(a) γ is in the image of ψ ⇔ inv([σγ ]) = inv([σ]),

in which case

(9.4)(b) |ψ−1(γ)| = |H1(σ, Zsc)|/|π0(Gad(R, σγ))|.

Furthermore

(9.4)(c) |H1(σ,Gsc)| = |H1(σ, Zsc)|
∑

γ∈H1(σ,Gad)
inv([σγ ])=inv([σ])

|π0(Gad(R), σγ)|−1

Proof. Statements (b) and (c) follow from Proposition 9.2. For (a), when σ is
quasi-split the proof is immediate, and the general case is similar using twisting.
We leave the details to the reader. �

10 Tables

Most of these results can be computed by hand from Theorem 1.2, or using
Proposition 9.2 and the classification of real forms (i.e. the adjoint case).

By Theorem 1.2 the computation of H1(Γ, G) reduces to calculating the
strong real forms of G and their central invariants. The Atlas of Lie Groups and
Representations does this computation as part of its parametrization of (strong)
real forms. This comes down to calculating the orbits of a finite group (a sub-
group of the Weyl group) on a finite set (related to elements of order 2 in a Car-
tan subgroup). See [4, Proposition 12.9] and www.liegroups.org/tables/galois.
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10.1 Classical groups

Group |H1(σ,G)|
SL(n,R), GL(n,R) 1

SU(p, q) bp2c+ b q2c+ 1
Hermitian forms of rank p+ q and

discriminant (−1)q

SL(n,H) 2 R∗/NrdH/R(H∗)
Sp(2n,R) 1 real symplectic forms of rank 2n

Sp(p, q) p+ q + 1 quaternionic Hermitian forms of rank p+ q

SO(p, q) bp2c+ b q2c+ 1
real symmetric bilinear forms of rank n

and discriminant (−1)q

SO∗(2n) 2

Here H is the quaternions, and NrdH/R is the reduced norm map from H∗ to
R∗ (see [22, Lemma 2.9]). Also Sp(p, q) (respectively SO∗(2n)) is the isometry
group of a Hermitian (resp. skew-Hermitian) form on a quaternionic vector
space. For more information on Galois cohomology of classical groups see [24],
[22, Sections 2.3 and 6.6] and [16, Chapter VII].

10.2 Simply connected groups

The only simply connected groups with classical root system, which are not in
the table in Section 10.1 are Spin(p, q) and Spin∗(2n).

Define δ(p, q) by the following table, depending on p, q (mod 4).

0 1 2 3

0 3 2 2 2

1 2 1 1 0

2 2 1 0 0

3 2 0 0 0

See Example 8.21 for an explanation of these numbers.

Group |H1(σ,G)|
Spin(p, q) bp+q4 c+ δ(p, q)

Spin∗(2n) 2
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Simply connected exceptional groups

inner class group K real rank name |H1(σ,G)|

compact E6 A5A1 4
quasisplit

quaternionic
3

E6 D5T 2 Hermitian 3

E6 E6 0 compact 3

split E6 C4 6 split 2

E6 F4 2 quasicompact 2

compact E7 A7 7 split 2

E7 D6A1 4 quaternionic 4

E7 E6T 3 Hermitian 2

E7 E7 0 compact 4

compact E8 D8 8 split 3

E8 E7A1 4 quaternionic 3

E8 E8 0 compact 3

compact F4 C3A1 4 split 3

F4 B4 1 3

F4 F4 0 compact 3

compact G2 A1A1 2 split 2

G2 G2 0 compact 2
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10.3 Adjoint groups

If G is adjoint |H1(σ,G)| is the number of real forms in the given inner class,
which is well-known. We also include the component group, which is useful in
connection with Corollary 9.3.

One technical point arises in the case of PSO∗(2n). If n is even there are
two real forms which are related by an outer, but not an inner, automorphism.
See Remark 8.2.

Adjoint classical groups

Group |π0(G(R))| |H1(σ,G)|

PSL(n,R)

2 n even

1 n odd

2 n even

1 n odd

PSL(n,H) 1 2

PSU(p, q)

2 p = q

1 otherwise
bp+q2 c+ 1

PSO(p, q)



1 pq = 0

1 p, q odd and p 6= q

4 p = q even

2 otherwise



bp+q+2
4 c p, q odd

p+q
4 + 3 p, q even, p+ q = 0 (mod 4)

p+q−2
4 + 2 p, q even, p+ q = 2 (mod 4)

p+q+1
2 p, q opposite parity

PSO∗(2n)

2 n even

1 n odd

n
2 + 3 n even

n−1
2 + 2 n odd

PSp(2n,R) 2 bn2 c+ 2

PSp(p, q)

2 p = q

1 else
bp+q2 c+ 2

The groups E8, F4 and G2 are both simply connected and adjoint. Further-
more in type E6 the center of the simply connected group Gsc has order 3, and
it follows that H1(σ,Gad) = H1(σ,Gsc) in these cases. So the only groups not
covered by the table in Section 10.2 are adjoint groups of type E7.

Adjoint exceptional groups

inner class group K real rank name π0(G(R)) |H1(G)|
compact E7 A7 7 split 2 4

E7 D6A1 4 quaternionic 1 4

E7 E6T 3 Hermitian 2 4

E7 E7 0 compact 1 4
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