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Abstract

In this note, which is an appendix to the article [CT26], we classify
the Weyl orbits of embeddings of an ADE root system into another.

For a group G acting on a set X (left action), denote by [G ↷ X] the
associated groupoid. For ϕ an ADE root system, normalized so that each root
has norm 2, we denote by Q(ϕ) the associated root lattice, and by W(ϕ) the
Weyl group of ϕ, a subgroup of the orthogonal group O(ϕ) of Q(ϕ). For ϕ and
ψ root systems of type ADE, we denote by Emb(ϕ, ψ) the set of (isometric)
embeddings of lattices Q(ϕ) → Q(ψ). Our aim is to determine the groupoid

G(ϕ, ψ) := [W(ψ) ↷ Emb(ϕ, ψ)].

We may assume ϕ and ψ irreducible, as well as m ≥ n , otherwise this groupoid
is empty. For any isometric embedding of lattices ι : U → V we define the
orthogonal of ι as the sublattice ι(U)⊥ of V .

Theorem 1. The number of W(ψ)-orbits of proper embeddings Q(ϕ) → Q(ψ)
(i.e. isomorphism classes in G(ϕ, ψ)), and the root system Ri of the orthogonal
of an embedding in the i-th orbit (ordered arbitrarily), are given in Table 1.

This result is presumably folklore, but we could not find any reference. The
O(ψ)-orbits of sublattices of Q(ψ) which are isometric to Q(ϕ) , or equivalenty
the O(ϕ)×O(ψ)-orbits in Emb(ϕ, ψ), are given in [Ki03, Table 4].1 Our proof
below does not rely on King’s table and provides quite more detail, including
representatives for each W(ψ)-orbit. It follows from the proof that two embed-
dings Q(ϕ) → Q(ψ) whose orthogonals have isomorphic root systems are in the
same O(ϕ)×O(ψ)-orbit.
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1We mention an inaccuracy in the line S = A3, T = D4 of that table: the 12 sublattices
of D4 isometric to A3 form a single O(D4)-orbit.
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ϕ ψ R1 R2 R3

A1 Am, m > 1 Am−2

An, n ≥ 2 Am, m > n Am−n−1 Am−n−1

A1 Dm, m ≥ 4 A1Dm−2

An, n ≥ 2, n ̸= 3 Dm, m > n+ 1 Dm−n−1

An, n ≥ 4 Dn+1 ∅ ∅
A3 D4 ∅ ∅ ∅
A3 Dm, m > 4 Dm−4 Dm−3

D4 Dm, m > 4 Dm−4 Dm−4 Dm−4

Dn, n > 4 Dm, m > n Dm−n

A1 E6 A5

A2 E6 A2A2

A3 E6 A1A1

A4 or A5 E6 A1 A1

D4 E6 ∅
D5 E6 ∅ ∅
A1 E7 D6

A2 E7 A5

A3 E7 A1A3

A4 E7 A2

A5 E7 A2 A1

A6, E6 or A7 E7 ∅
D4 E7 A1A1A1

D5 E7 A1

D6 E7 A1 A1

A1 E8 E7

A2 E8 E6

A3 E8 D5

A4 E8 A4

A5 E8 A1A2

A6 E8 A1

A7 E8 A1 ∅
A8 E8 ∅
D4 E8 D4

D5 E8 A3

D6 E8 A1A1

D7 E8 ∅
D8 E8 ∅ ∅
E6 E8 A2

E7 E8 A1

Table 1: Weyl orbits of proper embeddings and root systems of their orthogonal
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Remark 1. (i) For an object ι : Q(ϕ) → Q(ψ) of this groupoid its auto-
morphism group is equal to the pointwise stabilizer of ι(ϕ) in W(ψ). By
[Bou81, Ch. V, §3.3, Prop. 2], this stabilizer coincides with the Weyl
group W(R) of the root system R of the orthogonal of ι. In particular, the
W(ψ)-orbit of ι has cardinality |W(ψ)|/|W(R)|, a quantity which can be
deduced from Table 1.

(ii) The case where ι is not proper (i.e. is an isomorphism) is easy: we may
assume ψ = ϕ and then Emb(ϕ, ϕ) = O(ϕ) and isomorphism classes in
G(ϕ, ϕ) are in bijection with the reduced isometry group O(ϕ)/W(ϕ), which
is also the group of automorphisms of the Dynkin diagram of ϕ. Explicitly,
this group is trivial for A1, E7 and E8, has two elements for (An)n>1,
(Dn)n>4 and E6, and is isomorphic to S3 for D4.

Notation: Our convention is that bold letters denote root systems and roman
letters denote root lattices. We denote either by ϕψ or ϕ ⊔ ψ the disjoint
(orthogonal) union of the root systems ϕ and ψ. For n ≥ 0 we denote by In = Zn

the cubic (or standard) lattice, with orthonormal standard basis e1, . . . , en. For

n ≥ 1 we realize An as {
∑n+1

i=1 xiei ∈ In+1 |
∑

i xi = 0}. We also define Dn as
the largest even sublattice in In. For n ≥ 4 this is the root lattice of Dn and
we choose the simple roots (ei − ei+1)1≤i<n and en−1 + en. We have isometries
D1 ≃ (4), D2 ≃ A1 ⊥ A1 and D3 ≃ A3. It is thus convenient to set D2 = A1A1

and D3 = A3. In the last three columns of Table 1, we use the conventions
A0 = D0 = D1 = ∅, D2 = A1A1 and D3 = A3.

We now start the proof of Theorem 1, and fix irreducible root systems ϕ and
ψ of respective ranks n and m with n ≤ m. We consider first the case ϕ = An.
It is well-known that G(A1, ψ) has one isomorphism class for any ψ.

• ϕ = A1 and ψ = Am. We have |G(A1,Am)| = 1 with representative αAm

A1
:

e1 − e2 7→ e1 − e2. The root system of the orthogonal of αAm

A1
is empty if

m ≤ 2, isomorphic to Am−2 if m > 2.

• ϕ = A2 and ψ = Am. Consider ι ∈ Emb(ϕ, ψ). We may assume ι(e1 −
e2) = e1 − e2. Then ι maps e2 − e3 to e2 − ej with j > 2 or to ej − e1
with j > 2. In both cases we may assume j = 3. The two cases define
distinct W(Am)-orbits, with representatives αAm

A2
: ei − ej 7→ ei − ej and

βAm

A2
: ei − ej 7→ ej − ei. They are swapped by −id (source or target). The

orthogonal of these embeddings has empty root system if m ≤ 3, isomorphic
to Am−3 if m > 3.

• ϕ = An for n ≥ 2 and ψ = Am. We proceed by induction on n ≥ 2 to
show that G(An,Am) has two isomorphism classes αAm

An
mapping ei − ej to

ei − ej and βAm

An
, characterized by their restriction to A2 and swapped by

−id (source or target). The initial case n = 2 is the previous point. So
assume n > 2 and try to extend αAm

An−1
to An. We see that we have to

map en − en+1 to en − ej with j > n, and letting AutG(An−1,Am)(α
Am

An−1
) =

S({n+1, . . . ,m+1}) act we see that we may assume j = n+1. For βAm

An−1

we reduce to the previous case by applying −idAm
.

The orthogonal of any ι ∈ Emb(An,Am) has empty root system if m ∈
{n, n+ 1}, isomorphic to Am−n−1 if m > n+ 1.

3



• ϕ = A1 and ψ = Dm (m ≥ 4). We have |G(A1,Dm)| = 1 with representative
αDm

A1
: e1 − e2 7→ e1 − e2, and orthogonal isometric to A1 ⊥ Dm−2.

• ϕ = A2 and ψ = Dm. To extend αDm

A1
we have to map e2−e3 to e2±ej or to

−e1 ± ej for some j ≥ 3. (Note that there is an element of W(Dm) fixing e1
and e2 and mapping ej to −ej because m > 3.) The reflection se1+e2 swaps
these two cases, and letting W(Dm−2) act we conclude |G(A2,Dm)| = 1
with representative αDm

A2
: ei − ej 7→ ei − ej . Its orthogonal has empty root

system if m = 4, isomorphic to Dm−3 if m > 4.

• ϕ = A3 and ψ = Dm. To extend αDm

A2
we have to map e3 − e4 to −e2 − e1

or to e3 ± ej for some j ≥ 4. In the latter case if m > 4 we let W(Dm−3)
act to reduce to e3 − e4.

It is clear from the case ϕ = A1 that αDm

A3
: ei − ej 7→ ei − ej and βDm

A3
:

e3 − e4 7→ −e2 − e1 are not isomorphic in G(A3,Dm) (they map the root
e3 − e4 to different irreducible components of the root system orthogonal
to the image of e1 − e2). The orthogonal of αDm

A3
has empty root system

if m ≤ 5, isomorphic to Dm−4 if m > 5. The orthogonal of βDm

A3
has

empty root system if m ≤ 4, isomorphic to Dm−3 if m > 4. For m > 4
we thus have |G(A3,Dm)| = 2 and both isomorphism classes are fixed by
the non-trivial outer automorphism of Dm. For m = 4 we have a third
class represented by γD4

A3
: e3 − e4 7→ e3 + e4, and the natural morphism

Out(D4) → S(G(A3,D4)/ ∼) is an isomorphism.

• ϕ = An for n ≥ 4 and ψ = Dm. We first consider the case where m > n.
Denote by αDm

An
the object of G(An,Dm) mapping ei − ej to ei − ej . The

orthogonal of αDm

An
has empty root system if m ≤ n + 2, isomorphic to

Dm−n−1 if m > n + 2. We prove by induction on n that we have just one
isomorphism class if m > n+ 1, and two isomorphism classes if m = n+ 1,
swapped by the non-trivial outer automorphism of Dm.

We first observe that βDm

A3
cannot be extended to A4. For n ≥ 4 and

m ≥ n+ 1 to extend αDm

An−1
to An we have to map en − en+1 to en ± ej for

some j > n. If m > n+ 1 we let AutG(An−1,Dm)(α
Dm

An−1
) ≃ W(Dm−n) act to

reduce to en−en+1. Form = n+1 the group AutG(An−1,Dm)(α
Dm

An−1
) is trivial

so the two possibilities en±en+1 yield non-isomorphic objects of G(An,Dm),
which are clearly swapped by the non-trivial outer automorphism of Dm.

Finally the groupoid G(An,Dm) is empty ifm = n: it is enough to check that
αDn

An−1
cannot be extended to An (say along αAn

An−1
), which is elementary.

• ϕ = A1 and ψ = E8. We represent the root lattice E8 as

D8 ⊔

{
(xi)1≤i≤8

∣∣∣∣∣xi ∈ 1

2
Z ∖ Z,

∑
i

xi ∈ 2Z

}
.

and define E8 as its root system. The unique isomorphism class of G(A1,E8)
is represented by αE8

A1
: e1−e2 7→ e1−e2. It is well-known that the orthogonal

of A1 in E8 is a root lattice of type E7.

• ϕ = A2 and ψ = E8. The root lattice A2 has no strict overlattice which
is integral, and the natural functor from [W(E8) ↷ ∗] to the genus of even
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unimodular lattices of rank 8 is an equivalence, so G(A2,E8) is equivalent
to the groupoid of pairs (L, t) where L is an even lattice of rank 6 and2

t : qres L
∼→ −qres A2. We know that the genus of lattices L such that such

a trivialization t exists has just one isomorphism class, the root lattice of E6,
and we have a short exact sequence

1 → W(E6) → O(E6) → O(qres E6) → 1

so we conclude that G(A2,E8) has just one isomorphism class, represented
by αE8

A2
: ei − ej 7→ ei − ej .

• ϕ = A3 and ψ = E8. Again the root lattice A3 has no strict overlattice which
is integral and even and so G(A3,E8) is equivalent to the groupoid of pairs
(L, t) where L is an even lattice of rank 5 and t : qres L

∼→ −qres A3. The
genus of such lattices L is equivalent to the genus of (odd) unimodular lattice
of rank 5 (such an L admits a unique overlattice L′ which is integral and
unimodular, and L is the even part of L′), which has just one isomorphism
class so L is isomorphic to the root lattice D5. Again we have a short exact
sequence

1 → W(D6) → O(D5) → O(qres D5) → 1

so we conclude that G(A3,E8) has just one isomorphism class, represented
by αE8

A3
: ei − ej 7→ ei − ej .

• ϕ = A4 and ψ = E8. The same argument as in the previous two points
applies: G(A4,E8) is equivalent to the groupoid of pairs (L, t) where L is
an even lattice of rank 4 and t : qres L

∼→ −qres A4. We know that the
genus of even lattices of rank 4 and determinant 5 has just one isomorphism
class represented by the root lattice A4, and we have a short exact sequence
as in the previous two cases, so we conclude that G(A4,E8) has just one
isomorphism class, represented by αE8

A4
: ei − ej 7→ ei − ej .

• ϕ = A5 and ψ = E8. This case is similar to the previous three cases: the
relevant genus is that of A1 ⊥ A2 which again has just one isomorphism class,
and we conclude that G(A5,E8) has just one isomorphism class, represented
by αE8

A5
: ei − ej 7→ ei − ej .

• ϕ = A6 and ψ = E8. This case is similar to the previous four cases: the rele-

vant genus is that of

(
2 −1
−1 4

)
(i.e. even lattices of rank 2 and determinant

7) which has root system isomorphic to A1), it has only one isomorphism
class. Again the automorphism group of this lattice acts transitively on the
set of trivializations of its quadratic residue (which has two elements) and
we conclude that G(A6,E8) has just one isomorphism class, represented by
αE8

A6
: ei − ej 7→ ei − ej .

• ϕ = A7 and ψ = E8. Now A7 does admit a strict overlattice which is
integral and even, so the argument of the previous points does not apply.
We try to extend αE8

A6
to A7: we have to map e7 − e8 to a root of the form

(x, x, x, x, x, x, x+ 1, y), so we either have x = 0 and y ∈ {±1} or x = −1/2
and y = 1/2. The two cases (x, y) ∈ {(0, 1), (−1/2, 1/2)} are swapped by

2See [CT26] for the notation qres .
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the reflection defined by the root (1/2, . . . , 1/2) orthogonal to αE8

A6
(A6), so

G(A7,E8) has two isomorphism classes, represented by αE8

A7
: ei−ej 7→ ei−ej

and the extension βE8

A7
of αE8

A6
sending e7 − e8 7→ e7 + e8.

The orthogonal of αE8

A7
is Z(1/2, . . . , 1/2) ≃ A1 (in particular αE8

A7
(A7) is not

saturated in E8, its saturation is isomorphic to E7). The orthogonal of βE8

A7

has no root and so it has a basis vector of length 8.

• ϕ = A8 and ψ = E8. We try to extend αE8

A7
to A8: we have to map e8 − e9

to a root orthogonal to αE8

A6
(A6), i.e. to ±(1/2, . . . , 1/2) which is orthogonal

to αE8

A7
(e7− e8), a contradiction. Now βE8

A7
admits a unique extension to A8,

mapping e8 − e9 to (−1/2, . . . ,−1/2).

• ϕ = A1 and ψ = E7. We realize E7 as the orthogonal of some (arbitrary)
A1 in E8 and set E7 = Q(E7). For any ϕ will repeatedly use the equivalence

G(ϕ,E7) ≃ G(ϕ ⊔A1,E8),

which follows from |G(A1,E8)| = 1 and Remark 1 (i). The groupoid on the
right is also equivalent to that of pairs (L,Q(ϕ) ⊥ A1 ↪→ L) where L is an
even unimodular lattice of rank 8. For ϕ = A1 this groupoid is equivalent to
the groupoid of pairs (M, t) where M is an even lattice of rank 6 and t is an
isometry qres M

∼→ −qres (A1 ⊥ A1). The genus of those M is that of D6

and it is equivalent to that of (odd) unimodular lattices of rank 6, which has
only one isomorphism class. The group O(D6) acts transitively on the set of
trivializations of qres D6, so G(A1,E7) has only one isomorphism class and
the orthogonal of any object ι is isomorphic to the root lattice D6.

• ϕ = A2 and ψ = E7. We have seen that there is a unique Weyl-orbit of
embeddings A2 → E8, with orthogonals ≃ E6. We have thus

G(A2,E7) ≃ G(A2 ⊔A1,E8) ≃ G(A1,E6)

and so this groupoid has just one equivalence class. The orthogonal of any ι ∈
Emb(A2,E7) is thus isomorphic to the root lattice A5 (see the determination
of G(A5,E8)).

• ϕ = A3 and ψ = E7. We have seen that there is a unique Weyl-orbit of
embeddings A3 → E8, with orthogonals ≃ D5. Arguing as above we have

G(A3,E7) ≃ G(A3 ⊔A1,E8) ≃ G(A1,D5)

so this groupoid has just one isomorphism class. The orthogonal of any
ι ∈ Emb(A3,E7) is thus isomorphic to that of any A1 in D5, i.e. to A1 ⊥ A3.

• ϕ = A4 and ψ = E7. We have seen that there is a unique Weyl-orbit of
embeddings A4 → E8, with orthogonals ≃ A4. We have thus

G(A4,E7) ≃ G(A4 ⊔A1,E8) ≃ G(A1,A4)

so this groupoid has just one isomorphism class. The orthogonal of any
ι ∈ Emb(A4,E7) is even of determinant 10 and rank 3; there is a unique
isomorphism class of such lattices, with root system ≃ A2.
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• ϕ = A5 and ψ = E7. We have seen that there is a unique Weyl-orbit of
embeddings A5 → E8, with orthogonals ≃ A2 ⊥ A1. We deduce

G(A5,E7) ≃ G(A5 ⊔A1,E8) ≃ G(A1,A1) ⊔ G(A1,A2)

so we have two isomorphism classes, one with orthogonal ≃ A2 and one with
orthogonal ≃ A1 ⊥ (6) (the orthogonal of an A1 in A2 being ≃ (6)).

• ϕ = A6 and ψ = E7. We have seen that there is a unique Weyl-orbit
of embeddings A6 → E8, with orthogonals isomorphic to the rank 2 even
lattice with determinant 7 (and root system ≃ A1). We have

G(A6,E7) ≃ G(A6 ⊔A1,E8) ≃ G(A1,A1) ≃ ∗

and the orthogonal of ι ∈ Emb(A6,E7) is isomorphic to (14). The restriction
functor G(A6,E7) → G(A5,E7) has essential image the class of embeddings
A5 → E7 with orthogonal isomorphic to A1 ⊥ (6) (we have Z2 ⊗ E7 ≃
Z2⊗A6 ⊥ (14) and so the orthogonal of Z2⊗A5 in Z2⊗E7 is not self-dual).

• ϕ = A7 and ψ = E7. We have

G(A7,E7) ≃ G(A7 ⊔A1,E8) ≃ G(A1,A1) ≃ ∗

(only one of the two isomorphism classes in G(A7,E8) is such that the or-
thogonal has a root: the class of αE8

A7
).

• ϕ = A1 and ψ = E6. We realize E6 as the orthogonal of an arbitrary A2 in
E8 and set E6 = Q(E6). For any ϕ will repeatedly use the equivalence

G(ϕ,E6) ≃ G(ϕ ⊔A2,E8),

which follows from |G(A2,E8)| = 1 and Remark 1 (i). The groupoid G(A1 ⊔
A2,E8) was already determined for the case ϕ = A2 and ψ = E7.

• ϕ = A2 and ψ = E6. We have

G(A2,E6) ≃ G(A2 ⊔A2,E8)

and this groupoid is isomorphic to the groupoid of pairs (L, t) where L is an
even lattice of rank 4 and t : qres L

∼→ −qres (A2 ⊥ A2). The corresponding
genus has just one isomorphism class, represented by A2 ⊥ A2, and the au-
tomorphism group of this lattice acts transitively on the set of trivializations
of its quadratic residue. Thus G(A2,E6) has only one isomorphism class3

and the orthogonal of any ι ∈ Emb(A2,E6) is isomorphic to A2 ⊥ A2.

• ϕ = A3 and ψ = E6. We have seen that there is a unique Weyl-orbit of
embeddings A3 → E8, with orthogonals ≃ D5. We have thus

G(A3,E6) ≃ G(A3 ⊔A2,E8) ≃ G(A2,D5)

which has only one isomorphism class. By the determination of G(A2,D5),
the orthogonal of any ι ∈ Emb(A3,E6) has root system ≃ D2 ≃ A1 ⊔A1.

3This can also be checked by direct computation in E6.
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• ϕ = A4 and ψ = E6. We have seen that there is a unique Weyl-orbit of
embeddings A4 → E8, with orthogonals ≃ A4. We have thus

G(A4,E6) ≃ G(A4 ⊔A2,E8) ≃ G(A2,A4)

and this groupoid has two isomorphism classes. The orthogonal of any

embedding in Emb(A4,E6) is isomorphic to

(
2 −1
−1 8

)
, with root system

≃ A1. As we have − id ∈ W(E8), the action of − idA4
on G(A4,E6)/ ∼ co-

incides under the isomorphisms above with that of − idA2
on G(A2,A4)/ ∼,

so the two orbits are swapped by − idA4 by the case ϕ = A2 and ψ = A4.
We deduce that the outer automorphism of E6 (represented by − idE6) also
swaps the two isomorphism classes in G(A4,E6).

• ϕ = A5 and ψ = E6. We have seen that there is a unique Weyl-orbit of
embeddings A5 → E8, with orthogonals ≃ A2 ⊥ A1. We have thus

G(A5,E6) ≃ G(A5 ⊔A2,E8) ≃ G(A2,A1) ⊔ G(A2,A2) ≃ G(A2,A2)

and this groupoid has two isomorphism classes swapped by both − idA5 and
− idE6 (same argument as above). The orthogonal of any ι ∈ Emb(A5,E6)
is isomorphic to A1.

• ϕ = A6 and ψ = E6. The ranks are equal and the quotient of determinants
is not the square of an integer (7/3 is not even an integer) so the groupoid
G(A6,E6) is empty.

For ϕ = Dn (with n ≥ 4) we often consider extensions of (already classified)
embeddings An−1 → Q(ψ) along αDn

An−1
: An−1 → Dn.

• ϕ = Dn and ψ = Am. It is elementary to check that one cannot extend
αAn

An−1
along αDn

An−1
, and so one cannot extend βAn

An−1
either, so G(Dn,Am)

is empty.

• ϕ = Dn and ψ = Dm with m > n, in particular m > 4. Each class in
G(Dn,Dm) contains ϕ such that ϕ ◦ αDn

An−1
is equal to αDm

An−1
, or to βDm

A3
if

n = 4. Elementary computations show that αDm

An−1
can be extended only:

– by en−1 + en 7→ en−1 + en,

– or by en−1 + en 7→ −e2 − e1 if n = 4.

Elementary computations show that βDm

A3
can be extended by e3+e4 7→ e3±ei

for some i > 3, which are all in the same W(Dm)-orbit. In summary:

– If n > 4 then we have a single class in G(Dn,Dm), with orthogonals
isomorphic to Dm−n,

– G(D4,Dm) has three classes, permuted transitively by O(D4), distin-
guished by which pair among the three distinguished simple roots of
D4 are mapped to roots in Dm with the same support. In any case the
orthogonal of an embedding is isomorphic to Dm−4.

• ϕ = D8 and ψ = E8. The lattice D8 has two overlattices isomorphic to E8, so
there are two classes in G(D8,E8), swapped by the action of O(D8)/W(D8).
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• ϕ = Dn for 4 ≤ n ≤ 7 and ψ = E8. The lattice Dn has no strict overlattice
which is integral and even so G(Dn,E8) is equivalent to the group of pairs
(L, t) where L is an even lattice of rank 8−n and t : qres L

∼→ −qres Dn. This
implies L ≃ D8−n, and O(D8−n) surjects onto O(qres D8−n) so G(Dn,E8)
has one isomorphism class and any embedding has orthogonal ≃ D8−n.

• ϕ = Dn (for 4 ≤ n ≤ 7) and ψ = E7. By the same argument as for
G(An,E7) we have G(Dn,E7) ≃ G(Dn ⊔A1,E8) and the latter is equivalent
to the groupoid of embeddings Dn ⊥ A1 → L with L ≃ E8. By the previous
point this groupoid is equivalent to G(A1,D8−n), which is empty for n = 7,
has two classes for n = 6 (as D2 ≃ A1 ⊥ A1), and one class if 4 ≤ n ≤ 5.
For n ≤ 6, the orthogonal of any ι ∈ Emb(Dn,E7) is isomorphic to A1 ⊥
D6−n. For n = 6, a similar argument as above shows that the two orbits are
permuted transitively by O(D6) (note that for any embedding D6⊔D2 → E8

there is an element in W(E8) inducing the outer automorphisms of D6 and
D2 = A1 ⊔A1).

• ϕ = Dn (for 4 ≤ n ≤ 6) and ψ = E6. Similarly we have G(Dn,E6) ≃
G(Dn ⊔A2,E8) ≃ G(A2,D8−n), and the latter groupoid

– is empty if n = 6,

– has two isomorphism classes if n = 5 (both O(E6) and O(D5) act tran-
sitively on the set of isomorphism classes, and the orthogonal of an
isometry D5 → E6 is isomorphic to (12)),

– has one isomorphism class if n = 4 (and the orthogonal of an isometry
D4 → E6 has no root).

• ϕ = En and ψ = Am orDm. Let us check that there is no isometry E6 → Dm

for any m, and thus no isometry En → Dm or En → Am either. We choose
D5 → E6 mapping simple roots to simple roots, such that e4 + e5 is mapped
to the simple root of E6 connected to the simple root not in the image. We
try to extend D5 → Dm (up to W(Dm), there is only one such isometry, say
±ei±ej 7→ ±ei±ej) to E6. The remaining simple root of E6 must be mapped
to

∑m
i=1 xiei with x1 = · · · = x5 and x4+x5 = −1, so x4 = x5 = −1/2 which

is not an integer, a contradiction.

• ϕ = E6 and ψ = E8. As before G(E6,E8) is equivalent to the groupoid of
pairs (L, t) where L is an even lattice and t : qres L

∼→ −qres E6 (implying
L ≃ A2). This groupoid has one class, and for ι ∈ G(E6,E8) we have
ι(E6)

⊥ ≃ A2.

• ϕ = E6 and ψ = E7. By the last point we have

G(E6,E7) ≃ G(E6 ⊔A1,E8) ≃ G(A1,A2)

so G(E6,E7) has one class, with orthogonals isomorphic to (6).

• ϕ = E7 and ψ = E8. As before G(E7,E8) is equivalent to the groupoid of
pairs (L, t) where L is an even lattice and t : qres L

∼→ −qres E7 (implying
L ≃ A1, and t is redundant as it is unique). This groupoid has one class,
and the orthogonal of any ι ∈ Emb(E7,E8) is ≃ A1.

This concludes the proof of Theorem 1. □
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