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Abstract

In this note, which is an appendix to the article [CT26], we classify
the Weyl orbits of embeddings of an ADE root system into another.

For a group G acting on a set X (left action), denote by [G ~ X] the
associated groupoid. For ¢ an ADE root system, normalized so that each root
has norm 2, we denote by Q(¢) the associated root lattice, and by W(¢) the
Weyl group of ¢, a subgroup of the orthogonal group O(¢) of Q(¢). For ¢ and
1 root systems of type ADE, we denote by Emb(¢, 1)) the set of (isometric)
embeddings of lattices Q(¢) — Q(¢). Our aim is to determine the groupoid

5(¢,¢) := [W(¥) ~ Emb(¢, ¥)].

We may assume ¢ and 1 irreducible, as well as m > n , otherwise this groupoid
is empty. For any isometric embedding of lattices ¢ : U — V we define the
orthogonal of 1 as the sublattice +(U)* of V.

Theorem 1. The number of W(v)-orbits of proper embeddings Q(¢) — Q(v)
(i.e. isomorphism classes in G(¢,)), and the root system R; of the orthogonal
of an embedding in the i-th orbit (ordered arbitrarily), are given in Table 1.

This result is presumably folklore, but we could not find any reference. The
O(1)-orbits of sublattices of Q(¢) which are isometric to Q(¢) , or equivalenty
the O(¢) x O(2))-orbits in Emb(¢, ), are given in [K103, Table 4].> Our proof
below does not rely on King’s table and provides quite more detail, including
representatives for each W(#))-orbit. It follows from the proof that two embed-
dings Q(¢) — Q(v») whose orthogonals have isomorphic root systems are in the
same O(¢) x O(z))-orbit.
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1We mention an inaccuracy in the line S = Az, T = Dy of that table: the 12 sublattices
of Dy isometric to A3 form a single O(D4)-orbit.



¢ ’(/} R1 R2 R3

Al Am, m > 1 Am_g

A, n>2 A, m>n A n1 An_na
Al Dm; m Z 4 Ale72
A,,n>2,n#3 D,,m>n+1 D,—no1

An,7 n>4 Dn+1 0 )

Az Dy 0 ) 0
Aj D,,,m>14 D,._4 D,._3
D4 Dma m > 4 Dm74 Dm74 Dm74
D,,n>4 D,,m>n D,_n

A, Eq A

A, Esg AsA,

A, Eq ALA,

A4 or A5 E6 A1 A1
Dy Es 0

Ds Es 0 0

A, E; Dg

A, E; Aj

A; E; AjAj

Ay E; A,

A; E; A, A,
A67 EG or A7 E7 (Z)

D, E; AlAA,

Ds E; A,

Dg E; A A
A, Eg E;

A, Es Es

A; Es Ds

Ay Esg Ay

As Es A1A,

Ag Eg A

Ay Eg Ay )

Ag Eg 0

Dy Eg Dy

Ds Esg Aj

Dg Eg AA,

D~ Eg 0

Dg Eg 0 0

Eg Eg A,

E- Ex A

Table 1: Weyl orbits of proper embeddings and root systems of their orthogonal



Remark 1. (i) For an object v : Q(¢) — Q) of this groupoid its auto-
morphism group is equal to the pointwise stabilizer of 1(p) in W (). By
[Bou8l, Ch. V, §3.3, Prop. 2|, this stabilizer coincides with the Weyl
group W(R) of the root system R of the orthogonal of v. In particular, the
W()-orbit of v has cardinality [W()|/|W(R)|, a quantity which can be
deduced from Table 1.

(ii) The case where v is not proper (i.e. is an isomorphism) is easy: we may
assume ¢ = ¢ and then Emb(¢,$) = O(¢) and isomorphism classes in
9(¢, @) are in bijection with the reduced isometry group O(¢p)/W(¢), which
is also the group of automorphisms of the Dynkin diagram of ¢. Explicitly,
this group is trivial for Ay, E; and Eg, has two elements for (Ap)n>1,
(Dy)n>4 and Eg, and is isomorphic to &3 for Dy.

NOTATION: Our convention is that bold letters denote root systems and roman
letters denote root lattices. We denote either by ¢ or ¢ U ¢ the disjoint
(orthogonal) union of the root systems ¢ and ¢). For n > 0 we denote by I,, = Z"
the cubic (or standard) lattice, with orthonormal standard basis ey, ..., e,. For
n > 1 we realize A,, as {Z:L:Jrll zie; € Lpp1 | Do, ¢y = 0}. We also define D,, as
the largest even sublattice in I,,. For n > 4 this is the root lattice of D,, and
we choose the simple roots (e; — €;4+1)1<i<n and e,—_1 + €,. We have isometries
D; ~ (4), Do ~ A; 1 Ay and D3 ~ Aj. It is thus convenient to set Do = A1 A,
and D3 = Aj3. In the last three columns of Table 1, we use the conventions
AO = DO = D1 = @, DQ = A1A1 and D3 = A3.

We now start the proof of Theorem 1, and fix irreducible root systems ¢ and
1 of respective ranks n and m with n < m. We consider first the case ¢ = A,,.
It is well-known that G(A1,) has one isomorphism class for any 1.

e o =A; and v = A,,,. We have |§(A1,A,,)| =1 with representative 0421" :
e1 — ey — e1 — eg. The root system of the orthogonal of aﬁ;” is empty if
m < 2, isomorphic to A,,_o if m > 2.

e ¢ = Ay and ¢» = A,,. Consider ¢+ € Emb(¢,v). We may assume t(e; —
e2) = e —ez. Then ¢ maps es —e3 to ea —e; with j > 2 or to e; — e;
with j > 2. In both cases we may assume j = 3. The two cases define
distinct W(A,;,)-orbits, with representatives aﬁ;" tep—ej e —e; and
ﬁﬁ;" 1 e; —ej — e; —e;. They are swapped by —id (source or target). The
orthogonal of these embeddings has empty root system if m < 3, isomorphic
to A,,_3if m > 3.

e o = A, forn > 2 and v» = A,,. We proceed by induction on n > 2 to
show that G(A,,, A,,) has two isomorphism classes aﬁzl mapping e; — e; to

e; —e; and Bﬁ;”, characterized by their restriction to As and swapped by
—id (source or target). The initial case n = 2 is the previous point. So

assume 1 > 2 and try to extend aﬁ;"; , to A,. We see that we have to

map e, — ep41 to e, —e; with j > n, and letting Autg(Anflem)(Ozﬁ:Ll) =

S({n+1,...,m+1}) act we see that we may assume j = n+ 1. For 62;’11
we reduce to the previous case by applying —ida

m*

The orthogonal of any ¢ € Emb(A,, A,,) has empty root system if m €
{n,n + 1}, isomorphic to A,,_,—1 if m >n+ 1.



o o =A;and ¢ = D,, (m >4). We have |§(A,D,,)| = 1 with representative
agi" i e; — ey — e; — e, and orthogonal isometric to Ay 1 D, o.

e 9 = Ay and ¢ = D,,. To extend aﬁ;" we have to map ex —e3 to ex £ e; or to
—e1 te; for some j > 3. (Note that there is an element of W(D,,,) fixing e,
and ey and mapping e; to —e; because m > 3.) The reflection s¢, 4, swaps
these two cases, and letting W(D,,_2) act we conclude |§(Aq,D,,)| = 1
with representative ag;" i e; —e; — ¢; — e;. Its orthogonal has empty root
system if m = 4, isomorphic to D,,,_3 if m > 4.

e o = Aj and ¢y = D,,,. To extend ag;" we have to map e3 — eq to —ea — €1
or to eg + e; for some j > 4. In the latter case if m > 4 we let W(D,,_3)
act to reduce to e3 — e4.

It is clear from the case ¢ = A, that aR;" te; —ej — e —e; and BE;” :
es — eq — —eg — e1 are not isomorphic in §(As,D,,) (they map the root
e3 — e4 to different irreducible components of the root system orthogonal
to the image of e; — ez). The orthogonal of ai;" has empty root system
if m < 5, isomorphic to D,,_4 if m > 5. The orthogonal of 62;" has
empty root system if m < 4, isomorphic to D,,_3 if m > 4. For m > 4
we thus have |G(As,D,,)| = 2 and both isomorphism classes are fixed by
the non-trivial outer automorphism of D,,. For m = 4 we have a third

class represented by 'yE;‘ : es3 —eq — ez + eyq, and the natural morphism
Out(Dy4) — 6(G(A35,Dy)/ ~) is an isomorphism.

e o = A, forn >4 and v = D,,. We first consider the case where m > n.

Denote by ai:’ the object of G(A,,D,,) mapping e; —e; to e; — e;. The
orthogonal of 042: has empty root system if m < n 4+ 2, isomorphic to
D,,_n_1 if m > n 4+ 2. We prove by induction on n that we have just one
isomorphism class if m > n + 1, and two isomorphism classes if m =n + 1,
swapped by the non-trivial outer automorphism of D,,.
We first observe that 52;" cannot be extended to A4. For n > 4 and
m > n+ 1 to extend aR:il to A, we have to map e, — e,41 to e, £ e; for
some j >n. If m > n+1 we let Autg(A%th)(aIK;{l) ~ W(D,,_,) act to
reduce to e, —ey41. For m = n+1 the group Autga, . ,D,.) (aR::l) is trivial
so the two possibilities e, +e,41 yield non-isomorphic objects of G(A,,, Dy, ),
which are clearly swapped by the non-trivial outer automorphism of D,,.

Finally the groupoid §(A,,, D,,) is empty if m = n: it is enough to check that
ag:_l cannot be extended to A,, (say along 0‘2:_1)’ which is elementary.

e ¢ = A; and ¢y = Eg. We represent the root lattice Eg as

1
xi€2Z\Z,in€2Z}.

and define Eg as its root system. The unique isomorphism class of G(A1, Eg)
is represented by aisl 1 e1—eg —» e1—es. It is well-known that the orthogonal
of Ay in Eg is a root lattice of type E7.

Ds U {(Sﬂi)1<i<s

e ¢ = Ay and v = Eg. The root lattice As has no strict overlattice which
is integral, and the natural functor from [W(Eg) ~ %] to the genus of even



unimodular lattices of rank 8 is an equivalence, so G(Aq, Eg) is equivalent
to the groupoid of pairs (L,t) where L is an even lattice of rank 6 and?
t:qres L 5 —qres Ay. We know that the genus of lattices L such that such
a trivialization ¢ exists has just one isomorphism class, the root lattice of Eg,
and we have a short exact sequence

1 — W(Eg) — O(Eg) — O(qres Eg) — 1

so we conclude that G(Aq, Eg) has just one isomorphism class, represented
byais2 D6 —ej e — e

e ¢ = Asand 1) = Eg. Again the root lattice Ag has no strict overlattice which
is integral and even and so G(As, Eg) is equivalent to the groupoid of pairs
(L,t) where L is an even lattice of rank 5 and ¢ : qres L — —qres Az. The
genus of such lattices L is equivalent to the genus of (odd) unimodular lattice
of rank 5 (such an L admits a unique overlattice L’ which is integral and
unimodular, and L is the even part of L’), which has just one isomorphism
class so L is isomorphic to the root lattice D5. Again we have a short exact
sequence

1 — W(Dg) - O(Ds) = O(qres D5) — 1

so we conclude that G(As, Eg) has just one isomorphism class, represented
byaii 1€ — €5 e — €.

e o = A, and vy = Eg. The same argument as in the previous two points
applies: G(Ay4, Eg) is equivalent to the groupoid of pairs (L,t) where L is
an even lattice of rank 4 and ¢ : qres L = —qres Ay. We know that the
genus of even lattices of rank 4 and determinant 5 has just one isomorphism
class represented by the root lattice A4, and we have a short exact sequence
as in the previous two cases, so we conclude that (A4, Eg) has just one
isomorphism class, represented by ozii D6 —ej e — e

e ¢ = A5 and ¢ = Eg. This case is similar to the previous three cases: the
relevant genus is that of A; 1 As which again has just one isomorphism class,
and we conclude that G(As, Eg) has just one isomorphism class, represented
byaii 16— €5 e — ey

e ¢ = Ag and 1 = Eg. This case is similar to the previous four cases: the rele-
. 2 -1\, . .
vant genus is that of (_1 4 ) (i.e. even lattices of rank 2 and determinant

7) which has root system isomorphic to A), it has only one isomorphism
class. Again the automorphism group of this lattice acts transitively on the
set of trivializations of its quadratic residue (which has two elements) and
we conclude that G(Ag, Eg) has just one isomorphism class, represented by
ai’z tep—ej e — e

e o = A; and ¢y = Eg. Now A; does admit a strict overlattice which is
integral and even, so the argument of the previous points does not apply.
We try to extend aiz to A7: we have to map e; — eg to a root of the form
(z,z,x,z,z,x,2+ 1,y), so we either have z =0 and y € {£1} or x = —1/2
and y = 1/2. The two cases (z,y) € {(0,1),(—1/2,1/2)} are swapped by

2See [CT26] for the notation qres.



the reflection defined by the root (1/2,...,1/2) orthogonal to aiz (Ag), so
G9(A7, Eg) has two isomorphism classes, represented by aii tei—ej € —€

and the extension Bf‘j of aii sending ey — eg — ey + eg.

The orthogonal of aii isZ(1/2,...,1/2) ~ A; (in particular aiﬁ (A7) is not
saturated in Eg, its saturation is isomorphic to E7). The orthogonal of BEE;
has no root and so it has a basis vector of length 8.

¢ = Ag and ¢ = Eg. We try to extend aii to Ag: we have to map eg — eg
to a root orthogonal to aiz (Ag), i.e. to £(1/2,...,1/2) which is orthogonal

to aii (e7 —es), a contradiction. Now ﬁii admits a unique extension to Ag,
mapping eg — eg to (—1/2,...,—1/2).

¢ = Ay and ¢ = E;. We realize E7 as the orthogonal of some (arbitrary)
A in Eg and set E; = Q(E7). For any ¢ will repeatedly use the equivalence

9(¢7E7) x~ 9(¢ U Ala Eg),

which follows from |§(A1, Eg)| = 1 and Remark 1 (i). The groupoid on the
right is also equivalent to that of pairs (L, Q(¢) L Ay < L) where L is an
even unimodular lattice of rank 8. For ¢ = A this groupoid is equivalent to
the groupoid of pairs (M, t) where M is an even lattice of rank 6 and ¢ is an
isometry qres M = —qres (A; L Aj). The genus of those M is that of Dg
and it is equivalent to that of (odd) unimodular lattices of rank 6, which has
only one isomorphism class. The group O(Dg) acts transitively on the set of
trivializations of qres Dg, so (A1, E7) has only one isomorphism class and
the orthogonal of any object ¢ is isomorphic to the root lattice Dg.

¢ = As and v = E;. We have seen that there is a unique Weyl-orbit of
embeddings Ay — Eg, with orthogonals ~ Eg. We have thus

G(A2,E7) ~ G(Ay LA, Eg) ~ G(A1, Eg)

and so this groupoid has just one equivalence class. The orthogonal of any ¢ €
Emb(As, E7) is thus isomorphic to the root lattice As (see the determination

of §(As, Ex)).

¢ = A3z and v = E;. We have seen that there is a unique Weyl-orbit of
embeddings A3 — Eg, with orthogonals ~ D5. Arguing as above we have

G(As,E7) ~ G(As U A, Eg) ~ G(A1,D5)

so this groupoid has just one isomorphism class. The orthogonal of any
¢ € Emb(Agj, E7) is thus isomorphic to that of any A; in D5, 4.e. to A; L As.

¢ = Ay and v = E;. We have seen that there is a unique Weyl-orbit of
embeddings A4 — Eg, with orthogonals ~ A4. We have thus

G(A4,E7) ~ G(ALUA 1, Eg) ~ G(A1, Ay)

so this groupoid has just one isomorphism class. The orthogonal of any
t € Emb(Ay4, E7) is even of determinant 10 and rank 3; there is a unique
isomorphism class of such lattices, with root system ~ As.



e ¢ = As and ¢ = E;. We have seen that there is a unique Weyl-orbit of
embeddings As — Eg, with orthogonals ~ Ay 1 A;. We deduce

9(A5aE7) = 9(A5 u AlaES) = S(AlvAl) L 9(A13A2)

so we have two isomorphism classes, one with orthogonal ~ A, and one with
orthogonal ~ A; 1 (6) (the orthogonal of an Ay in Ay being ~ (6)).

e o = Ag and v = E;. We have seen that there is a unique Weyl-orbit
of embeddings Ag — Eg, with orthogonals isomorphic to the rank 2 even
lattice with determinant 7 (and root system ~ A;). We have

S5(A6,E7) ~ G(Ag LA, Eg) ~ G(A1,Aq) ~ %

and the orthogonal of © € Emb(Ag, E7) is isomorphic to (14). The restriction
functor §(Ag, E7) — G(As, E7) has essential image the class of embeddings
A; — E; with orthogonal isomorphic to A; L (6) (we have Zy @ E7 ~
Zo® Ag L (14) and so the orthogonal of Zs ® A5 in Zg ® E7 is not self-dual).

o ¢ = A7 and ¢ = E;. We have
9(A7,E7) ~ 9(A7 |_|A17E8) ~ 9(A1,A1) ~ %

(only one of the two isomorphism classes in G(A7, Eg) is such that the or-
thogonal has a root: the class of afj ).

e ¢ = A; and ¢ = Eg. We realize Eg as the orthogonal of an arbitrary As in
Eg and set Eg = Q(Eg). For any ¢ will repeatedly use the equivalence

S(¢,Es) ~ G(¢ U Az, Eg),

which follows from |§(Az, Eg)| = 1 and Remark 1 (i). The groupoid G(A; U
Ay, Eg) was already determined for the case ¢ = Ay and ¢ = E7.

e ¢ = A, and ¢y = Eg. We have
S(A2,Eg) ~ G(Az U Az, Eg)

and this groupoid is isomorphic to the groupoid of pairs (L, t) where L is an
even lattice of rank 4 and ¢ : qres L = —qres (A L Ay). The corresponding
genus has just one isomorphism class, represented by Ay 1 As, and the au-
tomorphism group of this lattice acts transitively on the set of trivializations
of its quadratic residue. Thus G(Az, Eg) has only one isomorphism class?
and the orthogonal of any ¢ € Emb(As, Eg) is isomorphic to Ay 1 As.

e o = Aj and v = Eg. We have seen that there is a unique Weyl-orbit of
embeddings Az — Eg, with orthogonals ~ D5. We have thus

G(As,Eq) ~ G(A3 LU Ay, Eg) ~ G(Ag,Ds)

which has only one isomorphism class. By the determination of G(As, Ds),
the orthogonal of any ¢ € Emb(Ags, Eg) has root system ~ Dy ~ A; LI A;.

3This can also be checked by direct computation in Eg.



e » = A, and ¢ = Eg. We have seen that there is a unique Weyl-orbit of
embeddings A4 — Eg, with orthogonals ~ A4. We have thus

G(A4,Eg) ~ G(As U A9, Eg) ~ G(Ag, Ay)

and this groupoid has two isomorphism classes. The orthogonal of any

-1
1 8
~ A;. As we have —id € W(Eg), the action of —ida, on G(A4,Eg)/ ~ co-
incides under the isomorphisms above with that of —ida, on G(Ag, Ay)/ ~,
so the two orbits are swapped by —ida, by the case ¢ = As and 9 = Ay.
We deduce that the outer automorphism of Eg (represented by —idg,) also
swaps the two isomorphism classes in G(Ay4, Eg).

embedding in Emb(A4, Eg) is isomorphic to (2 , with root system

e o = As and v = Eg. We have seen that there is a unique Weyl-orbit of
embeddings A5 — Eg, with orthogonals ~ Ay | A;. We have thus

G(As5,E¢) ~ G(As5 U Ay, Eg) ~ G(Ag, A1) UG(Az, Az) ~ G(Ag, As)

and this groupoid has two isomorphism classes swapped by both —ida, and
—idg, (same argument as above). The orthogonal of any « € Emb(As, Eg)
is isomorphic to A;.

e ¢ = A and ¢ = Eg. The ranks are equal and the quotient of determinants
is not the square of an integer (7/3 is not even an integer) so the groupoid
9(As, Eg) is empty.

For ¢ = D,, (with n > 4) we often consider extensions of (already classified)
embeddings A, _; — Q(v) along agz_l A,_1 = D,.

e o =D, and ¥ = A,,. It is elementary to check that one cannot extend
0‘2:_1 along aR:_l, and so one cannot extend 52:_1 either, so §(D,,, A.,)
is empty.

e ¢ = D, and vy = D, with m > n, in particular m > 4. Fach class in
9(D,,D,,) contains ¢ such that ¢ o 0‘22,1 is equal to aEZLl, or to ﬁAD;” if

n = 4. Elementary computations show that agil can be extended only:

— by ep—1+en = ep_1 + e,

—orbye, 1 +e,— —ey—ey if n=4.

Elementary computations show that BAD;” can be extended by es+e4 — este;
for some ¢ > 3, which are all in the same W(D,,)-orbit. In summary:

— If n > 4 then we have a single class in §(D,,,D,,), with orthogonals
isomorphic to Dy, _pn,

— G(Dy4,D,,) has three classes, permuted transitively by O(Dy), distin-
guished by which pair among the three distinguished simple roots of
D, are mapped to roots in D,,, with the same support. In any case the
orthogonal of an embedding is isomorphic to D,,_4.

e ¢ = Dg and ¢ = Eg. The lattice Dg has two overlattices isomorphic to Eg, so
there are two classes in §(Dg, Eg), swapped by the action of O(Dg)/W(Ds).



e =D, for 4 <n < 7and vy = Eg. The lattice D,, has no strict overlattice
which is integral and even so §(D,,, Eg) is equivalent to the group of pairs
(L,t) where L is an even lattice of rank 8—n and ¢ : qres L — —qres D,,. This
implies L ~ Dg_,, and O(Ds_,) surjects onto O(qres Ds_,,) so §(D,,, Eg)
has one isomorphism class and any embedding has orthogonal ~ Dg_,,.

e 9 =D, (for 4 < n < 7) and » = E;. By the same argument as for
9(A,., E;7) we have §(D,,, E7) ~ §(D,, U A, Eg) and the latter is equivalent
to the groupoid of embeddings D,, 1. A; — L with L ~ Eg. By the previous
point this groupoid is equivalent to G(A1, Dg_,,), which is empty for n = 7,
has two classes for n = 6 (as Dy ~ Ay L A;), and one class if 4 < n < 5.
For n < 6, the orthogonal of any ¢« € Emb(D,,, E7) is isomorphic to A; L
Dg—_p. For n = 6, a similar argument as above shows that the two orbits are
permuted transitively by O(Dg) (note that for any embedding DglUDy — Eg
there is an element in W(Eg) inducing the outer automorphisms of Dg and
D2 = A1 L Al)

e o =D, (for 4 < n < 6) and v = Eg. Similarly we have §(D,,,Eg) ~

9(D, U Ay Eg) ~ G(Ay,Ds_,,), and the latter groupoid

— is empty if n =6,
— has two isomorphism classes if n = 5 (both O(Eg) and O(Ds3) act tran-

sitively on the set of isomorphism classes, and the orthogonal of an
isometry Ds — Eg is isomorphic to (12)),

— has one isomorphism class if n = 4 (and the orthogonal of an isometry
D4 — Eg has no root).

e o =E, andy = A,, or D,,. Let us check that there is no isometry Eg — D,,,
for any m, and thus no isometry E,, — D,, or E,, — A,,, either. We choose
D5 — Eg mapping simple roots to simple roots, such that e4 + e5 is mapped
to the simple root of Eg connected to the simple root not in the image. We
try to extend Ds — D, (up to W(D,,), there is only one such isometry, say
+e,te; — te;+e;) to Eg. The remaining simple root of Eg must be mapped
to 221 xie; withxy = -+- = a5 and x4+ 25 = —1, so x4 = x5 = —1/2 which
is not an integer, a contradiction.

e ¢ = Eg and ¢ = Eg. As before §(Eg, Eg) is equivalent to the groupoid of
pairs (L,t) where L is an even lattice and ¢ : qres L = —qres Eg (implying
L ~ A,). This groupoid has one class, and for ¢+ € G(Eg, Eg) we have
L(EG)J‘ >~ Ag.

e ¢ = Eg and ¢y = E;. By the last point we have
S(Es, E7) ~ §(E¢ U A1, Es) ~ §(Aq, Az)
so G(Eg, E7) has one class, with orthogonals isomorphic to (6).

e ¢ = E; and ¢ = Eg. As before G(E7, Eg) is equivalent to the groupoid of
pairs (L,t) where L is an even lattice and ¢ : qres L = —qres E7 (implying
L ~ A4, and t is redundant as it is unique). This groupoid has one class,
and the orthogonal of any ¢ € Emb(E7, Eg) is ~ A;.

This concludes the proof of Theorem 1. [
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