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Abstract. We survey old and new results about the cohomology of
the moduli space Ag of principally polarized abelian varieties of genus g
and its compactifications. The main emphasis lies on the computation of
the cohomology for small genus and on stabilization results. We review
both geometric and representation theoretic approaches to the problem.
The appendix provides a detailed discussion of computational methods
based on trace formulae and automorphic representations, in particu-
lar Arthur’s endoscopic classification of automorphic representations for
symplectic groups.

1. Introduction

The study of moduli spaces of abelian varieties goes back as far as the
late 19th century when Klein and Fricke studied families of elliptic curves.
This continued in the 20th century with the work of Hecke. The theory of
higher dimensional abelian varieties was greatly influenced by C.L. Siegel
who studied automorphic forms in several variables. In the 1980’s Borel
and others started a systematic study of the topology of locally symmetric
spaces and thus also moduli spaces of abelian varieties. From 1977 onwards
Freitag, Mumford and Tai proved groundbreaking results on the geometry of
Siegel modular varieties. Since then a vast body of literature has appeared
on abelian varieties and their moduli.

One of the fascinating aspects of abelian varieties is that the subject is at
the crossroads of several mathematical fields: geometry, arithmetic, topol-
ogy and representation theory. In this survey we will restrict ourselves to
essentially one aspect, namely the topology of the moduli space Ag of prin-
cipally polarized abelian varieties and its compactifications. This in itself is
a subject which has been covered in numerous research papers and several
survey articles. Of the latter we would like to mention articles by van der
Geer and Oort [GO99], Sankaran and the first author [HS02a], van der Geer
[Gee08], Grushevsky [Gru09] and van der Geer’s contribution to the Hand-
book of Moduli [Gee13]. Needless to say that all of these articles concentrate
on different aspects and include new results as progress was made. In this
article we will, naturally, recall some of the basic ideas of the subject, but we
will in particular concentrate on two aspects. One is the actual computation
of the cohomology of Ag and its compactifications in small genus. The other
aspect is the phenomenon of stabilization of cohomology, which means that
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in certain ranges the cohomology groups do not depend on the genus. One
of our aims is to show how concepts and techniques from such different fields
as algebraic geometry, analysis, differential geometry, representation theory
and topology come together fruitfully in this field to provide powerful tools
and results.

In more detail, we will cover the following topics: In Section 2 we will set
the scene and introduce the moduli space of principally polarized abelian
varieties Ag as an analytic space. In Section 3 we introduce the tautological
ring of Ag. Various compactifications of Ag will be introduced and discussed
in Section 4, where we will also recall the proportionality principle. In Sec-
tion 5 we shall recall work on L2-cohomology, Zucker’s conjecture and some
results from representation theory. This will mostly be a recapitulation of
more classical results, but the concepts and the techniques from this section
will play a major role in the final two sections of this survey. In Section 6 we
will treat the computation of the cohomology in low genus in some detail. In
particular, we will discuss the cohomology of both Ag itself, but also of its
various compactifications, and we will treat both singular and intersection
cohomology. Finally, stabilization is the main topic of Section 7. Here we
not only treat the classical results, such as Borel’s stabilization theorem for
Ag and its extension by Charney and Lee to the Satake compactification
ASat
g , but we will also discuss recent work of Looijenga and Chen as well as

stabilization of the cohomology for (partial) toroidal compactifications.
In the appendix, by Olivier Täıbi, we explain how the Arthur–Selberg

trace formula can be harnessed to explicitly compute the Euler characteris-
tic of certain local systems on Ag and their intermediate extensions to ASat

g ,

i.e. L2-cohomology by Zucker’s conjecture. Using Arthur’s endoscopic clas-
sification and an inductive procedure individual L2-cohomology groups can
be deduced. An alternative computation uses Chenevier and Lannes’ clas-
sification of automorphic cuspidal representations for general linear groups
having conductor one and which are algebraic of small weight. Following
Langlands and Arthur, we give details for the computation of L2-cohomology
in terms of Arthur–Langlands parameters, notably involving branching rules
for (half-)spin representations.

Throughout this survey we will work over the complex numbers C. We will
also restrict to moduli of principally polarized abelian varieties, although the
same questions can be asked more generally for abelian varieties with other
polarizations, as well as for abelian varieties with extra structure such as
complex or real multiplication or level structures. This restriction is mostly
due to lack of space, but also to the fact that, in particular, moduli spaces
with non-principal polarizations have received considerably less attention.
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2. The complex analytic approach

As we said above the construction of the moduli space Ag of principally
polarized abelian varieties (ppav) of dimension g can be approached from
different angles: it can be constructed algebraically as the underlying coarse
moduli space of the moduli stack of principally polarized abelian varieties
[FC90] or analytically as a locally symmetric domain [BL04]. The algebraic
approach results in a smooth Deligne–Mumford stack defined over Spec(Z)
of dimension g(g + 1)/2, the analytic construction gives a normal complex
analytic space with finite quotient singularities. The latter is, by the work
of Satake [Sat56] and Baily–Borel [BB66] in fact a quasi-projective variety.

Here we recall the main facts about the analytic approach. The Siegel
upper half plane is defined as the space of symmetric g × g matrices with
positive definite imaginary part

(1) Hg = {τ ∈ Mat(g × g,C} | τ = tτ,=(τ) > 0}.
This is a homogeneous domain. To explain this we consider the standard
symplectic form

(2) Jg =

(
0 1g
−1g 0

)
.

The real symplectic group Sp(2g,R) is the group fixing this form:

(3) Sp(2g,R) = {M ∈ GL(2g,R) | tMJM = J}.
Similarly we define Sp(2g,Q) and Sp(2g,C).

The discrete subgroup
Γg = Sp(2g,Z)

will be of special importance for us. The group of (complex) symplectic
similitudes is defined by

(4) GSp(2g,C) = {M ∈ GL(2g,C) | tMJM = cJ for some c ∈ C∗}.
The real symplectic group Sp(2g,R) acts on the Siegel space Hg from the

left by

(5) M =

(
A B
C D

)
: τ 7→ (Aτ +B)(Cτ +D)−1.

Here A,B,C,D are g×g matrices. This action is transitive and the stabilizer
of the point i1g is

(6) Stab(i1g) =

{
M ∈ Sp(2g,R) |M =

(
A B
−B A

)}
.

The map (
A B
−B A

)
7→ A+ iB
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defines an isomorphism

Stab(i1g) ∼= U(g)

where U(g) is the unitary group. This is the maximal compact subgroup of
Sp(2g,R), and in this way we obtain a description of the Siegel space as a
homogeneous domain

(7) Hg
∼= Sp(2g,R)/U(g).

The involution

τ 7→ −τ−1

defines an involution with i1g an isolated fixed point. Hence Hg is a sym-
metric homogeneous domain.

The object which we are primarily interested in is the quotient

(8) Ag = Γg\Hg.

The discrete group Γg = Sp(2g,Z) acts properly discontinuously on Hg and
hence Ag is a normal analytic space with finite quotient singularities. This
is a coarse moduli space for principally polarized abelian varieties (ppav),
see [BL04, Chapter 8]. Indeed, given a point [τ ] ∈ Ag one obtains a ppav
explicitly as A[τ ] = Cg/Lτ , where Lτ is the lattice in Cg spanned by the
columns of the (g × 2g)-matrix (τ,1g).

There are various variations of this construction. One is that one may
want to describe (coarse) moduli spaces of abelian varieties with polariza-
tions which are non-principal. This is achieved by replacing the standard
symplectic form given by Jg by

(9) Jg =

(
0 D
−D 0

)
where D = diag(d1, . . . , dg) is a diagonal matrix and the entries di are posi-
tive integers with d1|d2| · · · |dg.

Another variation involves the introduction of level structures. This re-
sults in choosing suitable finite index subgroups of Γg. Here we will only
consider the principal congruence subgroups of level `, which are defined by

Γg(`) = {g ∈ Sp(2g,Z) | g ≡ 1 mod `}.

The quotient

(10) Ag(`) = Γg(`)\Hg

parameterizes ppav with a level-` structure. The latter is the choice of a
symplectic basis of the group A[`] of `-torsion points on an abelian variety
A. Recall that A[`] ∼= (Z/`Z)2g and that A[`] is equipped with a natural
symplectic form, the Weil pairing, see [Mum70, Section IV.20]. If ` ≥ 3 then
the group Γg(`) acts freely on Hg, see e.g. [Ser62], [BL04, Corollary 5.1.10],
and hence Ag(`) is a complex manifold (smooth quasi-projective variety).
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In this case it carries an honest universal family Xg(`) → Ag(`), which can
be defined as the quotient

(11) Xg(`) = Γg(`) n Z2g\Hg × Cg.

Here the semidirect product Γg(`)nZ2g is defined by the action of Sp(2g,Z)
on Z2g and the action is given by

(12) (M,m,n) : (τ, z) 7→ (M(τ), ((Cτ +D)t)−1z + τm+ n).

for all M ∈ Γg(`) and m,n ∈ Zg, The map Xg(`) → Ag(`) is induced by
the projection Hg × Cg → Hg. The universal family Xg(`) makes sense also
for ` = 1, 2 if we define it as an orbifold quotient. This allows to define a
universal family Xg := Xg(1)→ Ag on Ag.

A central object in this theory is the Hodge bundle E. Geometrically, this
is given by associating to each point [τ ] ∈ Ag the cotangent space of the
abelian variety A[τ ] at the origin. This gives an honest vector bundle over
the level covers Ag(`) and an orbifold vector bundle over Ag. In terms of
automorphy factors this can be written as

(13) E := Sp(2g,Z)\Hg × Cg

given by

(14) M : (τ, v) 7→ (M(τ), (Cτ +D)v)

for M ∈ Sp(2g,Z).
As we explained above, the Siegel space Hg is a symmetric homogeneous

domain and as such has a compact dual, namely the symplectic Grassman-
nian

(15) Yg = {L ⊂ C2g | dimL = g, Jg|L ≡ 0}.

This is a homogeneous projective space of complex dimension g(g+1)/2. In
terms of algebraic groups it can be identified with

(16) Yg = GSp(2g,C)/Q

where

(17) Q =

{(
A B
C D

)
∈ GSp(2g,C) | C = 0

}
is a Siegel parabolic subgroup.

The Siegel space Hg is the open subset of Yg of all maximal isotropic sub-
spaces L ∈ Yg such that the restriction of the symplectic form −iJg|L is pos-
itive definite. Concretely, one can associate to τ ∈ Hg the subspace spanned
by the rows of the matrix (−1g, τ). The cohomology ring H•(Yg,Z) is very
well understood in terms of Schubert cycles. Moreover Yg is a smooth ratio-
nal variety and the cycle map defines an isomorphism CH•(Yg) ∼= H•(Yg,Z)
between the Chow ring and the cohomology ring of Yg. For details we refer
the reader to van der Geer’s survey paper [Gee13, p. 492].
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Since Yg is a Grassmannian we have a tautological sequence of vector
bundles

(18) 0→ E → H → Q→ 0

where E is the tautological subbundle, H is the trivial bundle of rank 2g
and Q is the tautological quotient bundle. In particular, the fibre EL at
a point [L] ∈ Yg is the isotropic subspace L ⊂ C2g. We denote the Chern
classes of E by

ui := ci(E),

which we can think of as elements in Chow or in the cohomology ring. The
exact sequence (18) immediately gives the relation

(19) (1 + u1 + u2 + . . .+ ug)(1− u1 + u2 − . . .+ (−1)gug) = 1.

Note that this can also be expressed in the form

(20) ch2k(E) = 0, k ≥ 1

where ch2k(E) denotes the degree 2k part of the Chern character.

Theorem 1. The classes ui with i = 1, . . . , g generate CH•(Yg) ∼= H•(Yg,Z)
and all relations are generated by the relation

(1 + u1 + u2 + . . .+ ug)(1− u1 + u2 − . . .+ (−1)gug) = 1.

Definition 2. By Rg we denote the abstract graded ring generated by
elements ui; i = 1, . . . , g subject to relation (19).

In particular, the dimension of Rg as a vector space is equal to 2g. As a
consequence of Theorem 1 and the definition of Rg we obtain

Proposition 3. The intersection form on H•(Yg,Z) defines a perfect pair-
ing on Rg. The ring Rg is a Gorenstein ring with socle u1u2 . . . ug. Moreover
there are natural isomorphisms

Rg/(ug) ∼= Rg−1.

As a vector space Rg is generated by
∏
i u

εi
i with εi ∈ {0, 1} and the

duality is given by εi 7→ 1− εi.

3. The tautological ring of Ag
We have already encountered the Hodge bundle E on Ag in Section 2.

There we defined it as E = π∗(Ω
1
Xg/Ag) where π : Xg → Ag is the universal

abelian variety. As we pointed out this is an orbifold bundle or, alternatively,
an honest vector bundle on Ag(`) for ` ≥ 3. We use the following notation
for the Chern classes

(21) λi = ci(E).

We can view these in either Chow or cohomology (with rational coefficients).
Indeed, in view of the fact that the group Sp(2g,Z) does not act freely,
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we will from now on mostly work with Chow or cohomology with rational
coefficients.

There is also another way in which the Hodge bundle can be defined. Let
us recall that it can be realized explicitly as the quotient of the trivial bundle
Hg × Cg on which the group Sp(2g,Z) acts by

(22) M =

(
A B
C D

)
: (τ, v) 7→ (M(τ), (Cτ +D)v).

One can also consider this construction in two steps. First, one considers
the embedding of Hg into its compact dual Yg = GSp(2g,C)/Q as explained
in Section 2. Secondly, one can prove that E coincides with the quotient of
the restriction of E to Hg by the natural Sp(2g,Z)-action.

As explained in [Gee08, § 13], this is a special case of a construction that
associates with every complex representation of GL(g,C) a homolomorphic
vector bundle on Ag. This construction is very important in the theory of
modular forms and we will come back to it (in a slightly different guise) in
Section 4 below.

Definition 4. The tautological ring of Ag is the subring defined by the
classes λi, i = 1, . . . , g. We will use this both in the Chow ring CH•Q(Ag) or
in cohomology H•(Ag,Q).

The main properties of the tautological ring can be summarized by the
following

Theorem 5. The following holds in CH•Q(Ag):
(i) (1 + λ1 + λ2 + . . .+ λg)(1− λ1 + λ2 − . . .+ (−1)gλg) = 1

(ii) λg = 0
(iii) There are no further relations between the λ-classes on Ag and

hence the tautological ring of Ag is isomorphic to Rg−1.

The same is true in H•(Ag,Q).

Proof. We refer the reader to van der Geer’s paper [Gee99], where the above
statements appear as Theorem 1.1, Proposition 1.2 and Theorem 1.5 respec-
tively. This is further discussed in [Gee13]. �

4. Compactifications and the proportionality principle

The space Ag admits several compactifications which are geometrically
relevant. The smallest compactification is the Satake compactification ASat

g ,
which is a special case of the Baily–Borel compactification for locally sym-
metric domains. Set-theoretically this is simply the disjoint union

(23) ASat
g = Ag t Ag−1 t . . . t A0.

It is, however, anything but trivial to equip this with a suitable topology and
an analytic structure. This can be circumvented by using modular forms.
A modular form of weight k is a holomorphic function

f : Hg → C
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such that for every M ∈ Sp(2g,Z) with M =

(
A B
C D

)
the following holds:

f(M(τ)) = det(Cτ +D)kf(τ).

In terms of the Hodge bundle modular forms of weight k are exactly the sec-
tions of the k-fold power of the determinant of the Hodge bundle det(E)⊗k.
If g = 1, then we must also add a growth condition on f which ensures holo-
morphicity at infinity, for g ≥ 2 this condition is automatically satisfied.
We denote the space of all modular forms of weight k with respect to the
full modular group Γg by Mk(Γg). This is a finite dimensional vector space.
Using other representations of Sp(2g,C) one can generalize this concept to
vector valued Siegel modular forms. For an introduction to modular forms
we refer the reader to [Fre83], [Gee08]. The spaces Mk(Γg) form a graded
ring ⊕k≥0Mk(Γg) and one obtains

(24) ASat
g = Proj⊕k≥0Mk(Γg).

Indeed, one can take this as the definition of ASat
g . The fact that the graded

algebra of modular forms is finitely generated implies that ASat
g is a projec-

tive variety. It contains Ag as a Zariski open subset, thus providing Ag with
the structure of a quasi-projective variety. We say that a modular form is a
cusp form if its restriction to the boundary of ASat

g , by which we mean the

complement of Ag in ASat
g , vanishes. The space of cusp forms of weight k is

denoted by Sk(Γg).
The Satake compactification ASat

g is naturally associated to Ag. However,
it has the disadvantage that it is badly singular along the boundary. This
can be remedied by considering toroidal compactifications Ator

g of Ag. These
compactifications were introduced by Mumford, following ideas of Hirze-
bruch on the resolution of surface singularities. We refer the reader to the
standard book by Ash, Mumford, Rapoport and Tai [AMRT10]. Toroidal
compactifications depend on choices, more precisely we need an admissible
collection of admissible fans. In the case of principally polarized abelian
varieties, this reduces to the choice of one admissible fan Σ covering the
rational closure Sym2

rc(Rg) of the space Sym2
>0(Rg) of positive definite sym-

metric g×g-matrices. To be more precise, an admissible fan Σ is a collection
of rational polyhedral cones lying in Sym2

rc(Rg), with the following proper-
ties: it is closed under taking intersections and faces, the union of these
cones covers Sym2

rc(Rg) and the collection is invariant under the natural ac-
tion of GL(g,C) on Sym2

rc(Rg) with the additional property that there are
only finitey many GL(g,C)-orbits of such cones. The construction of such
fans is non-trivial and closely related to the reduction theory of quadratic
forms.

There are three classical decompositions (fans) of Sym2
rc(Rg) that have

all been well studied and whose associated toroidal compactifications are
by now reasonably well understood, namely the second Voronoi, the per-
fect cone or first Voronoi and the central cone decomposition, leading to the
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compactifications AVor
g , APerf

g and ACentr
g respectively. The Voronoi com-

pactification AVor
g has a modular interpretation due to Alexeev [Ale02] and

Olsson [Ols08]. Indeed, Alexeev introduced the notions of stable semi-abelic
varieties and semi-abelic pairs, for which he constructed a moduli stack. It
turns out that this is in general not irreducible and that so-called extra-
territorial components exist. The space AVor

g is the normalization of the
principal component of the coarse moduli scheme associated to Alexeev’s
functor. In contrast to this, Olsson’s construction uses logarithmic geome-
try to give the principal component AVor

g directly. The perfect cone or first

Voronoi compactification APerf
g is very interesting from the point of view

of the Minimal Model Program (MMP). Shepherd-Barron [SB06] has shown
that APerf

g is a Q-factorial variety with canonical singularities if g ≥ 5 and

that its canonical divisor is nef if g ≥ 12, in other words APerf
g is, in this

range, a canonical model in the sense of MMP. We refer the reader also
to [ASB16] where some missing arguments from [SB06] were completed.
Finally, the central cone compactification ACentr

g coincides with the Igusa

blow-up of the Satake compactification ASat
g [Igu67].

All toroidal compactifications admit a natural morphism Ator
g → ASat

g

which restrict to the identity on Ag. A priori, a toroidal compactification
need not be projective, but there is a projectivity criterion [AMRT10, Chap-
ter 4, §2] which guarantees projectivity if the underlying decomposition Σ
admits a suitable piecewise linear Sp(2g,Z)-invariant support function. All
the toroidal compactifications discussed above are projective. For the sec-
ond Voronoi compactification AVor

g it was only in [Ale02] that the existence
of a suitable support function was exhibited.

For g ≤ 3 the three toroidal compactifications described above coincide,
but in general they are all different and none is a refinement of another.
Although toroidal compactifications Ator

g behave better with respect to sin-

gularities than the Satake compactification ASat
g , this does not mean that

they are necessarily smooth. To start with, the coarse moduli space of Ag
is itself a singular variety due to the existence of abelian varieties with non-
trivial automorphisms. These are, however, only finite quotient singularities
and we can always avoid these by going to level covers of level ` ≥ 3. We
refer to this situation as stack smooth. For g ≤ 3 the toroidal compactifica-
tions described above are also stack smooth, but this changes considerably
for g ≥ 4, when singularities do appear. A priori, the only property we know
of these singularities is that they are (finite quotients of) toric singularities.
For a discussion of the singularities of AVor

g and APerf
g see [DSHS15]. By

taking subdivisions of the cones we can for each toroidal compactification
Ator
g obtain a smooth toroidal resolution Ãtor

g → Ator
g . We shall refer to

these compactifications as (stack) smooth toroidal compactifications, often
dropping the word stack in this context.
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It is natural to ask whether the classes λi can be extended to ASat
g

or to toroidal compactifications Ator
g . As we will explain later in Sec-

tion 7, it was indeed shown by Charney and Lee [CL83] that the λ-classes
can be lifted to the Satake compactification ASat

g via the restriction map

H2i(ASat
g ,Q) → H2i(Ag,Q). These lifts are, however, not canonical. An-

other lift was obtained by Goresky and Pardon [GP02], working, however,
with cohomology with complex coefficients. Their classes are canonically de-
fined and we denote them by λGP

i ∈ H2i(ASat
g ,C). It was recently shown by

Looijenga [Loo17] that there are values of i for which the Goresky–Pardon
classes have a non-trivial imaginary part and hence differ from the Charney–
Lee classes. This will be discussed in more detailed in Theorem 35.

The next question is whether the λ-classes can be extended to toroidal
compactifications Ator

g . By a result of Chai and Faltings [FC90] the Hodge

bundle E can be extended to toroidal compactifications Ator
g . The argu-

ment is that one can define a universal semi-abelian scheme over Ator
g and

fibrewise one can then take the cotangent space at the origin. In this way
we obtain extensions of the λ-classes in cohomology or in the operational
Chow ring. Analytically, Mumford [Mum77] proved that one can extend the

Hodge bundle as a vector bundle Ẽ to any smooth toroidal compactification
Ãtor
g . Moreover, if p : Ãtor

g → ASat
g is the canonical map, then by [GP02] we

have

ci(Ẽ) = p∗(λGP
i ).

We also note the following: if D is the (reducible) boundary divisor in a

level Ãtor
g (`) with ` ≥ 3, then by [FC90, p. 25]

Sym2(Ẽ) ∼= Ω1
Ãtor
g (`)

(D).

In order to simplify the notation we denote the classes ci(Ẽ) on Ãtor
g also by

λi. It is a crucial result that the basic relation (i) of Theorem 5 also extends
to smooth toroidal compactifications.

Theorem 6. The following relation holds in CH•Q(Ãtor
g ):

(25) (1 + λ1 + λ2 + . . .+ λg)(1− λ1 + λ2 − . . .+ (−1)gλg) = 1.

Proof. This was shown in cohomology by van der Geer [Gee99] and in the
Chow ring by Esnault and Viehweg [EV02]. �

As before we will define the tautological subring of the Chow ring CH•Q(Ãtor
g )

(or of the cohomology ring H•(Ãtor
g ,Q)) as the subring generated by the (ex-

tended) λ-classes. Now λg 6= 0 and we obtain the following

Theorem 7. The tautological ring of Ãtor
g is isomorphic to Rg.

Proof. We first note that the relation (25) holds. The statement then follows
since the intersection form defines a perfect pairing on the λ-classes. In
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particular we have

λ1 . . . λg =
1

(g(g + 1))/2)!

 g∏
j=1

(2j − 1)!!

λ
1
2
g(g+1)

1 6= 0.

�

Indeed, one can think of the tautological ring as part of the cohomology
contained in all (smooth) toroidal compactifications of Ag. Given any two
such toroidal compactifications one can always find a common smooth reso-
lution and pull the λ-classes back to this space. In this sense the tautological
ring does not depend on a particular chosen compactification Ãtor

g .
The top intersection numbers of the λ-classes can be computed explicitly

by relating them to (known) intersection numbers on the compact dual.
This is a special case of the Hirzebruch–Mumford proportionality, which had
first been found by Hirzebruch in the co-compact case [Hir58], [Hir57] and
then been extended by Mumford [Mum77] to the non-compact case.

Theorem 8. The top intersection numbers of the λ-classes on a smooth
toroidal compactification Ãtor

g are proportional to the corresponding top in-
tersection numbers of the Chern classes of the universal subbundle on the
compact dual Yg. More precisely if ni are non-negative integers with

∑
ini =

g(g + 1)/2, then

λn1
1 · . . . · λ

ng
g = (−1)

1
2
g(g+1) 1

2g

 g∏
j=1

ζ(1− 2j)

un1
1 · . . . · u

ng
g .

As a corollary, see also the proof of Theorem 7, we obtain

Corollary 9.

λ
1
2
g(g+1)

1 = (−1)
1
2
g(g+1) (g(g + 1)/2)!

2g

(
g∏

k=1

ζ(1− 2k)

(2k − 1)!!

)
.

We note that the formula we give here is the intersection number on the
stack Ag, i.e. we take the involution given by −1 into account. In particular
this means that the degree of the Hodge line bundle on ASat

1 equals 1/24.
This can also be rewritten in terms of Bernoulli numbers. Recall that the

Bernoulli numbers Bj are defined by the generating function

x

ex − 1
=
∞∑
k=0

Bk
xk

k!
, |x| < 2π

and the relation between the Bernoulli numbers and the ζ-function is given
by

ζ(−n) = (−1)n
Bn+1

n+ 1
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respectively

B2n = (−1)n−1 2(2n)!

(2π)2n
ζ(2n).

A further application of the Hirzebruch–Mumford proportionality is that
it describes the growth behaviour of the dimension of the spaces of modular
forms of weight k.

Theorem 10. The dimension of the space of modular forms of weight k
with respect to the group Γg grows asymptotically as follows as k is even and
goes to infinity:

dimMk(Γg) ∼ 2
1
2

(g−1)(g−2)k
1
2
g(g+1)

g∏
j=1

(j − 1)!

(2j)!
(−1)j−1B2j .

Proof. The proof consists of several steps. The first is to go to a level-`
cover and apply Riemann–Roch to the line bundle (det Ẽ)⊗k as the modular
forms of weight k with respect to the principal congruence subgroup Γg(`)
are just the sections of this line bundle. The second step is to prove that
this line bundle has no higher cohomology. Consequently, the Riemann–
Roch expression for (det Ẽ)⊗k gives the dimension of the space of sections,
and the leading term (as k grows) is determined by the self-intersection

number λ
1
2
g(g+1)

1 on Ãtor
g (`). This shows that

dimMk(Γg(`)) ∼ 2−
1
2
g(g+1)−gk

1
2
g(g+1)[Γg(`) : Γg]Vgπ

− 1
2
g(g+1)

where Vg is Siegel’s volume

Vg = 2g
2+1π

1
2
g(g+1)

g∏
j=1

(j − 1)!

(2j)!
(−1)j−1B2j .

The third step is to descend to Ag by applying the Noether–Lefschetz fixed-
point formula. It turns out that this does not affect the leading term, with
the exception of cancelling the index [Γg(`) : Γg]. �

This was used by Tai [Tai82] in his proof that Ag is of general type for
g ≥ 9. The same principle can be applied to compute the growth behaviour
of the space of modular forms or cusp forms also in the non-principally
polarized case, see e.g. [HS02b, Sect. II.2]. Indeed, Hirzebruch–Mumford
proportionality can also be used to study other homogeneous domains, for
example orthogonal modular varieties, see [GHS07], [GHS08].

5. L2 cohomology and Zucker’s conjecture

In the 1970’s and 1980’s great efforts were made to understand the co-
homology of locally symmetric domains. In the course of this various co-
homology theories were studied, notably intersection cohomology and L2-
cohomology. Here we will briefly recall some basic facts which will be of
relevance for the discussions in the following sections.
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One of the drawbacks of singular (co)homology is that Poincaré duality
fails for singular spaces. It was one of the main objectives of Goresky and
MacPherson to remedy this situation when they introduced intersection co-
homology. Given a space X of real dimension m, one of the starting points
of intersection theory is the choice of a good stratification

X = Xm ⊃ Xm−1 ⊃ · · · ⊃ X1 ⊃ X0

by closed subsets Xi such that each point x ∈ Xi\Xi−1 has a neighbourhood
Nx which is again suitably stratified and whose homeomorphism type does
not depend on x. The usual singular k-chains are then replaced by chains
which intersect each stratum Xm−i in a set of dimension at most k− i+p(k)
where p(k) is the perversity. This leads to the intersection homology groups
IHk(X,Q) and dually to intersection cohomology IHk(X,Q). We will re-
strict ourselves here mostly to (complex) algebraic varieties where the strata
Xi have real dimension 2i, and we will work with the middle perversity,
which means that p(k) = k − 1. Intersection cohomology not only satis-
fies Poincaré duality, but it also has many other good properties, notably
we have a Lefschetz theorem and a Kähler package, including a Hodge de-
composition. In case of a smooth manifold, or, more generally, a variety
with locally quotient singularities, intersection (co)homology and singular
(co)homology coincide. The drawback is that intersection cohomology loses
some of its functorial properties (unless one restricts to stratified maps) and
that it is typically hard to compute it from first principles. Deligne later
gave a sheaf-theoretic construction which is particularly suited to algebraic
varieties. The main point is the construction of an intersection cohomology
complex ICX whose cohomology gives IH•(X,Q). Finally we mention the
decomposition theorem which for a projective morphism f : Y → X relates
the intersection cohomology of X with that of Y . For an introduction to
intersection cohomology we refer the reader to [KW06]. An excellent expo-
sition of the decomposition theorem can be found in [dCM09].

Although we are here primarily interested in Ag and its compactifications,
much of the technology employed here is not special to this case, but applies
more generally to Hermitian symmetric domains and hence we will now
move our discussion into this more general setting. Let G be a connected
reductive group which, for simplicity, we assume to be semi-simple, and let
K be a maximal compact subgroup. We also assume that D = G/K carries
a G-equivariant complex structure in which case we speak of an Hermitian
symmetric space. The prime example we have in mind is G = Sp(2g,R) and
K = U(g) in which case G/K = Hg. If Γ ⊂ G(Q) is an arithmetic subgroup
we consider the quotient

X = Γ\G/K
which is called a locally symmetric space. In our example, namely for Γ =
Sp(2g,Z), we obtain

Ag = Sp(2g,Z)\ Sp(2g,R)/U(g) = Sp(2g,Z)\Hg.
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As in the Siegel case, we also have several compactifications in this more
general setting. The first is the Baily–Borel compactification XBB which for
Ag is nothing but the Satake compactification ASat

g . As in the Siegel case
it can be defined as the proj of a graded ring of automorphic forms, which
gives it the structure of a projective variety. Again as in the Siegel case, one
can define toroidal compactifications Xtor which are compact normal ana-
lytic spaces. Moreover, there are two further topological compactifications,
namely the Borel–Serre compactification XBS and the reductive Borel–Serre
compactification XRBS [BS73]. These are topological spaces which do not
carry an analytic structure. The space XBS is a manifold with corners that
is homotopy equivalent to X, whereas XRBS is typically a very singular
stratified space. More details on their construction and properties can be
found in [BJ06]. These spaces are related by maps

XBS → XRBS → XBB ← Xtor

where the maps on the left hand side of XBB are continuous maps and the
map on the right hand side is an analytic map. All of these spaces have
natural stratifications which are suitable for intersection cohomology. For a
survey on this topic we refer the reader to [Gor05] which we follow closely
in parts.

Another important cohomology theory is L2-cohomology. For this one
considers the space of square-integrable differential forms

Ωi
(2)(X) =

{
ω ∈ Ωi

X |
∫
ω ∧ ∗ω <∞,

∫
dω ∧ ∗dω <∞

}
.

This defines the L2-cohomology groups

H i
(2)(X) = ker d/ im d.

These cohomology groups are representation theoretic objects and can be
expressed in terms of relative group cohomology as follows, see [Bor83, The-
orem 3.5]:

(26) H i
(2)(X) = H i(g,K;L2(Γ\G)∞)

where L2(Γ\G)∞ is the module of L2-functions on Γ\G such that all deriva-
tives by G-invariant differential operators are square integrable. Indeed, this
isomorphism holds not only for cohomology with coefficients in C but more
generally for cohomology with values in local systems. The famous Zucker
conjecture says that the L2-cohomology of X and the intersection cohomol-
ogy of XBB are naturally isomorphic. This was proven independently by
Looijenga [Loo88] and Saper and Stern [SS90] in the late 1980’s:

Theorem 11 (Zucker conjecture). There is a natural isomorphism

H i
(2)(X) ∼= IH i(XBB,C) for all i ≥ 0.

In 2001 Saper [Sap05], [Sap17] established another isomorphism namely
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Theorem 12. There is a natural isomorphism

IH i(XRBS,C) ∼= IH i(XBB,C) for all i ≥ 0.

We conclude this section with two results concerning specifically the case
of abelian varieties as they will be relevant for the discussions in the next
sections. The following theorem is part of Borel’s work on the stable coho-
mology of Ag, see [Bor81, Remark 3.8]:

Theorem 13. There is a natural isomorphism

Hk
(2)(Ag) ∼= Hk(Ag,C) for all k < g.

Let us remark that one can also view this theorem as a consequence
of Zucker’s conjecture, since Hk(Ag,Q) = IHk(Ag,Q) and IHk(XBB,Q)
coincide in degree k < g as a consequence of the fact that the codimension
of the boundary of X in XBB is g.

Finally we notice the following connection between the tautological ring
Rg and intersection cohomology of ASat

g , see also [GH16]:

Proposition 14. There is a natural inclusion Rg ↪→ IH•(ASat
g ,Q) of graded

vector spaces of the tautological ring into the intersection cohomology of the
Satake compactification ASat

g .

Proof. By the natural map from cohomology to intersection cohomology we
can interpret the (extended) classes λi on ASat

g as classes in IH2i(ASat
g ). Via

the decomposition theorem we have an embedding IH2i(ASat
g ) ⊂ H2i(Ãtor

g )

where Ãtor
g is a (stack) smooth toroidal compactification. Since the classes λi

satisfy the relation of Theorem 6 we obtain a map from Rg to IH•(ASat
g ,Q).

Since moreover the intersection pairing defines a perfect pairing on Rg there
can be no further relations among the classes λi ∈ IH2i(ASat

g ) and hence we

have an embedding Rg ↪→ IH•(ASat
g ,Q).

Alternatively, one can see this from the isomorphism (26) by looking at
the decomposition of H i

(2)(X) induced by the decomposition of L2(Γ\G) into

G-representations. Then it is known that the trivial representation occurs
with multiplicity one in L2(Γ\G) and that its contribution coincides with
Rg. �

Remark 15. We mentioned earlier as a motivation for the introduction of
the tautological ring that it is contained in the cohomology of all smooth
toroidal compactifications Ãtor

g of Ag. Proposition 14 provides an explana-
tion for this. Applying the decomposition theorem to the canonical map
Ãtor
g → ASat

g we find that H•(Ãtor
g ,Q) contains IH•(ASat

g ,Q) as a subspace,
which itself contains the tautological ring Rg.

6. Computations in small genus

In this section, we consider a basic topological invariant of Ag and its
compactifications, namely the cohomology with Q-coefficients. As we work
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over the field of complex numbers, the cohomology groups will carry mixed
Hodge structures (i.e. a Hodge and a weight filtration). We will describe the
mixed Hodge structures whenever this is possible because of their geometric
significance. In particular, we will denote by Q(k) the pure Hodge structure
of Tate of weight −2k. If H is a mixed Hodge structure, we will denote its
Tate twists by H(k) := H ⊗Q(k). We will also denote any extension

0→ B → H → A→ 0

of a pure Hodge structure A by a pure Hodge structure B by H = A+B.
Although its geometric and algebraic importance is obvious, the coho-

mology ring H•(Ag,Q) is completely known in only surprisingly few cases.
The cases g = 0, 1 are of course trivial. The cases g = 2, 3 are special in
that the locus of jacobians is dense in Ag in these genera. This can be used
to obtain information on the cohomology ring H•(Ag,Q) from the known
descriptions of H•(Mg,Q) for these values of g. For g = 2 the Torelli map
actually extends to an isomorphism from the Deligne–Mumford compacti-
fication M2 to the (in this case canonical) toroidal compactification of A2.
This map identifies A2 with the locus of stable curves of compact type and
from this one can easily obtain that the cohomology ring is isomorphic to
the tautological ring in this case.

In general, however, the cohomology ring of Ag is larger than the tauto-
logical ring. This is already the case for g = 3. In [Hai02], Richard Hain
computed the rational cohomology ring of A3 using techniques from Goresky
and MacPherson’s stratified Morse theory. His result is the following:

Theorem 16 ([Hai02]). The rational cohomology ring of A3 is isomorphic
to Q[λ1])/(λ4

1) in degree k 6= 6. In degree 6 it is given by a 2-dimensional
mixed Hodge structure which is an extension of the form Q(−6) + Q(−3).

Let us remark that the class of the extension in H6(A3,Q) is unknown.
Hain expects it to be given by a (possibly trivial) multiple of ζ(3).

For genus up to three, also the cohomology of all compactifications we
mentioned in the previous sections is known. For the Satake compactifica-
tion, this result is due to Hain in [Hai02, Prop. 2 & 3]:

Theorem 17 ([Hai02]). The following holds:

(i) The rational cohomology ring of ASat
2 is isomorphic to Q[λ1])/(λ4

1).
(ii) The rational cohomology ring of ASat

3 is isomorphic to Q[λ1])/(λ7
1)

in degree k 6= 6. In degree 6 it is given by a 3-dimensional mixed
Hodge structure which is an extension of the form Q(−3)⊕2 + Q.

Hain’s approach is based on first computing the cohomology of the link of
ASat
g−1 inASat

g for g = 2, 3 and then using a Mayer–Vietoris sequence to deduce

from this the cohomology of ASat
g . Alternatively, one could obtain the same

result by looking at the natural stratification (23) of ASat
g and calculating the

cohomology using the Gysin spectral sequence for cohomology with compact
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support, which in this case degenerates at E2 and yields

H•(ASat
g ,Q) ∼=

⊕
0≤k≤g

H•c (Ak,Q), g = 2, 3.

Here H•c (Ag,Q) denotes cohomology with compact support. We recall that
Ag is rationally smooth, so that we can obtain H•c (Ag,Q) from H•(Ag,Q)
by Poincaré duality.

For g ≤ 3 the situation is easy for toroidal compactifications as well.
Let us recall that the commonly considered toroidal compactifications all
coincide in this range, so that we can talk about the toroidal compactification
in genus 2 and 3. As mentioned above, the compactification Ator

2 can be
interpreted as the moduli spaceM2 of stable genus 2 curves, whose rational
cohomology was computed by Mumford in [Mum83]. The cohomology of
Ator

3 can be computed using the Gysin long exact sequence in cohomology
with compact support associated with its toroidal stratification. Using this,
we proved in [HT10] that the cohomology of Ator

3 is isomorphic to the Chow
ring of Ator

3 , which is known by [Gee98]. The results are summarized by the
following two theorems.

Theorem 18. For the toroidal compactification Ator
2 the cycle map defines

an isomorphism CH•Q(Ator
2 ) ∼= H•(Ator

2 ,Q). There is no odd dimensional
cohomology and the even Betti numbers are given by

i 0 2 4 6
bi 1 2 2 1

Theorem 19. For the toroidal compactification Ator
3 the cycle map defines

an isomorphism CH•Q(Ator
3 ) ∼= H•(Ator

3 ,Q). There is no odd dimensional
cohomology and the even Betti numbers are given by

i 0 2 4 6 8 10 12
bi 1 2 4 6 4 2 1

We also note that due to van der Geer’s results [Gee98] explicit generators
of H•(Ator

g ,Q) for g = 2, 3 are known, as well as the ring structure.
The method of computing the cohomology of a (smooth) toroidal com-

pactification using its natural stratification is sufficiently robust that it can
be applied to AVor

4 as well. The key point here is that, although a general
abelian fourfold is not the jacobian of a curve, the Zariski closure of the
locus of jacobians in ASat

4 is an ample divisor J4. In particular, its comple-
ment ASat

4 \ J4 = A4 \ J4 is an affine variety of dimension 10 and thus its
cohomology groups vanish in degree > 10. Hence, there is a range in degrees
where the cohomology of compactifications of A4 can be determined from
cohomological information on Ag with g ≤ 3 and on the moduli space M4

of curves of genus 4. Using Poincaré duality, this is enough to compute the
cohomology of the second Voronoi compactification AVor

4 , which is smooth,
in all degrees different from the middle cohomology H10. However, a single
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missing Betti number can always be recovered from the Euler characteristic
of the space.

By the work of Täıbi, see Proposition (42) in the appendix, it is now
known that the Euler characteristics e(A4) = 9. This allows us to rephrase
the results of [HT12] as follows:

Theorem 20. The following holds:

(i) The rational cohomology of AVor
4 vanishes in odd degree and is al-

gebraic in all even degrees. The Betti numbers are given by

i 0 2 4 6 8 10 12 14 16 18 20
bi 1 3 5 11 17 19 17 11 5 3 1

(ii) The Betti numbers of APerf
4 in degree ≤ 8 are given by

i 0 1 2 3 4 5 6 7 8
b1 1 0 2 0 4 0 8 0 14

and the rational cohomology in this range consists of Tate Hodge
classes of weight 2i for each degree i.

(iii) The even Betti numbers of ASat
4 satisfy the conditions described be-

low:

i 0 2 4 6 8 10 12 14 16 18 20
bi 1 1 1 3 3 ≥ 2 ≥ 2 ≥ 2 ≥ 1 1 1

where all Hodge structures are pure of Tate type with the exception of
H6(ASat

4 ,Q) = Q(−3)⊕2 +Q and H8(ASat
4 ,Q) = Q(−4)⊕2 +Q(−1).

Furthermore, the odd Betti numbers of ASat
4 vanish in degree ≤ 7.

Proof. (i) is [HT12, Theorem 1] updated by taking into account the result
e(A4) = 9.
(ii) is obtained from altering the spectral sequence of [HT12, Table 1] in order
to compute the rational cohomology of APerf

4 , replacing the first column with
the results on the strata of toroidal rank 4 in [HT12, Theorem 25].
(iii) can be proven by considering the Gysin exact sequence in cohomology
with compact support associated with the natural stratification of ASat

4 and
taking into account that the cohomology of A4 is known in degree ≥ 12 and
that it cannot contain classes of Hodge weight 8 by the shape of the spectral
sequence of [HT12, Table 1]. �

Furthermore, in [HT12, Corollary 3] we prove that H12(A4,Q) is an ex-
tension of Q(−6) (generated by the tautological class λ3λ

3
1) by Q(−9). A

reasonable expectation for H•(A4,Q) would be that it coincides with R3 in
all other degrees.

However, the constant coefficient system is not the only one worth while
considering for Ag. Indeed, looking at cohomology with values in non-trivial
local systems has very important applications, both for arithmetic and for
geometric questions. Let us recall that Hg is contractible and thus the
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orbifold fundamental group of Ag is isomorphic to Sp(2g,Z). Hence repre-
sentations of Sp(2g,Z) give rise to (orbifold) local systems on Ag. Recall
that all irreducible representations of Sp(2g,C) are defined over the inte-
gers. As is well known ([FH91, Chapter 17], the irreducible representa-
tions of Sp(2g,C) are indexed by their highest weight λ = (λ1, . . . , λg) with
λ1 ≥ λ2 ≥ . . . ≥ λg. Then for each highest weight λ we can define a local
system Vλ, as follows. We consider the associated rational representation
ρλ : Sp(2g,Z)→ Vλ and define

Vλ := Sp(2g,Z)\(Hg × Vλ) M(τ, v) = (Mτ, ρλ(M)v).

Each point of the stack Ag has an involution given by the inversion on
the corresponding abelian variety. It is easy to check that this involution
acts by (−1)w(λ) on Vλ, where we call w(λ) := λ1 + · · · + λg the weight of
the local system Vλ. This implies that the cohomology of all local systems
of odd weight is trivial, so that we can concentrate on local systems of even
weight.

Let us recall that also cohomology with values in local systems carries
mixed Hodge structures. Faltings and Chai studied them in [FC90, Chapter
VI] using the BGG-complex and found in this way a very explicit description
of all possible steps in the Hodge filtration. The bounds on the Hodge
weights are those coming naturally from Deligne’s Hodge theory:

Theorem 21. The mixed Hodge structures on the groups Hk(Ag,Vλ) have
weights larger than or equal to k + w(λ).

Remark 22. In practice, the formulas for cohomology of local systems are
easier to state in terms of cohomology with local support. Let us recall that
Poincaré duality for Ag implies

H•c (Ag,Vλ) ∼= (Hg(g+1)−•(Ag,Vλ))∗ ⊗Q
(
−g(g + 1)

2
− w(λ)

)
so that the weights on Hk

c (Ag,Vλ) are smaller than or equal to k + w(λ).

To understand how cohomology with values in non-trivial local systems
behaves. let us consider the case of the moduli space A1 of elliptic curves
first. In this case we obtain a sequence of local systems Vk = Symk V1 for
all k ≥ 0, and V1 coincides with the local system R1π∗Q for π : X1 →
A1. In this case the cohomology of A1 with coefficients in Vk is known by
Eichler–Shimura theory (see [Del71]). In particular, by work of Deligne and
Elkik [Elk90], the following explicit formula describes the cohomology with
compact support of A1:

(27) H1
c (A1,V2k) = S[2k + 2]⊕Q

where S[2k+2] is a pure Hodge structure of Hodge weight 2k+1 with Hodge
decomposition S[2k + 2]C = S2k+2 ⊕ S2k+2 where S2k+2 and S2k+2 can be
identified with the space of cusp forms of weight 2k + 2 and its complex
conjugate respectively.
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Formula (27) has been generalized to genus 2 and 3 by work of Faber,
Van der Geer and Bergström [FG04a, FG04b, BFG08]. Using the fact that
for these values of g the image of the Torelli map is dense in Ag, they obtain
(partially conjectural) formulas for the Euler characteristic of H•c (Ag,Vλ)
in the Grothendieck group of rational Hodge structures from counts of the
number of curves of genus g with prescribed configurations of marked poiints,
defined over finite fields. Let us observe that these formulas in general do not
give descriptions of the cohomology groups themselves, for instance because
cancellations may occur in the computation of the Euler characteristic.

In the case g = 2 a description of the cohomology groups analogue to that
in (27) is given in [Pet15]. His main theorem is a description of H•c (A2,Va,b)
in terms of cusp forms for SL(2,Z) and vector-valued Siegel cusp forms for
Sp(4,Z). In particular, for (a, b) 6= (0, 0) one has that Hk

c (A2,Va,b) vanishes
unless we have 2 ≤ k ≤ 4. The simplest case is the one in which we have
a > b. In this case, the result for cohomology with rational coefficients is
the following:

Theorem 23 ([Pet15, Thm. 2.1]). For a > b and a+ b even, we have

H3
c (A2,Va,b) = Sa−b,b+3 + Sa−b+2(−b− 1)⊕sa+b+4 + Sa+3

+ Q(−b− 1)⊕sa+b+4 +

{
Q(−1) if b = 0,
0 otherwise.

H2
c (A2,Va,b) = Sb+2 + Q⊕sa−b−2 +

{
Q if b > 0 and a, b even,
0 otherwise.

,

Here

• sj,k denotes the dimension of the space of vector-valued Siegel cusp

forms for Sp(4,Z) transforming according to Symj ⊗detk and Sj,k
denotes a 4sj,k-dimensional pure Hodge structure of weight j+2k−
3 with Hodge numbers hj+2k−3,0 = hj+k−1,k−2 = hk−2,j+k−1 =
h0,j+2k−3 = sj,k;
• sk denotes the dimension of the space of cusp eigenforms for SL(2,Z)

of weight k and Sk denotes the corresponding 2sk-dimensional weight
k − 1 Hodge structure.

Furthermore Hk
c (A2,Va,b) vanishes in all other degrees k.

The formula for the local systems Va,a with a > 0 is not much more
complicated, but it involves also subspaces of cusp eigenforms that satisfy
special properties, i.e. not being Saito–Kurokawa lifts, or the vanishing of
the central value L(f, 1

2). Moreover, the group H2
c (A2,Va,a) does not vanish

in general but has dimension s2a+4.
The proof of the main result of [Pet15] is based on the generally used

approach of decomposing the cohomology of Ag into inner cohomology and
Eisenstein cohomology. Inner cohomology is defined as

H•! (Ag,Vλ) := Im[H•c (Ag,Vλ)→ H•(Ag,Vλ)],
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while Eisenstein cohomology is defined as the kernel of the same map.
The Eisenstein cohomology of A2 with arbitrary coefficients was com-

pletely determined by Harder [Har12]. Thus it is enough to concentrate on
inner cohomology.

The cuspidal cohomology H•cusp(Ag,Vλ ⊗ C) is defined as the image in
H•(Ag,Vλ) of the space of harmonic Vλ-valued forms whose coefficients
are Vλ-valued cusp forms. By [Bor81, Cor. 5.5], cuspidal cohomology is a
subspace of inner cohomology. Since the natural map from cohomology with
compact support to cohomology factors through L2-cohomology, we always
have a chain of inclusions

H•cusp(Ag,Vλ ⊗ C) ⊂ H•! (Ag,Vλ ⊗ C) ⊂ H•(2)(Ag,Vλ ⊗ C).

These inclusions become more explicit if we consider the Hecke algebra
action on H•(2)(Ag,Vλ ⊗ C) that comes from its interpretation in terms of

(g,K∞)-cohomology. In this way H•(2)(Ag,Vλ ⊗ C) can be decomposed as

direct sum of pieces associated to the elements of the discrete spectrum of
L2(Γ\G). Then H•cusp(Ag,Vλ ⊗ C) corresponds to the pieces of the decom-
position corresponding to cuspidal forms.

Let us recall that one can realize the quotient Ag/±1 as a Shimura variety
for the group PGSp(2g,Z). The coarse moduli spaces of Ag/ ± 1 and Ag
coincide and it is easy to identify local systems on both spaces. Moreover,
in the case g = 2 there is a very precise description of automorphic forms for
PGSp(4,Z) in [Fli05], and in particular of all representations in the discrete
spectrum. A careful analysis of these results allows Petersen to prove that
there is an equality H•! (A2,Va,b) = H•cusp(A2,Va,b ⊗ C) of the inner and
the cuspidal cohomology in this case. Moreover, the decomposition of the
discrete spectrum of PGSp(4,Z) described by Flicker can be used to obtain
an explicit formula for H•! (A2,Va,b) as well.

We want to conclude this section with a discussion about the intersection
cohomology of ASat

g and the toroidal compactifications for small genus. For
g ≤ 4 a geometric approach was given in [GH16] where all intersection Betti
numbers with the exception of the midddle Betti number in genus 4 were
determined. As it was pointed out to us by Dan Petersen, representation
theoretic methods and in particular the work by O. Täıbi, give an alternative
and very powerful method for computing these numbers, as will be discussed
in the appendix, in particular Theorem 58. For “small” weights λ, and in
particular for λ = 0 and g ≤ 11 the classification theorem due to Chenevier
and Lannes [CL15, Théorème 3.3] is a very effective alternative to compute
these intersection Betti numbers, also using Arthur’s multiplicity formula
for symplectic groups. Here we state the following

Theorem 24. For g ≤ 5 there is an isomorphism of graded vector spaces
between the intersection cohomology of the Satake compactification ASat

g and
the tautological ring

IH•(ASat
g ) ∼= Rg.
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Remark 25. As explained in the appendix, see Remark 60, this result is
sharp. For g ≥ 6 there is a proper inclusion Rg ( IH•(ASat

g ) and starting
from g = 9 there is even non-trivial intersection cohomology in odd degree.
See also Example 64 for the computation of intersection cohomology for
g = 6, 7.

Proof. There are two possibilities to compute the intersection cohomology
of ASat

g , at least in principle, explicitly. The first one is geometric in nature,
the second uses representation theory. we shall first discuss the geometric
approach. This was developed in [GH16] and is based on the decomposi-
tion theorem due to Beilinson, Bernstein, Deligne and Gabber. For this we
refer the reader to the excellent survey paper by de Cataldo and Migliorini
[dCM09]. We shall discuss this here in the special case of genus 4. We use
the stratification of the Satake compactification given by

ASat
4 = A4 t A3 t A2 t A1 t A0.

In this genus the morphism ϕ : AVor
4 → ASat

4 is a resolution of singularities
(up to finite quotients). We denote

β0
i := ϕ−1(A4−i).

Then ϕ|β0
i

: β0
i → A4−i is a topological fibration (but the fibres are typically

not smooth). This is the basic set-up of the decomposition theorem. Since
AVor

4 is rationally smooth, its cohomology and intersection cohomology co-
incide. Taking into account that the complex dimension of AVor

4 is 10 and
that Ak has dimension k(k + 1)/2, the decomposition theorem then gives
the following (non canonical) isomorphism
(28)

Hm(AVor
4 ,Q) ∼= IHm(ASat

4 ,Q)⊕
⊕

k<4,i,β

IHm−10+k(k+1)/2+i(ASat
k ,Li,k,β).

where the Li,k,β are certain local systems on Ak and the integer i runs
through the interval [−r(ϕ), r(ϕ)] where r(ϕ) is the defect of the map ϕ.
The basic idea is this: if one can compute the cohomology on the right
hand side of this formula and compute the local systems Li,k,β and their
cohomology, then one can also compute the intersection cohomology one is
interested in. The advantage is that AVor

g is a rationally smooth space whose
geometry one knows well and that the local systems Li,k,β live on a smaller
dimensional space.

For k < 4 we have inclusions Ak ↪→ ASat
4 . Taking a transverse slice at

a point x ∈ Ak in ASat
4 defines the link Nk,x and varying the point x gives

us the link bundle Nk. Then, taking the intersection cohomology of the
links Nk,x we obtain local systems IHj(Nk) on Ak. Not all of these local
systems will play a role in the decomposition theorem, but one truncates this
collection of local systems and only considers those in the range j < codimβ0

k.
For the biggest non-trivial stratum this means the following: the complex
codimension of A3 in AVor

4 is 10 − 6 = 4, and hence we have to consider
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the local systems IHj(N3) for j ≤ 3. In fact these can be determined
explicitly and one finds that IH0(N3) = Q, IHj(N3) = 0 for j = 1, 3 and
IH2(N3) = V11. These local systems carry suitable weights, but as these
play no essential role for the proof which we will outline below, we shall omit
the Tate twists here.

We then have to compare this to the direct image Rϕ∗(Q). For this
recall that ϕ|β0

4−k1
: β0

4−k1 → Ak1 is a topological fibre bundle. To explain

the mechanism of the decomposition theorem we again consider the first
non-trivial stratum, namely k = 3, i.e. the biggest stratum. Hj(β0

1) :=
(Rjϕ|β0

1
)∗(Q). All local systems IHj(N3) in the non-truncated range are

direct summands of Hj(β0
1) := (Rjϕ|β0

1
)∗(Q). However, there will be further

local systems, which are not accounted for by the truncated link cohomology,
and their cohomology will appear as summands on the right hand side of the
decomposition theorem (28). In our case H0(β0

1) = Q and H2(β0
1) = V11 are

accounted for by the link cohomology, but the local systems H4(β0
1) = V11

and H6(β0
1) = Q will contribute to the right hand side of (28). All local

systems come with a certain weight (Tate twist), but we do not discuss this
here. In this situation the computation of the local systems Hj(β0

k) is easy
as β0

1 → A3 is the universal Kummer family. In general this is much harder,
but the necessary computations were done in [HT12].

We then have to continue this process for the smaller dimensional strata
and in each case determine the local systems which are not accounted for
by the truncated intersection cohomology of the link bundles and the locals
systems arising from bigger strata. This calculation works surprisingly well
and even provides information on the vanishing of the intersection cohomol-
ogy of certain links and local systems. The missing piece of information in
[GH16] was the intersection cohomology group IH6(ASat

3 ,V11) which indeed
vanishes, see Corollary (55) in the appendix.

This result can also be proven completely by representation theoretic
methods. For this we refer the reader to Theorem (58) and its proof. �

Finally we turn to toroidal compactifications. As we have already ex-
plained all standard toroidal compactifications coincide in genus ≤ 3 and
are smooth up to finite quotient singularities. In particular, singular coho-
mology and intersection cohomology coincide. In genus g = 4 the Voronoi
compactification AVor

4 is still rationally smooth. In this genus the perfect
cone compactification and the central cone (or Igusa) compactification co-
incide: APerf

4
∼= ACentr

4 . Hence the only interesting space from the point of
view of intersection cohomology is APerf

4 . In this case we also have a mor-
phism AVor

4 → APerf
4 which is, again up to taking quotients with respect to

finite group, a resolution of singularities.
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Theorem 26. All the odd degree intersection Betti numbers of APerf
4 are

zero, while the even ones ibj := dim IHj(APerf
4 ),Q are as follows:

(29)
j 0 2 4 6 8 10 12 14 16 18 20

ibj 1 2 4 9 14 16 14 9 4 2 1

Proof. This is a straightforward application of the decomposition theorem
to the resolution AVor

4 → APerf
4 . The result then follows from Theorem 20

together with the knowledge of the cohomology of the exceptional divisor
E, which was computed in [HT12, Theorem 26 (1)]. �

7. Stabilization results

As we have seen in the previous section, obtaining complete results on
the cohomology of Ag and its compactifications is very hard even for small
g. In general, fixing an integer g and wanting to know the cohomology in
all degrees k is hopeless. The situation is very different if one instead fixes
a degree k and studies the dependency of the kth cohomology group on g.
The reason for this lies in the fact that there are natural maps relating Ag
to Ag′ for g ≤ g′.

Let us recall that the product of two principally polarized abelian varieties
has naturally the structure of a principally polarized abelian variety. At the
level of moduli spaces, this implies the existence of natural product maps

Pr : Ag1 ×Ag2 −→ Ag1+g2

(A,B) 7−→ A×B.

In particular, if one fixes an elliptic curve E ∈ A1 one obtains a se-
quence of maps Ag → Ag+1 which induce natural maps sg : H•(Ag,Q) →
H•(Ag+1,Q). As all points in A1 are homotopy equivalent, the maps sg
do not depend on the choice of E. The maps sg can also be described
independently by identifying H•(Ag,Q) with the cohomology of the sym-
plectic group Sp(2g,Z) and constructing them as the maps in cohomology
associated with the inclusion

Sp(2g,Z) ↪−→ Sp(2g + 2,Z)(
A B
C D

)
7−→


A 0t B 0t

0 1 0 0
C 0t D 0t

0 0 0 1

 .

It is natural to ask

Question 27. Is the map sg : Hk(Ag+1,Q)→ Hk(Ag,Q) an isomorphism
for g � k?

If the answer to this question is affirmative, then we say that the cohomol-
ogy of Ag stabilizes with respect to g; the range of values of k for which sg is
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an isomorphism is called the stability range. In the stable range, cohomology
coincides with the inductive limit

Hk(A∞,Q) := lim←−
g

Hk(Ag,Q)

which has a natural structure as a Hopf algebra, with products defined by
the usual cup products and coproducts defined by the pull-backs of the
product maps Pr. In particular, by Hopf’s theorem (see e.g. [Hat02, The-
orem 3C.4] stable cohomology, when it exists, is always a freely generated
graded-commutative algebra.

By now, cohomological stability is known for large classes of arithmetic
groups. The case of Sp(2g) (and hence Ag) is a classical result due to Borel.
It was first proved in [Bor74] by identifying the cohomology of Ag in the
stable range with the space of Sp(2g,Z)-invariant harmonic forms of the
appropriate degree. The key point is that in the stable range cohomology
can be calculated using differential forms that satisfy a certain logarithmic
growth condition near the boundary. This part of the construction relies on
sheaf theory on the Borel–Serre compactification ABS

g of [BS73]. Later in
[Bor81], Borel realized that it was possible to extend his stability theorem
also to arbitrary local systems on Ag and that a more flexible choice of the
growth condition considered would give a better stability range. In the case
of the arithmetic group Sp(2g,Z), this range was made explicit in [Hai97,
Thm. 3.2]. The complete result for Ag can be summarized as follows:

Theorem 28 ([Bor74, Bor81]). The cohomology of Ag with Q-coefficients
stabilizes in degree k < g and in this range it is freely generated by the odd λ-
classes λ1, λ3, λ5, . . .. Furthermore, the cohomology of Ag with values in an
arbitrary local system V vanishes in degree k < g unless V has a non-trivial
constant summand.

The classical result above gives the best known bound for the stability
range, with one important exception, that of so called regular local systems,
i.e. the Vλ with indices λi all distinct and positive. Namely, according to
Saper’s theory of L-sheaves on the reductive Borel–Serre compactification,
we have

Theorem 29 ([Sap05]). If λ1 > · · · > λg > 0, then Hk(Ag,Vλ1,...,λg) van-
ishes for k < dimCAg.

The theorem above is a special case of [Sap05, Theorem 5], which holds
for all quotients of a hermitian symmetric domain or equal-rank symmetric
space. Expectedly, Saper’s techniques can be employed to give better bounds
for the vanishing of certain classes of non-trivial local systems as well.

The fact that cohomology with values in non-trivial local systems van-
ishes implies that in small degree, it is easy to describe the cohomology of
spaces that are fibered over Ag. In particular, Theorem 28 implies that the
cohomology of the universal family Xg → Ag and that of its fiber products
stabilize:
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Theorem 30 ([GHT15, Thm. 6.1]). For all n, the rational cohomology of
the nth fibre product X×ng of the universal family stabilizes in degree k < g
and in this range it is isomorphic to the free H•(A∞,Q)-algebra generated
by the classes Ti := p∗i (Θ) and Pjk := p∗jk(P ) for i = 1, . . . , n and 1 ≤ j <
k ≤ n, where

pi : X×ng → Xg, pjk : X×ng → X×2
g

are the projections and we denote by Θ ∈ H2(Xg,Q) and P ∈ H2(X×2
g ,Q)

the class of the universal theta divisor and of the universal Poincaré divisor
normalized along the zero section, respectively.

The next natural question is whether cohomological stability also holds
for compactifications of Ag. This is of particular relevance useful for families
of compactifications to which the product maps Pr : Ag1 × Ag2 → Ag1+g2

extend. The analogue of Question 27 for the Baily–Borel–Satake compacti-
fication was settled already in the 1980’s by Charney and Lee:

Theorem 31 ([CL83]). The rational cohomology of ASat
g stabilizes in degree

k < g. in this range, the cohomology is isomorphic to the polynomial algebra

Q[x2, x6, . . . x4i+2, . . . ]⊗Q[y6, y10, . . . y4j+2, . . . ]

generated by classes x4i+2 (i ≥ 0) and y4j+2 (j ≥ 1) of degree 4i + 2 and
4j + 2 respectively.

It follows from Charney and Lee’s construction that the classes x4i+2

restrict to λ2i+1 on Ag, whereas the classes y4j+2 vanish on Ag.
The proof of the theorem above combines Borel’s results about the sta-

ble cohomology of Sp(2g,Z) and GL(n,Z) with techniques from homotopy
theory. First, it is proved that the rational cohomology of ASat

g is canon-
ically isomorphic to the cohomology of the geometric realization of Gif-
fen’s category Wg, which arises from hermitian K-theory. The limit for
g ≥ ∞ of these geometric realizations |Wg| can then be realized as the base
space of a fibration whose total space has rational cohomology isomorphic
to H•(Sp(∞,Z),Q) and whose fibres have rational cohomology isomorphic
to H•(GL(∞,Z),Q). This immediately yields the description of the gen-
erators of the stable cohomology of ASat

g . The stability range is proved by
looking directly at the stability range for Giffen’s category. In particular,
this part of the proof is independent of Borel’s constructions and shows that
the stability range for the cohomology of Ag should indeed be k < g.

However, because of the fact that Charney and Lee replace ASat
g with

its Q-homology equivalent space |Wg|, the geometric meaning of the x- and
y-classes remains unclear. This gives rise to the following two questions:

Question 32. What is the geometrical meaning of the classes y4j+2? In
particular, what is their Hodge weight?

Question 33. Is there a canonical way to lift λ4i+2 from H•(Ag,Q) to
H•(ASat

g ,Q) for 4i+ 2 < g?



TOPOLOGY OF Ag 27

The answer to the first question was obtained recently by Chen and Looij-
enga in [CL17]. Basically, in their paper they succeed in redoing Charney–
Lee’s proof using only algebro-geometric constructions. In particular, they
work directly on ASat

g rather than passing to Giffen’s category and study
its rational cohomology by investigating the Leray spectral sequence as-
sociated with the inclusion Ag ↪→ ASat

g . The E2-term of this spectral se-
quence can be described explicitly using the fact that each point in a stratum
Ak ⊂ ASat

g has an arbitrarily small neighbourhood which is a virtual clas-
sifying space for an arithmetic subgroup Pg(k) ⊂ Sp(2g,Z) which is fibered
over GL(g− k,Z). In the stable range this can be used to construct a spec-
tral sequence converging to H•(Ag,Q) with E2-terms isomorphic to those
in the spectral sequence considered by Charney and Lee. Furthermore, this
algebro-geometric approach allows to describe explicitly the Hodge type of
the y-classes. This is done by first giving a “local” interpretation of them
as classes lying over the cusp A0 of ASat

g , and then using the existence of a
toroidal compactification to describe the Hodge type of the y-classes in the
spirit of Deligne’s Hodge theory [Del74]. This gives the following result:

Theorem 34 ([CL17, Theorem 1.2]). The y-classes have Hodge type (0, 0).

Concerning Question 33, it is clear that while the y-classes are canonically
defined, the x-classes are not. On the other hand, Goresky and Pardon
[GP02] defined canonical lifts of the λ-classes from λi ∈ H•(Ag,C) to λGP

i ∈
H•(ASat

g ,C). As the pull-back of x4i+2 and of λGP
2i+1 to any smooth toroidal

compactification of Ag coincide, one wonders whether the two classes may
coincide. This question was settled in the negative by Looijenga in [Loo17],
who studied the properties of the Goresky–Pardon classes putting them in
the context of the theory of stratified spaces. We summarize the main results
about stable cohomology from [Loo17] as follows

Theorem 35 ([Loo17]). For 2 < 4r + 2 < g, the Goresky–Pardon lift of
the degree 2r + 1 Chern character of the Hodge bundle has a non-trivial
imaginary part and its real class lies in H4r+2(ASat

g ,Q). In particular, the

classes λGP
2r+1 are different from the x4r+2 in Theorem 34.

This is related to an explicit description of the Hodge structures on a
certain subspace of stable cohomology. Let us recall that an element x of a
Hopf algebra is called primitive if its coproduct satisfies ∆(x) = x⊗1+1⊗x.
If one considers the Hopf algebra structure of stable cohomology of ASat

g ,
the primitive part in degree 4r + 2 is generated by y4r+2 and the Goresky–
Pardon lift chGP

2r+1 of the Chern character, which is a degree 2r+1 polynomial

in the λGP
j with j ≤ 2r + 1. The proof of Theorem 35 is based on an

explicit computation of the Hodge structures on this primitive part ([Loo17,
Theorem 5.1]) obtained by using the theory of Beilinson regulator and the
explicit description of the y-generators given in [CL17]. This amounts to
describing H4r+2(ASat

g ,Q)
prim

as an extension of a weight 4r + 2 Hodge
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structure generated by chGP
2r+1 by a weight 0 Hodge structure, generated

by y4r+2. Chen and Looijenga’s explicit construction of y2r+2 also yields a
construction of a homology class z ∈ H4r+2(ASat

g ,Q) that pairs non-trivially
with y4r+2. Hence, one can describe the class of the extension by computing
the pairing of chGP

2r+1 with z. This computation is only up to multiplication
by a non-zero rational number because of an ambiguity in the definition of
z, but it is enough to show that the class of the extension is real and a

non-zero rational multiple of ζ(2r+1)
π2r+1 .

Let us mention that the question about stabilization is settled also for
the reductive Borel–Serre compactification ARBS

g of Ag. Let us recall from

Section 5 that its cohomology is naturally isomorphic to the L2-cohomology
of Ag and to the intersection homology of ASat

g . Combining this with Borel’s
Theorems 28 and 13 we can obtain

Theorem 36. The intersection cohomology IHk(ASat
g ,Q) stabilizes in de-

gree k < g to the graded vector space Q[λ1, λ3, . . . ].

At this point we would like to point out that the range in which inter-
section cohomology is tautological given in this theorem can be improved
considerably, namely to a wider range k < 2g−2, and also extended to non-
trivial local systems Vλ, for which the intersection cohomology vanishes in
the stable range. For details we refer to Theorem 59 in the appendix.

The analogue of Question 27 for toroidal compactifications turns out to be
a subtle question, which in this form remains open. We dealt with stability
questions in a series of papers [GHT15, GHT17], joint with Sam Grushevsky.

Let us recall that toroidal compactifications come in different flavours.
The first question to answer is which choice of toroidal compactification is
suitable in order to obtain stabilization phenomena in cohomology. At a
theoretical level, this requires to work with a sequence of compactifications

{AΣg
g } where each Σg is an admissible fan in Sym2

rc(Rg). Then the system
of maps Ag → Ag+1 extends to the compactification if and only if {Σg} is
what is known as an admissible collection of fans (see e.g. [GHT17, Def. 8]).
If one wants to ensure that the product maps Ag1 ×Ag2 → Ag1+g2 extend,
one needs a stronger condition, which we shall call additivity, namely that
the direct sum of a cone σ1 ∈ Σg1 and a cone σ2 ∈ Σg2 should always be a
cone in Σg1+g2 .

All toroidal compactifications we mentioned so far are additive. However,
only the perfect cone compactification is clearly a good candidate for stabil-
ity. For instance, the second Voronoi decomposition is ruled out because the
number of boundary components of AVor

g increases with g, so that the same

should happen with H2(AVor
g ,Q). Instead, the perfect cone compactification

has the property that for all k ≤ g, the preimage of Ag−k ⊂ ASat
g in APerf

g

always has codimension k. In particular, the boundary of APerf
g is always

irreducible.
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Let us recall that a toroidal compactification associated to a fan Sym2
rc(Rg)

is the disjoint union of locally closed strata βg(σ) corresponding to the cones
σ ∈ Σ up to GL(g,Z)-equivalence. Each stratum βg(σ) has codimension
equal to dimR σ by which we mean the dimension of the linear space spanned
by σ. The rank of a cone σ is defined as the minimal k such that σ is a
cone in Σk. If the rank is k, then βg(σ) maps surjectively to Ag−k under the

forgetful morphism to ASat
g .

The properties of the perfect cone decomposition can be rephrased in
terms of the fan by saying that if a cone σ in the perfect cone decomposition
has rank k, then its dimension is at least k. Moreover, the number of distinct
GL(g,Z)-orbits of cones of a fixed dimension ` ≤ g is independent of g. This
means that the combinatorics of the strata βg(σ) of codimension ` ≤ k is
independent of g provided g ≥ k holds. Furthermore, studying the Leray
spectral sequence associated to the fibration βg(σ)→ Ag−r with r = rankσ
allows to prove that the cohomology of βg(σ) stabilizes for k < g − r − 1;
this stable cohomology consists of algebraic classes and can be described
explicitly in terms of the geometry of the cone σ (see [GHT15, Theorem 8.1]).
The basic idea of the proof is analogous to the one used in Theorem 30
to describe the cohomology of X ng . All this suggests that APerf

g is a good
candidate for stability. In practice, however, the situation is complicated by
the singularities of APerf

g .
Let us review the main results of [GHT15, GHT17] in the case of an arbi-

trary sequence {AΣ
g } of partial toroidal compactifications of Ag associated

with an admissible collection of (partial) fans Σ = {Σg}. Here we use the
word partial to stress the fact that we don’t require the union of all σ ∈ Σg

to be equal to Sym2
rc(Rg). In other words, we are also considering the case

in which AΣ
g is the union of toroidal open subsets of a (larger) toroidal

compactification.

Theorem 37. Assume that Σ is an additive collection of fans and that each
cone σ ∈ Σg of rank at least 2 satisfies

(30) dimR σ ≥
rankσ

2
+ 1.

Then if Σ is simplicial we have that Hk(AΣ
g ,Q) stabilizes for k < g and that

cohomology is algebraic in this range, in the sense that cohomology coincides
with the image of the Chow ring. Furthermore, there is an isomorphism

H2•(AΣ
∞,Q) ∼= H2•(A∞,Q)⊗Q Sym•(VΣ)

of free graded algebras between stable cohomology and the algebra over

H2•(A∞,Q) = Q[λ1, λ3, . . . ]

generated by the symmetric algebra of the graded vector space spanned by
the tensor products of forms in the Q-span of each cone σ that are invari-
ant under the action of the stabilizer Autσ of σ, for all cones σ that are
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irreducible with respect to the operation of taking direct sums, i.e.

V 2k
Σ :=

⊕
[σ]∈[Σ]

[σ] irreducible w.r.t. ⊕

(
Symk−dimR σ(Q-span of σ)

)Autσ

where [Σ] denotes the collection of the orbits of cones in Σ under the action
of the general linear group.

As we already remarked, the perfect cone compactification satisfies a con-
dition which is stronger than (30), so any rationally smooth open subset of
APerf
g which is defined by an additive fan satisfies the assumptions of the

theorem. For instance, this implies that the theorem above applies to the
case where AΣ

g is the smooth locus of APerf
g or the locus where APerf

g is ratio-
nally smooth. A more interesting case that satisfies the assumptions of the
theorem is the matroidal partial compactification AMatr

g defined by the fan

ΣMatr of cones defined starting from simple regular matroids. This partial
compactification was investigated by Melo and Viviani [MV12] who showed
that the matroidal fan with coincides the intersection ΣMatr

g = ΣPerf
g ∩ ΣVor

g

of the perfect cone and second Voronoi fans, so that AMatr
g is an open subset

in both APerf
g and AVor

g . Its geometrical significance is also related to the fact
that the image of the extension of the Torelli map to the Deligne–Mumford
stable curves is contained in AMatr

g , as shown by Alexeev and Brunyate in
[AB11].

Furthermore, by [GHT17, Prop. 19], rational cohomology stabilizes also
without the assumption that Σ be additive. In this case stable cohomology
is not necessarily a free polynomial algebra, but it still possesses an explicit
combinatorial description as a graded vector space.

If Σ is not necessarily simplicial, it is not known whether cohomology
stabilizes in small degree. However, one can prove that cohomology (and
homology) stabilize in small codegree, i.e. close to the top degree g(g + 1).
The most natural way to phrase this is to look at Borel–Moore homology of
AΣ
g , because this is where the cycle map from the Chow ring of AΣ

g takes

values if AΣ
g is singular and possibly non-compact. (If AΣ

g is compact, then
Borel–Moore homology coincides with the usual homology).

If Σ is additive, it is possible to prove (see [GHT17, Prop. 9]) that the
product maps extend, after going to a suitable level structure, to a transverse
embeddingAΣ

g1×A
Σ
g2 → A

Σ
g1+g2 . In particular, taking products with a chosen

point E ∈ A1 defines a transverse embedding (in the stacky sense) of AΣ
g in

AΣ
g+1. It makes sense to wonder in which range the Gysin maps

H̄(g+1)(g+2)−k(AΣ
g+1,Q)→ H̄g(g+1)−k(AΣ

g ,Q)

are isomorphisms. Then Theorem 37 generalizes to
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Theorem 38. If Σ is an additive collection of (partial) fans such that each
cone of rank ≥ 2 satisfies (30), then the Borel–Moore homology of AΣ

g sta-
bilizes in codegree k < g and the stable homology classes lie in the image of
the cycle map.

Furthermore, there is an isomorphism of graded vector spaces

V 2k
Σ :=

⊕
[σ]∈[Σ]

[σ] irreducible w.r.t. ⊕

(
Symk−dimR σ(Q-span of σ)

)Autσ
.

Let us remark that Borel–Moore homology in small codegree does not
have a ring structure a priori.

As the assumptions of the theorem above are satisfied by the perfect cone
compactification, we get the following result.

Corollary 39 ([GHT15, Theorems 1.1& 1.2]). The rational homology and
cohomology of APerf

g stabilizes in small codegree, i.e. in degree g(g + 1)− k
with k < g. In this range, homology is generated by algebraic classes.

As explained in Dutour-Sikirić appendix to [GHT17], the state of the art
of the classification of orbits of matroidal cones and perfect cone cones is
enough to be able to compute the stable Betti numbers of AMatr

g in degree

up to 30 and the stable Betti numbers of APerf
g in codegree at most 22 (where

the result for codegree 22 is actually a lower bound, see [GHT17, Theorems
4 & 5]).

Concluding, we state two problems that remain open at the moment.

Question 40. Does the cohomology of APerf
g stabilize in small degree k < g?

As we have already observed, the answer to Question 40 is related to the
behaviour of the singularities of APerf

g and a better understanding of them
may be necessary to answer this question.

A different question arises as follows. Since stable homology of APerf
g is

algebraic, stable homology classes of degree g(g + 1)− k can be lifted (non-
canonically) to intersection homology of the same degree. A natural question
to ask is whether all intersection cohomology classes in degree k < g are of
this form, which we may rephrase using Poincaré duality as

Question 41. Is there an isomorphism Hg(g+1)−k(APerf
g ,Q) ∼= IHk(APerf

g ,Q)
for all k < g?
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Appendix A. Computation of intersection cohomology using
the Langlands program

In this appendix we explain a method for the explicit computation of
the Euler characteristics for both the cohomology of local systems Vλ on
Ag and their intermediate extensions to ASat

g . Furthermore, we explain
how to compute individual intersection cohomology groups in the latter
case. The main tools here are trace formulas and results on automorphic
representations, notably Arthur’s endoscopic classification of automorphic
representations of symplectic groups [Art13].

We start by explaining in Proposition 42 the direct computation of e(A4) =
9. This Euler characteristic, as well as e(Ag,Vλ) for g ≤ 7 and any λ, can
be obtained as a byproduct of computations explained in the first part of
[Täı17], which focused on L2-cohomology. In fact by Proposition 43 these
are given by the conceptually simple formula (32). The difficulty in evalu-
ating this formula resides in computing certain coefficients, called masses,
for which we gave an algorithm in [Täı17]. The number e(A4) was missing
in [HT12] to complete the proof of Theorem 20.

Next we recall from [Täı17] that the automorphic representations for Sp2g

contributing to IH•(ASat
g ,Vλ) can be reconstructed from certain sets of au-

tomorphic representations of general linear groups, which we shall introduce
in Definition 45. Thanks to Arthur’s endoscopic classification [Art13] spe-
cialized to level one and the identification by Arancibia, Moeglin and Renard
[AMR17] of certain Arthur-Langlands packets with the concrete packets pre-
viously constructed by Adams and Johnson [AJ87] in the case of the sym-
plectic groups, combined with analogous computations for certain special
orthogonal groups, we have computed the cardinalities of these “building
blocks”. Again, this is explicit for g ≤ 7 and arbitrary λ. For g ≤ 11 and
“small” λ, the classification by Chenevier and Lannes in [CL15] of level one
algebraic automorphic representations of general linear groups over Q hav-
ing “motivic weight” ≤ 22 (see Theorem 54 below) gives another method to
compute these sets. Using either method, we deduce IH6(ASat

3 ,V1,1,0) = 0
in Corollary 55, which was a missing ingredient to complete the computa-
tion in [GH16] of IH•(ASat

4 ,Q) (case g = 4 in Theorem 24). In fact using
the computation by Vogan and Zuckerman [VZ84] of the (g,K)-cohomology
of Adams-Johnson representations, including the trivial representation of
Sp2g(R), we can prove that the intersection cohomology of ASat

g is isomor-
phic to the tautological ring Rg for all g ≤ 5 (see Theorem 24), again by
either method.

One could deduce from [VZ84] an algorithm to compute intersection co-
homology also in the cases where there are non-trivial representations of
Sp2g(R) contributing to IH•(ASat

g ,Vλ), e.g. for all g ≥ 6 and Vλ = Q.
Instead of pursuing this, in Section A.3 we make explicit the beautiful
description by Langlands and Arthur of L2-cohomology in terms of the
Archimedean Arthur-Langlands parameters involved, i.e. Adams-Johnson
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parameters. In fact the correct way to state this description would be to
use the endoscopic classification of automorphic representations for GSp2g.
Although this classification is not yet known, we can give an unconditional
recipe in the case of level one automorphic representations. We conclude the
appendix with the example of the computation of IH•(ASat

g ,Q) for g = 6, 7,
and relatively simple formulas to compute the polynomials∑

k

T k dim IHk(ASat
g ,Vλ)

for all values of (g, λ) such that the corresponding set of substitutes for
Arthur-Langlands parameters of conductor on is known (currently g ≤ 7
and arbitrary λ and all pairs (g, λ) with g + λ1 ≤ 11).

Let us recall that for n = 3, 4, 5 mod 8 there is a (unique by [Gro96,
Proposition 2.1]) reductive group G over Z such that GR ' SO(n − 2, 2).
Such G is a special orthogonal group of a lattice, for example E8 ⊕ H⊕2

where H is a hyperbolic lattice. If K is a maximal compact subgroup of
G(R), we can also consider the hermitian locally symmetric space

G(Z)\G(R)/K0 = G(Z)0\G(R)0/K0

where G(R)0 (resp. K0) is the identity component of G(R) (resp. K) and
G(Z)0 = G(Z) ∩ G(R)0. Then everything explained in this appendix also
applies to this situation, except for the simplification in Proposition 43 which
can only be applied to the simply connected cover of G. Using [CR15, §4.3]
one can see that this amounts to considering (son, SO(2) × SO(n − 2))-
cohomology instead of (son, S(O(2)×O(n− 2)))-cohomology as in [Täı17],
and this simply multiplies Euler characteristics by 2. In fact the analogue
of Section A.3 is much simpler for special orthogonal groups, since they do
occur in Shimura data (of abelian type).

To be complete we mention that Arthur’s endoscopic classification in
[Art13] is conditional on several announced results which, to the best of
our knowledge, are not yet available (see [Täı17, §1.3]).

Klaus Hulek presented his joint work with Sam Grushevsky [GH16] at the
Oberwolfach workshop “Moduli spaces and Modular forms” in April 2016.
During this workshop Dan Petersen pointed out that IH•(ASat

g ) can also be
computed using [Täı17]. I thank Dan Petersen, the organizers of this work-
shop (Jan Hendrik Bruinier, Gerard van der Geer and Valery Gritsenko) and
the Mathematisches Institut Oberwolfach. I also thank Eduard Looijenga
for kindly answering questions related to Zucker’s conjecture.

A.1. Evaluation of a trace formula. Our first goal is to prove the fol-
lowing result.

Proposition 42. We have e(A4) = 9.

This number is a byproduct of the explicit computation in [Täı17] of

(31) e(2)(Ag,Vλ) :=
∑
i

(−1)i dimRH
i
(2)(Ag,Vλ)
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for arbitrary irreducible algebraic representations Vλ of Sp2g. Each repre-

sentation Vλ is defined over Q, and L2-cohomology is defined with respect
to an admissible inner product on R⊗Q Vλ. In particular H•(2)(Ag,Vλ) is a

graded real vector space (for arbitrary arithmetic symmetric spaces the rep-
resentation Vλ may not be defined over Q and so in general L2-cohomology
is only naturally defined over C). Recall that by Zucker’s conjecture (31) is
also equal to ∑

i

(−1)i dim IH i(ASat
g ,Vλ).

To evaluate the Euler characteristic (31) we use Arthur’s L2-Lefschetz trace
formula [Art89a]. This is a special case since this is the alternating trace
of the unit in the unramified Hecke algebra on these cohomology groups.
Arthur obtained this formula by specializing his more general invariant trace
formula. In general Arthur’s invariant trace formula yields transcendental
values, but for particular functions at the real place (pseudo-coefficients of
discrete series representations) Arthur obtained a simplified expression that
only takes rational values. Goresky, Kottwitz and MacPherson [GKM97],
[GM03] gave a different proof of this formula, by a topological method. In
fact they obtained more generally a trace formula for weighted cohomology
[GHM94], the case of a lower middle or upper middle weight profile on a
hermitian locally symmetric space recovering intersection cohomology of the
Baily-Borel compactification. We shall also use split reductive groups over
Q other than Sp2g below, which will be of equal rank at the real place but
do not give rise to hermitian symmetric spaces. For this reason it is reas-
suring that Nair [Nai99] proved that in general weighted cohomology groups
coincide with Franke’s weighted L2 cohomology groups [Fra98] defined in
terms of automorphic forms. The case of usual L2 cohomology corresponds
to the lower and upper middle weight profiles in [GHM94]. In particular
Nair’s result implies that [GKM97] is a generalization of [Art89a].

In our situation the trace formula can be written

e(2)(Ag,Vλ) =
∑
M

T (Sp2g,M, λ)

where the sum is over conjugacy classes of Levi subgroups M of Sp2g which
are R-cuspidal, i.e. isomorphic to GLa1 ×GLc2×Sp2d with a + 2c + d = g.
The right hand side is traditionally called the geometric side, although this
terminology is confusing in the present context. The most interesting term in
the sum is the elliptic part Tell(Sp2g, λ) := T (Sp2g,Sp2g, λ) which is defined
as

(32) Tell(Sp2g, λ) =
∑

c∈C(Sp2g)

mctr (c |Vλ) .

Here C(Sp2g) is the finite set of torsion R-elliptic elements in Sp2g(Q) up

to conjugation in Sp2g(Q). These can be simply described by certain prod-
ucts of degree 2n of cyclotomic polynomials. The rational numbers mc are
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“masses” (in the sense of the mass formula, so it would be more correct to
call them “weights”) computed adelically, essentially as products of local
orbital integrals (at all prime numbers) and global terms (involving Tama-
gawa numbers and values of certain Artin L-functions at negative integers).
We refer the reader to [Täı17] for details. Let us simply mention that for
c = ±1 ∈ C(Sp2g), the local orbital integrals are all equal to 1, and mc is the
familiar product ζ(−1)ζ(−3) . . . ζ(1−2g). The appearance of other terms in
Tell(Sp2g, λ) corresponding to non-central elements in C(Sp2g) is explained
by the fact that the action of Sp2g(Z)/{±1} on Hg is not free.

To evaluate Tell(Sp2g, λ) explictly, the main difficulty consists in comput-
ing the local orbital integrals. An algorithm was given in [Täı17, §3.2]. In
practice these are computable (by a computer) at least for g ≤ 7. For g = 2
they were essentially computed by Tsushima in [Tsu82]. For g = 3 they
could also be computed by a (dedicated) human being. See [Täı17, Table 9]
for g = 3, and [Täıb] for higher g. The following table contains the number
of masses in each rank, taking into account that m−c = mc.

g 1 2 3 4 5 6 7
card

(
C(Sp2g)/{±1}

)
3 12 32 92 219 530 1158

In general the elliptic part of the geometric side of the L2-Lefschetz trace
formula does not seem to have any spectral or cohomological meaning, but
for unit Hecke operators and simply connected groups, such as Sp2g, it turns
out that it does.

Proposition 43. Let G be a simply connected reductive group over Q. As-
sume that GR has equal rank, i.e. GR admits a maximal torus (defined over
R) which is anisotropic, and that GR is not anisotropic, i.e. G(R) is not com-
pact. Let Kf be a compact open subgroup of G(Af ) and let Γ = G(Q)∩Kf .
Let K∞ be a maximal compact subgroup of G(R) (which is connected). Then
for any irreducible algebraic representation Vλ of G(C), in Arthur’s L2-
Lefschetz trace formula

e(2)(Γ\G(R)/K∞,Vλ) =
∑
M

T (G,Kf ,M, λ)

where the sum is over G(Q)-conjugacy classes of cuspidal Levi subgroups of
G, the elliptic term

Tell(G,Kf , λ) := T (G,Kf , G, λ)

is equal to

ec(Γ\G(R)/K∞,Vλ) =
∑
i

(−1)i dimH i
c(Γ\G(R)/K∞,Vλ).

Proof. Note that by strong approximation (using that G(R) is not compact),
the natural inclusion Γ\G(R)/K∞ → G(Q)\G(Af )/K∞Kf is an isomor-
phism between orbifolds.
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We claim that in the formula [GKM97, §7.17] for ec(Γ\G(R)/K∞,Vλ),
every term corresponding to M 6= G vanishes. Note that in [GKM97] the
right action of Hecke operators is considered: see [GKM97, §7.19]. Thus to
recover the trace of the usual left action of Hecke operators one has to ex-
change E (our Vλ) and E∗ in [GKM97, §7.17]. Since we are only considering
a unit Hecke operator, the orbital integrals at finite places denoted Oγ(f∞M )
in [GKM97, Theorem 7.14.B] vanish unless γ ∈M(Q) is power-bounded in
M(Qp) for every prime p. Recall that γ is also required to be elliptic in
M(R), so that by the adelic product formula this condition on γ at all finite
places implies that γ is also power-bounded in M(R). Thus it is enough
to show that for any cuspidal Levi subgroup M of GR distinct from GR,
and any power-bounded γ ∈ M(R), we have ΦM (γ, Vλ) = 0 (where ΦM

is defined on p.498 of [GKM97]). Choose an elliptic maximal torus T in
MR such that γ ∈ T (R). Since the character of Vλ is already a continuous
function on M(R), it is enough to show that there is a root α of T in G
not in M such that α(γ) = 1. All roots of T in M are imaginary, so it is
enough to show that there exists a real root α of T in G such that α(γ) = 1.
Since γ is power-bounded in M(R), for any real root of T in G we have
α(γ) ∈ {±1}. Thus it is enough to show that there is a real root α such that
α(γ) > 0. This follows (for M 6= GR) from the argument at the bottom of
p.499 in [GKM97] (this is were the assumption that G is simply connected
is used). �

The proposition is a generalization of [Har71] to the orbifold case (Γ not
neat) with non-trivial coefficients, but note that Harder’s formula is used in
[GKM97].

In particular for any g ≥ 1 and dominant weight λ we simply have
Tell(Sp2g, λ) = ec(Ag,Vλ) = e(Ag,Vλ) by Poincaré duality and self-duality
of Vλ. As a special case we have the simple formula e(Ag) =

∑
c∈C(Sp2g)mc

and Proposition 42 follows (with the help of a computer).
In the following table we record the value of e(Ag) for small g.

g 1 2 3 4 5 6 7 8 9
e(Ag) 1 2 5 9 18 46 104 200 528

The Euler characteristic of L2-cohomology can also be evaluated ex-
plictly. Theorem 3.3.4 in [Täı17] expresses e(2)(Ag,Vλ) in a (relatively) sim-
ple manner from Tell(Sp2g′ , λ

′) for g′ ≤ g and dominant weights λ′. Hence
e(2)(Ag,Vλ) can be derived from tables of masses, for any λ. Of course this
does not directly yield dimensions of individual cohomology groups. For-
tunately, Arthur’s endoscopic classification of automorphic representations
for Sp2g allows us to write this Euler characteristic as a sum of two contri-
butions: “old” contributions coming from automorphic representations for
groups of lower dimension, and new contributions which only contribute to
middle degree. Thus it is natural to try to compute old contributions by in-
duction. As we shall see below, they can be described combinatorially from
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certain self-dual level one automorphic cuspidal representations of general
linear groups over Q.

A.2. Arthur’s endoscopic classification in level one. We will explain
the decomposition of H•(2)(Ag,Vλ) that can be deduced from Arthur’s endo-

scopic classification. These real graded vector spaces are naturally endowed
with a real Hodge structure, a Lefschetz operator and a compatible action of
a commutative Hecke algebra. This last action will make the decomposition
canonical. For this reason we will recall what is known about this Hecke
action. We denote A for the adele ring of Q.

Definition 44. Let G be a reductive group over Z (in the sense of [SGA70,
Exposé XIX, Définition 2.7]).

(i) If p is a prime, let Hunr
p (G) be the commutative convolution algebra

(“Hecke algebra”) of functions G(Zp)\G(Qp)/G(Zp) → Q having
finite support.

(ii) Let Hunr
f (G) be the commutative algebra of functions

G(Ẑ)\G(A)/G(Ẑ)→ Q
having finite support, so that Hunr

f (G) is the restricted tensor prod-

uct
⊗′

pHunr
p (G).

Recall the Langlands dual group Ĝ of a reductive group G, which we
consider as a split reductive group over Q. We will mainly consider the
following cases.

G GLN Sp2g SO4g SO2g+1

Ĝ GLN SO2g+1 SO4g Sp2g

Recall from [Sat63], [Gro98] the Satake isomorphism: for F an alge-
braically closed field of characteristic zero and G a reductive group over Z,
if we choose a square root of p in F then Q-algebra morphisms Hunr

p (G)→
F correspond naturally and bijectively to semisimple conjugacy classes in

Ĝ(F ).
If π is an automorphic cuspidal representation of GLN (A), then it admits

a decomposition as a restricted tensor product π = π∞ ⊗
⊗′

p πp, where the
last restricted tensor product is over all prime numbers p. Assume moreover

that π has level one, i.e. that π
GLN (Zp)
p 6= 0 for any prime p. Then π has the

following invariants:

(i) the infinitesimal character ic(π∞), which is a semisimple conjugacy
class in glN (C) = MN (C) obtained using the Harish-Chandra iso-
morphism [HC51],

(ii) for each prime number p, the Satake parameter c(πp) of the un-
ramified representation πp of GLN (Qp), which is a semisimple con-
jugacy class in GLN (C) corresponding to the character by which

Hunr
p (GLN ) acts on the complex line π

GLN (Zp)
p .
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We now introduce three families of automorphic cuspidal representations
for general linear groups that will be exactly those contributing to intersec-
tion cohomology of Ag’s.

Definition 45. (i) For g ≥ 0 and integers w1 > · · · > wg > 0, let
Oo(w1, . . . , wg) be the set of self-dual level one automorphic cuspidal
representations π = π∞ ⊗ πf of GL2g+1(A) such that ic(π∞) has
eigenvalues w1 > · · · > wg > 0 > −wg > · · · > −w1. For π ∈
Oo(w1, . . . , wg) we let Ĝπ = SO2g+1(C).

(ii) For g ≥ 1 and integers w1 > · · · > w2g > 0, let Oe(w1, . . . , w2g) be
the set of self-dual level one automorphic cuspidal representations
π = π∞ ⊗ πf of GL4g(A) such that ic(π∞) has eigenvalues w1 >
· · · > w2g > −w2g > · · · > −w1. For π ∈ Oe(w1, . . . , w2g) we let

Ĝπ = SO4g(C).
(iii) For n ≥ 1 and w1 > · · · > wg > 0 with wi ∈ 1/2 + Z, let

S(w1, . . . , wg) be the set of self-dual level one automorphic cuspidal
representations π = π∞⊗πf of GL2g(A) such that ic(π∞) has eigen-
values w1 > · · · > wg > −wg > · · · > −w1. For π ∈ S(w1, . . . , wg)

we let Ĝπ = Sp2g(C).

These sets are all finite by [HC68, Theorem 1], and Oo (resp. Oe, S)
is short for “odd orthogonal” (resp. “even orthogonal”, “symplectic”). A
fact related to vanishing of cohomology with coefficients in Vλ for w(λ)
odd is that Oo(w1, . . . , wg) = ∅ if w1 + · · · + wg 6= g(g + 1)/2 mod 2 and
Oe(w1, . . . , w2g) = ∅ if w1 + · · ·+w2g 6= g mod 2. See [Täı17, Remark 4.1.6]
or [CR15, Proposition 1.8].

Remark 46. For small g the sets in Definition 45 are completely described
in terms of level one (elliptic) eigenforms, due to accidental isomorphisms
between classical groups in small rank (see [Täı17, §6] for details).

(i) For k > 0 the set S(k − 1
2) is naturally in bijection with the set of

normalized eigenforms of weight 2k for SL2(Z), and Oo(2k − 1) '
S(k − 1

2).
(ii) For integers w1 > w2 > 0 such that w1 + w2 is odd, Oe(w1, w2) '

S(w1+w2
2 )× S(w1−w2

2 ).

Let us recall some properties of the representations appearing in Definition
45.

Let Qreal be the maximal totally real algebraic extension of Q in C. Then
Qreal is an infinite Galois extension of Q which contains

√
p > 0 for any

prime p.

Theorem 47. For π as in Definition 45 there exists a finite subextension E
of Qreal/Q such that for any prime number p, the characteristic polynomial
of pw1c(πp) has coefficients in E. Moreover c(πp) is compact (i.e. power-
bounded).
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Proof. That there exists a finite extension E of Q satisfying this condition
is a special case of [Clo88, Théorème 3.13]. The fact that it can be taken
totally real follows from unitarity and self-duality of π.

The last statement is a consequence of [Shi11] and [Clo13]. �

Let E(π) be the smallest such extension. Then πf is defined over E(π),
and this structure is unique up to C×/E(π)×. There is an action of the
Galois group Gal(Qreal/Q) on Oo(w1, . . . ) (resp. Oe(w1, . . . ), S(w1, . . . )): if
π = π∞ ⊗ πf , σ(π) := π∞ ⊗ σ(πf ) belongs to the same set. Dually we have
c(σ(π)p) = p−w1σ(pw1c(πp)). For π ∈ Oo(w1, . . . ) or Oe(w1, . . . ) the power
of p is not necessary since w1 ∈ Z.

In all three cases c(πp) can be lifted to a semisimple conjugacy class

in Ĝπ(C), uniquely except in the second case, where it is unique only up
to conjugation in O4g(C). This is elementary. We abusively denote this
conjugacy class by c(πp).

We now consider the Archimedean place of Q, which will be of particular
importance for real Hodge structures. Recall that the Weil group of R is
defined as the non-trivial extension of Gal(C/R) by C×. If H is a complex
reductive group and ϕ : C× → H(C) is a continuous semisimple morphism,
there is a maximal torus T of H such that ϕ factors through T (C) and
takes the form z 7→ zτ1 z̄τ2 for uniquely determined τ1, τ2 ∈ X∗(T )⊗ZC such
that τ1 − τ2 ∈ X∗(T ). Here X∗(T ) is the group of cocharacters of T and
zτ1 z̄τ2 is defined as (z/|z|)τ1−τ2 |z|τ1+τ2 . We call the H(C)-conjugacy class of
τ1 in h = Lie(H) (complex analytic Lie algebra) the infinitesimal character
of ϕ, denoted ic(ϕ). If ϕ : WR → H(C) is continuous semisimple we let
ic(ϕ) = ic(ϕ|C×).

In all three cases in Definition 45 there is a continuous semisimple mor-

phism ϕπ∞ : WR → Ĝπ(C) such that for any z ∈ C×, ϕπ∞(z) has eigenvalues
(z/z̄)±w1 , . . . , (z/z̄)±wg , 1 if π ∈ Oo(w1, . . . , wg),

(z/z̄)±w1 , . . . , (z/z̄)±w2g if π ∈ Oe(w1, . . . , w2g),

(z/|z|)±2w1 , . . . , (z/|z|)±2wg if π ∈ S(w1, . . . , wg),

in the standard representation of Ĝπ. The parameter ϕπ∞ is character-
ized up to conjugacy by this property except in the second case where it
is only characterized up to O4g(C)-conjugacy. To rigidify the situation we

choose a semisimple conjugacy class τπ in the Lie algebra of Ĝπ whose im-
age via the standard representation has eigenvalues ±w1, . . . ,±wg, 0 (resp.

±w1, . . . ,±w2g, resp. ±w1, . . . ,±wg). Then the pair (Ĝπ, τπ) is well-defined

up to isomorphism unique up to conjugation by Ĝπ, since in the even or-

thogonal case τπ is not fixed by an outer automorphism of Ĝπ. Up to

conjugation by Ĝπ there is a unique ϕπ∞ : WR → Ĝπ(C) as above and such

that ic(ϕπ∞) = τπ. In all cases the centralizer of ϕπ∞(WR) in Ĝπ(C) is finite.
Let us now indicate how the general definition of substitutes for Arthur-

Langlands parameters in [Art13] specializes to the case at hand.
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Definition 48. Let Vλ be an irreducible algebraic representation of Sp2g,
given by the dominant weight λ = (λ1 ≥ · · · ≥ λg ≥ 0). Let ρ be half the sum
of the positive roots for Sp2g, and τ = λ + ρ = (w1 > · · · > wg > 0) where
wi = λi+n+1−i ∈ Z, which we can see as the regular semisimple conjugacy
class in so2g+1(C). Let Ψunr,τ

disc (Sp2g) be the set of pairs (ψ0, {ψ1, . . . , ψr})
with r ≥ 0 and such that

(i) ψ0 = (π0, d0) where π0 ∈ Oo(w(0)
1 , . . . , w

(0)
g0 ) and d0 ≥ 1 is an odd

integer,
(ii) The ψi’s, for i ∈ {1, . . . , r}, are distinct pairs (πi, di) where di ≥ 1

is an integer and πi ∈ Oe(w
(i)
1 , . . . , w

(i)
gi ) with gi even (resp. πi ∈

S(w
(i)
1 , . . . , w

(i)
gi )) if di is odd (resp. even).

(iii) 2g + 1 = (2g0 + 1)d0 +
∑r

i=1 2gidi,
(iv) The sets

(a) {d0−1
2 , d0−3

2 , . . . , 1},
(b) {w(0)

1 + d0−1
2 − j, . . . , w(0)

g0 + d0−1
2 − j} for j ∈ {0, . . . , d0 − 1},

(c) {w(i)
1 + di−1

2 − j, . . . , w
(i)
gi + di−1

2 − j} for i ∈ {1, . . . , r} and
j ∈ {0, . . . , di − 1}

are disjoint and their union equals {w1, . . . , wg}.
We will write more simply

ψ = ψ0 � · · ·� ψr = π0[d0] � · · ·� πr[dr].

This could be defined as an “isobaric sum”, but for the purpose of this
appendix we can simply consider this expression as a formal unordered sum.
If π0 is the trivial representation of GL1(A), we write [d0] for 1[d0], and when
d = 1 we simply write π for π[1].

Example 49. (i) For any g ≥ 1, [2g + 1] ∈ Ψunr,ρ
disc (Sp2g).

(ii) [9] � ∆11[2] ∈ Ψunr,ρ
disc (Sp12) where ∆11 ∈ S(11

2 ) is the automorphic
representation of GL2(A) corresponding to the Ramanujan ∆ func-
tion.

(iii) For g ≥ 1, τ = (w1 > · · · > wg > 0), for any π ∈ Oo(w1, . . . , wg) we
have π = π[1] ∈ Ψunr,τ

disc (Sp2g).

Definition 50. (i) For ψ = π0[d0] � · · · � πr[dr] ∈ Ψunr,τ
disc (Sp2g), let

Lψ =
∏r
i=0 Ĝπi(C). Let ψ̇ : Lψ × SL2(C) → SO2n+1(C) be a mor-

phism such that composing with the standard representation gives⊕
0≤i≤r Std

Ĝπi
⊗νdi where Std

Ĝπi
is the standard representation of

Ĝπi and νdi is the irreducible representation of SL2(C) of dimension

di. Then ψ̇ is well-defined up to conjugation by SO2n+1(C).

(ii) Let Sψ be the centralizer of ψ̇ in SO2g+1(C), which is isomorphic to

(Z/2Z)r. A basis is given by (si)1≤i≤r where si is the image by ψ̇

of the non-trivial element in the center of Ĝπi .
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(iii) Let ψ∞ be the morphism WR × SL2(C) → SO2g+1(C) obtained

by composing ψ̇ with the morphisms ϕπi,∞ : WR → Ĝπi(C). The
centralizer Sψ∞ of ψ∞ in SO2g+1(C) contains Sψ and is isomorphic
to (Z/2Z)x where x =

∑r
i=1 gi.

(iv) For p a prime let cp(ψ) be the image of ((c(πi,p))0≤i≤r, diag(p1/2, p−1/2))

by ψ̇, a well-defined semisimple conjugacy class in SO2g+1(C). Let
χp(ψ) : Hunr

p (Sp2g)→ C be the associated character.
(v) Let χf (ψ) =

∏
p χp(ψ) : Hunr

f (Sp2g) → C be the product of the

χp(ψ)’s. It takes values in the smallest subextension E(ψ) of Qreal

containing E(π0), . . . , E(πr), which is also finite over Q. For any
prime p the characteristic polynomial of cp(ψ) has coefficients in

E(ψ). In particular we have a continuous action of Gal(Qreal/Q) on
Ψunr,τ

disc (Sp2g) which is compatible with χf .

The following theorem is a consequence of [JS81].

Theorem 51. For any g ≥ 1 the map (λ, ψ ∈ Ψunr,τ
disc (Sp2g)) 7→ χf (ψ) is

injective.

The last condition in Definition 48 is explained by compability with in-
finitesimal characters, stated after the following definition.

Definition 52. Let

δ∞ : C× −→ C× × SL2(C)

z 7−→ (z, diag(||z||1/2, ||z||−1/2)).

For a complex reductive group H and a morphism ψ∞ : C× × SL2(C) →
H(C) which is continuous semisimple and algebraic on SL2(C), let ic(ψ∞) =
ic(ψ∞ ◦ δ∞). Similarly, if ψ∞ : WR × SL2(C) → H(C), let ic(ψ∞) =
ic(ψ∞|C×).

For ψ ∈ Ψunr,τ
disc (Sp2g), we have ic(ψ∞) = τ (equality between semisim-

ple conjugacy classes in so2g+1(C)), and this explains the last condition in
Definition 48.

For ψ as above Arthur constructed [Art13, Theorem 1.5.1] a finite set
Π(ψ∞) of irreducible unitary representations of Sp2g(R) and a map Π(ψ∞)→
S∨ψ∞ , where A∨ = Hom(A,C×). We simply denote this map by π∞ 7→
〈·, π∞〉. Arthur also defined a character εψ of Sψ, in terms of symplectic
root numbers. We do not recall the definition, but note that for everywhere
unramified parameters considered here, this character can be computed eas-
ily from the infinitesimal characters of the πi’s (see [CR15, §3.9]).

We can now formulate the specialization of [Art13, Theorem 1.5.2] to
level one and algebraic regular infinitesimal character, and its consequence
for L2-cohomology thanks to [BC83].
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Theorem 53. Let g ≥ 1. Let Vλ be an irreducible algebraic representation
of Sp2g with dominant weight λ. Let τ = λ+ρ. The part of the discrete auto-

morphic spectrum for Sp2g having level Sp2g(Ẑ) and infinitesimal character
τ decomposes as a completed orthogonal direct sum

L2
disc(Sp2g(Q)\ Sp2g(A)/Sp2g(Ẑ))ic=τ '

⊕
ψ∈Ψunr,τ

disc (Sp2g)

⊕
π∞∈Π(ψ∞)
〈·,π∞〉=εψ

π∞ ⊗ χf (ψ).

Therefore

H•(2)(Ag,Vλ) '
⊕

ψ∈Ψunr,τ
disc (Sp2g)

⊕
π∞∈Π(ψ∞)
〈·,π∞〉=εψ

H•((g,K), π∞ ⊗ Vλ)⊗ χf (ψ)

where as before g = sp2g(C) and K = U(g).

To be more precise the specialization of Arthur’s theorem relies on [Täı17,
Lemma 4.1.1] and its generalization giving the Satake parameters, consid-
ering traces of arbitrary elements of the unramified Hecke algebra.

Thanks to [AMR17] for ψ ∈ Ψunr,τ
disc (Sp2g) the sets Π(ψ∞) and characters

〈·, π∞〉 for π∞ ∈ Π(ψ∞) are known to coincide with those constructed by
Adams and Johnson in [AJ87]. Furthermore, the cohomology groups

(33) H•((g,K), π∞ ⊗ Vλ)

for π∞ ∈ Π(ψ∞) were computed explicitly in [VZ84, Proposition 6.19], in-
cluding the real Hodge structure.

Thus in principle one can compute (algorithmically) the dimensions of
the cohomology groups H i

(2)(Ag,Vλ) if the cardinalities of the sets Oo(. . . ),

Oe(. . . ) and S(. . . ) are known. As explained in the previous section, for
small g the Euler characteristic e(2)(Ag,Vλ) can be evaluated using the trace

formula. For π ∈ Oo(τ) ⊂ Ψunr,τ
disc (Sp2g), the contribution of π to the Euler

characteristic expanded using Theorem 53 is simply (−1)g(g+1)/22g 6= 0.
The contributions of other elements of Ψunr,τ

disc (Sp2g) to e(2)(Ag,Vλ) can be
evaluated inductively, using the trace formula and the analogue of Theorem
53 also for the groups Sp2g′ for g′ < g, SO4m for m ≤ g/2 and SO2m+1

for m ≤ g/2. We refer to [Täı17] for details, and simply emphasize that
computing the contribution of some ψ to the Euler characteristic is much
easier than computing all dimensions using [VZ84]. For example for ψ ∈
Ψunr,τ

disc (Sp2g) we have

(34)
∑

π∞∈Π(ψ∞)
〈·,π∞〉|Sψ=εψ

e((sp2g,K), π∞ ⊗ Vλ) = ±2g−r

where the integer r is as in Definition 48 and the sign is more subtle but
easily computable. To sum up, using the trace formula, we obtained tables
of cardinalities for the three families of sets in Definition 45. See [Täıb].
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For small λ, more precisely for g+λ1 ≤ 11, there is another way to enumer-
ate all elements of Ψunr,τ

disc (Sp2g), which still relies on some computer calcula-
tions, but much simpler ones and of a very different nature. The following is
a consequence of [CL15, Théorème 3.3]. The proof uses the Riemann-Weil
explicit formula for automorphic L-functions, and follows work of Stark,
Odlyzko and Serre for zeta functions of number fields giving lower bound of
their discriminants, and of Mestre, Fermigier and Miller for L-functions of
automorphic representations. The striking contribution of [CL15, Théorème
3.3] is the fact that the rank of the general linear group is not bounded a
priori, but for the purpose of the present appendix we impose regular infin-
itesimal characters.

Theorem 54. For w1 ≤ 11, the only non-empty Oo(w1, . . . ), Oe(w1, . . . )
or S(w1, . . . ) are the following.

(i) For g = 0, Oo() = {1}.
(ii) For 2w1 ∈ {11, 15, 17, 19, 21}, S(w1) = {∆2w1} where ∆2w1 corre-

sponds to the unique eigenform in S2w1+1(SL2(C)(Z)).
(iii) Oo(11) = {Sym2(∆11)} (Sym2 functoriality was constructed in [GJ78]),
(iv) For (2w1, 2w2) ∈ {(19, 7), (21, 5), (21, 9), (21, 13)}, S(w1, w2) = {∆2w1,2w2}.

These correspond to certain Siegel eigenforms in genus two and level
one.

Of course this is coherent with our tables.
As a result, for g + λ1 ≤ 11, i.e in

11∑
g=1

card {λ |w(λ) even and g + λ1 ≤ 11} = 1055

non-trivial cases, Ψunr,τ
disc (Sp2g) can be described explicitly in terms of the 11

automorphic representations of general linear groups appearing in Theorem
54. In most of these cases Ψunr,τ

disc (Sp2g) is just empty, in fact∑
g+λ1≤11

card Ψunr,τ
disc (Sp2g) = 197

with 146 non-vanishing terms.

Corollary 55. For g = 3 and λ = (1, 1, 0) we have

IH•(ASat
3 ,Vλ) = 0.

Proof. Using Theorem 54 and Definition 48 we see that Ψunr,τ
disc (Sp6) = ∅. �

Remark 56. Of course this result also follows from [Täı17]. More precisely,
without the a priori knowledge given by Theorem 54 we have for λ = (1, 1, 0)
that Ψunr,τ

disc (Sp6) is the disjoint union of Oo(4, 3, 1) with the two sets{
π1 � π2 |π1 ∈ Oo(w1), π2 ∈ Oe(w′1, w′2) with {w1, w

′
1, w

′
2} = {4, 3, 1}

}
,

{π1 � π2[2] |π1 ∈ Oo(1), π2 ∈ S(7/2)} .
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By Remark 46 and vanishing of S2k(SL2(Z)) for 0 < k < 6 both sets are
empty, so Corollary 55 follows from the computation of e(2)(A3,Vλ) = 0.
Note that computationally this result is easier than Proposition 42, since
computing masses for Sp8 is much more work than for Sp6.

If we now focus on λ = 0, we have the following classification result.

Corollary 57. For 1 ≤ g ≤ 5 we have Ψunr,ρ
disc (Sp2g) = {[2g + 1]}. For

6 ≤ g ≤ 11, all elements of Ψunr,ρ
disc (Sp2g) r {[2g + 1]} are listed in the

following tables.

g Ψunr,ρ
disc (Sp2g) r {[2g + 1]}

6 ∆11[2] � [9]
7 ∆11[4] � [7]

10 ∆19,7[2] � ∆15[2] � ∆11[2] � [5]
∆19[2] � ∆11[6] � [5]
∆11[10] � [1]
∆19[2] � [17]
∆19[2] � ∆15[2] � ∆11[2] � [9]
∆15[6] � [9]
∆17[4] � ∆11[2] � [9]
∆19[2] � ∆15[2] � [13]
∆17[4] � [13]

g Ψunr,ρ
disc (Sp2g) r {[2g + 1]}

8 ∆11[6] � [5]
∆15[2] � ∆11[2] � [9]
∆15[2] � [13]

9 ∆11[8] � [3]
∆17[2] � ∆11[4] � [7]
∆17[2] � [15]
∆15[4] � [11]

11 ∆21,5[2] � ∆17[2] � ∆11[4] � [3]
∆21,9[2] � ∆15[4] � [7]
∆11[10] � Sym2(∆11)
∆21,13[2] � ∆17[2] � [11]

In the next section we will recall and make explicit the description by
Langlands and Arthur of L2-cohomology in terms of ψ∞, which is simpler
than using [VZ84] directly but imposes to work with the group GSp2g (which
occurs in a Shimura datum) instead of Sp2g.

Let us work out the simple case of ψ = [2g + 1] ∈ Ψunr,ρ
disc (Sp2g) directly

using [VZ84, Proposition 6.19], using their notation, in particular g = k⊕ p
(complexification of the Cartan decomposition of g0 = Lie(Sp2g(R)) and

p = p+⊕ p− (decomposition of p according to the action of the center of K,
which is isomorphic to U(1)). In this case Π(ψ∞) = {1}, u = 0 and l = sp2g,
so

H2k((g,K), 1) = Hk,k((g,K), 1) ' HomK

(
2k∧

p,C

)
and the dimension of this space is the number of constituents in the multiplicity-

free representation
∧k(p+). One can show (as for any hermitian symmet-

ric space) that this number equals the number of elements of length p in
W (Sp2g)/W (K) ' W (Sp2g)/W (GLg). A simple explicit computation that
we omit shows that this number equals the number of partitions of k as a
sum of distincts integers between 1 and n. In conclusion,∑

i

T i dimH i((sp2n,K), 1) =
n∏
k=1

(1 + T 2k).
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Combining the first part of Corollary 57 and this computation we obtain
Theorem 24.

Theorem 58. For 1 ≤ g ≤ 5 we have IH•(ASat
g ,Q) ' Rg as graded vector

spaces over Q.

We can sharpen Theorem 36 in the particular case of level one, although
what we obtain is not a stabilization result (see the remark after the theo-
rem).

Theorem 59. For g ≥ 2, λ a dominant weight for Sp2g and k < 2g − 2,

IHk(ASat
g ,Vλ) =

{
Rkg if λ = 0

0 otherwise

where Rkg denotes the degree k part of Rg, ui having degree 2i.

Proof. For ψ ∈ Ψunr,τ
disc (Sp2g) different from [2g + 1], one sees easily from

the construction in [AJ87] that the trivial representation of Sp2g(R) does
not belong to Π(ψ∞). So using Zucker’s conjecture, Borel-Casselman and
Arthur’s multiplicity formula, we are left to show that for ψ ∈ Ψunr,τ

disc (Sp2g)r
{[2g+ 1]}, for any π∞ ∈ Π(ψ∞), H•((g,K), π∞⊗Vλ) vanishes in degree less
than 2g − 2. We can read this from [VZ84, Proposition 6.19], and we use
the notation from this paper. Let θ be the Cartan involution of Sp2g(R)

corresponding to K, so that p = g−θ. The representation π∞ is constructed
from a θ-stable parabolic subalgebra q = l⊕ u of g, where l is also θ-stable.
We will show that dim u ∩ p ≥ 2g − 2. The (complex) Lie algebra l is
isomorphic to

∏
j gl(aj + bj)× sp2c with c +

∑
j aj + bj = g. The action of

the involution θ on the factor gl(ak + bk) is such that the associated real
Lie algebra is isomorphic to u(ak, bk). Using notation of Definition 48, the
integer c equals (d0−1)/2. Since ψ 6= [2g+1] we have r ≥ 1 and this implies
that c ≤ g − 2 (this is particular to level one, in arbitrary level one would
simply get c < g). We have

2 dim u ∩ p + dim l ∩ p = dim p = g(g + 1)

since l, u and its opposite Lie algebra with respect to l are all stable under
θ. We compute

dim l ∩ k =
∑
j

(a2
j + b2j ) + c2

and so

dim l ∩ p = dim l− dim l ∩ k = 2
∑
j

ajbj + c(c+ 1).

We get

dim u ∩ p =
g(g + 1)

2
− c(c+ 1)

2
−
∑
j

ajbj .
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We have ∑
j

ajbj ≤ (
∑
j

aj)(
∑
j

bj) ≤
(g − c)2

4

which implies

dim u ∩ p ≥ g(g + 1)

2
− c(c+ 1)

2
− (g − c)2

4
.

The right hand side is a concave function of c, thus its maximal value for
c ∈ {0, . . . , g−2} is g(g+1)/2−min(g2/4, (g−2)(g−1)/2+1). For integral
g 6= 3 one easily checks that this equals g(g + 1)/2− (g − 2)(g − 1)/2− 1 =
2g − 2. For g = 3 we get 2g − 2− 1/4, and d2g − 2− 1/4e = 2g − 2. �

Remark 60. (i) For k ≥ g even the surjective map Q[λ1, λ3, . . . ]
k →

Rkg has non-trivial kernel, so in the range g ≤ k < 2g− 2 we do not
get stabilization.

(ii) One can show that for the trivial coefficient system (i.e. λ = 0) the
bound in Theorem 59 is sharp for even g ≥ 6, is not sharp for odd
g (i.e. IH2g−2(ASat

g ,Q) = R2g−2
g ) but that for odd g ≥ 9 we have

IH2g−1(ASat
g ,Q) 6= 0. For even g ≥ 6 and odd g ≥ 9 this is due to

ψ of the form π[2] � [2g − 3] where π ∈ S(g − 1/2) corresponds to
a weight 2g eigenform for SL2(Z).

(iii) Of course for non-trivial λ one can improve on this result, e.g. for
λ1 > · · · > λg > 0 we have vanishing in degree 6= g(g + 1)/2 (see
[Sap05, Theorem 5] and [LS04, Theorem 5.5] for a vanishing result
for ordinary cohomology). If we only assume λg > 0, this forces
c = 0 in the proof and we obtain vanishing in degree less than
(g2 + 2g)/4.

(iv) An argument similar to the proof of Theorem 59 can be used to
show the same result for k < g in arbitrary level. It seems likely
that one could extend the sharper bound in Theorem 59 to certain
deeper levels, e.g. Iwahori level at a finite number of primes.

There is also a striking consequence of [VZ84, Proposition 6.19] (and
[Kot90, Lemma 9.1]) that was observed in [MS14], namely the fact that any
ψ only contributes in degrees of a certain parity. This implies the dimension
part in the following proposition which is a natural first step towards the
complete description in the next section.

Proposition 61. There is a canonical decomposition

Qreal ⊗Q IH
•(ASat

g ,Vλ) =
⊕

ψ∈Ψunr,τ
disc (Sp2g)

Qreal ⊗E(ψ) H
•
ψ

where H•ψ is a graded vector space of total dimension 2n−r (r as in Definition

48) over the totally real number field E(ψ), endowed with

(i) for any n ≥ 0, a pure Hodge structure of weight n on Hn
ψ, inducing

a bigrading C⊗E(ψ) H
n
ψ =

⊕
p+q=nH

p,q
ψ ,
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(ii) a linear operator L : R ⊗E(ψ) H
•
ψ → R ⊗E(ψ) H

•
ψ mapping Hp,q

ψ to

Hp+1,q+1
ψ and such that for any 0 < n ≤ g(g + 1)/2,

Ln : R⊗E(ψ) H
g(g+1)/2−n
ψ → R⊗E(ψ) H

g(g+1)/2+n
ψ

is an isomorphism.

This decomposition is Hunr
f (Sp2n)-equivariant, the action on Hψ being by the

character χf (ψ).

Proof. Recall that by Zucker’s conjecture ([Loo88], [SS90], [LR91]) we have
a Hecke-equivariant isomorphism

IH•(ASat
g ,Vλ)⊗Q R ' H•(2)(Ag,Vλ ⊗Q R).

By Theorem 53 there are graded vector spaces Hψ that can be defined over
Eψ such that the left hand side is isomorphic to the right hand side. By
Theorem 51 each summand on the right hand side can be cut out using Hecke
operators, so the decomposition is canonical and the E(ψ)-structure on Hψ

is canonical as well. We endow R ⊗Q IH
•(ASat

g ,Vλ) ' H•(2)(Ag,R ⊗Q Vλ)

with the real Hodge structure given by Hodge theory on L2-cohomology of
the non-compact Kähler manifold Ag. There is a natural Lefschetz operator
L given by cup-product with the Kähler form. It commutes with Hecke
operators and one can check that L is i times the operator X defined on
p.60 of [Art89b]. The hard Lefschetz property of L is known both in L2-
cohomology and (g,K)-cohomology. It follows from [MS14, Theorem 1.5]
that any ψ contributes in only one parity, so the claim about dimE(ψ)Hψ

follows from (34). �

If o is any Gal(Qreal/Q)-orbit in Ψunr,τ
disc (Sp2g),

⊕
ψ∈oHψ is naturally de-

fined over Q and endowed with an action of a quotient of Hunr
f (Sp2g) which

is a finite totally real field extension E(o) of Q, and elements of o correspond
bijectively to Q-embeddings E(o)→ Qreal.

Remark 62. There is also a rational Hodge structure defined on intersec-
tion cohomology groups thanks to Morihiko Saito’s theory of mixed Hodge
modules, but unfortunately it is not known whether the induced real Hodge
structure coincides with the one defined using L2 theory (see [HZ01, §5]).
Similarly, there is another natural Lefschetz operator acting on the coho-
mology IH•(ASat

g ,Vλ) (using the first Chern class of an ample line bundle

on ASat
g ), and it does not seem obvious that it coincides (up to a real scalar)

with the Kähler operator L above, although it could perhaps be deduced
from arguments as in [GP02, §16.6].

A.3. Description in terms of Archimedean Arthur-Langlands pa-
rameters. Langlands and Arthur ([Art89b], [Art96]) gave a conceptually
simpler point of view on the Hodge structure with Lefschetz operator on
L2-cohomology. This applies to Shimura varieties and so one would have to
work with the reductive group GSp2g instead of Sp2g, since only GSp2g is
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part of a Shimura datum, (GSp2g,Hg t Hg). Very roughly, the idea of this
description for a Shimura datum (G,X) is that for K1 the stabilizer in G(R)
of a point in X, representations of G(R) in an Adams-Johnson packet are
parametrized by certain cosets in W (G,T )/W (K1, T ) for a maximal torus T
of G(R) contained in K1, and W (K1, T ) is also identified with the stabilizer
of the cocharacter µ : GL1(C) → G(C) obtained from the Shimura datum.
This cocharacter can be seen as an extremal weight for an irreducible al-

gebraic representation rµ of Ĝ and rµ is minuscule, i.e. its weights form a

single orbit under the Weyl group of Ĝ, which is identified with W (G,T ).

In the case of GSp2g the Langlands dual group is ĜSp2g = GSpin2g+1 and
rµ is a spin representation. Morphisms taking values in a spin group cannot
simply be described as self-dual linear representations. For this reason we
do not have substitutes for Arthur-Langlands parameters for GSp2g con-
structed using automorphic representations of general linear groups (that is
the analogue of 48 for GSp2g and arbitrary level), and no precise multiplicity
formula yet. Bin Xu [Xu17] obtained a multiplicity formula in many cases,
but his work does not cover the case of non-tempered Arthur-Langlands pa-
rameters that is typical when λ = 0. For example all parameters appearing
in Corollary 57 are non-tempered. Fortunately in level one it turns out that
we can simply formulate the result in terms of Sp2g. This is in part due to
the fact that, letting K1 = R>0 Sp2g(R) ⊂ GSp2g(R), the natural map
(35)

Ag = Sp2g(Q)\ Sp2g(A)/K Sp2g(Ẑ)→ GSp2g(Q)\GSp2g(A)/K1 GSp2g(Ẑ)

is an isomorphism. This is a special case of a more general principle in level
one, see §4.3 and Appendix B in [CR15] for a conceptual explanation. Since
the cohomology of the intermediate extension to ASat

g of Vλ vanishes when
the weight w(λ) := λ1 + · · · + λg is odd, we will be able to formulate the
result using Spin2g+1(C) instead of GSpin2g+1(C).

Let g ≥ 1 and λ a dominant weight for Sp2g, as usual let τ = λ + ρ.
Consider

ψ = ψ0 � · · ·� ψr = π0[d0] � · · ·� πr[dr] ∈ Ψunr,τ
disc (Sp2g)

as in Definition 48. First we recall how to equip C⊗E(ψ)H
•
ψ with a continuous

semisimple linear action ρψ of C× × SL2(C). This action will be trivial on
R>0 ⊂ C× by construction.

(i) We let z ∈ C× act on Hp,q
ψ by multiplication by (z/|z|)q−p.

(ii) There is a unique algebraic action of SL2(C) on C⊗E(ψ)H
•
ψ such that

the action of

(
0 1
0 0

)
∈ sl2 is given by the Lefschetz operator L and

the diagonal torus in SL2(C) preserves the grading on C⊗E(ψ) H
•
ψ.

Explicitly, by hard Lefschetz we have that for t ∈ GL1, diag(t, t−1) ∈
SL2 acts on H i

ψ by multiplication by tg(g+1)/2−i. This algebraic
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action is defined over R, and if we knew that L is rational it would
even be defined over E(ψ).

(iii) These actions commute and we obtain

ρψ : C× × SL2(C) −→ GL(C⊗E(ψ) Hψ).

The dimension g(g + 1)/2 being fixed, we see that the isomorphism class of
the real Hodge structure with Lefschetz operator (R⊗E(ψ)Hψ, L) determines
and is determined by the isomorphism class of ρψ. In fact they are both
determined by the Hodge diamond of R⊗E(ψ) H

•
ψ.

To state the description of these isomorphism classes in terms of Arthur-
Langlands parameters we need a few more definitions. For i ∈ {0, . . . , r} let
mi be the product of di with the dimension of the standard representation

of Ĝπi , so that 2g + 1 =
∑r

i=0mi. Let Mψ0 = SOm0(C). For 1 ≤ i ≤ r let
(Mψi , τψi) be a pair such thatMψi ' SOmi(C) and τψi is a semisimple ele-
ment in the Lie algebra ofMψi whose image via the standard representation
has eigenvalues

±(w
(i)
1 +

di − 1

2
− j), . . . ,±(w(i)

gi +
di − 1

2
− j) for 0 ≤ j ≤ di − 1.

As in Definition 50 the point of this definition is that the group of automor-
phisms of (Mψi , τψi) is the adjoint group ofMψi , because τψi is not invariant
under the outer automorphism of Mψi . Note that Mψi is semisimple since
mi 6= 2.

Let Mψ =
∏

0≤i≤rMψi . There is a natural embedding ιψ : Mψ →
SO2g+1(C). Up to conjugation by Mψ there is a unique morphism fψ :
Lψ × SL2(C)→Mψ such that

(i) ιψ ◦ fψ is conjugated to ψ̇, which implies that fψ is an algebraic
morphism,

(ii) the differential of fψ maps ((τπi)1≤i≤r, diag(1
2 ,−

1
2)) to τψ := (τψi)0≤i≤r.

We can conjugate ψ̇ in SO2g+1(C) so that ιψ ◦ fψ = ψ̇, so we assume this
equality from now on. The centralizer of ιψ in SO2g+1(C) coincides with Sψ.
Let

fψ,∞ = fψ ◦
(
(ϕπi,∞)0≤i≤r, IdSL2(C)

)
: WR × SL2(C)→Mψ.

Condition (ii) above is equivalent to ic(fψ,∞) = τψ. We have ψ∞ = ιψ◦fψ,∞.
Let Mψ,sc =

∏r
i=0Mψi,sc '

∏r
i=0 Spinmi(C) be the simply connected

cover ofMψ. Let spinψ0
be the spin representation ofMψ0,sc, of dimension

2(m0−1)/2. Let Mψi,sc be the simply connected cover of Mψi . The group

Mψi,sc has two half-spin representations spin±ψi , distinguished by the fact

that the largest eigenvalue of spin+
ψi

(τψi) is greater than that of spin−ψi(τψi).

They both have dimension 2mi/2−1. Let Lψ,sc =
∏r
i=0(Ĝπi)sc be the simply

connected cover of Lψ, a product of spin and symplectic groups. There is a

unique algebraic lift f̃ψ : Lψ,sc × SL2(C) →Mψ,sc of fψ. There is a unique
algebraic lift ι̃ψ : Mψ,sc → Spin2g+1(C) of ιψ and it has finite kernel. The
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pullback of the spin representation of Spin2g+1(C) via ι̃ψ decomposes as

(36) spinψ0
⊗

⊕
(εi)i∈{±}r

spinε1ψ1
⊗ · · · ⊗ spinεrψr .

Let us be more specific. It turns out that the preimage Sψ,sc ' (Z/2Z)r+1 of
Sψ in Spin2g+1(C) commutes with ι̃ψ(Mψ,sc). This is specific to conductor

one, i.e. level Sp2g(Ẑ). Thus the spin representation of Spin2g+1(C) restricts
to a representation of Mψ,sc × Sψ,sc, and (36) is realized by decomposing
into isotypical components for Sψ,sc. More precisely, the non-trivial element
of the center of Spin2g+1(C) is mapped to −1 in the spin representation, and
there is a natural basis (si)1≤i≤r of Sψ over (Z/2Z)r and lifts (s̃i)1≤i≤r in
Sψ,sc such that in each factor of (36) s̃i acts by εi.

For 0 ≤ i ≤ r there is a unique continuous lift ϕ̃πi,∞ : C× → (Ĝπi)sc of the
restriction ϕπi,∞ |C× . One could lift morphisms from WR but the lift would
not be unique. Finally we can define

f̃ψ,∞ = f̃ψ ◦
(
(ϕ̃πi,∞)0≤i≤r, IdSL2(C)

)
: C× × SL2(C)→Mψ.

Theorem 63. For g ≥ 1, λ a dominant weight for Sp2g and

ψ = ψ0 � · · ·� ψr ∈ Ψunr,τ
disc (Sp2g)

we have an isomorphism of continuous semisimple representations of C× ×
SL2(C):

ρψ '
(

spinψ0
⊗ spinu1ψ1

⊗ · · · ⊗ spinurψr

)
◦ f̃ψ,∞

where u1, . . . , ur ∈ {+,−} can be determined explicitly (see [Täıa] for de-
tails).

Proof. This is essentially a consequence of [Art89b, Proposition 9.1] and
Arthur’s multiplicity formula, but we need to argue that in level one the
argument goes through with the multiplicity formula for Sp2g (Theorem 53)
instead. This is due to two simple facts. Firstly, the group K1 in [Art89b,
§9] is simply R>0 × K, and this implies that for π∞ a unitary irreducible
representation of GSp2g(R)/R>0,

H•((gsp2g,K1), π∞ ⊗ Vλ) = H•((sp2g,K), π∞|Sp2g(R) ⊗ Vλ)

where on the left hand side Vλ is seen as an algebraic representation of
PGSp2g (since we can assume that w(λ) even). Secondly, as we observed
above the preimage Sψ,sc of Sψ in Spin2g+1(C) still commutes with ι̃ψ(Mψ,sc),
making the representation σψ of [Art89b, §9] well-defined. This second fact
is particular to the level one case. �

To conclude, if we know Ψunr,τ
disc (Sp2g), making the decomposition in Propo-

sition 61 completely explicit boils down to computing signs (ui)1≤i≤r and
branching in the following cases:
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(i) for the morphism Spin2a+1×SL2 → Spin(2a+1)(2b+1) lifting the rep-
resentation

StdSO2a+1 ⊗Sym2b(StdSL2) : SO2a+1×SL2 → SO(2a+1)(2b+1)

and the spin representation of Spin(2a+1)(2b+1),

(ii) for Spin4a×SL2 → Spin4a(2b+1) and both half-spin representations,

(iii) for Sp2a×SL2 → Spin4ab and both half-spin representations.

For example one can using Corollary 57, Proposition 61 and Theorem 63
one can explicitly compute IH•(Ag) for all g ≤ 11.

Example 64. (i) For any g ≥ 1 and ψ = [2g + 1], the group Lψ is
trivial and up to a shift we recover the graded vector space Rg as
the composition of the spin representation of Spin2g+1 composed
with the principal morphism SL2 → Spin2g+1, graded by weights of
a maximal torus of SL2.

(ii) Consider g = 6 and ψ = ∆11[2]� [9]. For ψ0 we have spinψ0
◦f̃ψ0 '

ν11 ⊕ ν5, where as before νd denotes the irreducible d-dimensional
representation of SL2. For ψ1 = ∆11[2] we have Lψ1 = Sp2(C),

Mψ1 = SO4(C), spin+
ψ1
◦f̃ψ1 ' StdSp2

⊗1SL2 and spin−ψ1
◦f̃ψ1 '

1Sp2
⊗ ν2. It turns out that u1 = −, so ρψ|C× is trivial and

ρψ|SL2 ' (ν11 ⊕ ν5)⊗ ν2 ' ν12 ⊕ ν10 ⊕ ν6 ⊕ ν4.

Thus H•ψ has primitive cohomology classes in degrees 10, 12, 16, 18

(a factor νd contributes a primitive cohomology class in degree g(g+
1)/2 − d + 1). Surprisingly, these classes are all Hodge, i.e. they

belong to H2k
ψ ∩ H

k,k
ψ , despite the fact that the parameter ψ is

explained by a non-trivial motive over Q (attached to ∆11).
(iii) Consider g = 7 and ψ = ∆11[4] � [7]. Again Lψ,sc ' Sp2(C). For

ψ0 = [7] we have spinψ0
◦f̃ψ0 ' ν7 ⊕ 1. For ψ1 = ∆11[4] we have

Lψ1 = Sp2(C), Mψ1 = SO8(C), spin+ ' Sym2(StdSp2
) ⊕ ν5 and

spin− ' StdSp2
⊗ν4. Here u1 = +, and we conclude

ρψ ' (ν7 ⊕ 1)⊗ (Sym2(StdSp2
)⊕ ν5)

' Sym2(StdSp2
)⊗ (ν7 ⊕ 1)⊕ ν11 ⊕ ν9 ⊕ ν7 ⊕ ν⊕2

5 ⊕ ν3.

In this example, as in general, we would love to know that the
above formula is valid for the rational Hodge structure H•ψ, replac-

ing Sym2(StdSp2
) by Sym2(M)(11) where M is the motivic Hodge

structure associated to ∆11. In [Täıa] this (and generalizations) is
proved at the level of `-adic Galois representations.

Forgetting the Hodge structure, the graded vector space H•ψ is completely

described by the restriction of ρψ to SL2(C). The Laurent polynomial

T−g(g+1)/2
∑g(g+1)

k=0 T k dimHk
ψ can easily be computed by taking the product
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over 0 ≤ i ≤ r of the following Laurent polynomials (with choice of signs as
in Theorem 63). Denote x = (1, diag(T, T−1)) ∈ C× × SL2(C).

(i) For ψ0 = π0[2d+ 1] with π0 ∈ Oo(w1, . . . , wm), we have(
spinψ0

◦f̃ψ,∞
)

(x) = 2m
d∏
j=1

(T−j + T j)2m+1.

(ii) For ψi = πi[2d+ 1] with πi ∈ Oe(w1, . . . , w2m) we have(
spin±ψi ◦f̃ψ,∞

)
(x) = 22m−1

d∏
j=1

(T−j + T j)4m.

(iii) For ψi = πi[2d] with πi ∈ S(w1, . . . , wm) we have(
spin±ψi ◦f̃ψ,∞

)
(x) =

1

2

 d∏
j=1

(2 + T 2j−1 + T 1−2j)m ±
d∏
j=1

(2− T 2j−1 − T 1−2j)m

 .
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coins, par A. Douady et L. Hérault.
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