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Abstract

We study the Euler characteristic of ℓ-adic local systems on the moduli
stack An of principally polarized abelian varieties of dimension n associated
to algebraic representations of GSp2n, as virtual representations of the ab-
solute Galois group of Q and the unramified Hecke algebra of GSp2n. To
this end we take the last steps of the Ihara-Langlands-Kottwitz method to
compute the intersection cohomology of minimal compactifications of Siegel
modular varieties in level one, following work of Kottwitz and Morel, proving
an unconditional reformulation of Kottwitz’ conjecture in this case. This en-
tails proving the existence of GSpin-valued Galois representations associated
to certain level one automorphic representations for PGSp2n and SO4n. As
a consequence we prove the existence of GSpin-valued Galois representa-
tions associated to level one Siegel eigenforms, a higher genus analogue of
theorems of Deligne (genus one) and Weissauer (genus two). Using Morel’s
work and Franke’s spectral sequence we derive explicit formulas expressing
the Euler characteristic of compactly supported cohomology of automorphic
ℓ-adic local systems on Siegel modular varieties in terms of intersection co-
homology. Specializing to genus three and level one, we prove an explicit
conjectural formula of Bergström, Faber and van der Geer for the compactly
supported Euler characteristic in terms of spin Galois representations asso-
ciated to level one Siegel cusp forms. Specializing to trivial local systems we
give explicit formulas for the number of points of An over finite fields for all
n ≤ 7.

1



Contents

1 Introduction 5
1.1 Spin Galois representations for level one Siegel modular forms . . . 7
1.2 A conjecture of Bergström, Faber and van der Geer . . . . . . . . . 9
1.3 Intersection cohomology of local systems on the minimal compact-

ification of An and GSpin-valued Galois representations . . . . . . . 10
1.4 Compactly supported cohomology . . . . . . . . . . . . . . . . . . . 19
1.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Notations and conventions 24
2.1 Class field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Reductive groups and root data . . . . . . . . . . . . . . . . . . . . 24

3 The spectral side 26
3.1 Formal Arthur-Langlands parameters . . . . . . . . . . . . . . . . . 26
3.2 Stabilization of the trace formula . . . . . . . . . . . . . . . . . . . 30
3.3 Even orthogonal groups and outer automorphisms . . . . . . . . . . 34
3.4 Isogenies in level one and stabilization . . . . . . . . . . . . . . . . 40
3.5 Non-semisimple groups . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Intersection cohomology of A∗
n 57

4.1 Siegel modular varieties . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Automorphic local systems . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Hecke correspondences . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Minimal compactifications and intermediate extensions . . . . . . . 70
4.5 Hecke and Galois actions over Q and Fp . . . . . . . . . . . . . . . 73
4.6 Intersection cohomology: Morel’s stabilized formula . . . . . . . . . 76
4.7 Description of intersection cohomology using lifted Satake parameters 79
4.8 Intersection versus compactly supported cohomology . . . . . . . . 90

5 Odd spin Galois representations 109
5.1 Existence and uniqueness of a lifting in conductor one . . . . . . . . 109
5.2 Odd spin Galois representations . . . . . . . . . . . . . . . . . . . . 110
5.3 Non-tempered case . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Even spin Galois representations 114

2



6.1 Local-global compatibility for SO4n yields GSpin-valued Galois rep-
resentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Local-global compatibility for SO4 . . . . . . . . . . . . . . . . . . 117
6.3 Local-global compatibility for parameters π[2d] . . . . . . . . . . . . 119
6.4 The other half spin Galois representation for SO8n . . . . . . . . . 120
6.5 Local-global compatibility for SO8n . . . . . . . . . . . . . . . . . . 124
6.6 SO8n−4: using endoscopy . . . . . . . . . . . . . . . . . . . . . . . . 129
6.7 Non-tempered parameters π[2d+ 1] . . . . . . . . . . . . . . . . . . 131

7 Applications 133
7.1 Tensor product decomposition in intersection cohomology . . . . . . 133
7.2 Siegel modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Explicit formulas for compactly supported Euler characteristics 137
8.1 Franke’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2 Intersection in terms of compactly supported cohomology . . . . . . 166
8.3 Compactly supported in terms of intersection cohomology . . . . . 177

9 Special cases 180
9.1 Genus n ≤ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.2 Trivial local systems: |An(Fq)| for small n . . . . . . . . . . . . . . 191

A Cohomological correspondences 195
A.1 Definitions and induced maps in cohomology . . . . . . . . . . . . . 195
A.2 Base change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
A.3 Pushforward and pullback . . . . . . . . . . . . . . . . . . . . . . . 197
A.4 More pushforwards and pullbacks . . . . . . . . . . . . . . . . . . . 198
A.5 Compactifications and canonical extensions . . . . . . . . . . . . . . 207
A.6 Nearby cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.7 Nearby cycles of perverse sheaves . . . . . . . . . . . . . . . . . . . 224

B Irreducible finite-dimensional (g, K)-modules 226

C Hecke formalism for boundary strata of minimal compactifications
of Shimura varieties 230
C.1 Generalized Shimura varieties . . . . . . . . . . . . . . . . . . . . . 230
C.2 Hecke formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
C.3 Direct product case . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

3



C.4 Minimal compactifications . . . . . . . . . . . . . . . . . . . . . . . 261

4



1 Introduction

For an integer n ≥ 1 let An be the moduli stack of n-dimensional principally
polarized abelian varieties, a smooth Deligne-Mumford stack over Z of relative
dimension n(n+ 1)/2. We recall the precise moduli problem in Section 4.1. For a
prime number ℓ there is a natural functor F from the category of finite-dimensional
algebraic representations of GSp2n,Qℓ (“conformal symplectic group” over Qℓ) to
the category of ℓ-adic sheaves on An,Z[ℓ−1] := An×ZZ[ℓ−1] (see Section 4.2). Denote
by GalQ := Gal(Q/Q) the absolute Galois group of Q. Denote by Hunr(GSp2n)

the (unramified) Hecke algebra of GSp2n(Af ) in level GSp2n(Ẑ) (with rational
coefficients). The main goal of this paper is to prove a formula expressing, in
the Grothendieck group of finite-dimensional continuous Qℓ-representations of the
absolute Galois group GalQ with commuting action of Hunr(GSp2n), the Euler
characteristics

ec(An,Q,F(V )) :=

n(n+1)∑
i=0

(−1)i
[
H i
c(An,Q,F(V ))

]
(1.0.1)

in terms of ℓ-adic Galois representations associated to certain automorphic rep-
resentations. This problem reduces to the case where the representation V of
GSp2n,Qℓ is irreducible, which we assume for the rest of this introduction. For
any prime p ̸= ℓ the virtual Galois representation (1.0.1) is unramified at p and its
restriction to the decomposition group at p equals ec(An,Fp ,F(V )) (see Proposition
4.5.1). When V is trivial the Grothendieck-Lefschetz trace formula tells us that
knowing the Euler characteristic ec(An,Fp ,Qℓ) ∈ K0(Rep

cont
Qℓ (GalQ)) (forgetting the

action of Hunr(GSp2n)) is equivalent to knowing the (weighted) counts

|An(Fpm)| :=
∑

(A,λ)∈An(Fpm )/∼

|Aut(A, λ)|−1

for all integers m ≥ 1. As a first application of our main results and [CL, Theorem
9.3.3] we obtain the following explicit formulas.

Theorem 1. For 1 ≤ n ≤ 6 and any prime number ℓ the virtual representation
ec(An,Q,Qℓ) of GalQ (forgetting the Hecke action) is Tate, equivalently there exists
a polynomial Pn ∈ Z[X] such that for any prime power q we have |An(Fq)| = Pn(q).
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More precisely we have

|A1(Fq)| = q,

|A2(Fq)| = q3 + q2,

|A3(Fq)| = q6 + q5 + q4 + q3 + 1,

|A4(Fq)| = q10 + q9 + q8 + 2q7 + q6 + q5 + q4 + q,

|A5(Fq)| = q15 + q14 + q13 + 2q12 + 2q11 + 2q10 + 2q9 + 2q8 + q7 + q6 + q5 + q3 + q2,

|A6(Fq)| = q21 + q20 + q19 + 2q18 + 2q17 + 4q16 + 4q15 + 4q14 + 5q13 + 4q12

+ 4q11 + 3q10 + 2q9 + q8 + 2q7 + 2q6 + q5 + q4 + q3 + 1.

For n = 7 this Euler characteristic is not Tate, more precisely for any prime
power q = pm we have

|A7(Fq)| = q28 + q27 + q26 + 2q25 + 2q24 + 3q23 + 4q22 + 4q21 + 4q20 + 6q19 + 7q18

+ 8q17 + 7q16 + 6q15 + 5q14 + 4q13 + 4q12 + 2q11 + 3q10 + 4q9 + 3q8

+ 3q7 + q6 + q5 + 2q4 + q

+ (q6 + q5 + q4 + q3 + 1)× a(pm)

where the family of integers (a(pm))m≥0 is defined by the equality in Z[[T ]]∑
m≥0

a(pm)Tm =
3− 2τ(p2)T + p11τ(p2)T 2

1− τ(p2)T + p11τ(p2)T 2 − p33T 3

where τ(p2) is a coefficient of the q-expansion of the Ramanujan ∆ function∑
m≥0

τ(m)qm = q
∏
m≥1

(1− qm)24.

These formulas seem to be new for n > 3, see [BFG14, Theorem 8.1] for n = 3

(see also [Hai02]). In principle one can give similar explicit formulas for all n ≤ 12

(but with more complicated ingredients than just ∆11), see Remark 9.2.1.
For a non-trivial representation V , via the geometric construction of F(V )

using the universal abelian variety there is a similar interpretation of the Euler
characteristic ec(An,Fp ,F(V )) using point counting: see [BFG14, §8]. Irreducible
representations of GSp2n,Qℓ come by extension of scalars from irreducible repre-
sentations of GSp2n,Q, and this interpretation implies in particular that for an
irreducible representation V of GSp2n,Q the traces (for n ∈ Z)

tr(Frobnp | ec(An,Q,F(Qℓ ⊗Q V )))
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are all rational and do not depend on the choice of ℓ ̸= p.
Our results are motivated by [BFG14, Conjecture 7.1], which conjectures an ex-

plicit expression for (1.0.1) (forgetting the Hecke action) in the case n = 3 in terms
of 2g-dimensional “spin” ℓ-adic Galois representations conjecturally associated to
Siegel eigenforms for Sp2g(Z), g ≤ 3. (In fact their conjecture is at the level of
motives over Q, and we are only considering ℓ-adic realizations.) Bergström, Faber
and van der Geer arrived at this conjectural formula using explicit point counts.
This conjecture follows similar results in genus ≤ 2 recalled below. We first explain
the application of our main results to the existence of spin Galois representations
for level one Siegel modular forms and to Conjecture 7.1 of [BFG14], before ex-
plaining our main results concerning the cohomology of intersection complexes on
the minimal compactification of An and explicit formulas relating it to compactly
supported cohomology on An.

1.1 Spin Galois representations for level one Siegel modular
forms

As a corollary of one of our main results we prove the existence of GSpin-valued
ℓ-adic Galois representations in higher genus, as we now explain. Applying Schur
functors to the Hodge bundle of An,C (an n-dimensional vector bundle) and tak-
ing global sections “vanishing at infinity” yields, for an irreducible algebraic rep-
resentation of GLn parametrized by its highest weight k = (k1 ≥ · · · ≥ kn),
the finite-dimensional vector space Sk(Sp2n(Z)) of Siegel cusp forms of weight
k and level Sp2n(Z) (the precise definition is recalled in [Gee08]). It is en-
dowed with an action1 of the (commutative) Hecke algebra Hunr(GSp2n). Char-
acters of Hunr(GSp2n)C := C ⊗Q Hunr(GSp2n) correspond via the Satake iso-
morphism to families, indexed by the set of all prime numbers, of semi-simple
conjugacy classes in GSpin2n+1(C). In particular to an eigenform f is associ-
ated a family (cp(f))p of such conjugacy classes. For better rationality properties
(see [Gro98, §8] for details) it is convenient to consider the family (carithp (f))p
defined by carithp (f) = pn(n+1)/4cp(f) instead. There is a morphism (of split con-
nected reductive groups over Q) GSpin2n+1 → SO2n+1 with kernel identified to
GL1, as well as a natural morphism β : GSpin2n+1 → GL1 which is t 7→ t2 on
GL1 ≃ Z(GSpin2n+1). For an eigenform f ∈ Sk(Sp2n(Z)) and a prime number p
we have β(carithp (f)) = p

∑n
i=1 ki−n(n+1)/2.

1More precisely we incorporate the extra factor η(γ)
∑
λi−g(g+1)/2 in [Gee08, Definition 8].
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We will be particularly interested in two irreducible representations of the
algebraic group GSpin2n+1:

• the 2n + 1-dimensional standard representation Std, which factors through
SO2n+1,

• the 2n-dimensional spin representation spin, which maps z ∈ GL1 ≃ Z(GSpin2n+1)

to z id.

Putting together known results due to many mathematicians (Theorem 5.2.1, ap-
plied using Arthur’s endoscopic classification for Sp2n: see [CR15, §9] or [Taï17,
§5]) we know that for any field isomorphism2 ι : C ≃ Qℓ and any eigenform
f ∈ Sk(Sp2n(Z)) of weight k satisfying kn ≥ n + 1, there exists a unique contin-
uous semi-simple morphism ρSOf,ι : GalQ → SO2n+1(Qℓ) which is unramified away
from a finite set of prime numbers and such that for almost all primes p the semi-
simplification of ρSOf,ι (Frobp) (here Frobp denotes the geometric Frobenius element)
is equal to the projection of ι(carithp (f)) along GSpin2n+1 → SO2n+1. We even know
that ρSOf,ι is unramified away from ℓ and that this relation holds at all primes p ̸= ℓ,
and that ρSOf,ι is crystalline at ℓ. As a corollary of one of our main results we
obtain the existence of spin Galois representations associated to level one Siegel
eigenforms, in the form of the following theorem.

Theorem 2 (Corollary 7.2.2). Let n ≥ 1 and k1 ≥ · · · ≥ kn ≥ n + 1 be integers,
and denote k = (k1, . . . , kn). Let f ∈ Sk(Sp2n(Z)) be an eigenform. Let ℓ be a
prime number, and choose ι : C ≃ Qℓ.

1. There exists a unique continuous lift ρGSpin
f,ι : GalQ → GSpin2n+1(Qℓ) of

ρSOf,ι which is unramified away from ℓ, crystalline at ℓ and which satisfies
β ◦ ρGSpin

f,ι = χ
n(n+1)/2−

∑n
i=1 ki

ℓ where χℓ : GalQ → Q×
ℓ is the ℓ-adic cyclotomic

character.

2. For any prime number p ̸= ℓ the semi-simplification of ρGSpin
f,ι (Frobp) belongs

to ι(carithp (f)).

3. Any continuous semi-simple ρ : GalQ → GSpin2n+1(Qℓ) unramified away
from a finite set of primes and such that the semi-simplification of ρGSpin

f,ι (Frobp)

belongs to ι(carithp (f)) for almost all p is conjugated to ρGSpin
f,ι .

2As usual only the restriction of this isomorphism to the algebraic closure of Q plays a role.
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The first and third points are an easy consequence of results of Patrikis and
Conrad (see Proposition 5.1.1) and the Kronecker-Weber theorem, so our main
contribution to this theorem is the second point, which we will prove somewhat
indirectly. For n = 1 (resp. n = 2) we have GSpin3 ≃ GL2 (resp. GSpin5 ≃ GSp4)
and Theorem 2 is the level one case of [Del71] (resp. [Wei05]). For n > 2 the
existence of these Galois representations is new.

1.2 A conjecture of Bergström, Faber and van der Geer

Following [BFG14] for a weight k = (k1, . . . , kn) satisfying kn ≥ n + 1 we define3

the ℓ-adic representation of GalQ

S[k]ℓ =
⊕
f

spin ◦ ρGSpin
f,ι

where the sum ranges over eigenforms f ∈ Sk(Sp2n(Z)). One could show, from
our method to construct the morphisms ρGSpin

f,ι , that S[k]ℓ does not depend on the
choice of ι, as the notation suggests. Bergström, Faber and van der Geer conjecture
[BFG14, §5] the existence of a motive S[k] over Q whose ℓ-adic realization is
isomorphic to S[k]ℓ. For n ≤ 3 the fact that S[k]ℓ may be defined over Qℓ and does
not depend on the choice of ι follows from our results in Section 9.1. Let λ = (λ1 ≥
· · · ≥ λn) be a dominant weight for Sp2n, corresponding to an irreducible algebraic
representation Vλ of Sp2n,Qℓ . In the moduli interpretation there is a natural choice
of extension Vλ,0 of Vλ to GSp2n,Qℓ : letting z in the center Z(GSp2n,Qℓ) ≃ GL1,Qℓ
act by z−

∑
i λi id. As recalled in Section 4.2 the local system F(Vλ,0) is pure of

weight
∑

i λi and is “effective”. The authors of [BFG14] define in §5 loc. cit. the
extraneous contribution en,extr(λ)ℓ ∈ K0(Rep

cont
Qℓ

(GalQ)) by the equation

ec(An,Q,F(Vλ,0)) = (−1)n(n+1)/2S[k]ℓ + en,extr(λ)ℓ,

the idea being that ec(An,Q,F(Vλ,0)) should be equal to (−1)n(n+1)/2S[k]ℓ up to
“smaller” error terms (endoscopic or related to the boundary). For n = 1 and
λ1 > 0 we simply have e1,extr(λ)ℓ = −1 (see [BFG14, Theorem 2.3]). For n = 2

Faber and van der Geer conjectured an explicit formula for e2,extr(λ)ℓ (in fact, of
the conjectural virtual motive over Q whose ℓ-adic realization should be e2,extr(λ)ℓ)
in terms of S[−]ℓ (in genus one), recalled in Section 9.1.2 (see also [BFG14, §6.3]).
This conjecture was later proved by Weissauer and van der Geer in the regular

3In fact for n = 1 following [BFG14] we will use a slightly different definition in the weight 2
case, see Section 9.1.
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case (see the discussion after Conjecture 6.1 in [BFG14]), and by Petersen [Pet]
in general. For n = 3, using explicit point counts over finite fields the authors
of [BFG14] conjectured an explicit formula for e3,extr(λ)ℓ (again, their conjectural
formula is motivic), see Conjecture 7.1 loc. cit.

Theorem 3 (Theorem 9.1.1). Conjecture 7.1 of [BFG14] holds true at the level
of ℓ-adic Galois representations.

We will see that no similar formula can be expected in genus > 3: the extrane-
ous term is not expressed just in terms of lower-dimensional Galois representations
S[−]ℓ alone.

1.3 Intersection cohomology of local systems on the minimal
compactification of An and GSpin-valued Galois repre-
sentations

We now explain our main results, which hold for an arbitrary genus n ≥ 1. Our
first goal is to prove a special case of a conjecture of Kottwitz [Kot90] describ-
ing, for a Shimura datum (G,X ) with associated Shimura tower (Sh(G,X , K))K
(quasi-projective varieties over the reflex field E) and minimal compactifications
Sh(G,X , K) ↪→ Sh(G,X , K)∗, and an algebraic representation V of GQℓ with as-
sociated intersection complex IC(V ) on Sh(G,X , K)∗ (the intermediate extension
of F(V )), the representations

IHi(G,X , V ) := lim−→
K

H i(Sh(G,X , K)∗
E
, ICK(V )) (1.3.1)

of G(Af ) × GalE, in terms of the conjectural global Langlands correspondence
(more precisely, Arthur’s conjectures and their ℓ-adic realizations), which we now
recall without going into full details. The special case relevant to our situation is
the one where (Sh(G,X , K))K is the tower (An,K)K of Siegel modular varieties,
K ranges over (neat) compact open subgroups of G = GSp2n(Af ), and we take
GSp2n(Ẑ)-invariants in (1.3.1). In this case G is split and the reflex field E is
simply Q. These properties simplify the general discussion in [Kot90] a little, so
we assume that they hold for the rest of this section.
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1.3.1 Kottwitz’ conjecture in general

We temporarily assume the existence of the4 Langlands group LQ of Q, a topologi-
cal group together with a continuous surjective morphism onto the Weil group WQ

such that the kernel is compact and connected (i.e. a projective limit of compact
connected Lie groups). Among other extra data it should come with an embedding
WR → LQ (well-defined up to conjugacy), where WR is the Weil group of R (an
extension of Gal(C/R) by C×), such that the composition WR → LQ → WQ is the
usual embedding. Similarly at the non-Archimedean places we should have em-
beddings WQp × SU(2) ↪→ LQ for all primes p. A conjecture of Langlands predicts
a bijection between isomorphism classes of irreducible continuous representations
φ : LQ → GLN(C) and cuspidal automorphic representations for GLN,Q.

Kottwitz’ conjecture involves Arthur-Langlands parameters ψ : LQ×SL2(C)→
Ĝ(C), i.e. continuous semi-simple morphisms which are holomorphic on the factor
SL2(C) and whose centralizer Cψ := Cent(ψ, Ĝ) is finite modulo Z(Ĝ), whose
restriction to WR (along the diagonal embedding, using WR ↪→ SL2(C), w 7→
diag(|w|1/2, |w|−1/2)) has infinitesimal character (see Definition 3.1.5) opposite to
that of V . We denote by Ψ(G, V ) the set of Ĝ(C)-conjugacy classes of such pa-
rameters. For ψ ∈ Ψ(G, V ) the centralizer Cψ is abelian and the finite group
Cψ/Z(Ĝ) is 2-torsion. To the Shimura datum (G,X ) is associated a conjugacy
class of cocharacters µ : GL1,C → GC and thus a representation r−µ : Ĝ→ GL(Y )

of the Langlands dual group Ĝ having extremal weight −µ. We thus obtain a rep-
resentation LQ×SL2(C)×Cψ → GL(Y ), and we have a decomposition Y =

⊕
ν Yν

where the sum ranges over the set N of characters ν of Cψ whose restriction to
Z(Ĝ) is −µ|Z(Ĝ). To ψ ∈ Ψ(G, V ) is conjecturally associated a packet (multiset)
Πf (ψ) of irreducible representations of G(Af ) together with a map

Πf (ψ)×N −→ Z≥0

(πf , ν) 7−→ m(ψ, πf , ν),

using Arthur’s conjectures (see [Kot90, p. 200]). Denoting by d the dimension of
the Shimura varieties Sh(G,X , K) we consider the representations

Y (ψ, πf ) :=
⊕
ν

| · |−d/2Y ⊕m(ψ,πf ,ν)
ν (1.3.2)

of LQ×SL2(C) as representations of LQ using the diagonal embedding LQ ↪→ LQ×
SL2(C), g 7→ (g, diag(|g|1/2, |g|−1/2)). These representations of LQ are algebraic,

4As for absolute Galois groups or Weil groups, the Langlands group should be associated to
a choice of algebraic closure.
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i.e. their restriction to WR decompose as direct sums of characters z 7→ zazb

with a, b ∈ Z. This conjecturally implies that they are motivic, in particular for
ι : C ≃ Qℓ they should have ℓ-adic realizations Y (ψ, πf )ι, vector spaces over Qℓ

with a continuous action of GalQ. These realizations are characterized by the
following compatibility: for almost all primes p ̸= ℓ the restriction of Y (ψ, πf ) to
WQp × SU(2) is trivial on IQp × SU(2), where IQp denotes the inertia subgroup of
WQp , and for all such p the representation Y (ψ, πf )ι should be unramified at p and
we should have an equality of characteristic polynomials in5 Qℓ[T ]

det(T id− Frobp |Y (ψ, πf )ι) = ι (det(T id− Frobp |Y (ψ, πf ))) .

Conjecture 1 (Kottwitz’ conjecture [Kot90, §10], in our simplified setting). We
should have an isomorphism of representations of GalQ ×G(Af )⊕

i

Qℓ ⊗Qℓ IH
i(G,X , V ) ≃

⊕
ψ

⊕
πf∈Πf (ψ)

Y (ψ, πf )ι ⊗Qℓ ι(πf )

where ι(πf ) = Qℓ ⊗ι,C πf .

By purity this conjecture also characterizes the individual intersection coho-
mology groups IHi(G,X , V ). For example tempered parameters in Ψ(G, V ), i.e.
those parameters which are trivial on the factor SL2(C), only contribute to middle
degree (d) intersection cohomology. Purity also implies that the Euler characteris-
tic of IH•(G,X , V ) determines each IHi(G,X , V ), a property which does not hold
for compactly supported (or ordinary) cohomology.

1.3.2 The Ihara-Langlands-Kottwitz method

The Ihara-Langlands-Kottwitz method is a strategy to prove Conjecture 1, assum-
ing the spectral expansion (“stable multiplicity formula”) of the stabilization of
the trace formula for certain elliptic endoscopic groups of G. Very roughly, this
strategy consists of three steps.

1. Using a generalization of the Grothendieck-Lefschetz trace formula (Deligne’s
conjecture, proved by Pink [Pin92b] and Fujiwara [Fuj97]) and a group-
theoretic description of points of Shimura varieties over finite fields, obtain
an expression for the trace of a Frobenius element composed with a Hecke
operator (satisfying certain assumptions) on

ec(G,X , V ) :=
∑
i

(−1)i
[
lim−→
K

H i
c(Sh(G,X , K),F(V ))

]
(1.3.3)

5The coefficients of these polynomials are expected to be algebraic over Q.
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resembling the elliptic part of the trace formula for G (with a twist).

2. Express intersection cohomology in terms of compactly supported cohomol-
ogy (for certain ℓ-adic local systems on strata of minimal compactifications).

3. Stabilize (in the sense of the stabilization of the trace formula) the expression
obtained by putting together the first two steps, in order to express the trace
of a Frobenius element composed with a Hecke operator (again, satisfying
certain assumptions) on

eIH(G,X , V ) :=
∑
i

(−1)i
[
IHi(G,X , V )

]
(1.3.4)

in terms of the stabilization of the trace formula for certain elliptic endoscopic
groups of G.

1.3.3 The case of Siegel modular varieties

For the case of Siegel modular varieties the first step was achieved by Kottwitz
himself [Kot92] (which concerns more generally PEL type Shimura varieties, see
also [Kot90, §12]), and the second and third step were achieved by Morel [Mor08],
[Mor11] (for the third step Kottwitz had already stabilized the “elliptic part” cor-
responding to the contribution of compactly supported cohomology of the open
Shimura variety, see [Kot90, Theorem 7.2]). So it would seem that in the case of
Siegel modular varieties we are already close to knowing Kottwitz’ Conjecture 1.

To conclude however, we would like to know the spectral expansion of the
stabilization of the trace formula for (certain) elliptic endoscopic groups of GSp2n.
By [Mor11, Proposition 2.1.1] the relevant endoscopic groups are isomorphic to
G(Sp2a × SO4b), where a+ 2b = n and for any Q-algebra R

G(Sp2a × SO4b)(R) = {(g1, g2) ∈ GSp2a(R)×GSO4b(R) | c(g1) = c(g2)},

denoting by c the similitude characters. Of course the spectral expansion is not
currently known in a strict sense, because the existence of the Langlands group LQ

itself is still conjectural. Endoscopic groups H as above are isogenous to products
of split classical groups Sp2a and SO4b. For a classical group (such as Sp2a and
SO4b) the Langlands dual group is also classical. Conjugacy classes of parameters
taking values in a classical group (in this case SO2a+1(C) or SO4a(C)) can be
elementarily classified in terms of: the set of isomorphism classes of irreducible
representations of LQ, the duality map on this set, and for self-dual irreducible
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representations their type (symplectic or orthogonal) and determinant. As recalled
above isomorphism classes of irreducible representations of LQ are conjectured to
be in bijection with cuspidal automorphic representations for general linear groups
over Q, and the notions above (duality, determinant and symplectic/orthogonal
type) admit translations on the automorphic side. Using this observation Arthur
formulated and proved a spectral expansion [Art13, Corollary 3.4.2 and Theorem
4.1.2] which circumvents the hypothetical group LQ, in terms of self-dual cuspidal
automorphic representations for general linear groups. Arthur’s proof relies on the
stabilization of the (twisted) trace formula. Unfortunately it does not seem to be
possible to proceed similarly for groups which are merely isogenous to classical
groups. Xu Bin [Xu17] obtained remarkable results towards a spectral expansion
for groups such as GSp2n, but a complete spectral expansion seems to be out of
reach at the moment.

To understand the issue more concretely, but only conjecturally, consider a
parameter ψ ∈ Ψ(GSp2n, V ). The condition at the real place implies that Std ◦ψ
decomposes as

⊕r
i=0 ψi for some r ≥ 0, where each ψi is irreducible, say of dimen-

sion mi, the ψi’s are non-isomorphic and exactly one of them has odd dimension,
say ψ0. For simplicity, and because this will be implied by the “level one” condi-
tion that we will eventually impose, assume that each character detψi is trivial.
Under this assumption we may find lifts ψGSpin

i : LQ × SL2(C) → GSpinmi(C),
unique up to characters LQ → Z(GSpinmi(C)), and up to a character of LQ the
representations Yν occurring in the decomposition (1.3.2) decompose as

(spin ◦ ψGSpin
0 )⊗

r⊗
i=1

spinϵ(ν,i) ◦ ψGSpin
i (1.3.5)

where for i > 0 the sign ϵ(ν, i) distinguishes one of the two half-spin represen-
tations spin± of GSpinmi(C). Moreover (still conjecturally) for a given πf the
multiplicity m(ψ, πf , ν) vanishes except for exactly one value for ν, for which this
multiplicity is one. Each ψi should be the tensor product of a self-dual irreducible
representation of LQ of dimension ni and the irreducible algebraic representation
of SL2(C) of dimension di. The former should correspond to a self-dual cuspidal
automorphic representation πi for GLni,Q. We use the notation πi[di] for the pair
(πi, di) to suggest this tensor product. In the absence of the Langlands group LQ

Arthur replaced the parameter Std ◦ ψ by the multiset {(πi, di)|0 ≤ i ≤ r}, that
we simply denote by π0[d0] ⊕ · · · ⊕ πr[dr]. Among the difficulties in extending
Arthur’s stable multiplicity formula to groups such as GSp2n, one has to find a
way to (unconditionally) distinguish the various lifts ψ such that Std ◦ ψ corre-
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sponds to
⊕

i πi[di], and for each such lift define a multiset Πf (ψ) of irreducible
representations of GSp2n(Af ). This has not been achieved in general.

1.3.4 Adding the level one assumption

Let us now restrict to the level one case: we only consider parameters ψ such
that there exists πf ∈ Πf (ψ) which is everywhere unramified, i.e. the subspace of
GSp2n(Ẑ) in πf is non-zero. This assumption should be equivalent to ψ factoring
through the (conjectural) largest quotient LZ of LQ in which the groups IQp×SU(2)
become trivial (for all primes p). Chenevier and Renard observed remarkable
properties of this (conjectural) group [CR15, Appendix B], in particular it should
decompose canonically as R>0 × L1

Z where L1
Z is a product of simply connected

quasisimple compact Lie groups. This gives us canonical choices for the lifts ψGSpin
i ,

by imposing that they factor through LZ and take values in Spinmi(C). To ψi =
πi[di] is associated a family (c̃p(ψi))p of semi-simple conjugacy classes in GLmi(C)
(ranging over all primes p), defined by

c̃p(ψi) = c(πi,p)⊗ diag(p(di−1)/2, p(di−3)/2, . . . , p(1−di)/2)

where c(πi,p) is the Satake parameter of πi,p. Thus for our purpose, that is a
particular case of the spectral expansion (“stable multiplicity formula”) for certain
endoscopic groups of GSp2n in level one and for pseudo-coefficients of discrete
series at the real place, we want to pin down the semisimple conjugacy classes

ψGSpin
i (Frobp, diag(p

1/2, p−1/2)) ∈ Spinmi(C).

Since ψGSpin
i is uniquely determined we will denote these by cp,sc(ψi). These should

satisfy Std(cp,sc(ψi)) = c̃p(ψi). For i = 0 there is a unique semi-simple conjugacy
class cp(ψ0) in SOm0(C) mapping to c̃p(ψ0), so this relation determines cp,sc(ψ0) up
to multiplication by Z(Spinm0

(C)) ≃ {±1}. For i > 0 the situation is more com-
plicated, since in general there are two semisimple conjugacy classes in SOmi(C)
mapping to c̃p(ψi), exchanged by any element of Omi(C) having determinant −1.
So in this case we first need to pin down the “correct” one cp(ψi) and prove a
spectral expansion for split groups SO4m in level one and for pseudo-coefficients
of discrete series at the real place (Proposition 3.3.4), slightly refining the special-
ization of Arthur’s stable multiplicity formula in this setting (Arthur’s results for
even special orthogonal groups are all “up to outer automorphism”). We then pin
down semi-simple conjugacy classes cp,sc(ψi) in spin groups and prove a spectral
expansion for groups which are quotients of products of split groups Sp2a and
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SO4b under the same assumptions (Proposition 3.4.7). These results rely on the
stabilization of the trace formula and the (unconditional) automorphic counterpart
to the property “L1

Z is simply connected” [CR15, Proposition 4.4].
Plugging this spectral expansion into Morel’s formula [Mor11, Corollaire 5.3.3]

and following Kottwitz’ argument from [Kot90] in this unconditional setting, we
obtain the following theorem. If intersection cohomology does not vanish in level
one then −1 ∈ Z(GSp2n)(Qℓ) acts trivially on V , so we may reduce to the case
where V is a representation of PGSp2n by twisting (see Remark 4.3.7).

Theorem 4 (weaker, vague version of Theorem 4.7.2). Let V be an irreducible
algebraic representation of PGSp2n. Then up to semi-simplification the represen-
tation

Qℓ ⊗Qℓ IH
•(GSp2n,X , V )GSp2n(Ẑ)

of GalQ ×Hunr(PGSp2n) is isomorphic to the sum of tensor products

σIH
ψ,ι ⊗Qℓ ι(χf,ψ)

where

• ψ = ψ0 ⊕ · · · ⊕ ψr ranges over Arthur’s substitutes for global parameters
for Sp2n [Art13, §1.4] which are unramified and of infinitesimal character
determined by V , in particular ψi = πi[di] with πi an everywhere unramified
self-dual cuspidal automorphic representation for a general linear group,

• χf,ψ is the character ofHunr(PGSp2n) corresponding to the images of (cp,sc(ψi))0≤i≤r
in Spin2n+1(C) under the natural morphism

r∏
i=0

Spinmi(C) −→ Spin2n+1(C),

• σIH
ψ,ι is a 2n−r-dimensional continuous semisimple representation of GalQ over

Qℓ which is unramified away from ℓ and such that for any prime p ̸= ℓ the
semi-simplification of σIH

ψ,ι(Frobp) is conjugated to

ι
(
pn(n+1)/4spinψ0

(cp,sc(ψ0))⊗ spin
u1(ψ)
ψ1

(cp,sc(ψ1))⊗ · · · ⊗ spin
ur(ψ)
ψr

(cp,sc(ψr))
)

(1.3.6)
where ui(ψ) ∈ {±1} are explicit signs.

Anticipating on the explicit relation between intersection and compactly sup-
ported cohomology (see §1.4), we also deduce from a result of Faltings-Chai that
each σIH

ψ,ι is crystalline at ℓ.
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1.3.5 GSpin-valued Galois representations

We expect from 1.3.5 that each σIH
ψ,ι decomposes as a tensor product of Galois

representations obtained by composing GSpin-valued Galois representations with
(half-)spin representations, as suggested by (1.3.6), but this does not immediately
follow from (1.3.6). Proving that this holds (almost always) is the subject of Sec-
tions 5 and 6. Let us mention the odd-dimensional case first (i.e. those parameters
which can occur as ψ0 above).

Theorem 5 (Theorem 5.2.2). Let ψ = π[d] be a self-dual Arthur-Langlands pa-
rameter of odd orthogonal type, everywhere unramified and with algebraic regular
infinitesimal character (i.e. its eigenvalues are distinct integers, see Definitions
3.1.2 and 3.1.3). There exists a continuous semisimple morphism ρGSpin

ψ,ι : GalQ →
GSpin2n+1(Qℓ) unramified away from ℓ and crystalline at ℓ and such that for any
prime p ̸= ℓ the semi-simplification of ρGSpin

ψ,ι (Frobp) belongs to ι(pn(n+1)/4cp,sc(ψ)).
Moreover the conjugacy class of ρGSpin

ψ,ι admits the following characterizations.

1. If ρ : GalQ → GSpin2n+1(Qℓ) is any continuous semisimple morphism such
that for almost all primes p, the semisimplifications of ρ|GalQp

and ρGSpin
ψ,ι |GalQp

are conjugate, then ρ is conjugate to ρGSpin
ψ,ι .

2. If ρ : GalQ → GSpin2n+1(Qℓ) is a continuous morphism lifting the morphism
ρSOψ,ι : GalQ → SO2n+1(Qℓ) (Theorem 5.2.1), unramified away from ℓ and
crystalline at ℓ, then ρ is conjugate to χNℓ ρ

GSpin
ψ,ι for some integer N .

We also prove in Proposition 5.3.1 that in the non-tempered case, i.e. when ψ =

π[d] with d > 1 (automatically odd), the morphism ρGSpin
ψ,ι can also be constructed

from ρGSpin
π[1],ι . The basic idea to prove Theorem 5 is to combine the existence of

SO-valued Galois representations (recalled in Theorem 5.2.1), the existence of an
essentially unique conductor one lift to GSpin, and to compare the composition
of this lift with the spin representation with the representation σIH

ψ,ι constructed
above. This strategy is similar to the one used by Kret and Shin in [KS23].

The even-dimensional case (in the preceding discussion, parameters which can
occur as ψi for i > 0) is more complicated because we do not know a priori the
existence of a morphism ρSOψ,ι satisfying local-global compatibility at all primes p ̸= ℓ

for the semisimple conjugacy classes cp(ψ) in SOm(C): a priori we only know local-
global compatibility up to conjugation by Om(Qℓ) (recalled in Theorem 6.1.1). We
prove this refinement in almost all cases, and deduce the existence and uniqueness
of GSpin-valued Galois representations.
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Theorem 6 (Theorems 6.1.5 and 6.1.6). Let ψ = π[d] be a self-dual Arthur-
Langlands parameter of orthogonal type and even dimension 4n, everywhere un-
ramified and with algebraic regular infinitesimal character (i.e. its eigenvalues are
distinct integers, see Definitions 3.1.2 and 3.1.3). Assume either n = 1, n even, d
even, or that the infinitesimal character satisfies a regularity condition (see Defi-
nition 6.1.4).

1. There exists a continuous semisimple morphism ρSOψ,ι : GalQ → SO4n(Qℓ)

which is unramified away from ℓ and crystalline at ℓ, such that for all primes
p ̸= ℓ semi-simplification of ρSOψ,ι(Frobp) belongs to ι(cp(ψ)). Any continuous
semisimple morphism ρ : GalQ → SO4n(Qℓ) satisfying this condition at al-
most all primes p is SO4n(Qℓ)-conjugated to ρSOψ,ι.

2. There exists a continuous semisimple morphism ρGSpin
ψ,ι : GalQ → GSpin4n(Qℓ)

unramified away from ℓ and crystalline at ℓ and such that for any prime p ̸= ℓ

the semi-simplification of ρGSpin
ψ,ι (Frobp) belongs to ι(pn/2cp,sc(ψ)). It admits

the same characterizations as in Theorem 5.

For d > 1 even (resp. odd) we also prove in Proposition 6.3.2 (resp. Propo-
sition 6.7.1) that ρGSpin

ψ,ι can also be constructed (in the d even case, up to outer
automorphism) from the GSp-valued (resp. GSpin-valued) Galois representation
associated to π. The proof of Theorem 6 is rather indirect and relies heavily
on ℓ-adic families of automorphic representations for inner forms H of PGSO8m

which are split at all primes and definite (i.e. the Lie group H(R) is compact).
Considering the contribution of the parameter 1⊕ ψ in Theorem 4 we obtain the
existence of a Galois representation σspin,ϵ

ψ,ι which ought to be spinϵ ◦ ρGSpin
ψ,ι (but

we do not know the existence of ρGSpin
ψ,ι yet), for a sign ϵ which we do not control

(see Corollary 4.7.3 for details). Assume first that n is even in Theorem 6, so that
a definite inner form H of PGSO4n split at all primes exists. One can associate
a level one automorphic representation Π for H to the parameter ψ (Example
3.4.9), and by ℓ-adic interpolation, which is possible thanks to the fact that H is
definite, we construct the “other half-spin” Galois representation σspin,−ϵ

ψ,ι . By the
main technical result of [Taï16] we can even ℓ-adically interpolate Π by level one
automorphic representations Π′ (with associated parameter ψ′ = π′[1]) such that
the associated Galois representation has infinitesimally big image (the Lie algebra
over Qℓ generated by Lie Std(ρSOψ,ι(GalQ)) is maximal, i.e. equal to so4n), in partic-
ular both representations σspin,±

ψ′,ι are irreducible. This allows us to deduce the first
part of Theorem 6 for ψ′ and then for ψ (Corollary 6.5.4), and the second part
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follows as in the odd-dimensional case. Part of this argument is similar to the one
used by Kret and Shin in [KS24], but they did not use ℓ-adic interpolation and
the “infinitesimally big image” condition is replaced by a weaker condition derived
from their “Steinberg at one place” hypothesis.

The case where n is odd in Theorem 6 is trickier, except for n = 1 because
of the exceptional isomorphism PGSO4 ≃ PGL2

2. For n > 1 odd we would like
to apply the previous strategy to a level one automorphic representation Π, for
the inner form of PGSO4n+4 split at all places, corresponding to the parameter
ψ ⊕ ψ′ where ψ′ is 4-dimensional. Unfortunately we cannot find ψ′ such that Π

exists in all cases, whence the regularity condition on the infinitesimal character
in Theorem 6. See Section 6.6 for details.

The proof of Theorem 2 (Corollary 7.2.2) from Theorems 5 and 6 is simply the
observation that for the parameter ψ = ψ0 ⊕ · · · ⊕ ψr corresponding to a Siegel
cusp form, each ψi for i > 0 satisfies the assumption of Theorem 6.

1.3.6 Tensor product decompositions in intersection cohomology

Going back to Theorem 4 consider a parameter ψ = ψ0 ⊕ · · · ⊕ ψr. We now
have a GSpin-valued Galois representation ρGSpin

ψ0,ι
by Theorem 5, yielding a Galois

representation σspin
ψ,ι := spin ◦ ρGSpin

ψ,ι (which is actually equal to the representation
σIH
ψ,ι found in intersection cohomology). For the other constituents of ψ, namely
ψi for i > 0, we only have GSpin-valued Galois representations ρGSpin

ψi,ι
, and thus

Galois representations σspin,ϵ
ψi,ι

:= spinϵ ◦ ρGSpin
ψi,ι

for both values of the sign ϵ, under
the assumption in Theorem 6. Otherwise we only have σspin,−

ψi,ι
:= σIH

1⊕ψ,ι. It turns
out that in the latter case the sign ui(ψ) appearing in Theorem 4 is always −1, so
this complication does not prevent us from proving in Theorem 7.1.3 that up to a
Tate twist the representation σIH

ψ,ι is isomorphic to

σspin
ψ0,ι
⊗ σspin,u1(ψ)

ψ1,ι
⊗ · · · ⊗ σspin,ur(ψ)

ψr,ι
.

This concludes the proof of our unconditional version of Kottwitz’ conjecture (Con-
jecture 1) for level one Siegel modular varieties.

1.4 Compactly supported cohomology

In Section 8 we finally come back to the Euler characteristics ec(An,Q,F(V ))

(1.0.1). Now that we have a precise description of intersection cohomology, it
is natural to try to express compactly supported cohomology in terms of inter-
section cohomology. For this purpose it turns out that there is no significant
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simplification to be gained from restricting to level one, so we work in arbitrary
level. Denote by (GSp2n,Xn) the Shimura datum corresponding to the Shimura
tower (An,K)K . We prove in Theorem 8.3.1 an explicit formula expressing, in a
suitable Grothendieck group of representations of GSp2n(Af ) × GalQ, the Euler
characteristic ec(GSp2n,Xn, V ) (1.3.3) in terms of (via parabolic induction)

1. the Euler characteristics eIH(GSp2n′ ,Xn′ , V ′) for n′ ≤ n and certain explicit
irreducible representations V ′ of GSp2n′,Qℓ ,

2. certain virtual representations e(GL1, a) (for a ∈ Z) of A×
f and e(2)(GL2, a, b)

(for a, b ∈ C satisfying a − b ∈ Z) of GL2(Af ), respectively related to alge-
braic Hecke characters Q×\A× → C× and (elliptic) modular forms (i.e. the
representations lim−→Γ

Sk(SL2(Z)) of GL2(Af )), see Example 8.1.6.

We now explain the steps that we take to arrive at Theorem 8.3.1. For a
connected reductive group G over Q with maximal split central torus AG and a
choice of maximal compact subgroupK∞ of G(R), to a finite-dimensional algebraic
representation V of G are associated local systems (in Q-vector spaces) F(V ) on
the locally symmetric spaces G(Q)\(G(R)/K∞AG(R)0 × G(Af )/K), where K

ranges over neat compact open subgroups of G(Af ). We denote

H i(G, V ) := lim−→
K

H i(G(Q)\(G(R)/K∞AG(R)0 ×G(Af )/K),F(V )),

an admissible representation of G(Af ) over Q, and

e(G, V ) :=
∑
i

(−1)i[H i(G, V )],

(in the Grothendieck group of admissible representations of G(Af ) over Q), and
similarly for H i

c(G, V ) and ec(G, V ). The cohomology groups H i(G, V ) may be
identified with direct sums of group cohomology groups for certain arithmetic sub-
groups of G(Q), and in many cases the compactly supported cohomology groups
H i
c(G, V ) can be expressed by duality using ordinary cohomology groupsH i(G, V ′)

(see Section 4.8.1). Our starting point is a formula in the other direction derived
from Morel’s work [Mor08] [Mor10] (see Corollary 4.8.16), which essentially ex-
presses eIH(GSp2n,Xn, V ) in terms (again, using parabolic induction) of

1. ec(GSp2n′ ,Xn′ , V ′) for n′ ≤ n and certain explicit irreducible representations
V ′ of GSp2n′,Qℓ ,
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2. ec(GLn′ , V ′) for n′ ≤ n and certain explicit irreducible representations V ′ of
GLn′,Q.

The appearance of parabolic induction is implicit in Morel’s work and we take
this opportunity to make it explicit in Section 4.8. For this purpose we found
convenient to introduce a new formulation for boundary cohomology, using a slight
generalization of the notion of Shimura datum and Shimura varieties (Appendix
C). This formulation incorporates arithmetic group cohomology and ℓ-adic étale
cohomology.

Our second step (Corollary 8.1.29) is to express the Euler characteristics ec(GLn′ , V ′)

in terms of the (simpler) virtual representations e(GL1, a) and e(2)(GL2, a, b). In
Section 8.1 we recall Franke’s filtration of the space of automorphic forms of a con-
nected reductive group G over Q [Fra98] and deduce (partially following Franke)
in Corollary 8.1.25 a formula expressing, in a suitable Grothendieck group of ad-
missible representations of G(Af ), the Euler characteristic e(G, V ) in terms of
Euler characteristics

e(2)(L,W ) :=
∑
i

(−1)i[lim−→
K

H i((l/aL, K∞,L),A2(L, ξ)⊗W )] (1.4.1)

for R-cuspidal Levi subgroups L of G, where

• l = C⊗R LieL(R) and aL = C⊗R LieAL(R),

• K∞,L is a maximal compact subgroup of L(R),

• W is a finite-dimensional representation of L(R) with central character ξ−1

on AL(R)0,

• A2(L, ξ) is the space of automorphic forms f for L satisfying f(z·) = ξ(z)f(·)
for z ∈ AL(R)0 and whose restriction to L(Q)\L(A)1 is square-integrable,
where L(A) = L(A)1 ×AL(R)0 is the usual decomposition.

For G = GLn′ any such Levi subgroup L is isomorphic to a product of GL1’s and
GL2’s, and we deduce the following formula.

Theorem 7 (Corollary 8.1.27). Let n ≥ 1. For a, b ∈ Z≥0 such that a + 2b = n

denote by La,b ≃ GLa1 ×GLb2 the corresponding standard Levi subgroup of GLn,
and let S(a, b) be the subset of Sn consisting of σ such that

1. σ−1(1) < · · · < σ−1(a),

21



2. σ−1(a+ 1) < σ−1(a+ 2), . . . , σ−1(a+ 2b− 1) < σ−1(a+ 2b),

3. σ−1(a+ 1) < σ−1(a+ 3) < · · · < σ−1(a+ 2b− 1).

(In other words S(a, b) parametrizes partitions of {1, . . . , n} into a singletons and
b unordered pairs.) Consider a dominant weight λ = (λ1 ≥ · · · ≥ λn) for GLn and
let

τ = (τ1 > · · · > τn) := λ+ ρ

so that τi = λi +
n+1
2
− i. For σ ∈ Sn denote σ(τ)i = τσ−1(i) and (σ · λ)i =

λσ−1(i) − σ−1(i) + i, i.e. σ · λ = σ(τ) − ρ. Using notation introduced in Example
8.1.6 (for e(GL1,−) and e(2)(GL2,−,−)) we have, in the weak Grothendieck group
Ktr

0 (Rep
adm
C (GLn(Af ))) of admissible complex representations of GLn(Af ) (see

Definition 4.8.13),

e(GLn, Vλ) =
∑

a+2b=n

(−1)a(a−1)/2
∑

σ∈S(a,b)

ϵ(σ)

Ind
GLn(Af )
La,b(Af )

( a⊗
i=1

e(GL1, (σ · λ)i + a+ 1)| · |(σ·λ)i+a+1−σ(τ)i
f

⊗
b⊗
i=1

e(2)(GL2, σ(τ)a+2i−1 − 1/2, σ(τ)a+2i + 1/2)
)

where Ind denotes normalized6 parabolic induction.

Using Poincaré duality we easily deduce a similar formula for ec(GLn′ , V ′) in
Corollary 8.1.29. Plugging this formula into the previous formula (Corollary 4.8.16)
and simplifying the resulting expression yields a formula for eIH(GSp2n,Xn, V ) in
terms of ec(GSp2n′ ,Xn′ , V ′), e(GL1, a) and e(2)(GL2, a, b) (Theorem 8.2.4).

The third and final step consists of inverting this relation in Section 8.3, to
obtain a (again, simplified) formula in the other direction.

Theorem 1.4.1 (Theorem 8.3.1). For an integer n ≥ 1, a dominant weight λ
for GSp2n and a prime number ℓ the Euler characteristic ec(GSp2n,Xn, Vλ), in
the weak Grothendieck group Ktr

0 (Rep
adm,cont
Qℓ (GSp2n(Af ) × GalQ)) of admissible

6This normalization is convenient because the image in Ktr
0 (RepadmC (GLn(Af ))) of such

parabolically induced representations do not depend on the choice of a parabolic subgroup (with
given Levi subgroup), but it introduces square roots of integers and is the reason for working
with complex (rather than rational) coefficients here. It is easy to check a posteriori that these
parabolically induced representations are naturally defined over Q.

22



continuous representations of GSp2n(Af )×GalQ (see Definition 4.8.13), is equal
to ∑

a,b≥0
a+2b≤n

∑
w∈W (a,b,n)

(−1)a+bϵ(w)

ind
GSp2n(Af )
Pa,b,n(Af )

(
e(2)
(
GLa1 ×GLb2, (w · λ)lin

)
⊗ eIH(GSp2(n−a−2b), V(w·λ)her)

)
.

where

• the subset W (a, b, n) of the Weyl group of GSp2n is defined at the beginning
of Section 8.3,

• Pa,b,n is the standard parabolic subgroup of GSp2n with Levi subgroup GLa1×
GLb2×GSp2(n−a−2b), and the subscript lin (resp. her) corresponds to project-
ing to the GLa1 ×GLb2 (resp. GSp2(n−a−2b)) factor,

• ind denotes (unnormalized) smooth parabolic induction.

Together with the special case of Kottwitz’ conjecture proved earlier (Theorem
4 and the tensor product decompositions explained in §1.3.6) this gives (in princi-
ple) an explicit formula for the Euler characteristics ec(An,Q,F(V )). Forgetting the
Hecke action and translating using the exceptional isomorphism PGSO4 ≃ PGL2

2,
we specialize this formula to the case of genus n ≤ 3 in Section 9.1 and finally
prove Theorem 3. In genus n > 3 some parameters ψ = ψ0 ⊕ · · · ⊕ ψr in Theorem
4 include even-dimensional components ψi of dimension ≥ 8, and their contri-
butions to intersection cohomology cannot be expressed as a contribution to the
representation S[k]ℓ of §1.2. In fact as n grows, and thus as r potentially grows, the
difference between these two virtual representations “increases”: not all parameters
ψ (with suitable infinitesimal character) contribute to S[k]ℓ (conditions recalled in
Theorem 7.2.1), and those that do contribute contribute, up to a Tate twist⊕

(ϵi)i∈{±1}r
σspin
ψ0,ι
⊗ σspin,ϵ1

ψ1,ι
⊗ · · · ⊗ σspin,ϵr

ψr,ι
,

whereas all parameters ψ contribute to intersection cohomology, but each con-
tributes only one tensor product (for ϵi = ui(ψ)).
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2 Notations and conventions

2.1 Class field theory

For a prime number p we denote by Frobp the geometric Frobenius element of
Gal(Fp/Fp). We normalize the reciprocity law in local class field theory by letting
the geometric Frobenius element correspond to a uniformizer (e.g. Frobp corre-
sponds to p). For a prime number ℓ we denote by χℓ the ℓ-adic cyclotomic character
of GalQ, so that for any prime p ̸= ℓ we have χℓ(Frobp) = p−1.

2.2 Reductive groups and root data

We use bold letters to denote reductive groups over global and local fields, and
normal letters for their Langlands dual groups, that we will consider defined over
Q.

Let n ≥ 0 be an integer and Λ a free Z-module of rank 2n endowed with a
non-degenerate (over Z) alternate bilinear form ⟨·, ·⟩. The first reductive group of
interest in this paper is the associated general symplectic group G (this notation is
only temporary), that is the reductive group over Z (in the sense of [Sgad, Exposé
XIX, Définition 2.7]) defined by G(SpecA) = {(g, s) ∈ GL(A⊗ZV )×A×|⟨g·, g·⟩ =
s⟨·, ·⟩}. Denote ν : G→ GL1, (g, s) 7→ s the similitude character. Let Jn be the n
by n “antidiagonal” matrix defined by (Jn)i,j = δi,n+1−j (Kronecker delta). There

exists a basis of Λ in which the matrix of ⟨·, ·⟩ is
(

0 Jn
−Jn 0

)
. This identifies

G with the subgroup GSp2n of the matrix group GL2n × GL1, the restriction
of the projection on the second factor being ν. Let Sp2n be the kernel of ν :

GSp2n → GL1. Let TGSp2n
be the diagonal split maximal torus in GSp2n, i.e.

the subgroup consisting of t = (diag(st1, . . . , stn, t
−1
n , . . . , t−1

1 ), s) where s and the
ti’s belong to GL1. We will sometimes simply denote such a t by (t1, . . . , tn, s), and
similarly denote characters and cocharacters for TGSp2n

by tuples of integers. The
set of simple roots associated to the upper triangular Borel subgroup of GSp2n

is {α1, . . . , αn} where αi(t) = ti/ti+1 for i < n and αn(t) = st2n. In particular
X∗(TGSp2n

) has a basis consisting of the simple roots α1, . . . , αn and (αn+ ν)/2 if
n > 0. If n = 0 then ν is a basis of X∗(TGSp2n

). Let TSp2n
= Sp2n∩TGSp2n

, a split
maximal torus of Sp2n whose group of characters admits as basis α1, . . . , αn−1, αn/2

if n > 0. We will sometimes need to consider symplectic and general symplectic
group on the dual side, so we denote Sp2n = Sp2n,Q, TSp2n = TSp2n,Q, etc.

The Langlands dual group ĜSp2n is known to be isomorphic to GSpin2n+1. We
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will need an explicit identification. Let SO2n+1 be the special orthogonal group
over Q defined by SO2n+1(R) = {M ∈ SL2n+1(R) | tMJ2n+1M = J2n+1}. Just
like for the symplectic group, this matrix realization is chosen so that the diag-
onal and upper triangular subgroups of SO2n+1 form a Borel pair, which we denote
(TSO2n+1 ,BSO2n+1). We write (z1, . . . , zn) for the element diag(z1, . . . , zn, 1, z−1

n , . . . , z−1
1 )

of TSO2n+1 . We realise SO2n+1 as the Langlands dual of Sp2n by identifying the
simple root αi with a simple coroot α̂i for (SO2n+1, TSO2n+1 ,BSO2n+1) as follows.
If i < n then α̂i(x) = (. . . , 1, x, x−1, 1, . . . ) where x is the i-th coefficient and all
but two coefficients are 1, and α̂n(x) = (1, . . . , 1, x2). Let Spin2n+1 be the sim-
ply connected cover of SO2n+1, and let TSpin2n+1

be the preimage of TSO2n+1 . The
cocharacter group X∗(TSpin2n+1

) equals ⊕ni=1Zα̂i and so an element of TSpin2n+1
can

be parametrized by an element (z1, . . . , zn) of TSO2n+1 along with s ∈ GL1 satisfying
s2 = z1 . . . zn. We will simply denote such an element of TSpin2n+1

by (z1, . . . , zn, s).
For n > 0 define GSpin2n+1 as the quotient of Spin2n+1×GL1 by the diagonal sub-
group µ2, and define GSpin1 = GL1. Let TGSpin2n+1

be the image of TSpin2n+1
×GL1,

so that for n > 0 its group of points over any algebraically closed extension of Q
is parametrized as{

(z1, . . . , zn, s, λ) ∈ GLn+2
1 | s2 = z1 . . . zn

}
/⟨(1, . . . , 1,−1,−1)⟩. (2.2.1)

The identification of GSpin2n+1 with the Langlands dual of GSp2n is given by
the above identification SO2n+1 ≃ Ŝp2n along with the identification of ν with the
cocharacter ν̂ of TGSpin2n+1

defined by ν̂(x) = (1, . . . , 1, 1, x) (in TSpin2n+1
×GL1).

For n ≥ 0 let Sp2n = Sp2n ×Z Q and TSp2n = TSp2n
×Z Q, allowing us to use

the parametrization above.
Finally for n ≥ 1 let O2n be the (schematic) stabilizer in GL2n of the quadratic

form

q : Z2n −→ Z

(x1, . . . , x2n) 7−→
n∑
i=1

xix2n+1−i

whose associated bilinear form (x, y) 7→ q(x + y) − q(x) − q(y) has Gram matrix
J2n. Let SO2n be the kernel of the Dickson morphism from O2n to the constant
group scheme Z/2Z over Z. Let TSO2n be the diagonal split maximal torus in
SO2n, identified to GLn1 via

(t1, . . . , tn) 7→ diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ). (2.2.2)
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The set of simple roots associated to the upper triangular Borel subgroup of SO2n

is {α1, . . . , αn} where αi(t) = ti/ti+1 for i < n and αn(t) = tn−1tn. The Langlands
dual group ŜO2n is isomorphic to SO2n := SO2n×ZQ, and again we shall need an
explicit identification. Letting (TSO2n ,BSO2n) be the diagonal and upper triangular
Borel pair in SO2n, it is easy to check that there is an isomorphism between ŜO2n

and SO2n under which αi ∈ X∗(TSO2n) corresponds to the coroot α∨
i ∈ X∗(TSO2n).

Let PGSO2n be the adjoint quotient of SO2n. The Langlands dual ̂PGSO2n is
thus identified to the simply connected cover Spin2n of SO2n. The preimage TSpin2n
of TSO2n in Spin2n is parametrized as{

(z1, . . . , zn, s) ∈ GLn+1
1

∣∣ s2 = z1 . . . zn
}
. (2.2.3)

As in the odd-dimensional case we define GSpin2n as the quotient of Spin2n×GL1

by the diagonally embedded µ2 (on the first factor, the kernel of the projection
Spin2n → SO2n). We have a morphism GSpin2n → SO2n which is trivial on
the second factor of Spin2n × GL1, and the points over any algebraically closed
extension of Q of the preimage TGSpin2n of TSO2n may be parametrized as in the
odd case (2.2.1) as{

(z1, . . . , zn, s, λ) ∈ GLn+2
1 | s2 = z1 . . . zn

}
/⟨(1, . . . , 1,−1,−1)⟩. (2.2.4)

For a group G as above we denote by StdĜ : Ĝ → GLN(Ĝ) the standard
representation of the dual group Ĝ.

3 The spectral side

3.1 Formal Arthur-Langlands parameters

Definition 3.1.1. Let H be a complex connected reductive group, and let h be its
Lie algebra. Let T be a maximal torus of H, t its Lie algebra. We call a semi-
simple H(C)-orbit in h C-algebraic if it is represented by an element of t belonging
to ρ + X∗(T ) where 2ρ ∈ X∗(T ) is the sum of the positive coroots (for the order
defined by some choice of Borel subgroup of H containing T ).

Definition 3.1.2. For n ≥ 1 and G = Sp2n, we denote by IC(G) the set of C-
algebraic regular semisimple Ĝ(C)-orbits in the Lie algebra ĝ ≃ so2n+1(C) of ĜC.
Using the parametrization of TSO2n+1 given in the previous section, these are exactly
the orbits of (w1, . . . , wn) ∈ Lie TSO2n+1 where w1 > · · · > wn > 0 are integers.
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For n ≥ 1 and G = SO2n, write θ for an outer automorphism of G induced by
an element of O2n(Z) of determinant −1. Let IC(G) be the set of C-algebraic
regular semisimple Ĝ(C)-orbits in ĝ which are not invariant under θ̂, and let
ĨC(G) be the set of {1, θ̂}-orbits in IC(G). More concretely these are the or-
bits of (w1, . . . , wn) ∈ Lie TSO2n where w1 > · · · > wn > 0 are integers. In order to
be able to treat both cases simultaneously we also denote ĨC(Sp2n) = IC(Sp2n).

For an integer m ≥ 1 a cuspidal automorphic representation π = ⊗′
vπv for

PGLm,Q, the infinitesimal character of π∞ may be seen as a semisimple conjugacy
class in slm(C), or equivalently (considering its eigenvalues) as a multiset of car-
dinality m (orbit in Cm under the symmetric group) {wi(π∞) | 1 ≤ i ≤ m}. We
say that π has level one, or is everywhere unramified, if for all primes p we have
π
PGLm(Zp)
p ̸= 0. We recall notation from [Taï17, p.275] For n ≥ 1 and a family

(wi)1≤i≤n satisfying wi ∈ Z and w1 > · · · > wn > 0 we let Oe(w1, . . . , wn) (resp.
Oo(w1, . . . , wn), resp. S(w1, . . . , wn)) be the set of self-dual level one cuspidal au-
tomorphic representations π for PGLm,Q such that π∞ has infinitesimal character
{±wi | 1 ≤ i ≤ n} (resp. {±wi | 1 ≤ i ≤ n} ⊔ {0}, resp. {±wi | 1 ≤ i ≤ n}). We
consider formal (unordered) finite sums ψ =

⊕
i∈I πi[di] of pairs (πi, di) where πi is

in one of these three sets (i.e. πi is a self-dual level one cuspidal automorphic rep-
resentations for PGLni,Q such that the eigenvalues of the infinitesimal character of
πi,∞ are distinct and either all integers or all in 1

2
+Z) and di ≥ 1 are integers. The

notation πi[di] (instead of (πi, di)) is meant to suggest the tensor product of the
conjectural Langlands parameter of πi with the irreducible di-dimensional repre-
sentation of SL2. To such a formal sum ψ we associate an “infinitesimal character”
which is the multiset of half-integers{

wj(πi,∞) +
dj − 1

2
− k

∣∣∣∣ i ∈ I, 1 ≤ j ≤ ni, 0 ≤ k ≤ di − 1

}
(3.1.1)

Definition 3.1.3. For n ≥ 1 and G = Sp2n or SO2n and τ̃ ∈ ĨC(G) we
let Ψ̃unr,τ̃

disc (G) denote the set of formal global Arthur-Langlands parameters ψ =

⊕i∈Iπi[di] for G which are unramified at all finite places and have infinitesimal
character equal to the image of τ̃ under the standard representation of ĝ. In par-
ticular this infinitesimal character is a genuine set, i.e. the terms in (3.1.1) are
distinct. Let Ψ̃unr,τ̃

disc,ne(G) be the subset of Ψ̃unr,τ̃
disc (G) consisting of all ψ as above for

which |I| = 1, i.e. ψ = π[d].

These sets Ψ̃unr,τ̃
disc (G) may thus be described combinatorially in terms of the

sets Oe(. . . ), Oo(. . . ) and S(. . . ) introduced above (see [Taï17, p.310] for more
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details). Note that general substitutes for discrete parameters were defined in
[Art13, §1.4] (see also the review in [Taï19, §2]. Note that the definition of the
present article differs from that of [Taï17]: we find it more convenient to use
infinitesimal characters τ in this article, whereas we used dominant weights λ for
G in loc. cit. The two simply differ by half the sum of the positive roots for G.

Remark 3.1.4. For n odd we always have Ψ̃unr,τ̃
disc (SO2n) = ∅: see [CR15, Proposi-

tion 3.6] or [Taï17, 3. p.309]. In particular the sets Oe(w1, . . . , wn) are empty for
all odd n and all integers w1 > · · · > wn.

Definition 3.1.5. Let H be a connected complex reductive group, T a maximal
torus of H.

1. Let φ : C× → H(C) be a continuous semisimple morphism. Up to conjugacy
by H(C) we may assume that φ takes values in T (C), and then we have

φ(z) = zτzτ
′
:= (z/|z|)τ−τ ′ |z|τ+τ ′

for uniquely determined τ, τ ′ ∈ C⊗CX∗(T ) ≃ LieT satisfying τ−τ ′ ∈ X∗(T ).
We call the H(C)-conjugacy class of τ the infinitesimal character of φ.

2. For a continuous semisimple morphism ψ : C× × SL2(C)→ H(C) we define
the infinitesimal character of ψ as that of

φψ : C× −→ H(C)
z 7−→ ψ(z, diag(|z|, |z|−1)).

These definitions are meant to be applied to the case where H = Ĝ for some
connected real reductive group G and φ (resp. ψ) is the restriction of a continuous
semisimple morphism WR → LG (resp. WR × SL2(C)→ LG).

Definition 3.1.6. 1. Let n ≥ 1, G = Sp2n or SO4n and τ̃ ∈ ĨC(G). For
ψ ∈ Ψ̃unr,τ̃

disc,ne(G), let Mψ be a group isomorphic to Ĝ, endowed with τψ a
semisimple conjugacy class in C ⊗Q LieMψ such that τψ maps to τ̃ (this
condition does not depend on the choice of an isomorphism Mψ ≃ Ĝ).

Write ψ = π[d] where π = π∞ ⊗ πf is a self-dual automorphic cuspidal
representation of a general linear group and d ≥ 1. Let ψ∞ : WR×SL2(C)→
Mψ(C) be a continuous morphism, bounded on WR and algebraic on SL2(C),
such that:
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• StdG ◦ ψ∞ : WR × SL2(C) → GLN(Ĝ)(C) is the localization of ψ at the
real place, that is the tensor product of the Langlands parameter of π∞
with the irreducible algebraic representation of SL2(C) of dimension d,

• the infinitesimal character of ψ∞ is τψ.

Such a ψ∞ exists and is unique up to conjugation by Mψ(C).

2. Let n ≥ 1, G = Sp2n or SO4n and τ̃ ∈ ĨC(G). For ψ = ⊕iψi ∈ Ψ̃unr,τ̃
disc (G),

let Mψ =
∏

iMψi, endowed with τψ = (τψi)i. Let ψ∞ : WR × SL2(C) →
Mψ(C) be the morphism ((ψi)∞)i, well-defined up to conjugation byMψ(C).
Let φψ∞ : WR →Mψ(C) be the composition of ψ∞ with the morphism WR →
WR × SL2(C), w 7→ (w, diag(|w|1/2, |w|−1/2)). By definition this parameter
has infinitesimal character τψ.

3. Let n ≥ 1, G = Sp2n or SO4n and τ ∈ IC(G). For ψ = ⊕iψi ∈ Ψ̃unr,τ̃
disc (G),

let ψ̇τ : Mψ → Ĝ be such that StdG ◦ ψ̇τ ≃ ⊕iStdψi and dψ̇τ (τψ) = τ (as
semisimple conjugacy classes in C ⊗Q ĝ). Then ψ̇τ is uniquely determined
up to composing with Ad(g) for some g ∈ Ĝ(Q), and ψ̇θ(τ) = θ̂ ◦ ψ̇τ .

Let Cψ̇τ = Cent(ψ̇τ , Ĝ), a subgroup 7 of the finite abelian 2-torsion group
Cψ̇τ◦ψ∞

. Then ψ̇τ induces an isomorphism Z(Mψ) → Cψ̇τ . In particular
any other choice of ψ̇τ yields a canonically isomorphic Cψ̇τ , and for this
reason we will often simply denote this group Cψ,τ . This also shows that in
the case where G = SO4n we have a canonical isomorphism between Cψ,τ
and Cψ,θ̂(τ). For this reason we will often simply write Cψ for Cψ,τ . Let
Sψ = Cψ/Z(Ĝ).

Note that the pair (Mψ, τψ) is well-defined up to an isomorphism which is
unique up to Mψ,ad(Q). Of course this is already the case for Mψ (without the
need for τψ) in the case where G = Sp2n.

In the setting of the third part of Definition 3.1.6 Arthur defined and element
sψ ∈ Cψ (see [Art13, §1.4]) and a character ϵψ of Sψ (see (1.5.6) loc. cit.).

Lemma 3.1.7. Let n ≥ 1, G = Sp2n (resp. SO4n), τ̃ ∈ ĨC(G) and ψ =

⊕i∈Iπi[di] ∈ Ψ̃unr,τ̃
disc (G). Let Ieven be the set of indices i ∈ I for which πi[di] is

even-dimensional (i.e. di is even or πi is an automorphic representation for GLni
where ni is even). The set I∖ Ieven has one element (resp. is empty). For i ∈ Ieven

7More precisely, it is a finite group scheme over Q, but we will abusively identify it with its
group of points over (any extension of) Q.
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let si ∈ Z(Mψ) =
∏

j Z(Mπj [dj ]) be the element which is trivial at all indices j ̸= i

and non-trivial at i.

1. The group Cψ, seen as a vector space over F2, admits (si)i∈Ieven as basis.

2. The element sψ is the product of si over all indices i ∈ I such that di is even.

3. We have

ϵψ(si) =
∏

j∈I∖{i}

ϵ(1/2, πi × πj)min(di,dj) =
∏

j∈I∖{i}
di ̸≡dj mod 2

ϵ(1/2, πi × πj)min(di,dj).

Proof. The first two assertions are clear, for the last one see [CR15, (3.10)] and
the following reference to [Art13, Theorem 1.5.3 (b)] therein.

3.2 Stabilization of the trace formula

We will use repeatedly the stabilization of the trace formula. We state special
cases that will be enough for our purposes.

For G a (connected) reductive group over Qp (resp. Q) and K a compact open
subgroup of G(Qp) (resp. G(Af )) we denote H(G(Qp)//K) (resp. H(G(Af )//K))
the Hecke algebra in level K with coefficients in Q. Also denote H(G(Qp))

(resp. Hf (G)) the direct limit over all compact open subgroups K (fixing a Haar
measure on G(Qp) resp. G(Af ) identifies elements of this Hecke algebra with
smooth compactly supported functions). For G connected reductive over Z denote
Hunr
f (G) = H(G(Af )//G(Ẑ)). For an extension F of Q we add a subscript F to

denote the analogous Hecke algebras with coefficients in F . For G connected reduc-
tive over R and K a maximal compact subgroup of G(R) denote H(G(R), K) the
Hecke algebra of smooth compactly supported bi-K-finite distributions on G(R).
When K plays no particular role we will often omit it from the notation. For G

connected reductive over Q denote H(G) = H(G(R))⊗Hf (G)C, and let I(G) be
the quotient of H(G) by the subspace of distributions all of whose orbital integrals
at semi-simple regular elements of G(Qv) vanish, for any place v of Q. Similarly
define SI(G) by considering stable orbital integrals instead. These quotients have
obvious local analogues I(G(Qv)) and SI(G(Qv)) at any place v. Finally for G

connected and reductive over Z we also denote Hunr(G) = H(G(R))⊗Hunr
f (G)C.

For a split reductive group G over Zp, recall that the Satake morphism [Sat63]
SatG is an isomorphism between H(G(Qp)//G(Zp))C and the C-algebra of in-
variant algebraic functions on the dual group Ĝ (a basis over C of this space
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of functions being given by traces in irreducible representations of Ĝ). Charac-
ters of this algebra are known to correspond to semi-simple conjugacy classes
in Ĝ(C). For example for n ≥ 1, τ̃ ∈ ĨC(SO4n) and ψ ∈ Ψ̃unr,τ̃

disc,ne(SO4n),
we have an associated O4n(C)-conjugacy class of unramified Arthur parameters
ψp : WQp/IQp×SL2(C)→ SO4n(C), and the image of (Frobp, diag(p1/2, p−1/2)) by ψ
defines a {1, θ̂}-orbit c̃p(ψ) of semisimple conjugacy classes in SO4n(C). Similarly,
for n ≥ 1, τ ∈ IC(Sp2n) and ψ ∈ Ψ̃unr,τ

disc,ne(Sp2n), we have an associated semisimple
conjugacy class cp(ψ) in SO2n+1(C). So for G = Sp2n or SO4n, τ ∈ IC(G) and
ψ ∈ Ψ̃unr,τ

disc (G) we have an associated orbit c̃p(ψ) of semisimple conjugacy classes in
Mψ under the product of the group of outer automorphisms of all even orthogonal
factors ofMψ.

Remark 3.2.1. As is used repeatedly in [Art13], note that the results of [JS81]
and [MW89] imply that (c̃p(ψ))p determines ψ (even if we discard finitely many
primes).

We now state the special cases of the stabilization of the trace formula that
we will use. Let G be a split reductive group over Z which is a quotient of
a product Gcl of groups isomorphic to SO2n and Sp2n. For τ ∈ IC(G) let
A2(G(Q)\G(A)/G(Ẑ))τ be the space of square-integrable automorphic forms8 of
level one which are eigenvectors for the infinitesimal character corresponding to τ .
Let IGdisc,τ be the linear form onHunr(G) given by the trace onA2(G(Q)\G(A)/G(Ẑ))τ
(by a famous theorem of Harish-Chandra, if K∞ is our chosen maximal compact
subgroup of G(R) then any isotypical component of A2(G(Q)\G(A)/G(Ẑ))τ for
some irreducible representation of K∞ is in fact finite-dimensional, so the trace we
are considering is simply that of an endomorphism of a finite-dimensional vector
space).

Consider endoscopic data e = (H,H, s, ξ) for G. For convenience we modify
slightly the definition in [KS99, §2.1]: instead of letting ξ be an embedding of H
in LG, we let H be a subgroup of LG and take ξ to be an isomorphism Ĥ → H.
We will mostly only need to consider elliptic endoscopic data which are unramified
at all finite places of Q. Using the explicit description of all endoscopic data for
special orthogonal and symplectic groups and Minkowski’s theorem on unramified
extensions of Q it is easy to see that such endoscopic data are obtained as follows:
s is a semisimple element of Ĝ whose image in Ĝcl has order 1 or 2, ξ(Ĥ) =

Cent(s, Ĝ)0 and H = ξ(Ĥ) × WF . (Not quite all of these give rise to elliptic
8The definition involves the maximal compact subgroup K of G(R), but we omit it from the

notation.
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endosopic data: the condition for ellipticity is that the connected centralizer of s in
Ĝcl should not have any factor SO2 except in factors of Ĝcl which are themselves
isomorphic to SO2.) Note in particular that any everywhere unramified elliptic
endoscopic datum for G is induced by one for Gad, that H is also split and is also
a quotient of a product of symplectic and split even special orthogonal groups.
Thus there is an obvious way to extend ξ to an isomorphism LH ≃ H, and we will
always use this L-embedding of LH into LG.

We fix a global Whittaker datum w for G, i.e. for a Borel pair (B,T) of
G (defined over Q, and we may even take it to be defined over Z), denoting
by U the unipotent radical of B and Uab its largest abelian quotient (a vector
group of dimension equal to the rank of G), w is a generic unitary character of
U(A)/U(Q). Denoting by Tad the image of T in the adjoint group of G, the group
T(Q) acts transitively on the set of such characters. Since Q× = {±1}×

⊕
p∈P p

Z,
we see that we may choose w such that for any prime number p, the localization
wp : U(Qp) → C× is compatible with the Zp-structure on GQp in the sense of
[CS80] (see also [Hal93, §7]). In fact we even see that we may also impose that w∞

lie in any given G(R)-orbit of Whittaker data for GR. The choice of w gives us,
for any endoscopic datum e = (H,H, s, ξ) for G and any choice of L-embedding
Lξ : LH ≃ H extending ξ, a decomposition of the (canonical) global transfer factor
into a product over all places of Q of normalized transfer factors [KS99, §5.3]. In
particular we have a notion of endoscopic transfer (§5.5 loc. cit.) from I(G) to
SI(H), which is the tensor product over all places of local transfers. Transfer is
known to exist in general (in the real case see [She08a] for the case of Schwartz
functions, [She12] for compactly supported functions, and [MW16a, §IV.3.4]), but
we will be mainly interested in particular cases where it is somewhat explicit.

At a finite place p of Q we will only use fp ∈ Hunr(GZp). In this case endoscopic
transfer is very explicit: it vanishes unless e is unramified. If this holds, then
transfer can be made explicit in terms of Satake transforms (this statement is the
version of the unramified fundamental lemma deduced in [Hal95] from the case
of the unit element for sufficiently large residual characteristic proved by [Ngô10],
[Wal06], [Wal08]). For global reasons we will only need the case where H is also
split, and so we recall the statement of the fundamental lemma only in this case.
Thus we may take the obvious embedding LH → LG. Choose a hyperspecial
compact open subgroup (equivalently, a reductive model of H over Zp) H(Zp) of
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H(Qp). We have a commutative diagram

O(Ĝ)Ĝ O(Ĥ)Ĥ

Hunr(GZp) Hunr(HZp)

I(G(Qp)) SI(H(Qp))

ξ∗

SatGZp ∼ SatHZp ∼

where the bottom horizontal map is endoscopic transfer.
At the Archimedean place of Q we will mainly (but not exclusively) use the

pseudo-coefficients fσ(g)dg for discrete series representations σ of G(R) given by
[CD90, Proposition 4, Corollaire]. It follows from the endoscopic character rela-
tions [She10] and [She79, Lemma 5.3] that a suitable linear combination of pseudo-
coefficients of discrete series representations of H(R) is a transfer of fσ(g)dg. In
particular the transfer always vanishes (in SI(HR)) if H(R) does not admit dis-
crete series. Note that Shelstad’s lemma also implies that pseudo-coefficients of
discrete series in the same L-packet have the same stable orbital integrals. We
denote by PC(G, τ) the (finite-dimensional) subspace of I(GR) spanned by the
pseudo-coefficients of discrete series representations having infinitesimal character
τ .

Recall from [Kot84b] that associated to an elliptic endoscopic datum e =

(H,H, s, ξ) for G is a positive rational number ι(e) = τ(G)τ(H)−1|Out(e)| (see
also [KS99, §2.1] for a definition of Out(e) with the formulation that we adopted
here). Since we will only need to consider groups G which are either split or inner
forms of split groups, we simply have τ(G) = |π0(Z(Ĝ))|, and similarly for H.

Theorem 3.2.2 (Specialization of the stabilization of the trace formula: split
case). For any group G as above, and any regular infinitesimal character τ , the
linear form SG

disc,τ recursively defined on Hunr(G) by

SG
disc,τ (f) = IGdisc,τ (f)−

∑
e

ι(e)
∑
τ ′ 7→τ

SH
disc,τ ′(f

′)

where the first sum ranges over all non-trivial elliptic endoscopic data e = (H,H, s, ξ)
for G which are unramified at every prime and the second sum ranges over semisim-
ple conjugacy classes in ĥ mapping to τ by the differential of ξ, is stable.

Proof. This is a special case of the stabilization of the trace formula (see Global
Theorem 2 and Lemma 7.3 (b) in [Art02]), refined by infinitesimal characters as
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in [MW16b, §X.5.2]. Note that in general the discrete part of the trace formula
contains terms other than the trace in the discrete spectrum, but since τ is regular
the τ -part of these other terms vanishes (see the argument on p. 268 of [Art89a]).
Note that any infinitesimal character τ ′ which maps to a regular τ is also regular.

We will also need a special case of the stabilization of the trace formula for
certain non-quasisplit groups. For the rest of this section G denotes an inner form
of PGSO4n which is split at all finite places of Q. (In this paper we will only need
the case where G(R) is compact, which occurs if and only if n is even.) The group
G admits a reductive model over Z (it may admit several non-isomorphic models
if G(R) is compact), and we fix such a model. We also fix a realization of G as
an inner form of PGSO4n, i.e. an isomorphism Ξ : PGSO4n,Q ≃ GQ such that
for any σ ∈ Gal(Q/Q) the automorphism c(σ) := Ξ−1σ(Ξ) is inner. In particular
this defines a 1-cocycle c ∈ Z1(Q,PGSO4n(Q)). Since the split group PGSO4n

is of adjoint type, the group PGSO4n(Q) acts transitively on the set of global
Whittaker data for PGSO4n. This (essentially unique) global Whittaker datum
for PGSO4n gives, for any endoscopic datum for G, a decomposition of the adelic
transfer factors as a product of local transfer factors: see [Kal, §4.4]. For any
prime number p, the image of c in H1(Gal(Qp/Qp),PGSO4n(Qp)) is trivial, and
this gives an isomorphism GQp ≃ PGSO4n, well-defined up to composition with
an inner automorphism. The local transfer factors at p for G are simply pulled
back from those for PGSO4n, in particular the transfer of unramified elements of
the Hecke algebra is given by the fundamental lemma as in the previous case.

Theorem 3.2.3 (Specialization of the stabilization of the trace formula: inner
forms case). For such a group G, for any f ∈ Hunr(G) we have

IGdisc,τ (f) =
∑
e

ι(e)
∑
τ ′ 7→τ

SH
disc,τ ′(f

′)

where the first sum ranges over all elliptic endoscopic data e = (H,H, s, ξ) for G

which are unramified at every prime.

Proof. This is deduced from the same references of the previous theorem, by the
same argument.

3.3 Even orthogonal groups and outer automorphisms

Lemma 3.3.1. For any n ≥ 1, letting G = SO4n+2, for any algebraic regular in-
finitesimal character τ for G which is not invariant under the outer automorphism
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of G, the linear form SG
disc,τ vanishes identically on Hunr(G).

Proof. Consider elliptic endoscopic data e = (H,H, s, ξ) for G which are unram-
ified at every finite place. We have H ≃ SO4a × SO4b+2 with a + b = n and
b ≥ 1. By induction on n and using the definition (Theorem 3.2.2), it is enough
to show that IGdisc,τ vanishes identically on Hunr(G), i.e. that there is no discrete
automorphic representation for G in level one and infinitesimal character τ . Now
this follows from Arthur’s multiplicity formula ([Art13, Theorem 1.5.2], see [Taï17,
Theorem 4.1.2] for the specialization to the everywhere unramified case) and the
fact that there are no parameters with the appropriate infinitesimal character (Re-
mark 3.1.4). Note that the multiplicity formula only describes the representations
occurring in the discrete spectrum up to outer automorphism (at all places in-
dependently, i.e.

∏
v Z/2Z-orbits), but this is enough to imply vanishing of IGdisc,τ

since it is the trace in a genuine representation.

Recall from [CR15, Lemmas 3.7 and 3.15] or [Taï17, pp.309–310] that for
G = Sp2n or SO4n, for any τ ∈ IC(G) and any ψ ∈ Ψ̃unr,τ̃

disc (G), the continuous
semisimple morphism ψ̇τ ◦ ψ∞ : WR × SL2 → Ĝ (well-defined up to conjugation)
is bounded on WR (essentially by Clozel’s purity lemma) and has C-algebraic in-
finitesimal character, thus it is an Adams-Johnson parameter (see [Kot90, p.194],
[Art89b, §5], [Taï17, §4.2.2]). Adams and Johnson [AJ87] attached a finite set
ΠAJ(GR, ψ̇τ ◦ψ∞) of irreducible unitary representations of G(R) to such a param-
eter, and since we have fixed a Whittaker datum for G, we also get a map from
ΠAJ(GR, ψ̇τ ◦ ψ∞) to the group of characters of the finite abelian 2-torsion group
Cψ̇τ◦ψ∞

/Z(Ĝ) (see the above-cited references for this formulation, which does not
appear in [AJ87]). This map will be denoted π 7→ ⟨·, π⟩. Moreover the linear form

f(g)dg 7→
∑

π∈ΠAJ(GR,ψ̇τ◦ψ∞)

⟨sψ, π⟩ tr(π(f(g)dg))

on I(GR), which we denote by ΛAJ
ψ̇τ◦ψ∞

, is stable, and the Adams-Johnson packet
satisfies endoscopic character relations. Adams-Johnson packets are closely related
to discrete series L-packets, and we recall part of that connection. Let φτ : WR →
Ĝ be a discrete Langlands parameter having infinitesimal character τ (such a
parameter exists and is unique up to conjugation by Ĝ). Recall from [Taï17, §4.2]
that there is a certain quasi-split twisted Levi subgroup L∗

ψ,τ of GR attached to
ψ̇τ ◦ ψ∞.
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Proposition 3.3.2. For any σ in the L-packet Π(GR, φτ ), denoting by fσ(g)dg a
pseudo-coefficient for σ, we have the following property. There exists exactly one
π ∈ ΠAJ(GR, ψ̇τ ◦ ψ∞) such that tr(π(fσ(g)dg)) ̸= 0, and for this π we have

tr(π(fσ(g)dg)) = ⟨sψ, π⟩(−1)q(L
∗
ψ,τ ).

Assume that ψ̇τ ◦ψ∞ and φτ are aligned, i.e. that the restrictions of ψ̇τ ◦φψ∞ and φτ
to C× take values in the same maximal torus of ĜC and have the same holomorphic
part (see Definition 3.1.6). This is always possible after conjugating by Ĝ(C), and
gives a canonical inclusion Sψ̇τ◦ψ∞

⊂ Sφτ . We then have ⟨·, π⟩ = ⟨·, σ⟩|Sψ̇τ ◦ψ∞ .
In particular we have ΛAJ

ψ̇τ◦ψ∞
(fσ(g)dg) = (−1)q(L∗

ψ,τ ).

Proof. This follows from Johnson’s resolution, see [Taï17, (4.2.1)], and the proof
of Proposition 3.2.5 in [Taï19]. Note that this goes back to [Kot90] and [Art89b],
although the normalization by Whittaker datum was not available at the time.

Recall that Arthur [Art13] also defined (in a more general setting) a packet
Π(GR, ψ̇τ ◦ ψ∞), which is a multi-set of θ-orbits of irreducible unitary representa-
tions of G, and also associated a character of Cψ̇τ◦ψ∞

/Z(Ĝ) to each elements of
this packet (all of this for more general parameters, and characterized via twisted
endoscopy for general linear groups). Again the linear form Λψ̇τ◦ψ∞

defined as
above on I(G)θ is stable, and endoscopic character relations are satisfied. The
main result of [AMR] is equivalent to the assertion that Λψ̇τ◦ψ∞

is the restriction
of ΛAJ

ψ̇τ◦ψ∞
to I(G)θ, which implies that the packets coincide and the associated

characters are equal. Note that in the orthogonal case where θ is not trivial, we
are assuming that τ is not fixed by θ̂ and so no element of ΠAJ(GR, ψ̇τ ◦ ψ∞) is
fixed by θ, i.e. each orbit in ΠAJ(GR, ψ̇τ ◦ ψ∞) consists of two elements which can
be distinguished by their infinitesimal character.

Lemma 3.3.3. Denote G = SO4n. Let τ ∈ IC(G) and ψ ∈ Ψ̃unr,τ̃
disc (G). Then

for any π∞ ∈ ΠAJ(GR, ψ̇τ ◦ ψ∞) such that ⟨·, π∞⟩|Sψ = ϵψ, there is a unique
family (c′p(G, ψ, π∞))p∈P of semisimple conjugacy classes in Ĝ such that for any
prime p the conjugacy class (c′p(G, ψ, π∞))p∈P belongs to the θ̂-orbit ψ̇τ (c̃p(ψ))
and the representation π∞ ⊗

⊗′
p πp of G(A), where each πp is unramified with

Satake parameter c′p(G, ψ, π∞), occurs in A2(G(Q)\G(A)). Moreover it occurs
with multiplicity one.

Proof. Of course this uses Arthur’s endoscopic classification [Art13, Theorem 1.5.2],
specialized to level one (see [Taï17, Lemma 4.1.1]). The parameter ψ does not have
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any odd-dimensional factor since τ is not invariant under θ̂, and so in the notation
of [Art13] we have mψ = 2. Arthur’s multiplicity formula (along with Remark
3.2.1) implies that there are exactly two irreducible representations π′ = π′

∞ ⊗ π′
f

occurring in A2(G(Q)\G(A)) such that π′
∞ ∈ {π∞, πθ∞} and π′

f is everywhere un-
ramified and at (almost) all prime numbers p its Satake parameter lies in ψ̇τ (c̃p(ψ)).
To conclude we only have to consider the global action of θ on A2(G(Q)\G(A))
by f 7→ (g 7→ f(θ(g))) which maps the isotypical spaces for an irreducible π′ to
that for π′θ.

Proposition 3.3.4. There exists a unique family (cp(ψ))ψ,p, where ψ ∈ Ψ̃unr,τ̃
disc,ne(SO4n)

for some n ≥ 1 and τ̃ ∈ ĨC(SO4n) and p ∈ P, such that:

• cp(ψ) is a semisimple conjugacy class inMψ which belongs to the {1, θ̂}-orbit
c̃p(ψ),

• for any n ≥ 1, any τ ∈ IC(SO4n), and any f(g)dg = f∞(g∞)dg∞
∏

p fp(gp)dgp ∈
Hunr(SO4n),

SSO4n
disc,τ (f(g)dg) =

∑
ψ∈Ψ̃unr,τ

disc (SO4n)

ϵψ(sψ)

|Sψ|
ΛAJ
ψ̇τ◦ψ∞

(f∞(g∞)dg∞)

×
∏
p

SatGZp
(fp(gp)dgp)(ψ̇τ (cp(ψ))).

Implicitly, we have written cp(ψ) for (cp(ψi))i for endoscopic ψ = ⊕iψi.

Proof. We proceed by induction on n. Denote G = SO4n. To simplify notation in
the proof we implicitly fix Haar measures on all groups that appear, thus identi-
fying smooth compactly supported distributions (e.g. f(g)dg) with functions (e.g.
f). We use the stabilization of the trace formula (Theorem 3.2.2):

IGdisc,τ (f) =
∑
e

ι(e)
∑
τ ′ 7→τ

SH
disc,τ ′(f

′)

where the sum is over the set of isomorphism classes of elliptic endoscopic data
e = (H,H, s, ξ) for G which are unramified at all finite places of Q. Therefore
H ≃ SO2a × SO2b with a + b = 2n and a, b ̸= 1. By the previous lemma, if a
and b are odd then the contribution of e is zero: in the above formula τ ′ is not
invariant under the non-trivial outer automorphism of any of the two factor of
H. Note that even without assuming that τ is not invariant under the non-trivial
outer automorphism, at least one of the two factors of τ ′ is not invariant.
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By the induction hypothesis, we have for all non-trivial e

SH
disc,τ ′(f

′) =
∑

ψ′∈Ψ̃unr,τ̃ ′
disc (H)

ϵψ′(sψ′)

|Sψ′|
Λψ̇′

τ ′◦ψ∞
(f ′

∞)×
∏
p

SatHZp
(f ′
p)(ψ̇

′
τ ′(cp(ψ

′)).

By the same argument as in the end of the proof of [Taï19, Theorem 4.0.1] (which
originates from [Kot84b, §11]) and using that Lξ ◦ ψ̇′

τ ′ = ψ̇τ for ψ = Lξ ◦ ψ′ and
τ = ξ(τ ′), we have∑

non-trivial e

ι(e)
∑
τ ′ 7→τ

SH
disc,τ ′(f

′) =
∑

ψ∈Ψ̃unr,τ
disc (G)

1

|Sψ|
∑

π∞∈Π(GR,ψ̇τ◦ψ∞)

tr(π∞(f∞)) (3.3.1)

∑
s∈Sψ , s ̸=1

ϵψ(ssψ)⟨ssψ, π∞⟩
∏
p

SatGZp
(fp)(ψ̇τ (cp(ψ)))

where the last sum is non-empty only if Sψ ̸= 1, so that it makes sense by induction
hypothesis. By Lemma 3.3.3 we have

IGdisc,τ (f) =
∑

ψ∈Ψ̃unr,τ̃
disc (G)

∑
π∈Πψ∞,τ (GR)
⟨·,π∞⟩|Sψ=ϵψ

tr(π∞(f∞))
∏
p

SatGZp
(fp)(c

′
p(G, ψ, π∞)).

So we obtain

SG
disc,τ (f) =

∑
ψ∈Ψ̃unr,τ̃

disc (G)

1

|Sψ|
∑

π∞∈Π(GR,ψ̇τ◦ψ∞)

tr(π∞(f∞)) (3.3.2)

∑
s∈Sψ

ϵψ(ssψ)⟨ssψ, π∞⟩
∏
p

SatGZp
(fp)(c

′
p(G, ψ, π∞))

−
∑

s∈Sψ , s ̸=1

ϵψ(ssψ)⟨ssψ, π∞⟩
∏
p

SatGZp
(fp)(ψ̇τ (cp(ψ)))


where, for convenience, for π∞ such that ⟨·, π∞⟩|Sψ ̸= ϵψ (which imposes Sψ ̸= 1)
we let c′p(G, ψ, π∞) = ψ̇τ (cp(ψ)). Note that for such π∞ the difference between
square brackets simply equals

ϵψ(sψ)⟨sψ, π∞⟩
∏
p

SatGZp
(fp)(ψ̇τ (cp(ψ))).

To conclude we have to show that:
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• For non-endoscopic ψ, in which case ψ̇τ : Mψ → Ĝ is an isomorphism,
c′p(G, ψ, π∞) does not depend on π∞ ∈ Πψ̇τ◦ψ∞

(GR), and in this case we are
forced to define cp(ψ) as the the preimage by ψ̇τ of the common value.

• For endoscopic ψ, for all π∞ we have c′p(G, ψ, π∞) = ψ̇τ (cp(ψ)). By definition
this already holds for π∞ such that ⟨·, π∞⟩|Sψ ̸= ϵψ.

Both cases will follow from stability of the distribution SG
disc,τ , but in the second

case we will need an additional piece of information (Lemma 3.3.5 below). We
know (see Remark 3.2.1) that for ψ1 ̸= ψ2, there exists a prime p, which one could
even take outside any given finite set, such that c̃p(ψ1)∩ c̃p(ψ2) = ∅. Thus for any
ψ ∈ Ψ̃unr,τ̃

disc (G), the summand in (3.3.2) corresponding to ψ is a stable linear form
in f ∈ Hunr(G).

• For a non-endoscopic ψ ∈ Ψ̃unr,τ̃
disc (G), the linear form on Hunr(G)

f =
∏
v

fv 7→
∑

π∞∈ΠAJ(GR,ψ̇τ◦ψ∞)

tr(π∞(f∞))⟨sψ, π∞⟩
∏
p

SatGZp
(fp)(c

′
p(G, ψ, π∞))

is stable. Recall the discrete parameter φτ : WR → LG having infinitesi-
mal character τ and the associated discrete series L-packet Π(GR, φτ ). By
Proposition 3.3.2, pseudo-coefficients f∞,σ of elements σ of this L-packet dis-
criminate between elements of ΠAJ(GR, ψ̇τ ◦ ψ∞). Since the stable orbital
integrals of f∞,σ at regular semisimple elements of G(R) do not depend on
the choice of σ in the L-packet9, we obtain that (c′p(G, ψ, π∞))p does not
depend on π∞.

• Now assume that ψ is an endoscopic parameter in Ψ̃unr,τ̃
disc (G). We can rewrite

the contribution of ψ in (3.3.2) as

ϵψ(sψ)

|Sψ|
∑

π∞∈ΠAJ(GR,ψ̇τ◦ψ∞)

⟨sψ, π∞⟩tr(π∞(f∞))
∏
p

SatGZp
(fp)(ψ̇τ (cp(ψ)))

+
∑

π∞∈ΠAJ(GR,ψ̇τ◦ψ∞)
⟨·,π∞⟩=ϵψ

tr(π∞(f∞))×

(∏
p

SatGZp
(fp)(c

′
p(G, ψ, π∞))

−
∏
p

SatGZp
(fp)(ψ̇τ (cp(ψ)))

)
9As recalled in Section 3.2 this follows from [She79, Lemma 5.3].
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and we need to show that the second term (last two lines) vanishes, i.e. that
for any π∞ satisfying ⟨·, π∞⟩ = ϵψ we have c′p(G, ψ, π∞) = ψ̇τ (cp(ψ)). The
above linear form in f is stable and so is the first term, therefore so is the
second term. As in the previous case we conclude using pseudo-coefficients
of discrete series, but now we also need the following lemma.

Lemma 3.3.5. For any ψ ∈ Ψ̃unr,τ̃
disc (G), there exists π∞ ∈ Π(GR, ψ̇τ ◦ ψ∞) such

that ⟨·, π∞⟩|Sψ ̸= ϵψ.

Proof. Recall that φτ denotes a discrete Langlands parameter having infinitesimal
character τ , and that if we align it (after conjugation by Ĝ) with ψ̇τ ◦ψ∞ then we
have Cφτ ⊂ Cψ̇τ◦ψ∞

and

{⟨·, σ⟩ |σ ∈ ΠAJ(GR, ψ̇τ ◦ ψ∞)} = {⟨·, σ⟩|Cψ̇τ ◦ψ∞ |σ ∈ Π(GR, φτ}.

Thus it is enough to show that for any s ∈ Sφτ ∖{1}, there are discrete series σ, σ′

such that ⟨s, σ⟩ ≠ ⟨s, σ′⟩. Given the explicit description on p. 315 of [Taï17], it is
enough to check the following combinatorial fact: if I+, I− are sets of cardinality
n, and ∅ ⊊ S ⊊ I+ ⊔ I−, then there are sets A+ ⊂ I+ and A− ⊂ I− such that
|A+| = |A−| and |S ∩ (A+ ⊔ A−)| is odd. This is easy: in fact we can also impose
|A+| = 1.

Corollary 3.3.6 (to Proposition 3.3.4). Fix n ≥ 1 and denote G = SO4n. For
τ ∈ IC(G) we have

A2(G(Q)\G(A)/G(Ẑ)) ≃
⊕

ψ∈Ψ̃unr,τ̃
disc (G)

(
χf ((ψ̇τ (cp(ψ)))p)⊗

⊕
π∞∈ΠAJ(GR,ψ̇τ◦ψ∞)

⟨·,π∞⟩|Sψ=ϵψ

π∞

)

where χf (c) : Hunr
f (G)→ C is the character corresponding to the family c of Satake

parameters in Ĝ.

Proof. This simply follows from going through the proof of Proposition 3.3.4 back-
wards.

3.4 Isogenies in level one and stabilization

In the Langlands-Kottwitz method applied to degree n Siegel modular varieties,
the reductive groups over Q appearing on the “spectral side” are GSp2n and some
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of its endoscopic groups G(SO4a×Sp2n−4a), which are only isogenous to classical
groups as considered in [Art13]. We need the analogue of the stable multiplic-
ity formula [Art13, Theorem 4.1.2] for these isogenous groups. Bin Xu [Xu17]
studied the refined local Langlands correspondence for GSp2n and GSO2n using
stabilization of trace formulas (and restriction). He also obtained a stable multi-
plicity formula in the tempered non-endoscopic case [Xu17, Theorem 1.8]. For the
purpose of completely describing the cohomology of local systems on Siegel mod-
ular varieties, this is unfortunately not enough. For local systems corresponding
to singular dominant weights, e.g. the trivial local system, it is also necessary to
consider non-tempered Arthur-Langlands parameters (or substitutes thereof). As
Xu explains after [Xu17, Theorem 1.8], non-tempered packets will certainly prove
more challenging. This is the main reason why we impose a “level one” condition,
i.e. consider the moduli stack An instead of an arbitrary Siegel modular variety.

Instead of [Xu17] we will give an ad hoc argument using an elementary lifting
result of Chenevier-Renard [CR15, Proposition 4.4] relating discrete automorphic
spectra in level one for isogenous split semisimple groups over Q. This result is con-
jecturally related (but is somewhat more precise) to properties of the quotient LZ of
the hypothetical Langlands group LQ of Q, namely its connectedness (Minkowski’s
theorem on unramified extensions of Q) and simple connectedness (see [CR15, Ap-
pendix B]). In Proposition 3.4.5 we will deduce from [CR15, Proposition 4.4] and
the relation between Adams-Johnson packets and discrete series packets an expan-
sion, involving certain families of lifts of Satake parameters, for the spectral side
of the trace formula for adjoint groups, restricted to pseudo-coefficients of discrete
series representations at the real place. Then we “stabilize” this lifting result using
arguments similar (but more intricate) to the arguments of the previous section.
Roughly, Proposition 3.4.7 says that the above lifted families of Satake parame-
ters only depend on the (formal) Arthur-Langlands parameter, and are compatible
with endoscopy.

First we recall a nice property of restriction of (g, K)-modules under restriction
via an isogeny.

Proposition 3.4.1. Let G → G′ be a morphism of connected reductive groups
over R having central kernel and such that its image contains G′

der. Let K be a
maximal compact subgroup of G(R), and let K ′ be the maximal compact subgroup of
G′(R) containing the image of K. Denote g = C⊗RLie(G) and g′ = C⊗RLie(G

′).
Let C = ker(G(R)→ G′(R)).

1. The restriction of an irreducible (g′, K ′)-module to (g, K) is semisimple, has
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finite length and is multiplicity-free.

2. If π is an irreducible (g, K)-module then there exists an irreducible (g′, K ′)-
module π′ such that π occurs in the restriction of π′ if and only if the re-
striction of the central character of π to C is trivial. Moreover the kernel
of Hom(G′(R),C×) → Hom(G(R),C×) acts transitively on the set of iso-
morphism classes of such π′, and if π is essentially discrete series and G′ is
semisimple then this set has at most one element.

3. To simplify the formulation assume that G′ is quasisplit, and fix a Whittaker
datum w for G, normalising Shelstad’s parametrization of L-packets [She10]
for both G and G′. Let φ′ : WR → LG′ be an essentially discrete parameter.
Let φ : WR → LG be the essentially discrete parameter obtained by composing
with LG′ → LG. We have an injection Sφ′ ⊂ Sφ and for any π′ ∈ Π(G′, φ′),

π′|G(R) ≃
⊕

π∈Π(G,φ)
⟨·,π⟩|Sφ′=⟨·,π′⟩

π.

Proof. Let CK = C ∩ K. Recall that K ′ is the group of g ∈ G′(R) normalising
K/CK such that for any (rational) character χ : G′ → GL1 we have χ(g)2 = 1.
In particular K/CK is a distinguished open subgroup of K ′, and it is well-known
that the quotient Q of K ′ by (K ′ ∩ Z(G′(R)))(K/CK) is naturally isomorphic
to the finite abelian 2-torsion group G′(R)/(Z(G′(R))G(R)/C). Now if π′ is an
irreducible (g′, K ′)-module, its restriction to (g, K) is finitely generated since Q is
finite, and so it admits an irreducible quotient π′|g,K ↠ π. Denoting by W the
kernel of this map, the subspace ∩k∈QkW is a proper submodule of the irreducible
π′, so π′|g,K embeds in

⊕
k∈Q π

k, which is clearly semisimple of finite length.
We are left to prove the multiplicity one statement. We use the same reduction

to the case of discrete series representations as in [Lan89].

1. If π′ is an essentially discrete series representation then the result is im-
plicit in [Lan89, §3] which deduces the classification of discrete series rep-
resentations from the case of connected semisimple Lie groups considered
by Harish-Chandra. Since we will need the details later, let us briefly give
the argument. Choose a maximal torus T in G which such that T(R) con-
tains a maximal torus of K, and let T′ be the unique maximal torus of G′

containing the image of T. In particular they are both stable under the
Cartan involutions defined by K and K ′. Let W := NG(C)(T)/T(C) =
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NG′(C)(T
′)/T′(C), Wc := NG(R)(T)/T(R) = NK(T)/(T(R) ∩K) and W ′

c :=

NG′(R)(T
′)/T′(R) = NK′(T′)/(T′(R) ∩K ′). Then Wc is a normal subgroup

of W ′
c, which is a subgroup of W . If we fix a Borel subgroup B′ of G′

C con-
taining T′

C then essentially discrete series (g′, K ′)-modules are parametrized
by infinitesimal character, central character (with a compatibility condition;
these two parameters correspond to the Langlands parameter) and an el-
ement of W ′

c\W , which can be read on Harish-Chandra’s formula for the
restriction of the trace character to T′(R). (The essential points in Lang-
lands’ argument to classify essentially discrete series are the fact that the
obviously injective map W ′

c/Wc → Q is also surjective, which simply follows
from the fact that maximal tori in K are all conjugated under K0, and the
well-known fact that G(R) is connected if G is semisimple and simply con-
nected.) From this description it is easy to observe that fixing B′ as above
and given an essentially discrete Langlands parameter φ′ : WR → LG′, the
restriction of the (g′, K ′)-module corresponding to the coset W ′

cw
′ ∈ W ′

c\W
to (g, K) is the direct sum of the essentially discrete modules corresponding
to the Langlands parameter φ : WR → LG, obtained by composing φ′ with
LG′ → LG, and all |W ′

c/Wc| cosets Wcw ∈ Wc\W mapping to W ′
cw

′.

The case of essentially tempered modules follows, using the following classifi-
cation results. Let π′ be an essentially tempered irreducible (g′, K ′)-module.
Up to twisting by a character of G′(R) we may assume that its central char-
acter is unitary. By [Tro77] (see also [Lan89, Lemma 4.10] or [Wal88, Propo-
sition 5.2.5]) there exists a parabolic subgroup P′ of G′ such that, letting M′

be the unique Levi factor which is stable under the Cartan involution corre-
sponding to K ′ and denoting K ′

M′ = K ′ ∩M′(R), there exists an irreducible
essentially discrete series (m′, K ′

M′)-module with unitary central character
σ′ such that π′ embeds in the parabolically induced (g′, K ′)-module IndG′

P′ σ′

(which is semisimple by unitarity, and known to have finite length). Let P

(resp. M) be the preimage of P′ (resp. M′) in G and KM = K∩M(R). From
the previous case we know that the restriction of σ′ to (m′, K ′

M′) is isomorphic
to the direct sum of irreducible non-isomorphic (m, KM)-modules σ1, . . . , σr.
Thus the restriction of IndG′

P′ σ′ to (g, K) is isomorphic to
⊕

i Ind
G
Pσi. As

observed in [Lan89] it is implicit in Harish-Chandra’s work that for j ̸= i,
IndG

Pσi and IndG
Pσj have no constituent in common. More precisely, if they

had a consitutent in common then any isomorphism between the two con-
stituents would extend to an isomorphism between the associated irreducible
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unitary representations of G(R), which are constituents of the L2 induced
unitary representations IndG

P σ̂i and IndG
P σ̂j, where σ̂i is the irreducible uni-

tary representation of M(R) obtained by completing σi for the essentially
unique Hermitian inner product making it unitary. But the Plancherel for-
mula proved in [HC76] allows one to construct, for any irreducible repre-
sentation δ of K, a bi-K-finite Schwartz function on G(R) acting by 0 on
IndG

P σ̂i and as the projector on the δ-isotypic component on IndG
P σ̂j (using

Corollary 26.1 and Lemma 26.1 loc. cit., the argument being similar to the
one in §37 loc. cit.). Finally, thanks to [Kna82] we know that each IndG

Pσi is
multiplicity-free, and so the restriction of

Finally the case of arbitrary irreducible (g′, K ′)-modules follows from the
essentially tempered case and Langlands’ classification (Lemmas 3.14 and 4.2
in [Lan89]). More precisely, π′ is the unique irreducible quotient of IndG′

P′ σ′

for an irreducible essentially tempered (m′, K ′
M′)-module σ′ whose central

character satisfies a certain positivity condition with respect to P′. By the
previous case we have σ′|m,KM

≃
⊕r

i=1 σi with σi ̸≃ σj if i ̸= j, and so we
have an isomorphism (IndG′

P′ σ′)|m,KM
≃
⊕r

i=1 Ind
G
Pσi (essentially because the

natural map P(R)\G(R) → P′(R)\G′(R) is a homeomorphism) and thus
a surjective morphism

⊕r
i=1 Ind

G
Pσi ↠ π′|g,K . Since the right-hand side is

semisimple, this map factors through the Langlands quotients of all IndG
Pσi,

which are irreducible and non-isomorphic (g, K)-modules. (In fact we see
that π′|g,K is the direct sum of these Langlands quotients since K ′

M′ acts
transitively on the set of σi’s.)

2. The “only if” condition is obvious.

First assume that G → G′ is surjective. The the map g → g′ is also sur-
jective, and K ′/CK is an open, and thus finite index, subgroup of K ′. In
particular if the central character of π is trivial on C then the existence of
π′ is easy: at least one irreducible factor of the induction of π to a (g′, K ′)-
module works. Now fix such a (g′, K ′)-module π′, and let Q′′ be the stabilizer
of the isomorphism class of π under the action of Q (by conjugation). Let
K ′′ be the preimage of Q′′ in K ′. By the previous point we know that the
restriction of π′ to (g′, K ′′) is multiplicity-free, and this shows that there is a
unique factor π′′ of this restriction whose restriction to (g, K) is isomorphic
to π. We also see that π′ is isomorphic to the induction of π′′ to a (g′, K ′)-
module. If G′ is semisimple and admits discrete series then K ′ ∩ Z(G′(R))
is contained in K/CK and so Q = K ′/(K/CK); if moreover π is essentially
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discrete series then we see from the previous point that Q′′ is trivial and so
π′ is unique up to isomorphism. In general (but still assuming that G→ G′

is surjective) if π′
♭ is another (g′, K ′)-module such that π occurs in its restric-

tion, then the restriction of π′
♭ to (g′, K ′′) contains a unique irreducible π′′

♭ in
which π′ occurs, and by irreducibility of π there exists a unique continuous
character χ of K ′′/(K/CK) such that π′′

♭ is isomorphic to π′′ ⊗ χ. Let χ̃ be
a character of K ′ extending χ. Such a character exists because K ′/(K/CK)

is a compact abelian group and K ′′/(K/CK) is an open subgroup. Then π′
♭

is isomorphic to π′ ⊗ χ̃.

Without assuming that G→ G′ is surjective, we can apply the above to the
surjective morphism G×Z(G′)0 → G′. The details of this reduction are left
to the reader.

3. It only remains to reformulate part of the proof of the first point in terms
of dual groups. Let B be the Borel subgroup of GC containing TC corre-
sponding to the choice of w (B has the property that all simple roots of T
in B are non-compact, and is well-defined up to conjugation by K). Denote
(B, T ) (resp. (B′, T ′)) the Borel pair which is part of the pinning used to
form LG (resp. LG′). Using B (and its image in G′) we obtain compatible
identifications T ≃ T̂ and T ′ ≃ T̂′. Up to conjugating by Ĝ′ we can assume
that φ′ is in diagonal and dominant position with respect to the Borel pair
(B′, T ′) in Ĝ′. We have a commutative diagram

Wc\W ker(H1(R,T)→ H1(R,G)) S∧
φ

W ′
c\W ker(H1(R,T′)→ H1(R,G′)) S∧

φ′

∼

∼

where the left horizontal bijections are given by cl(g) 7→ (σ 7→ g−1σ(g)) (see
[She79, Theorem 2.1]) and the right horizontal maps are obtained by Tate-
Nakayama duality (see [Kot86]). The two horizontal compositions define the
maps Π(G, φ)→ S∧

φ and Π(G′, φ′)→ S∧
φ′ .

Note that the third point could easily be generalized to non-quasisplit groups
using [Kal16, §5.4], and one could certainly prove a similar restriction formula
for arbitrary irreducible (g′, K ′)-modules by following Shelstad’s and Kaletha’s
arguments closely.

45



Also observe that the uniqueness property in the second point is particular to
the discrete series: for example the trivial representation of G(R), which is an
Adams-Johnson representations, can be extended into more than one character of
G′(R).

We will nonetheless apply this indirectly to Adams-Johnson representations.
Recall that standard modules form a basis of the Grothendieck group K0(g, K) of
finite length (g, K)-modules ([Wal88, Corollary 5.5.3]). Using this basis one can
project to the subgroup (freely) generated by irreducible (g, K)-modules in the
discrete series. This projection that we denote prDS is also computed by taking
the trace on all pseudo-coefficients for discrete series. The proof of Proposition
3.4.1 immediately implies the following lemma.

Lemma 3.4.2. Let G → G′ be a morphism between connected reductive groups
over R as in Proposition 3.4.1 (i.e. an isogeny). Then restriction of (g′, K ′)-
modules to (g, K) intertwines the maps prDS for G and G′.

Lemma 3.4.3. If G = Sp2n (resp. SO4n), τ ∈ IC(G) and Ψ̃unr,τ̃
disc (G) ̸= ∅, then

τ belongs to IC(Gad), i.e. it is C-algebraic for Gad. Concretely, using notation as
in Definition 3.1.2, this means that writing τ as the class of w1 > · · · > wn > 0

(resp. (w1 > · · · > w2n > 0)), the integer
∑n

i=1wi−n(n+1)/2 (resp.
∑2n

i=1wi−n)
is even.

Proof. See [Taï17, Remark 4.1.6] and [CR15, Proposition 1.8] (and its proof p. 42
loc. cit.).

Proposition-Definition 3.4.4. Let n ≥ 1, G = Sp2n or SO4n, τ ∈ IC(G). Let
ψ ∈ Ψ̃unr,τ̃

disc (G). Let Mψ,sc be the simply connected cover of Mψ.

1. Let ψ̇τ : Mψ → Ĝ be as in Definition 3.1.6. There exists a unique ψ̇τ,sc :

Mψ,sc → Ĝsc lifting ψ̇τ . Thus, like ψ̇τ , the lift ψ̇τ,sc is well-defined up to
conjugation by Ĝ.

2. For ψ∞ as in Definition 3.1.6, there exists ψ∞,sc : WR × SL2 → Mψ,sc lift-
ing ψ∞, unique up to multiplication by an element of Z1(WR, ker(Mψ,sc →
Mψ)).

3. The centralizer Cψ̇τ,sc◦ψ∞,sc
of ψ̇τ,sc ◦ ψ∞,sc in Ĝsc is abelian and stays un-

changed if we multiply ψ∞,sc by an element of Z1(WR, ker(Mψ,sc →Mψ)). In
particular the limits (over the choices described above) Cψ∞,sc := limCψ̇τ,sc◦ψ∞,sc

and Cψ,sc := limCψ̇τ,sc are naturally isomorphic to any one of their terms,
and Cψ,sc ⊂ Cψ∞,sc.
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4. The centralizer Cψ̇τ,sc of ψ̇τ,sc in Ĝsc is equal to ψ̇τ,sc(Z(Mψ,sc)). For this
reason we often simply denote it Cψ,sc. In particular the (obviously injective)
map Cψ,sc/Z(Ĝsc)→ Sψ is surjective.

Proof. 1. This follows from [BT72, Proposition 2.24 (i)].

2. The discussion around Lemma 4.2.2 in [Taï17] completely describes Adams-
Johnson parameters for an arbitrary connected semisimple group H over R
admitting discrete series representations. Let (BĤ, TĤ) be the Borel pair of
Ĥ used to define LH. For any C-algebraic regular infinitesimal character,
represented by a strictly dominant (for BĤ) τ ∈ ρ∨

Ĥ
+ X∗(TĤ), and any

standard parabolic subgroup Q = LN of Ĥ such that the opposite parabolic
is conjugated to Q by an element of Ĥ ⋊ j and ⟨τ, α⟩ = 1 for any simple
root of T in the Levi factor L, there exist Adams-Johnson parameters having
this infinitesimal character and associated parabolic subgroup of Ĥ, and the
set of such parameters is a torsor under Z(L)/{t2 | t ∈ Z(L)}. Moreover all
Adams-Johnson parameters for H are obtained in this way. Thus an Adams-
Johnson parameter admits a lift along the dual of a central isogeny H→ H′

if and only if we have τ − ρ∨
Ĥ

belongs to the finite index subgroup X∗(TĤ′)

of X∗(TĤ). The statement thus follows from Lemma 3.4.3.

3. This follows from a general property of Adams-Johnson parameters: their
centralizer is contained in the 2-torsion of a maximal torus.

4. The centralizer Cψ̇τ,sc in Ĝsc is obviously contained in the preimage of the
centralizer Cψ̇τ in Ĝ, so this follows from the equality ψ̇τ (Z(Mψ)) = Cψ̇τ
(see Definition 3.1.6).

Proposition 3.4.5. Let n ≥ 1, G = Sp2n or SO4n, and τ ∈ IC(Gad). Let δ′ ∈
Π(Gad,R, φ

′
τ ) and let f∞ be a pseudo-coefficient for δ′. Let

∏
p fp ∈ Hunr

f (Gad)C,
and f = f∞

∏
p fp. Then we have

IGad
disc,τ (f) =

∑
ψ∈Ψ̃unr,τ̃

disc (G)

⟨·,δ′⟩|Sψ=ϵψ

ϵψ(sψ)(−1)q(L
∗
ψ,τ )
∏
p

SatGad,Zp
(fp)(c

′
p,sc(G, ψ, δ

′))

where L∗
ψ,τ is the quasi-split twisted Levi subgroup of G associated to the Adams-

Johnson parameter ψ̇τ ◦ ψ∞, and c′p,sc(G, ψ, δ′) is a uniquely determined semisim-
ple conjugacy class in Ĝsc(C) lifting the semisimple conjugacy class ψ̇τ (cp(ψ)) in

47



Ĝ(C). (Note that the condition on ⟨·, δ′⟩|Sψ in the sum makes sense thanks to 4.
in Proposition-Definition 3.4.4.)

Proof. Fix a maximal compact subgroup K∞ of G(R) and denote K ′
∞ the corre-

sponding maximal compact subgroup of Gad(R). The pseudo-coefficient f∞ selects
(g, K ′

∞)-modules having infinitesimal character τ . Arthur’s multiplicity formula for
G in level one and infinitesimal character τ (as refined in Corollary 3.3.6 in case
G = SO4n) reads

A2(G(Q)\G(A)/G(Ẑ))τ ≃
⊕

ψ∈Ψ̃unr,τ̃
disc (G)

⊕
π∞∈X(ψ)

π∞ ⊗ χf
(
(ψ̇τ (cp(ψ)))p

)

whereX(ψ) is the subset of Πψ̇τ◦ψ∞
(GR) consisting of those π∞ such that ⟨·, π∞⟩|Sψ =

ϵψ. Reformulating [CR15, Prop. 4.4], and using Remark 3.2.1, we obtain that for
any ψ ∈ Ψ̃unr,τ̃

disc (G) there are uniquely determined objects as follows:

1. a set X ′(ψ) of unitary irreducible admissible (g, K ′
∞)-modules and a surjec-

tive map X(ψ)→ X ′(ψ) such that for any π′
∞ ∈ X ′(ψ),

π′
∞|(g,K∞) ≃

⊕
π∞∈X(ψ)
π∞ 7→π′

∞

π∞,

2. for each π′
∞ ∈ X ′(ψ), semi-simple conjugacy classes c′p,sc(G, ψ, π′

∞) in Ĝsc

lifting ψ̇τ (cp(ψ)),

such that

A2(Gad(Q)\Gad(A)/Gad(Ẑ))τ ≃
⊕

ψ∈Ψ̃unr,τ̃
disc (G)

⊕
π′
∞∈X′(ψ)

π′
∞ ⊗ χf

(
(c′p,sc(G, ψ, π

′
∞))p

)
.

We now compare prDS on X(ψ) and X ′(ψ). Let φτ : WR → Ĝ be a discrete
Langlands parameter having infinitesimal character τ and aligned (see Proposition
3.3.2) with ψ̇τ ◦ ψ∞. Since τ ∈ IC(Gad) there is a unique lift φ′

τ : WR → Ĝsc.
Recall from Proposition 3.3.2 that the Adams-Johnson packet attached to ψ̇τ ◦ψ∞

occasions a partition of Π(GR, φτ ):

Π(GR, φτ ) =
⊔

π∞∈ΠAJ(GR,ψ̇τ◦ψ∞)

Y (ψ̇τ ◦ ψ∞, π∞)
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such that whenever δ ∈ Y (ψ̇τ ◦ ψ∞, π∞) we have ⟨·, δ⟩ = ⟨·, π∞⟩|Sψ̇τ ◦ψ∞ , and for
any π∞ ∈ ΠAJ(GR, ψ̇τ ◦ ψ∞) we have, in the Grothendieck group K0(g, K∞),

prDS(π∞) = ⟨sψ, π∞⟩(−1)q(L
∗
ψ,τ )

∑
δ∈Y (ψ̇τ◦ψ∞,π∞)

δ. (3.4.1)

In particular the supports of prDS(π∞) (as π∞ varies in ΠAJ(GR, ψ̇τ ◦ ψ∞)) are
disjoint, and the sign in (3.4.1) is the same for all elements ofX(ψ). By Proposition
3.4.1 (uniqueness in 2.), Lemma 3.4.2 and Remark 3.2.1 this implies that the
supports of prDS(π

′
∞), as π′

∞ varies in X ′(ψ′), are also disjoint so that we have a
partition of a subset of Π(Gad,R, φ

′
τ ):⊔

π′
∞∈X′(ψ)

Y ′(ψ, π′
∞) ⊂ Π(Gad,R, φ

′
τ ),

determined by ⊕
δ′∈Y ′(ψ,π′

∞)

δ′|(g,K∞) ≃
⊕

π∞∈X(ψ)
π∞ 7→π′

∞

⊕
δ∈Y (ψ̇τ◦ψ∞,π∞)

δ.

Since ⊔
π∞∈X(ψ)

Y (ψ̇τ ◦ ψ∞, π∞) =
{
δ ∈ Π(GR, φτ )

∣∣ ⟨·, δ⟩|Sψ = ϵψ
}

we also have, by 3. in Proposition 3.4.1,⊔
π′
∞∈X′(ψ)

Y (ψ, π′
∞) =

{
δ′ ∈ Π(Gad,R, φ

′
τ )
∣∣ ⟨·, δ′⟩|Sψ = ϵψ

}
.

By (3.4.1) and the definition of X(ψ), for any π′
∞ ∈ X ′(ψ) we have

prDS(π
′
∞) = ϵψ(sψ)(−1)q(L

∗
ψ,τ )

∑
δ′∈Y ′(ψ,π′

∞)

δ′.

We conclude by letting c′p,sc(G, ψ, δ′) = c′p,sc(G, ψ, π
′
∞) for δ′ ∈ Y ′(ψ, π′

∞).

We now show that these lifted Satake parameters c′p,sc(G, ψ, δ∞) do not depend
on π∞ and are compatible with endoscopy.

Lemma 3.4.6. Let Gcl be a group isomorphic to a product of copies of Sp2n’s and
SO4n’s. Let G be a quotient of Gcl by a (finite) central subgroup. The natural map
from everywhere unramified elliptic endoscopic data for G to everywhere unrami-
fied elliptic endoscopic data for Gcl is surjective, and induces a bijection between
sets of isomorphism classes. Moreover when e maps to ecl we have ι(e) = ι(ecl).
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Proof. We have seen in Section 3.2 that everywhere unramified elliptic endoscopic
data for G arise from certain elements s ∈ Ĝ such that s2 maps to 1 ∈ Ĝcl. With
this description surjectivity and bijectivity are clear.

Now assume that e maps to ecl. Recall that for an endoscopic datum e =

(H,H, s, ξ) for G we have ι(e) = τ(G)τ(H)−1|Out(e)|. Since G is split we have
τ(G) = |π0(Z(Ĝ))|, and similarly for H, so τ(G)τ(H)−1 is equal to the correspond-
ing quotient for ecl. The natural morphism Out(e) → Out(ecl) is an isomorphism
(this is a general fact which does not use the fact that our groups are split or that
the endoscopic data are everywhere unramified).

We can now state and prove the main result of this section, which is a stable
analogue of [CR15, Proposition 4.4].

Proposition 3.4.7. There is a unique family (cp,sc(ψ))ψ,p, for p a prime number
and ψ ∈ Ψ̃unr,τ

disc,ne(G) for some G = SO4n or Sp2n, τ ∈ IC(G), such that:

1. cp,sc(ψ) is a semisimple conjugacy class in Mψ,sc(C) lifting cp(ψ).

2. For an endoscopic parameter ψ = ⊕iψi define cp,sc(ψ) = (cp,sc(ψi))i, a
semisimple conjugacy class in Mψ,sc(C). Let G be a product of groups
Sp2n’s and SO4n’s, and G′ a quotient of by a central subgroup. Then
for any τ ∈ IC(G′), the following expansion for the linear form SG′

disc on
PC(G′

R, τ) ⊗ Hunr
f (G′)C holds: if f∞ is a pseudo-coefficient for some dis-

crete series representations of G′(R) with infinitesimal character τ , and∏
p fp ∈ Hunr

f (G′)C, we have

SG′

disc(f∞
∏
p

fp) =
∑

ψ∈Ψ̃unr,τ
disc (G)

ϵψ(sψ)(−1)q(L
∗
ψ,τ )

|Sψ|
∏
p

SatG′
Zp
(fp)(ψ̇τ,sc(cp,sc(ψ)))

(3.4.2)

Proof. The proof is similar to that of Proposition 3.3.4, only slightly more compli-
cated. We show by induction on N ≥ 0 that there is a unique family (cp,sc(ψ))ψ,p
for ψ ∈ Ψ̃unr,τ̃

disc,ne(G) for some G of dimension ≤ N , such that (3.4.2) is satisfied for
G of a product of groups of dimension ≤ N .

The case N = 0 is obvious. Assume that the induction hypothesis is satisfied
for some N ≥ 0. Let G = SO4n or Sp2n be of dimension N + 1. By Proposition
3.4.5 and a calculation using the stabilization of the trace formula (Theorem 3.2.2)
similar to (3.3.1) in Proposition 3.3.4 (i.e. essentially a special case of Kottwitz’
stabilization of the spectral side of the trace formula; the calculation really is
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almost identical by Lemma 3.4.6 and the last point of Proposition-Definition 3.4.4),
we have, for any τ ∈ IC(Gad), δ∞ a discrete series representation of Gad(R) having
infinitesimal character τ , f∞ a pseudo-coefficient for δ∞ and

∏
p fp ∈ Hunr

f (Gad)C,

SGad
disc,τ (f) =

∑
ψ∈Ψ̃unr,τ

disc (G)

(−1)q(L∗
ψ,τ )

|Sψ|∑
s∈Sψ

ϵψ(ssψ)⟨ssψ, δ∞⟩
∏
p

SatGad,Zp
(fp)(c

′
p,sc(G, ψ, δ∞))

−
∑

s∈Sψ , s ̸=1

ϵψ(ssψ)⟨ssψ, δ∞⟩
∏
p

Sat(fp)(ψ̇τ,sc(cp,sc(ψ)))


where c′p,sc(G, ψ, δ∞) is defined in Proposition 3.4.5 if ⟨·, δ∞⟩|Sψ = ϵψ, and for con-
venience we define c′p,sc(G, ψ, δ∞) = ψ̇τ,sc(cp,sc(ψ)) otherwise (using the induction
hypothesis). Note that since we are only considering pseudo-coefficients of discrete
series at the real place, we know that the only relevant endoscopic groups (those
for which the transfer of f does not vanish in SI(H)) are everywhere unramified
and have discrete series at the real place (avoiding the analogue of Lemma 3.3.1,
although it does hold true). Note also that these relevant endoscopic groups for
Gad are quotients of products of groups of the form SO4m or Sp2m which are not
adjoint in general, which is why it is necessary to include arbitrary quotients by
central subgroups in the induction hypothesis.

We know that f 7→ SGad
disc,τ (f) is a stable linear form on PC(Gad,R, τ)⊗Hunr

f (Gad),
and by the same argument as in the proof of Proposition 3.3.4 using Remark 3.2.1
we deduce that the contribution of each ψ in the summand above is itself stable.
If ψ is not endoscopic, by the same argument as in the proof of Proposition 3.3.4
we see that stability implies that c′p,sc(G, ψ, δ∞) does not depend on the choice of
δ∞ in its L-packet, and this defines cp,sc(ψ). If ψ is endoscopic, we also conclude
as in Proposition 3.3.4, using Lemma 3.3.5 in the even orthogonal case and the
analogue in the symplectic case, which is obvious since H1(R,Sp2n) is trivial. We
obtain that for ψ ∈ Ψ̃unr,τ̃

disc,endo(G), for any δ∞ such that ⟨·, δ∞⟩|Sψ = ϵψ, we have
c′p,sc(G, ψ, δ∞) = ψ̇τ,sc(cp,sc(ψ)), and (3.4.2) for Gad.

To conclude the proof of Proposition 3.4.7 we now have to check (3.4.2) for G
a product of Sp2n’s and SO4n’s each of dimension ≤ N + 1 and G′ any quotient
of G by a central subgroup. Since we now have (3.4.2) for Gad and its endoscopic
groups, using one more time the stabilization of the trace formula for Gad and
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the analogue of (3.3.1) as above, we obtain a weak Arthur multiplicity formula for
Gad: for any τ ∈ IC(Gad) and any f ∈ PC(Gad,R, τ)⊗Hunr

f (Gad) we have

IGad
disc,τ (f) =

∑
ψ∈Ψ̃unr,τ̃

disc (G)
⟨·,δ∞⟩|Sψ=ϵψ

ϵψ(sψ)(−1)q(L
∗
ψ,τ )
∏
p

SatGad,Zp
(fp)(ψ̇τ,sc(cp,sc(ψ))).

Another application of [CR15, Proposition 4.4] applied to G′ → Gad, along with
Lemmas 3.4.2 and 3.4.3, shows that a similar weak multiplicity formula holds
with Gad replaced by G′. Finally, (3.4.2) for G′ is a consequence of this weak
multiplicity formula, again by the same argument using the stabilization of the
trace formula for G′ and the analogue of (3.3.1).

Corollary 3.4.8 (Weak multiplicity formula). Let G̃∗ be either Sp2n or SO4n

and let (G,Ξ, c) be an inner form of G∗ := G̃∗
ad (see Section 3.2) which is split at

all finite places of Q. Fix a reductive model of G over Z (see [Gro96, Proposition
1.1]). Let τ ∈ IC(G) := IC(G∗), let δ∞ be a discrete series representation of G(R)
having infinitesimal character τ and f∞ be a pseudo-coefficient for δ∞. Associated
to the localization (GR,ΞR, cR) and δ∞ is a character ⟨·, δ∞⟩ of Sφτ (we reviewed
the construction in detail in [Taï17, §4.2.1] and [Taï19, §3.2.1]), which we may
restrict to Sψ̇τ◦ψ∞

after aligning the two parameters (see Proposition 3.3.2). Then
for any

∏
p fp ∈ Hunr

f (G)C we have

IGdisc,τ (f∞
∏
p

fp) =
∑

ψ∈Ψ̃unr,τ
disc (G̃∗)

⟨·,δ∞⟩|Sψ=ϵψ

ϵψ(sψ)(−1)q(L
∗
ψ,τ )
∏
p

SatGZp
(fp)(ψ̇τ,sc(cp,sc(ψ))).

(3.4.3)

Proof. For G = G∗ this was proved in the proof of Proposition 3.4.7. For arbitrary
G the formula follows from the stable expansion (3.4.2) for all relevant elliptic
endoscopic groups of G and the stabilization of the trace formula for G (Theorem
3.2.3).

Example 3.4.9. A special case that will be useful in Section 6 is when G is
the inner form of PGSO8n which is split at all finite places and anisotropic at
the real place. For example a model of G over Z is then given by PGSO(q)

(defined as in [Con14, §C.3]) where q is the quadratic form on the even unimodular
lattice E⊕n

8 . For such a group any τ ∈ IC(G) determines a unique (and finite-
dimensional!) discrete series representation π∞ of the compact connected group
G(R), so that in this case (3.4.3) really is a multiplicity formula. Let us make
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explicit the character ⟨·, π∞⟩ of Sφτ , omitting the details which may be found in
[Taï19, Example 3.2.3]. We identify Ĝ with Spin8n and use notation as in Section
2.2. Up to conjugation by Spin8n(C) we may assume φτ (C×) ⊂ TSpin8n(C) and that
φτ is dominant. Then Cφτ is the group of (z1, . . . , z4n, s) ∈ TSpin8n(C) satisfying
zi ∈ {±1} and

∏4n
i=1 zi = 1 (i.e. s ∈ {±1} as well). The character ⟨·, π∞⟩ of Cφτ

is (z1, . . . , z4n, s) 7→ z1z3 . . . z4n−1.

Proposition 3.4.10. Let G = Sp2n (resp. SO4n) for n ≥ 1, and let δ = n(n+1)/2

(resp. n). Then for any τ ∈ IC(G) and any ψ ∈ Ψ̃unr,τ
disc (G) there exists a finite

extension E of Q in C such that for any prime p, the semisimple conjugacy class
pδ/2ψ̇τ,sc(cp,sc(ψ)) in GSpin2n+1(C) (resp. GSpin4n(C)) is defined over E, i.e. its
trace in any algebraic representation belongs to E.

Proof. First recall that pδ/2ψ̇τ,sc(cp,sc(ψ)) being defined over E is equivalent to the
unramified representation π(ψ̇τ,sc(cp,sc(ψ))) of Gad(Qp) corresponding to ψ̇τ,sc(cp,sc(ψ))
being defined over E: see §2.2, 5.2 and 5.3 of [BG14] (using the central extension
GSp2n → PGSp2n resp. GSO4n → PGSO4n). Moreover it is easy to check that
this rationality property is compatible with endoscopy: if ψ = ⊕iψi and each ψi
satisfies the rationality property, then so does ψ. Without loss of generality, we
may therefore assume that ψ is non-endoscopic, i.e. ψ ∈ Ψ̃unr,τ̃

disc,ne(G).
It should possible to deduce the rationality property from [ST14, Corollary

2.18]. However this deduction does not seem completely obvious to us, so we may
as well adapt the argument (which goes back to [Wal85] and [Clo88, §3.5]). Below
we will also sketch an alternative argument using “only” the trace formula.

LetKad be a maximal compact subgroup of Gad(R), and let V be the irreducible
algebraic representation of Gad(R) having infinitesimal character −τ . Note that
it is defined over Q, i.e. it originates from an algebraic representation of Gad. By
[Art89a, Lemma 2.2.] summing (3.4.3) over all discrete series representations δ∞
having infinitesimal character τ gives

(−1)q(GR)

2q(GR)∑
i=0

(−1)i tr

(∏
p

fp

∣∣∣∣∣H i
(
g, Kad,A2(Gad(Q)\Gad(A)/Gad(Ẑ))⊗ V

))
(3.4.4)

=
∑

ψ∈Ψ̃unr,τ
disc (G̃)

Nψϵψ(sψ)(−1)q(L
∗
ψ,τ )
∏
p

SatGZp
(fp)(ψ̇τ,sc(cp,sc(ψ)))

where Nψ is the number of discrete series representations δ∞ of Gad(R) in the
L-packet corresponding to τ which satisfy ⟨·, δ∞⟩|Sψ = ϵψ. For a non-endoscopic ψ
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we have Sψ = 1 and so Nψ is positive. Using Remark 3.2.1 this implies that the
unramified representation of Gad(Af ) corresponding to (ψ̇τ,sc(cp,sc(ψ)))p occurs in

lim−→
Kf

H i(g, Kad,A2(Gad(Q)\Gad(A)/Kf )⊗ V )

for some i, where the limit is over compact open subgroups of Gad(Af )
10. The

weighted cohomology groups of [GKM97] for the group Gad, neat level Kf , coef-
ficient system corresponding to V and the upper middle weight profile are vector
spaces over Q with a Hecke algebra action, which by [Nai99, Corollary B] give a
rational structure to these (g, Kad)-cohomology groups. This concludes the proof
of the proposition.

Alternatively to prove the proposition one could use Arthur’s L2 Lefschetz trace
formula [Art89a], which provides another expansion for (3.4.4). Let us sketch
the argument. First one checks that the geometric side of this trace formula is
rational if the Hecke operators take only rational values, i.e. if we have

∏
p fp ∈

Hunr
f (Gad). Choosing a rational Haar measure on Gad(Af ), i.e. one giving rational

measure to any compact open subgroup, it is easy to see that that orbital integrals
of rational Hecke operators at semisimple elements are rational: it follows from
Harish-Chandra’s lemma recalled in [Taï17, §3.1.2] that these orbital integrals are
rational linear combinations of values of the Hecke operator under consideration.
Using the formula for Tamagawa numbers, a comparison of Haar measures [Gro97,
Theorem 9.9] and rationality of the L-function of the motive that Gross associated
to Gad (Proposition 9.5 loc. cit.), one gets that the elliptic terms of the geometric
side are rational. The rationality of the other (“parabolic”) terms on the geometric
side is proved similarly, starting from the expression [Taï17, (3.3.1)] and using
a formula for ΦM given on p.300 loc. cit., noting that the potentially irrational
factor δ1/2P is compensated by a similar factor in the normalized constant term of
the Hecke operator. To conclude the proof of the proposition, apply Lemma 3.4.11
below to the virtual representation of Hunr

f (Gad)C appearing in (3.4.4).

Lemma 3.4.11. Let A be a unital associative algebra over Q, and let
∑

i∈I λi[Vi, ρi]

be an element of the Grothendieck group of finite-dimensional representations of
C⊗QA, where I is finite, λi ∈ Z∖{0} and ρi : C⊗QA→ EndC(Vi) are irreducible
finite-dimensional pairwise non-isomorphic representations. Assume that for any
a ∈ A we have

∑
i∈I λi tr ρi(a) ∈ Q. Then for any i ∈ I there exists a finite

extension Ei/Q in C and a representation Wi of Ei⊗QA such that Vi is isomorphic
to C⊗Ei Wi.

10We could consider only level Gad(Ẑ) but that would require dealing with orbifolds . . .
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Proof. By the Artin-Wedderburn theorem the map C ⊗Q A →
∏

i∈I EndC(Vi) is
surjective and so ∩i∈I ker ρi is equal to{

a ∈ C⊗Q A

∣∣∣∣∣ ∀b ∈ C⊗Q A,
∑
i∈I

λi tr ρi(ab) = 0

}
.

This equality and the assumption imply that we have ∩i∈I ker ρi = C⊗Q J where
J is the ideal of A defined by

J =

{
a ∈ A

∣∣∣∣∣∀b ∈ A,∑
i∈I

λi tr ρi(ab) = 0

}
.

We may replace A by A/J , which has finite dimension over Q. The Jacobson
radical R of A is a nilpotent ideal, so C⊗QR is a nilpotent ideal of the semi-simple
algebra C ⊗Q A, and so we have R = 0, i.e. A is semi-simple and applying the
Artin-Wedderburn theorem again, we have A ≃

∏
k∈KMnk(Dk) where K is finite

and Dk is a finite-dimensional division algebra over Q. If E/Q is a finite extension
of Q in C splitting all the Dk’s then it is clear that any irreducible representation
of C⊗Q A is defined over E.

3.5 Non-semisimple groups

In this paper we will be mainly interested in GSp2n and its endoscopic groups.
We now justify that we can reduce to their (semisimple) quotients by GL1. For
a connected reductive group G over Q which is not semisimple (i.e. such that the
connected center Z of G is a non-trivial torus), to formulate the trace formula and
its stabilization for G it is convenient to fix a closed subgroup Z of Z(A) such that
ZZ(Q) is a closed subgroup of Z(A) and ZZ(Q)\Z(A) is compact. We shall only
need two cases: Z = AG(R)0 or Z = Z(A). It is also necessary to fix a unitary
character χ of Z which is trivial on Z ∩ Z(Q). Since G(A) = AG(R)0 ×G(A)1

where
G(A)1 = {g ∈ G(A)|∀δ : G→ GL1, |δ(g)| = 1}

we can reduce by twisting to the case where χ|AG(R)0 = 1. Fix a maximal compact
subgroup K∞ of G(R). The volume of ZG(Q)\G(A) is finite and we can consider
the space of χ-equivariant automorphic forms on G(Q)\G(A) which are square-
integrable modulo Z, denoted A2(G, Z, χ), and for τ a semisimple conjugacy class
in ĝ we can consider the eigenspace A2(G, Z, χ)τ for the character of the center of
the enveloping algebra of g = C⊗LieG(R) corresponding to τ . When Z intersects
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Z(R) non-trivially there is an obvious necessary condition relating χ and τ for this
subspace to be non-zero. There is a decomposition

A2(G, Z, χ)τ ≃
⊕

π∈Πdisc(G,Z,χ)

π⊕m(π)

where Πdisc(G, Z, χ, τ) is a countable set of isomorphism classes of irreducible
admissible unitarizable (g, K∞) × G(Af )-modules π = π∞ ⊗ πf such that the
restriction to Z of the central character of π is χ and π∞ has infinitesimal character
τ , and m(π) ∈ Z≥1. Only finitely many elements of Πdisc(G, Z, χ, τ) have non-zero
invariants under any given open subgroup of G(Af ). The contribution of the
discrete spectrum to the discrete (sic) part IG,Z,χdisc,τ (f(g)dg) of the spectral side of
the trace formula for (G, Z, χ) and fixed infinitesimal character τ is then∑

π∈Πdisc(G,Z,χ,τ)

m(π) trπ(f(g)dg)

which clearly factors through f(g)dg 7→ fZ,χ(g)dḡ where dḡ is the quotient Haar
measure dg/dz on G(A)/Z and fZ,χ(g) :=

∫
Z
χ(z)f(zg)dz is χ−1-equivariant,

smooth and compactly supported modulo Z and bi-K∞-finite. DenotingH(G, Z, χ)
the space of χ−1-equivariant, smooth, compactly supported modulo Z and bi-K∞-
finite distributions on G(A), the map H(G) → H(G, Z, χ), f(g)dg 7→ fZ,χ(ḡ)dḡ

is easily seen to be surjective. Denote I(G, Z, χ) and SI(G, Z, χ) the quotients of
Hcal(G, Z, χ) obtained by considering orbital integrals and stable orbital integrals
at regular semisimple elements. We do not recall the other contributions to the
discrete part of the trace formula, since they do not play any role in the present
article (as recalled in the “proof” of Theorem 3.2.2 these other contributions vanish
if τ is regular).

One can easily compare the linear forms IG,Z,χdisc,τ for varying Z. For the two cases
in which we are interested (Z = AG(R)0 or Z(A)) we have

I
G,AG(R)0,χ
disc,τ (f(g)dg) =

∑
χ′

I
G,Z(A),χ′

disc,τ (f(g)dg) (3.5.1)

where the sum is over all characters χ′ extending χ. For a given level (i.e. compact
open subgroup Kf of G(Af ) under which f is bi-invariant) only finitely many χ′

may have a non-zero contribution on the right-hand side of (3.5.1). The special case
which is relevant for this paper is for G a reductive group over Z (this implies Z =

AG) and level G(Ẑ), then there is at most one χ′ such that the corresponding term
in (3.5.1) may be non-zero, since AG(A) = AG(R)0AG(Q)AG(Ẑ). In particular
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if χ = 1 then only χ′ = 1 may have a non-vanishing contribution. Moreover for
any R ∈ {Q,Qv,Zp,A} the morphism G(R)→ (G/AG)(R) is surjective and it is
easy to check that

I
G,AG(A),1
disc,τ (f) = I

G/AG

disc,τ (fAG(A),1).

Note that this reduction is compatible with the Satake isomorphism: the integra-
tion map i : Hunr(GZp)→ Hunr((G/AG)Zp) is surjective and satisfies Sat(G/AG)Zp

(i(f))(c) =

SatGZp
(f)(ι(c)) where ι is the natural map L(G/AG)→ LG (or rather the induced

injection from Ĝ/AG-conjugacy classes to Ĝ-conjugacy classes).
A similar reduction to semisimple groups holds for the stabilization of the trace

formula, replacing Idisc,τ by Sdisc,τ above. The proof is an obvious induction using
the fact that AH = AG if H is an elliptic endoscopic group of G.

4 Intersection cohomology of A∗n
In this section we first recall definitions from [Mor08]: Siegel modular varieties
An,K , automorphic ℓ-adic étale sheaves FK(V ), Hecke correspondences, arith-
metic minimal compactificationsAn,K ↪→ A∗

n,K , intermediate extensions ICK(V ) of
FK(V ) (over Fp for p ̸= ℓ, the case considered in [Mor08], or Q) and the canonical
extension of Hecke correspondences. We check that the specialization isomorphism
between cohomology groups over Fp and Q provided by [Str12] (see also [LS18]
and [LS]) is compatible with Hecke operators. We will use general facts about
cohomological correspondences gathered in Appendix A.

We then recall the main result from [Mor08], that is the computation of the
“intersection cohomology groups” H•((An,K)Fp , IC

K(V )), for K an open compact
subgroup of GSp2n(Af ) of the form Kp × GSp2n(Zp), as a Hecke and Galois
module, in terms of the stabilization of the trace formula for certain elliptic en-
doscopic groups of GSp2n. Combined with results of the previous section, in
the case K = GSp2n(Ẑ) we obtain an endoscopic formula for these modules in
terms of Arthur’s substitute parameters for Sp2n and the lifted Satake parame-
ters of Proposition 3.4.7 (an unconditional reformulation of Kottwitz’ conjecture
in [Kot90]).

We conclude this section with Corollary 4.8.18, essentially saying that the Ga-
lois modules considered above have crystalline semisimplification, which will be
used in Galois representation-theoretic arguments in the next section. To this end
we prove Corollary 4.8.16 relating intersection and compactly supported cohomol-
ogy. This relation will be further simplified (in both directions) in Sections 8.2
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and 8.3.

4.1 Siegel modular varieties

First we recall definitions from [Mor08]. Fix an integer n ≥ 0 and a free Z-module
Λ of rank 2n endowed with a non-degenerate (over Z) alternate bilinear form ⟨·, ·⟩.
Let G be the associated general symplectic group (see Section 2.2), a reductive
group over Z.

For M ≥ 3 and integer we consider the functor An,M from the category of
schemes over Z[1/M ] to the category of sets defined as follows: An,M(S) is the set
of isomorphism classes of quadruples (A, λ, η, c) where A is an abelian scheme of
constant dimension n, λ is a principal polarization of A, η : Λ/MΛ

S
≃ A[M ] is an

isomorphism of finite étale commutative group schemes and c : Z/MZ
S
≃ µM,S

are such that the following diagram commutes:

Λ/MΛ× Λ/MΛ
S

Z/MZ
S

A[M ]× A[M ] µM,S

η×η

⟨·,·⟩

c
(4.1.1)

where the bottom horizontal map is the Weil pairing induced by λ. If n > 0

then c is determined by η and is thus redundant. This functor is representable
by a smooth quasi-projective scheme over Z[1/M ] (see [MF82], [Lan13, Corollary
1.4.1.12]) which we still denoteAn,M . There is a natural free action of G(Z/MZ) on
the right ofAn,M , by precomposition of η. ForM ′ ≥M divisible byM the forgetful
functor An,M ′ → An,M ×Z[1/M ] Z[1/M ′] is finite étale, Galois with Galois group
naturally identified to K(M)/K(M ′) where K(M) := kerG(Ẑ)→ G(Z/MZ).

More generally, if K is an open compact subgroup of G(Af ), there is a finite
set of primes S such that K = KS

∏
p ̸∈S G(Zp), one can consider an analogous

moduli problem (as a category fibered in groupoids over the category of schemes
over Z[1/M ], where M =

∏
p∈S p), which is a smooth Deligne-Mumford stack over

Z[1/M ] (see [Lan13, Theorem 1.4.1.11]). If K is neat (in the sense of [Pin90, §0]),
as is the case if K = K(M) with M ≥ 3, then An,K (here we suppress S from the
notation) is a quasi-projective scheme over Z[1/M ] (see [Lan13, Corollary 7.2.3.10],
as well as [Kot92, §5]). The action of G(Z/MZ) on An,M and the forgetful functor
considered above also generalize, as follows. Suppose that K ′, K are open compact
subgroups of G(Af ), choose S as above suitable for both K and K ′ and suppose
that g ∈

∏
p∈S G(Qp) ×

∏
p ̸∈S G(Zp) is such that K ′ ⊂ gKg−1. Then there is
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a finite étale morphism TK′,g,K : An,K′ → An,K of constant degree |gKg−1/K ′|,
which only depends on g via K ′gK (see [Mor08, §1.1], [Kot92, §6]; note that the
construction of TK′,g,K is more natural once the moduli problem is reformulated in
a more flexible manner using quasi-isogenies: see [Lan13, §1.3.8 and §1.4.3]). If K ′

is normal in K then TK′,1,K is a Galois cover which realizes An,K as the quotient
of An,K′ by K/K ′. We have TK′,g,K ◦ TK′′,h,K′ = TK′′,hg,K when this makes sense.

In the present paper we are particularly interested in the “level one” Siegel
modular variety An := An,G(Ẑ), a smooth Deligne-Mumford stack over Z. There
is no need to rely on the general theory of stacks however, since everything can
be formulated using G(Z/MZ)-equivariant objects on An,M , varying M in a finite
set so that SpecZ[1/M ] cover SpecZ.

For the purpose of introducing the cocharacter µ below, let us recall the usual
description of the orbifold An,K(C) as a double quotient. For simplicity we only re-
call the case of a principal level structureK(M). It is well-known that a principally
polarized abelian variety (A, λ) over C is canonically determined by

• LieA, a vector space over C of dimension n,

• Γ := H1(A(C),Z), a lattice in LieA such that A(C) ≃ LieA/Γ, and

• B : Γ × Γ → Z(1) := 2
√
−1πZ = ker(exp) an alternating perfect pairing

(coming from the polarization λ) such that the pairing (v, w) 7→
√
−1B(v,

√
−1w)

on the real vector space ΓR = LieA is symmetric positive definite (this con-
dition does not depend on the choice of

√
−1).

There exists η0 : Λ ≃ Γ and c0 : Z ≃ Z(1) making the following diagram commute.

Λ× Λ Z

Γ× Γ Z(1)

η0×η0

⟨·,·⟩

c0

B

(4.1.2)

Clearly (η0, c0) is unique up to the action of G(Z) (by precomposition on η0 and
multiplication by the similitude factor on c0), and c0 is determined by η0 if n > 0.
Transporting the complex structure on LieA = ΓR via η0 we get an R-algebra mor-
phism h : C→ End(ΛR) such that for z ∈ C× we have h(z) := (h(z), |z|2) ∈ G(R).
It turns out that h is induced by a (unique) algebraic morphism ResC/R(GL1,C)→
GR that we abusively still denote h. The G(R)-conjugacy class of h does not de-
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pend on (A, λ). Denote X the set of G(R)-conjugates of h, a hermitian symmetric
space with two connected components 11.

We now give a direct (without referring to abelian varieties) construction of
an element h0 ∈ X . Choose (J, 1) ∈ G(R) such that J2 = −1 and the symmetric
bilinear form (v, w) 7→ ⟨v, Jw⟩ on ΛR is either positive definite or negative definite.
Choose i ∈ C such that i2 = −1, thereby giving ΛR a complex structure: i acts
by J . Define h0(z) ∈ G(R) to be (multiplication by z, |z|2). The complex vector
space ΛR is equipped with a hermitian form H : (v, w) 7−→ ⟨v, Jw⟩ − i⟨v, w⟩
which is either positive definite or negative definite. Choose a decomposition of
the Hermitian space (ΛR, H) as a direct orthogonal sum of n lines (Lj)1≤j≤n. The
common stabilizer T in GR of these lines is a maximal torus of GR which is
anisotropic modulo center. Explicitly,

T(R) ≃
{
t = ((t1, . . . , tn), s) ∈ (C×)n × R× ∣∣ |t1|2 = · · · = |tn|2 = s

}
(4.1.3)

where t stabilizes Lj and acts on it by multiplication by tj. Then h0 factors through
T and in these coordinates h0(z) = ((z, . . . , z), |z|2). It is easy to check that h0
belongs to X , for example using a principally polarized abelian variety which is
a product of elliptic curves. Let B be a Borel subgroup of GSp2n,C containing
TC such that (B,T) corresponds to the generic discrete series representations of
G(R) 12. We now compute µh0 with respect to such a Borel pair, as this will be
useful in Section 4.7. Recall that B is unique up to conjugation by the normalizer
of T in G(R). By [Taï17, p. 315] one can choose B such that the corresponding
simple roots are the following characters of T, as characterized by their value on
T(R):

t 7→ t1/t2, t 7→ t2/t3, . . . , t 7→ cn−2(tn−1)/c
n−1(tn), t 7→ (tn/tn)

(−1)n+1

,

where c denotes complex conjugation. There exists g ∈ G(C) conjugating (TC,B)

into (TGSp2n,C,BGSp2n,C). Via conjugation by g, the above set of roots corresponds
to α1, . . . , αn, in this order. Therefore, in the parametrization of TGSp2n

introduced
in Section 2.2, the element gtg−1 of TGSp2n

(C) is (t1
−1
, t−1

2 , . . . , cn(tn)
−1, s). In

particular the cocharacter Ad(g) ◦ µh0 : GL1,C → TGSp2n,C is characterized by the
relations

⟨µh0 , αi⟩ = (−1)i−1 for 1 ≤ i ≤ n and ⟨µh0 , ν⟩ = 1.

11One can identify each component with the usual Siegel upper-half space.
12We recalled Harish-Chandra’s parametrization of discrete series representations in [Taï17,

§4.2.1].

60



If we see µh0 as a character of TGSpin2n+1
, with the parametrization of TGSpin2n+1

introduced in Section 2.2, it is thus equal to

(z1, . . . , zn, s, λ) 7−→ sλ
∏
i even

z−1
i . (4.1.4)

Returning to moduli problems, if η : Λ/MΛ ≃ A[M ] =M−1Γ/Γ is a level struc-
ture for the principally polarized abelian variety (A, λ), there exists g ∈ G(Z/MZ)
such that η = (η0 mod M) ◦ g. This gives an identification

An,M(C) ≃ G(Z)\ (X ×G(Z/MZ)) .

Using G(Z/MZ) ≃ G(Ẑ)/K(M), G(Z) = G(Q)∩G(Ẑ) and G(Af ) = G(Q)G(Ẑ)
(which follows from the analogous equality for GL1 and strong approximation for
Gder), we finally have the identification An,M(C) ≃ G(Q)\(X ×G(Af )/K(M)).
This reformulation amounts to considering more generally η0 : ΛQ ≃ ΓQ and c0 :

Q ≃ Q(1), and as above it is better suited to generalization to arbitrary (possibly
non-principal) level structures: we have identifications An,K(C) ≃ G(Q)\(X ×
G(Af )/K), and it is easy to check that via these identifications the map induced
by TK′,g,K on complex points is simply right multiplication by g.

4.2 Automorphic local systems

Let S be a finite set of prime numbers, K = KS ×
∏

p̸∈S G(Zp) a compact open
subgroup of G(Af ) and as in the previous section denoteM =

∏
p∈S p. Denote prℓ :

G(Af ) → G(Qℓ) the projection map. Recall from [Mor08, §2.1] (a construction
going back at least to [Lan73, §3]) that there is a natural functor V ⇝ FK(V )

from the category of finite-dimensional algebraic representations of G(Qℓ) to the
category of ℓ-adic local systems on An,K×Z[1/M ]Z[1/ℓ]. In fact it is first defined on
finitely generated Zℓ-modules endowed with a continuous action of prℓ(K). The
local systems FK(V ) are of geometric origin, for example for VStd the standard
representation of GQℓ one can check that FK(VStd) is isomorphic to the relative
ℓ-adic Tate module of the universal abelian variety π : Auniv → An,K , and so
FK(V ∗

Std) = R1π∗Qℓ. More generally, for V an irreducible representation with
highest weight (λ1, . . . , λn,m) (for the parametrization introduced in Section 2.2),
a shift of the local system FK(V ) can be cut out inside R(π×s)∗Qℓ(m) using
algebraic correspondences, where s = λ1+ · · ·+λn and π×s : Auniv×An,K · · ·×An,K
Auniv → An,K (see [FC90, p. 235]). A bit more precisely FK(V ) is a summand of

Symλ1−λ2

(
1∧
R1π∗Qℓ

)
⊗· · ·⊗Symλn−1−λn

(
n−1∧

R1π∗Qℓ

)
⊗

(
n∧
R1π∗Qℓ

)⊗λn

(m).
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In particular (see [Pin92a, Lemma 5.6.6]) if an algebraic representation V of GQℓ
has a central character (e.g. if V is irreducible), say z 7→ z−w, then for any prime p
not dividing Mℓ, the local system FK(V ) over (An,K)Fp is pure of weight w (equal
to
∑

i λi − 2m for V as above).
Over C, for V an algebraic representation of GQ we have a (topological) local

system

G(Q)\ (V ×X ×G(Af )/K)→ G(Q)\ (X ×G(Af )/K) ≃ An,K(C).

If L̂ is a Ẑ-lattice in Af ⊗Q V which is stable under K, then L̂ is determined by
the Z-lattice L = V ∩ L̂ in V . Similarly for h ∈ G(Af ) consider hL := V ∩ hL̂.
There is a local system in finite free Z-modules

G(Q)\

 ⊔
h∈G(Af )/K

hL×X ×G(Af )/K


over An,K(C), and extending scalars from Z to Z/ℓNZ, algebraising using [Sgag,
Exposé XI Théorème 4.4], considering the projective system as N varies and in-
verting ℓ, one recovers FK(VQℓ).

4.3 Hecke correspondences

We recall the definition of Hecke correspondences on the local systems FK(V ),
which induce a Hecke action on ordinary and compactly supported cohomology. In
the next section these correspondences will be extended to intermediate extensions
to the minimal compactification of An,K (over a field), and for this purpose we
introduce a formalism of Hecke operators. To simplify the formulation of ulterior
statements it is also convenient to recall the relation with smooth representations
(Proposition 4.3.2 below).

Definition 4.3.1. Let B be a preadditive category. Let G be a locally profinite
group. Let C be a coinitial13 set of compact open subgroups of G, stable under
conjugation by elements of G and under finite intersections. Let Hecke(G,C,B)
be the category of families (VK)K∈C of objects of B endowed with morphisms
[K2, g,K1, K

′] : VK1 → VK2 defined for K1, K2, K
′ ∈ C and g ∈ G such that

K ′ ⊂ gK1g
−1 ∩K2, satisfying the following conditions

13This means that for any compact open subgroup K of G there exists K ′ ∈ C which is
contained in K.
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1. For K1, K2, K
′ ∈ C and g such that K ′ ⊂ gK1g

−1 ∩ K2, for any h1 ∈ K1

and h2 ∈ K2, we have [K2, h2gh1, K1, h2K
′h−1

2 ] = [K2, g,K1, K
′].

2. For any K ∈ C we have [K, 1, K,K] = idVK .

3. For K1, K2, K
′, K ′′ ∈ C and g ∈ G such that K ′′ ⊂ K ′ ⊂ gK1g

−1 ∩ K2 we
have

[K2, g,K1, K
′′] = |K ′/K ′′| × [K2, g,K1, K

′].

4. For K1, K2, K3, K
′, K ′′ ∈ C and g1, g2 ∈ G such that K ′ ⊂ g1K1g

−1
1 ∩ K2

and K ′′ ⊂ g2K2g
−1
2 ∩K3 we have

[K3, g2, K2, K
′′] ◦ [K2, g1, K1, K

′] =
∑

[h]∈K′′\g2K2/K′

[K3, hg1, K1, K
′′ ∩ hK ′h−1].

(The right-hand side is well defined thanks to the first axiom.)

A morphism from (VK)K∈C to (V ′
K)K∈C is a family of morphisms VK → V ′

K (in B)
intertwining the [K2, g,K1, K

′]’s. If F is a field we simply denote Hecke(G,C, F )

for Hecke(G,C,B) where B is the category of vector spaces over F .

The third property implies that we could equivalently only specify [K2, g,K1, K
′]

when K ′ = gK1g
−1 ∩K2, but this would make the last expression less natural.

Proposition 4.3.2. Assume that F is a field of characteristic zero. Let G and C be
as in Definition 4.3.1. Let Repsm(G,F ) be the category of smooth representations
of G with coefficients in F . The following functors are equivalence of categories
between Hecke(G,C, F ) and Repsm(G,F ) which are inverse of each other (up to
isomorphism of functors):

1. To a smooth representation V of G over F associate (V K)K and [K2, g,K1, K
′] =∑

k∈K2/K′ kg.

2. To ((VK)K , ([K2, g,K1, K
′])K1,K2,g,K′) ∈ ObHecke(G,C, F ) associate V =

lim−→K
VK for the transition morphisms [K ′, 1, K,K ′] : VK → VK′ when K ′ ⊂

K. The action of G is induced by [gKg−1, g,K, gKg−1] : VK → VgKg−1.

Proof. We omit the straightforward verification that the first functor is well-
defined.

Let us check that the second functor is well-defined. For K1, K2 ∈ C and g ∈ G
satisfying K2 ⊂ gK1g

−1 we may consider [K2, g,K1, K2] : VK1 → VK2 . Using the
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fourth axiom in Definition 4.3.1 we see that this subset of operators is compatible
with composition: for K1, K2, K3 ∈ C and g1, g2 ∈ G satisfying K2 ⊂ g1K1g

−1
1 and

K3 ⊂ g2K2g
−1
2 we have

[K3, g2, K2, K3] ◦ [K2, g1, K1, K2] = [K3, g2g1, K1, K3].

It follows that each g ∈ G defines an operator on V := lim−→K
VK and that the

resulting map G→ EndF (V ) is multiplicative, and thanks to the second axiom we
have a linear action of G on V . We know from the first axiom that for K1, K2 ∈ C
satisfying K2 ⊂ K1 and g ∈ K1 we have [K2, g,K1, K2] = [K2, 1, K1, K2], and so
this action is smooth.

If we start from a smooth representation V ofG then the natural map lim−→K
V K →

V is an isomorphism of F -vector spaces, and it is tautologically compatible with
the action of G.

The least formal part of the proof is the remaining direction: starting from
an object ((VK)K∈C , ([K2, g,K1, K

′])K2,g,K1,K′) of Hecke(G,F ), we want to identify

(in a natural way)
(
lim−→K′ VK′

)K
with VK and check that via these identifications

we have, for all K1, K2, K
′ ∈ C and g ∈ G satisfying K ′ ⊂ K2 ∩ gK1g

−1:

[K2, g,K1, K
′] =

∑
k∈K2/K′

kg.

For K and K ′ in C satisfying K ′ ⊂ K we compute

[K, 1, K ′, K ′]◦[K ′, 1, K,K ′] =
∑

[h]∈K′\K′/K′

[K,h,K,K ′] = [K, 1, K,K ′] = |K/K ′|idVK

using the fourth and third axiom in Definition 4.3.1, and conclude that [K ′, 1, K,K ′]

is injective. If moreover K ′ is a normal subgroup of K then using the fourth axiom
again we see that [K ′, 1, K,K ′] maps VK to the subspace of K/K ′-invariants in
VK′ , and we compute

[K ′, 1, K,K ′] ◦ [K, 1, K ′, K ′] =
∑

h∈K/K′

[K ′, h,K ′, K ′]

from which we deduce that the image of VK in VK′ contains the subspace of K/K ′-
invariants in VK′ . For a given K ∈ C, any K ′ ∈ C satisfying K ′ ⊂ K contains
K ′′ ∈ C which is a normal subgroup of K (namely

⋂
g∈K/K′ gK ′g−1), and so we

conclude from the above that the natural map VK → lim−→K′ VK′ identifies VK with
the subspace of K-invariants. Finally for K1, K2, K

′ ∈ C and g ∈ G satisfying
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K ′ ⊂ gK1g
−1 ∩K2, letting K ′′ =

⋂
[h]∈K2/K′ hK ′h−1 we have thanks to the fourth

axiom
[K ′′, 1, K2, K

′′] ◦ [K2, g,K1, K
′] =

∑
[h]∈K2/K′

[K ′′, hg,K1, K
′′].

Remark 4.3.3. In order to determine a smooth representation of G over a field of
characteristic zero, it would be enough to only specify embeddings [K ′, 1, K,K ′] for
K ′ ⊂ K as well as actions [gKg−1, g,K, gKg−1] satisfying natural relations (left
to the reader). When the spaces VK come from pro-étale torsors, as in Proposition
4.3.8 below, this can be easier than verifying all axioms in Definition 4.3.1. We
will have to consider situations where it is not so obvious that we have embed-
dings [K ′, 1, K,K ′] and that VK may be identified with the subspace of K-invariant
vectors, so that the above formalism (or some analogue) is needed.

The formalism in Definition 4.3.1 could also prove useful when dealing with
integral (or positive characteristic) coefficients (not needed in this paper).

Corollary 4.3.4. Let G and C be as in Definition 4.3.1. Assume that F is a
field of characteristic zero. If ((VK)K , ([K2, g,K1, K

′])K2,g,K1,K′) is an object of
Hecke(G,C, F ), then we have a contragredient object ((V ∗

K)K , ([K2, g,K1, K
′]∗)K2,g,K1,K′)

of Hecke(G,F ) defined by V ∗
K = HomF (VK , F ) and [K2, g,K1, K

′]∗ : V ∗
K1
→ V ∗

K2

equal to |K2/K
′|/|K1/g

−1K ′g| times the transpose of [K1, g
−1, K2, g

−1K ′g] : VK2 →
VK1.

Proof. By the previous proposition we have identifications between VK and V K

for a smooth representation (V, π) of G over F . Let (Ṽ , π̃) be the contragredient
representation, and ((Ṽ K)K , ([K2, g,K1, K

′]∗)K2,g,K1,K′) the object of Hecke(G,F )
associated by the previous proposition. By elementary group theory the restric-
tion morphism Ṽ K → HomF (V

K , F ) is an isomorphism. For any compact open
subgroups K1, K2, K

′ of G and any g ∈ G satisfying K ′ ⊂ K2 ∩ gK1g
−1, for any

v ∈ V K2 and ṽ ∈ Ṽ K1 we have

⟨v, [K2, g,K1, K
′]∗ṽ⟩ =

∑
k∈K2/K′

⟨v, π̃(kg)ṽ⟩

= |K2/K
′|⟨π(g−1)v, ṽ⟩

=
|K2/K

′|
|K1/g−1K ′g|

⟨[K1, g
−1, K2, g

−1K ′g]v, ṽ⟩.
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We now recall the definition of Hecke correspondences on An,K . The defini-
tion below is a minor generalization of [Mor08, Définition 5.2.1]. For g ∈ G(Qℓ)

simply denote V 7→ gV the equivalence of categories from continuous representa-
tions of K (resp. algebraic representations of GQℓ) to continuous representations of
gKg−1 (resp. algebraic representations of GQℓ) where gV is V but with the action
composed with ad(g−1). If V is a representation of G(Qℓ) (or if V is a represen-
tation of K and g ∈ K) the action of g induces an isomorphism of representations
ig : g(V |K) ≃ V |gKg−1 .

Suppose that S be a finite set of prime numbers, K = KS ×
∏

p̸∈S G(Zp) and
K ′ = K ′

S×
∏

p ̸∈S G(Zp) compact open subgroups of G(Af ), and g ∈
∏

p∈S G(Qp)×∏
p ̸∈S G(Zp) such that K ′ ⊂ gKg−1. Staring at the definitions gives us an isomor-

phism of functors from the category of continuous representations of K (be it on
finite Z/ℓNZ-modules, Zℓ-modules or Qℓ-vector spaces) to the category of suitable
local systems on An,K′ :

T ∗
K′,g,K ◦ FK ≃ FK

′ ◦ (gℓ−).

On representations of G(Qℓ) (and not just an open subgroup which might not
contain gℓ), composing with the isomorphism igℓ recalled above, we get an isomor-
phism of functors

T ∗
K′,g,K ◦ FK ≃ FK

′
, (4.3.1)

which remains unchanged if g is multiplied on the right by an element of K.
The isomorphisms (4.3.1) are compatible with composition but we refrain from
naming them and explicitly writing the formula satisfied whenever K ′ ⊂ gKg−1

and K ′′ ⊂ g′K ′g′′−1.

Definition 4.3.5. Suppose that S be a finite set of prime numbers, K1 = K1,S ×∏
p ̸∈S G(Zp) and K2 = K2,S ×

∏
p ̸∈S G(Zp) compact open subgroups of G(Af ), g ∈∏

p∈S G(Qp)×
∏

p ̸∈S G(Zp) and K ′ = K ′
S×
∏

p̸∈S G(Zp) and open compact subgroup
of G(Af ) contained in K2 ∩ gK1g

−1. Let u(K2, g,K1, K
′) be the cohomological

correspondence (in the sense of [Sgaa, Exposé III §3.2]) from FK1(V ) to FK2(V )

with support in (TK′,g,K1 , TK′,1,K2) obtained by composing identifications:

T ∗
K′,g,K1

FK1(V ) ≃ FK′
(gℓV ) ≃ FK′

(V ) ≃ T ∗
K′,1,K2

FK2(V ) ≃ T !
K′,1,K2

FK2(V ).

At the last step T !
K′,1,K2

is identified to T ∗
K′,1,K2

because TK′,1,K2 is étale [Sgag,
Exposé XVIII Proposition 3.1.8 p.91].

66



It is easy to check that for h1 ∈ K1 and h2 ∈ K2, u(K2, h2gh1, K1, K
′)

is isomorphic to u(K2, g,K1, h2K
′h−1

2 ). It is also easy to check that for h ∈∏
p∈S G(Qp) ×

∏
p ̸∈S G(Zp) and K ′ ⊂ gK1g

−1 ∩ hK2h
−1 the correspondence ob-

tained as above but using TK′,h,K2 instead of TK′,1,K2 is simply isomorphic to
u(K2, h

−1g,K1, h
−1K ′h).

Using this one easily checks that the dual correspondence D(u(K2, g,K1, K
′))

from D(FK2(V )) ≃ FK2(V ∗)(n(n + 1)/2)[n(n + 1)] (since An,K is smooth of rel-
ative dimension n(n + 1)/2 over Z[1/M ]) to FK1(V ∗)(n(n + 1)/2)[n(n + 1)] and
with support in (TK′,1,K2 , TK′,g,K1) is isomorphic to u(K1, g

−1, K2, g
−1K ′g)(n(n +

1)/2)[n(n+ 1)].
Denote πi : An,Ki → SpecZ[1/M ]. Since TK′,1,K2 (resp. TK′,g,K1) is proper,

u(K2, g,K1, K
′) induces

u(K2, g,K1, K
′)∗ : π1∗FK1(V ) −→ π2∗FK2(V ), (4.3.2)

resp. u(K2, g,K1, K
′)! : π1!FK1(V ) −→ π2!FK2(V ), (4.3.3)

see [Fuj97, (1.3.2)] and [Pin92b, (1.3)], also recalled in Section A.1. These two
operations are dual to each other, so that

D(u(K2, g,K1, K
′)∗) = u(K1, g

−1, K2, g
−1K ′g)!(n(n+ 1)/2)[n(n+ 1)].

Remark 4.3.6. If V is irreducible with central character χ then it is easy to check
that for K1, K2, g,K

′ as above and z a central element of G(Q) such that zf ∈∏
p∈S G(Qp)×

∏
p ̸∈S G(Zp) we have u(K2, zfg,K1, K

′) = χ(zℓ)u(K2, g,K1, K
′).

Remark 4.3.7. Denote by Qℓ(ν) the algebraic representation of GQℓ on Qℓ given
by the similitude character ν. There is a canonical isomorphism cK : FK(Qℓ(ν)) ≃
Qℓ(1) (in principal level M ≥ 3 it is given by the morphism c in diagram (4.1.1)
in level MℓN for varying N). Unwinding the definitions (which is easier using
the reformulation of the moduli problem using quasi-isogenies) we find that in the
setting of Definition 4.3.5 we have a commutative diagram

T ∗
K′,g,KFK(Qℓ(ν)) FK′

(Qℓ(ν))

T ∗
K′,g,KQℓ(1) = Qℓ(1) Qℓ(1)

T ∗
K′,g,K(cK)

∼

cK
′

|ν(g)|−1
f

where the top horizontal arrow is the composition of the first two isomorphisms in
Definition 4.3.5.
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As a consequence for any algebraic representation V of GQℓ and any integer
m we have canonical isomorphisms FK(V (νm)) ≃ FK(V )(m) and commutative
diagrams

T ∗
K′,g,K1

FK1(V (νm)) T ∗
K′,1,K2

FK2(V (νm))

T ∗
K′,g,K1

FK1(V )(m) T ∗
K′,1,K2

FK2(V )(m)

∼

u(K2,g,K1,K′)

∼
|ν(g)|−mf u(K2,g,K1,K′)

Of course for i : SpecF ↪→ SpecZ[1/M ] where F is a prime field one can
similarly define cohomological correspondences between the local systems FK(V )

pulled back to (An,K)F , and these will be denoted u(K2, g,K1, K
′)F . Note that if

F is finite then duality intertwines i∗ and i! but i!FK(V ) ≃ i∗FK(V )(−1)[−2] by
absolute purity [Fuj02a], since FK(V ) is a local system on a smooth scheme over
Z[1/M ].

The following proposition is well-known, and is included to prepare for the case
of intersection complexes.

Proposition 4.3.8. Let F be Q (resp. Fp for some prime number p ̸= ℓ). Let
V be an algebraic representation of G(Qℓ). Then for any 0 ≤ i ≤ n(n + 1)/2

the families of finite-dimensional Qℓ-vector spaces (H i
c((An,K)F ,FK(V )))K and

(H i((An,K)F ,FK(V )))K, where K varies in the set of neat compact open subgroups
of G(Af ) (resp. neat compact open subgroups of G(Af ) of the form G(Zp)×Kp),
equipped with the operators

(u(K2, g,K1, K
′)F )! : H

i
c((An,K1)F ,FK1(V ))→ H i

c((An,K2)F ,FK2(V ))

(u(K2, g,K1, K
′)F )∗ : H

i((An,K1)F ,FK1(V ))→ H i((An,K2)F ,FK2(V ))

satisfy the axioms of Definition 4.3.1.

Proof. The first two axioms follow directly from the definition. Let us explain
the dependence on K ′ (i.e. the third axiom) using pushforward and pullback of
correspondences, recalled in section A.3. For K ′′ ⊂ K ′ we simply have

corr-(TK′′,1,K′)∗u(K2, g,K1, K
′) = u(K2, g,K1, K

′′)

essentially because the isomorphism of functors T ∗
K′,g,K ≃ T !

K′,g,K compose ([Sgag,
Exposé XVIII Proposition 3.1.8(iii)] and [Sgag, Exposé XVII Théorème 6.2.3 (Var
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3)]), as do the isomorphism of functors T ∗
K′,g,KFK ≃ FK

′ . By Lemma A.3.1 we
have

corr-(TK′′,1,K′)∗u(K2, g,K1, K
′′) = |K ′/K ′′| × u(K2, g,K1, K

′).

This implies the third axiom in Definition 4.3.1.
Let us check the fourth axiom, i.e. composition. Suppose we have a diagram

An,K′ An,K′′

An,K1 An,K2 An,K3

Tg1 T1 Tg2 T1

with K ′ ⊂ g1K1g
−1
1 ∩K2 and K ′′ ⊂ g2K2g

−1
2 ∩K3. Then we have an identification

of An,K′ ×An,K2
An,K′′ with

⊔
h∈K′′\g2K2/K′ An,K′′∩hK′h−1 via the morphisms

An,K′′∩hK′h−1

An,K′ An,K′′

Th T1

and using this identification, the equality

u(K3, g2, K2, K
′′) ◦ u(K2, g1, K1, K

′) =
∑

g3∈K′′\g2K2/K′

u(K3, g3g1, K1, K
′′ ∩ g3K ′g−1

3 )

easily follows from the definition.

In particular we get an admissible representation of G = G(Af ) (resp. G(Ap
f ))

on
H•

? ((An)F ,F(V )) := lim−→
K

H•
? ((An,K)F ,FK(V ))

for ? ∈ {c, ∅} and F = Q (resp. Fp), with a commuting continuous action of GalF
(continuous in the sense that for any compact open subgroup K the action on
the space of K-invariants is continuous). For any choice of Haar measure vol on
G such that any compact open subgroup has rational volume there are canonical
G×GalF -equivariant pairings

H i
c ((An)F ,F(V ))×Hn(n+1)/2−i ((An)F ,F(V ∗))→ Qℓ

(
−n(n+ 1)

2

)
(4.3.4)

obtained by multiplying the usual pairing (“Poincaré duality”) in levelK by vol(K).
For each i the pairing (4.3.4) identifies these two admissible representations of G
to the (Qℓ(−n(n+1)

2
)-valued) contragredient of each other (see Corollary 4.3.4).
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4.4 Minimal compactifications and intermediate extensions

If K = KS

∏
p ̸∈S G(Zp) is neat (as before S a finite set of primes, KS a compact

open subgroup of
∏

p∈S G(Qp) and we denote M =
∏

p∈S p) Chai and Faltings
[FC90, Theorem V.2.5] (see also [Lan13, Section 7]) constructed the minimal com-
pactification A∗

n,K of An,K over Z[1/M ], using toroidal compactifications. More
precisely, A∗

n,K is a normal projective scheme over Z[1/M ] with an open embedding
j : An,K ↪→ A∗

n,K . In general A∗
n,K is not smooth over (any point of) Z[1/M ]. At

least if K is a principal level, there is a stratification of A∗
n,K ∖An,K by schemes

isomorphic to An′,K′ for n′ < n (see [FC90, Theorem V.2.5]), but we shall not need
this description.

If K ′ = K ′
S

∏
p ̸∈S G(Zp) (K ′

S a compact open subgroup of
∏

p∈S G(Qp)), and
g ∈

∏
p∈S G(Qp) ×

∏
p̸∈S G(Zp) is such that K ′ ⊂ gKg−1, [Lan13, Proposition

7.2.5.1] gives a canonical extension of TK′,g,K as TK′,g,K : A∗
n,K′ → A∗

n,K . The map
TK′,g,K is finite (this follows from [Lan13, Corollary 7.2.5.2]), but not necessarily
étale. Since it is canonical it satisfies natural properties similar to TK′,g,K : it only
depends on g via K ′gK, and is compatible with composition.

Definition 4.4.1. For K as above, F = Q or Fp for p ∤ M , and V an algebraic
representation of G(Qℓ) define the intersection complex

ICK
ℓ (V )F = j!∗(FK(V )F [n(n+ 1)/2])[−n(n+ 1)/2] ∈ Db

c((An,K)F ,Qℓ).

We will also use lighter notation ICK
ℓ (V ) or ICK(V ) when there is no risk of

confusion.
If F = Fp and V is irreducible then as recalled in Section 4.2 FK(V )Fp is pure

of weight determined by the central character of V and so by [BBD82, Corol-
laire 5.4.3] ICK(V )Fp is pure of the same weight. In this setting Morel identified
ICK(V )Fp with the weight truncation of j∗FK(V )Fp [Mor08, Théorème 3.1.4]. Us-
ing this identification she canonically extended [Mor08, §5] the Hecke correspon-
dences u(K2, g,K1, K

′)Fp (with K1, K2, K
′ containing G(Zp) and gp ∈ G(Zp)) of

Definition 4.3.5 (or rather their base change to Fp) to Hecke correspondences from
ICK1

Fp (V ) to ICK2
Fp (V ), with support in ((TK′,g,K1)Fp , (TK′,g,K1)Fp).

By Lemma A.5.1 (2) in both cases F = Q or Fp we also have canonical (“geo-
metric”) extensions of Hecke correspondences between the intersection complexes
ICK

F (V ), that we denote u(K2, g,K1, K
′)ICF . In case F = Fp by comparing both

characterizations it is clear that this coincides with Morel’s canonical (“weight-
theoretic”) extension of u(K2, g,K1, K

′). Taking cohomology, we have Hecke op-
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erators

(u(K2, g,K1, K
′)ICF )∗ : H

•((A∗
n,K1

)F , IC
K1
F (V )) −→ H•((A∗

n,K2
)F , IC

K2
F (V ))

(4.4.1)
commuting with the action of Gal(F/F ).

Definition 4.4.2. Let F be Q or Fp. Denote G = GSp2n(Af ) if F = Q (resp. G =

GSp2n(A
(p)
f ) if F = Fp). Let C be a coinitial set of compact open subgroups of G,

stable under conjugation and under finite intersections. Let PreH(A∗
n,?,F , C,Qℓ) be

the category of pairs ((LK)K∈C , (v(K2, g,K1, K
′))K2,g,K1,K′) where LK is an object

of Db
c(A∗

n,K,F ,Qℓ) and v(K2, g,K1, K
′) : Tg

∗
LK1 → T1

!
LK2 is a cohomological corre-

spondence, defined whenever K1, K2, K
′ ∈ C and g ∈ G satisfy K ′ ⊂ gK1g

−1∩K2,
subject to the following conditions.

1. For K1, K2, K
′ ∈ C and g ∈ G such that K ′ ⊂ gK1g

−1 ∩ K2, for any
h1 ∈ K1 and h2 ∈ K2, the correspondences v(K2, h2gh1, K1, h2K

′h−1
2 ) and

v(K2, g,K1, K
′) are identified via the isomorphism Th2 : A∗

n,h2K′h−1
2 ,F

≃
A∗
n,K′,F .

2. For any K ∈ C we have v(K, 1, K,K) = id.

3. For K1, K2, K
′, K ′′ ∈ C and g ∈ G satisfying K ′′ ⊂ K ′ ⊂ gK1g

−1 ∩K2 we
have

corr-(TK′′,1,K′)∗v(K2, g,K1, K
′′) = |K ′′/K ′| × v(K2, g,K1, K

′).

4. For K1, K2, K3, K
′, K ′′ ∈ C and g1, g2 ∈ G satisfying K ′ ⊂ g1K1g

−1
1 ∩ K2

and K ′′ ⊂ g2K2g
−1
2 ∩K3, denoting

f :
⊔

[h]∈K′′\g2K2/K′

A∗
n,K′′∩hK′h−1 −→ A∗

n,K′ ×A∗
n,K2
A∗
n,K′′

the morphism induced by the pairs of morphisms (TK′′∩hK′h−1,h,K′ , TK′′∩hK′h−1,1,K′′),
we have

corr-f ∗
(
(v(K3, hg1, K1, K

′′ ∩ hK ′h−1))h∈K′′\g2K2/K′
)
= v(K3, g2, K2, K

′′)◦v(K2, g1, K1, K
′).

Lemma 4.4.3. Let F be Q (resp. Fp), ℓ a prime number (resp. a prime number
different from p). Denote G = GSp2n(Af ) if F = Q (resp. G = GSp2n(A

(p)
f )
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if F = Fp). Let C be the set of neat14 compact open subgroups of G. For an
object ((LK)K∈C , (v(K2, g,K1, K

′))K2,g,K1,K′) of PreH(A∗
n,?,F , C,Qℓ), denoting πK :

A∗
n,K,F → SpecF , the pair

((πK,∗LK)K , (v(K2, g,K1, K
′)∗)K2,g,K1,K′)

defines an object of Hecke(G,C,Db
c(SpecF,Qℓ)). In particular (see Proposition

4.3.2) for any i ∈ Z we have a smooth admissible action of G on

lim−→
K∈C

H i(A∗
n,K,F

, ICK(V ))

with a commuting continuous action of Gal(F/F ).

Proof. The first two axioms in Definition 4.3.1 clearly follow from the correspond-
ing axioms in Definition 4.4.2. The third and fourth axioms also follow from the
corresponding axioms, using the fact (recalled in Section A.3) that pushforward
of correspondences along proper morphisms is compatible with cohomological re-
alizations.

Proposition 4.4.4. Let F be Q (resp. Fp), ℓ a prime number (resp. a prime num-
ber different from p). Denote G = GSp2n(Af ) if F = Q (resp. G = GSp2n(A

(p)
f )

if F = Fp). Let C be the set of neat compact open subgroups of G. Let V be an
algebraic representation of GSp2n,Qℓ. The pair(

(ICK
F (V ))K∈C , (u(K2, g,K1, K

′)ICF )K2,g,K1,K′
)

defines an object of PreH(A∗
n,?,F , C,Qℓ). In particular the family of finite-dimensional

Z-graded Qℓ-vector spaces
(
H•((A∗

n,K)F , IC
K(V ))

)
K

with the Hecke operators (u(K2, g,K1, K
′)ICF )∗

defines a Z-graded admissible representation of G with commuting continuous ac-
tion of Gal(F/F ).

Proof. The first two axioms in Definition 4.4.2 follow from the corresponding re-
lations for correspondences u(K2, g,K1, K

′) on An,K,F and injectivity in Lemma
A.5.1 (2).

For the third axiom we know thanks to Proposition A.4.8 and Corollary A.4.7
that the restriction of corr-(TK′′,1,K′)∗u(K2, g,K1, K

′′)ICF to open Shimura vari-
eties is equal to corr-(TK′′,1,K′)∗u(K2, g,K1, K

′′)F , which as we saw in the proof of
Proposition 4.3.8 is equal to

|K ′/K ′′| × u(K2, g,K1, K
′)F .

14In case F = Fp this means that G×GSp2n(Zp) is neat.
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By Lemma A.5.1 (2) we deduce

corr-(TK′′,1,K′)∗u(K2, g,K1, K
′′)ICF = |K ′/K ′′| × u(K2, g,K1, K

′)ICF .

The fourth axiom is proved similarly: in the setting of this axiom, the restric-
tion of f to open Shimura varieties is an isomorphism

f :
⊔

[h]∈K′′\g2K2/K′

An,K′′∩hK′h−1 −→ An,K′ ×An,K2
An,K′′ .

and we saw in the proof of Proposition 4.3.8 that we have

corr-f∗
(
(u(K3, hg1, K1, K

′′ ∩ hK ′h−1)F )h∈K′′\g2K2/K′
)
= u(K3, g2, K2, K

′′)F◦u(K2, g1, K1, K
′)F .

By compatibility of pullback of correspondences (in the case at hand, restriction
to open Shimura varieties) with pushforward (Proposition A.4.8) and composition
(Proposition A.4.9) we deduce that the correspondences

corr-f ∗

(
(u(K3, hg1, K1, K

′′ ∩ hK ′h−1)ICF )h∈K′′\g2K2/K′
)

and u(K3, g2, K2, K
′′)ICF ◦ u(K2, g1, K1, K

′)ICF .

agree on open Shimura varieties, and thanks to Lemma A.5.1 (2) we conclude that
they are equal.

As in the case of ordinary or compactly supported cohomology we have a natu-
ral identification of the Qℓ(−n(n+1)/2)-valued contragredient of lim−→K

H i((A∗
n,K)F , IC

K
F (V ))

with lim−→K
Hn(n+1)/2−i((A∗

n,K)F , IC
K
F (V

∗)).

4.5 Hecke and Galois actions over Q and Fp
In this section we recall the “specialization theorem” for intersection cohomology,
which follows from the existence of smooth (toroidal) compactifications (defined
over Zp) over the minimal one, which implies compatibility between intermediate
extensions and nearby cycles (and so vanishing of vanishing cycles). This is a
special case of [Str12, Corollaire 4.4]. We also check compatibility with Hecke
correspondences.

We mostly use the notation introduced in [Sgab, Exposé XIII] for nearby cycles
(in our case over the base SpecZp), see Sections A.6 and A.7.
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Proposition 4.5.1. For V an algebraic representation of G(Qℓ), p ̸= ℓ and K

a neat compact open subgroup of G(A) such that K = Kp × G(Zp), the GalQp-
equivariant specialization morphism

H•
c ((An,K)Fp ,F

K(V ))→ H•
c ((An,K)Q,FK(V ))

is also H(G(Ap
f )//K

p)-equivariant and is an isomorphism. In particular, the rep-
resentation of GalQ on the right-hand side is unramified at p.

Proof. This is a consequence of [Str12, Corollaire 4.3] and similar to Corollaire
4.6 loc. cit., with extra Hecke action. Thanks to the existence of toroidal com-
pactifications, smooth extensions of the universal principally polarized abelian
variety and the formalism of plethysms to construct irreducible representations
of G, for j the open immersion of An,K into A∗

n,K , the base change morphisms
js,!ΨηFK(V )η → Ψηjη,!FK(V )η and Ψηjη,∗FK(V )η → js,∗ΨηFK(V )η are isomor-
phisms: see [Str12, Proposition 4.3 and Corollaire 4.3]. Since FK(V ) is a lo-
cal system on An,K which is smooth over Z(p), there is a canonical isomorphism
sp∗FK(V )s

∼−→ ΨηFK(V )η ([Sgab, Exposé XIII, Reformulation 2.1.5]). By proper
base change (2.1.7.1 and 2.1.8.3 loc. cit.) for ? ∈ {∗, !} we have a canonical iso-
morphism H•((A∗

n,K)s,Ψηjη,?FK(V )η) ≃ H•((A∗
n,K)η, jη,?FK(V )). The upshot is

that we have canonical Gal(η/η)-equivariant isomorphisms

H•((An,K)η,FK(V ))
∼−→ H•((An,K)s,ΨηFK(V ))

∼←− H•((An,K)s,FK(V ))

H•
c ((An,K)s,FK(V ))

∼←− H•
c ((An,K)s,ΨηFK(V ))

∼←− H•
c ((An,K)η,FK(V ))

which are dual to each other up to replacing on one side FK(V ) with its dual
FK(V ∗)(d)[2d] where d = n(n+ 1)/2 (compatibility of nearby cycles with duality
was proved in [Ill94, Théorème 4.2]). Moreover these isomorphisms are compatible
with the action of Hecke operators: for neat K1 = Kp

1G(Zp) and K2 = Kp
2G(Zp),

g ∈ G(Ap
f ) and K ′ = K ′pG(Zp) with K ′p ⊂ Kp

2 ∩ gK
p
1g

−1 we have a morphism of
correspondences with support in ((TK′,g,K1)s, (TK′,1,K2)s)

sp∗ (FK1(V )s,FK2(V )s, u(K2, g,K1, K
′)s
)
→ Ψη

(
FK1(V )η,FK2(V )Qp , u(K2, g,K1, K

′)η
)

showing that the right square of the following diagram is commutative.

H•((An,K1)η,FK1(V )) H•((An,K1)s,ΨηFK1(V )) H•((An,K1)s,FK1(V ))

H•((An,K2)η,FK2(V )) H•((An,K2)s,ΨηFK2(V )) H•((An,K2)s,FK2(V ))

∼
∼

∼
∼
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By Proposition A.6.12 the left square is also commutative. An almost identical
argument can be used to conclude in the case of compactly supported cohomology.

Proposition 4.5.2. For V an algebraic representation of G(Qℓ), p ̸= ℓ and K

a neat compact open subgroup of G(A) such that K = Kp × G(Zp), there are
canonical isomorphisms

H•((A∗
n,K)Q, IC

K
Q (V )) ≃ H•((A∗

n,K)Fp , IC
K
Fp(V ))

compatible with the action of H(G(Ap
f )//K

p), Galois actions and duality. In par-
ticular, the Galois action on the left-hand side is unramified at p.

Proof. The construction of the isomorphism is a special case of [Str12, Corollaire
4.6]. We need to prove that this isomorphism is Hecke-equivariant and compatible
with duality on both sides.

By [Str12, Corollaire 4.4], for j : An,K ↪→ A∗
n,K there is a canonical isomor-

phism sp∗js,!∗(FK(V )s[n(n + 1)/2]) ≃ Ψηjη,!∗(FK(V )η[n(n + 1)/2]) sitting in a
commutative diagram (using the isomorphism sp∗FK(V )s

∼−→ ΨηFK(V )η which
was already used in the previous proof):

Ψηjη,!FK(V )η[n(n+ 1)/2] Ψηjη,!∗FK(V )η[n(n+ 1)/2] Ψηjη,∗FK(V )η[n(n+ 1)/2]

js,!ΨηFK(V )η[n(n+ 1)/2] js,!∗ΨηFK(V )η[n(n+ 1)/2] js,∗ΨηFK(V )η[n(n+ 1)/2]

∼ ∼∼

This isomorphism is characterized by the fact that its restriction to (An,K)s is the
identity (implicitly using j∗Ψη

∼−→ Ψηj
∗, [Sgab, Exposé XIII, 2.1.7.2]). On the

one hand, as recalled above by Lemma A.5.1 (2) the family of perverse sheaves
ICK

η (V ) = (jη,!∗(FK(V )η[n(n + 1)/2]))K (for varying K as in the proposition) is
equipped with canonical Hecke correspondences with support in ((TK′,g,K1)η, (TK′,1,K2)η)

of Section 4.4, and as explained in A.6.5 they induce correspondences between the
ΨηIC

K
η (V ). On the other hand the family of perverse sheaves (ICK

s (V ))K is also
equipped with canonical Hecke correspondences with support in ((TK′,g,K1)s, (TK′,1,K2)s),
which induce correspondences between the sp∗ICK

s (V ). Via the isomorphisms
sp∗ICK

s (V ) ≃ ΨηIC
K
η (V ) recalled above, these two families of correspondences

coincide by Lemma A.7.3 and injectivity in Lemma A.5.1 (2) and its analogue
Lemma A.7.2.

Compatibility with duality is rather formal: taking the dual of the above dia-
gram yields the same diagram for FK(V ∗)(d)[2d]. Details for correspondences are
omitted.
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4.6 Intersection cohomology: Morel’s stabilized formula

The following formula was conjectured for arbitrary Shimura varieties by Kottwitz
in [Kot90] and proved for Siegel modular varieties by Morel in [Mor11, Corollaire
5.3.3].

Theorem 4.6.1. Let M ≥ 3 be an integer, so that the principal level K = K(M)

is neat. Let p be a prime number which does not divide Mℓ. Let V be an irreducible
algebraic representation of G = GSp2n and let χ−1 be the restriction of central
character of V to AG(R)0. For any f∞ ∈ H(G(Af )//K), trivial at p, for any
large enough integer j,

Tr
(
Frobjp f

∞ |H•((A∗
n,M)Fp , IC

K
Fp(V ))

)
=

∑
e=(H,H,s,ξ)

ι(e)S
H,AG(R)0,χ
disc (f

(j)
H ) (4.6.1)

where the sum is over isomorphism classes of elliptic endoscopic data e such that
HR/AGR has discrete series and HQp is unramified, SH,AG(R)0,χ

disc is the stable linear
form appearing in the stabilization of Arthur’s invariant trace formula for H (see
Section 3.5), and the definition of f (j)

H is recalled below.

Remark 4.6.2. Before explaining the right-hand side we recall that the left-hand
side, which a priori is an element of Qℓ, is rational and independent of ℓ. These
facts are a by-product of the proof: in the case of compactly supported cohomol-
ogy it is visible on the formula proved in [Kot92] 15, and the case of intersection
cohomology is visible on the formula proved in [Mor11, Théorème 1.2.1].

By a well-known argument concerning linear recurrence sequences (see [Fuj02b,
§2]) the left-hand side is rational for arbitrary values of j ∈ Z. Combined with
purity to separate cohomological degrees (see after Definition 4.4.1 and [Del80,
Proposition 6.2.6]) this implies that the Hecke action on H•((A∗

n,M)Fp , IC
K
Fp(V ))

is defined over Q. The slightly stronger statement that this action is defined over
Q can also be proved in a manner similar to [Clo88, §3.5], by considering the
analogues of ICK

Q (V ) over A∗
n,M(C) (which are defined over Q, as we recalled above)

and comparison results summarized in [BBD82, §6.1.2].
This rationality property is related to Proposition 3.4.10, as will be apparent in

Theorem 4.7.2.

The distribution f (j)
H ∈ SI(H,AH(R)0, χ) is defined as a product f∞,p

H fH,∞f
(j)
H,p,

each term being defined using the theory of endoscopy. Note that we have a
15in fact it is already visible at the first step of the proof, a trace formula of Lefschetz-type
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canonical identification AG ≃ AH because e is elliptic. An endoscopic datum for
PGSp2n yields one for GSp2n and this induces a bijection between equivalence
classes of endoscopic data. Therefore the set of equivalence classes of elliptic endo-
scopic data for GSp2n is also in bijection with the set of split equivalence classes
of elliptic endoscopic data for Sp2n. In particular for every endoscopic datum oc-
curring in (4.6.1) the group H is split, and we will use the obvious L-embedding
Lξ : LH → LGSp2n. At every place v of Q we will use the Whittaker-normalized
transfer factors ∆′

λ as defined in [KS, (5.5.2)] (see also p. 178 of [Kot90]). Since
G is of adjoint type there is a unique G(Qv)-conjugacy class of Whittaker data so
this is unambiguous.

The most familiar term is f∞,p
H ∈ SI(H(Ap

f )), which is the transfer (in the
sense of [Kot90, (7.1)]) of f∞,p seen as an element of I(G(Ap

f )).
At the real place, the stable orbital integrals of fH,∞ ∈ SI(HR,AH(R)0, χ)

are prescribed by [Kot90, (7.4) on p.182]. Qualitatively it is known that the dis-
tribution fH,∞ can be taken to be a linear combination of pseudo-coefficients of
essentially discrete series (whose central character coincides with χ on AH(R)0)
having Langlands parameter φH such that Lξ ◦ φH is also discrete. Kottwitz con-
structs this function rather explicitly (see [Kot90, p. 186]) using certain transfer
factors ∆j,B that are adapted to the study of endoscopy for discrete series repre-
sentations of G(R), but this normalization of transfer factors is not very natural in
a global setting. We will only need the spectral consequence that Kottwitz draws
from these calculations, namely [Kot90, Lemma 7.1], and the fact that Shelstad
[She08b, Theorem 11.5] pinned down the spectral transfer factors when these cor-
respond to the geometric transfer factors given by a Whittaker datum. For φH

a tempered parameter for HR such that the composition with LH → LAH corre-
sponds to a character AH(R) → C× whose restriction to AH(R)0 is χ, denote by
ΛφH

the associated linear form on SI(HR,AH(R)0, χ), i.e. the sum of the traces
of all elements in the L-packet associated to φH. By [She79, Lemma 5.3] the num-
bers ΛφH

(fH,∞) determine fH,∞. Let φG,V : WR → LG be the discrete Langlands
parameter corresponding to the L-packet ΠφG,V

(GR) consisting of all essentially
discrete series representations having the same infinitesimal character and central
character as V ∗. If Lξ ◦ φH is not conjugated to φG,V then ΛφH

(fH,∞) vanishes.
In particular ΛφH

(fH,∞) vanishes if φH is not discrete, which implies that fH,∞ is
the image in SI(HR,AH(R)0, χ) of a linear combination of pseudo-coefficients of
essentially discrete series in I(HR,AH(R)0, χ). We now assume the existence of
g ∈ Ĝ(C) satisfying Ad(g)◦Lξ ◦φH = φG,V . Choose an arbitrary element π of the
discrete series L-packet ΠφG,V

(GR), and let (B,T) be a corresponding Borel pair
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(see e.g. [Taï17, §4.2.1]). Choose h ∈ X such that h factors through T (such an h
exists), so that µh belongs to X∗(T). Let (B, T ) be the standard Borel pair of Ĝ.
Up to conjugation by Ĝ we can assume that we have φG,V (C×) ⊂ T and that the
holomorphic part of φG,V |C× is dominant with respect to B. Via the identification
of T̂ with T determined by B and B we can see µh as an algebraic character of T ,
and let ⟨µπ, ·⟩ be its restriction to CφG,V

. That this is well-defined in terms of π,
i.e. independent of auxiliary choices (among them h) is a consequence of [Kot90,
Lemma 5.1]. Finally let ⟨π, ·⟩ be Shelstad’s spectral transfer factor, a character
of CφG,V

/Z(Ĝ) 16. The character ⟨µπ, ·⟩⟨π, ·⟩ of CφG,V
does not depend on the

choice of π and its restriction to Z(Ĝ) coincides with that of µ, where µ is any
algebraic character of T corresponding to µh for some h ∈ X (the Weyl orbit of
µ is well-defined). To compute the character ⟨µπ, ·⟩⟨π, ·⟩ one can take for example
π = πgen, the unique generic element of the L-packet, for which ⟨π, ·⟩ is trivial. In
this situation we have [Kot90, Lemma 7.1]

ΛφH
(fH,∞) = (−1)q(GR)⟨µπ, gξ(s)g−1⟩⟨π, gξ(s)g−1⟩. (4.6.2)

At the p-adic place, fix a hyperspecial maximal compact subgroup of H(Qp).
Then f (j)

H,p can be chosen to be the unique element of the corresponding unramified
Hecke algebra such that for any unramified representation π of H(Qp) with Satake
parameter c(π) (a semi-simple conjugacy class in Ĥ), we have

tr(π(f
(j)
H,p)) = pjn(n+1)/4 tr(r−µ(s× ξ(c(π))j)) (4.6.3)

where r−µ is the irreducible representation of Ĝ having extremal weight −µ. As
in the real case the stable orbital integrals of the distribution f

(j)
H,p are prescribed

(see [Kot90, (7.3)]), and following Kottwitz the equivalent spectral characterization
(4.6.3) is deduced thanks to:

• the twisted fundamental lemma (known in the p-adic case for the whole
unramified Hecke algebra and without any assumption on the residual char-
acteristic: see [LMW15], [LMW15]) for base change, seeing H as a twisted
endoscopic group for RG := ResQ

pj
/Qp G and the automorphism “arithmetic

Frobenius” (see [Mor10, Appendix A]). More precisely, the endoscopic datum
(H,H, s, ξ) and the choice of an unramified L-embedding Lξ : LH→ LG ex-
tending ξ determine a twisted endoscopic datum (H, H̃, s̃, ξ̃) for RG endowed
with the arithmetic Frobenius automorphism of Qpj/Qp and an unramified
L-embedding Lξ̃ : LH→ LRG.

16This spectral transfer factors depends on the choice of a Whittaker datum, but since G/AG

is adjoint there is only one G(R)-orbit of Whittaker data.
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• formula [KS, Theorem 5.6.2] relating twisted (for base change) and ordinary
transfer factors (to be more precise this formula relates the factors ∆′

0, i.e.
without epsilon factors, but it is easy to check that the epsilon factors are
simply equal so ∆′

0 can be replaced by ∆′
λ in this formula),

• the simple formula for the Satake isomorphism in the minuscule case [Kot84a,
Theorem 2.1.3] and the explicit computation of Lξ̃ (see p. 179 of [Kot90] and
§A.2.6 of [Mor10]).

Remark 4.6.3. Following [Mor10, Appendix A] and [KS, §5.6] we are using the
transfer factors ∆′

λ, and so the morphism of Hecke algebras on p. 180 of [Kot90]
has to be defined via the classical (as opposed to “Deligne”) normalization of the
Satake isomorphisms, i.e. mapping p to the arithmetic Frobenius. This is necessary
for the twisted fundamental lemma to hold.

Note that the definition of c(π) does not involve a choice of normalization
because H is split, only defining an unramified Langlands parameter does.

In [Mor11] on the right-hand side of (4.6.1) the linear forms STH, given by
explicit geometric expansions and defined by Kottwitz in unpublished notes, occur
instead of Arthur’s SH

disc. The goal of Kottwitz’s notes is the stabilization of the
trace formula for the action of Hecke operators on middle-weighted cohomology
of the locally symmetric space attached to a reductive group G over Q such that
G/AG admits discrete series at the real place. This would be independent of
(and more direct and explicit than) Arthur’s stabilization of his invariant trace
formula ([Art02], [Art01], [Art03]), although the trace formulas of [GKM97] (in
the case of an upper middle weight profile) and [Art89a], which clearly agree on
the geometric (“orbital integrals”) side, are equivalent by [Nai99]. Kottwitz’ notes
are unpublished but in [Pen19] Zhifeng Peng used an argument similar to [Art89a]
to show that Arthur’s stable linear form defined in his stabilization, when applied
to distributions that are pseudo-coefficients of discrete series at the real place,
admits the expansion predicted by Kottwitz, i.e. that SH

disc = STH.

4.7 Description of intersection cohomology using lifted Sa-
take parameters

We now apply Theorem 4.6.1 and Proposition 3.4.7 to precisely describe the
H(GSp2n(Af )//K)Qℓ×GalQ-module structure ofH•((A∗

n,K)Q, IC
K(V )) in the par-

ticular case of level one (K = GSp2n(Ẑ)). We somewhat abusively define

H•((A∗
n)Q, IC(V )) := H•((A∗

n,M)Q, IC
K(M)(V ))K(M)
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where M ≥ 3 is any integer. By Propositions 4.4.4 and 4.5.2 this Hunr
f (GSp2n)Qℓ×

GalQ-module does not depend on the choice ofM , is unramified away from ℓ and for
any prime p ̸= ℓ the semi-simplification of its restriction to⊗′

q ̸=ℓ,pHunr(GSp2n,Zq)Qℓ×
GalQp is determined (abstractly at least) by Theorem 4.6.1.

We will require the following definition.

Definition 4.7.1. Let m ≥ 1 and τ̃ ∈ ĨC(SO4m). Let ψ ∈ Ψ̃unr,τ̃
disc,ne(SO4m).

Let spin+
ψ (resp. spin−

ψ ) be the half-spin representation of Mψ,sc (see Definition
3.4.4) such that, if the eigenvalues of τψ in the standard representation ofMψ are
±x1, . . . ,±x2m where x1 > · · · > x2m > 0 are integers, the eigenvalues (counted
with multiplicities) of spin+

ψ (τψ) (resp. spin−
ψ (τψ)) are the 1

2

∑2m
i=1 ϵixi for (ϵi)i ∈

{±1}2m such that the cardinality of

{i ∈ {1, . . . , 2m} | ϵi = +1}

is even (resp. odd).

To be more explicit, in this definition we may take Mψ = SO4m and τψ the
class of

(x1, . . . , x2m) ∈ Lie(TSO4m)

using the parametrization (2.2.2) of TSO4m , and then the weights of the maximal
torus TSpin4m ofMψ,sc occurring in the representation spin+

ψ (resp. spin−
ψ ) are, using

the parametrization (2.2.3) of TSpin4m ,

(z1, . . . , z2m, s) 7−→ s
∏
i∈I

z−1
i

for all subsets I of {1, . . . , 2m} having even (resp. odd) cardinality.
A simplification particular to the level one case is that we haveH•((A∗

n)Q, IC(V )) =

0 unless the central character of V is a square. Indeed this follows from Remark
4.3.6 applied to the central element z = −1. Thus up to twisting V by a power of
the similitude character (see Remark 4.3.7) we may and will assume that V is a rep-
resentation of PGSp2n, i.e. that the highest weight of V is (k1, . . . , kn, (

∑
i ki)/2).

Thanks to this assumption we will be able to use trace formulas for semisimple
groups as in the first section (see Section 3.5), simplifying our notation. Let τ be
the projection of the dual of the infinitesimal character of V to ĝder = sp2n.

To compute the right-hand side of (4.6.1), first recall that for e = (H,H, s, ξ)
an elliptic endoscopic datum for G = GSp2n as in Theorem 4.6.1, ι(e) is defined as
τ(G)τ(H)−1|Out(e)|−1 where τ is the Tamagawa number and Out(e) is the outer
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automorphism group of e = (H,H, s, ξ). These constants are easily computed: if
H = G, ι(e) = 1, and otherwise ι(e) = 1/4 (in the latter case Out(e) = Z/2Z).
Also recall from Lemma 3.4.6 and the discussion following Theorem 4.6.1 that the
natural map e 7→ e = (H,H, s, ξ) induces a bijection between sets of equivalence
classes of everywhere unramified endoscopic data for G (or PGSp2n) and for Sp2n.

For τ ′ ∈ IC(H) satisfying ξ(τ ′) = τ and ψ′ ∈ Ψ̃unr,τ̃
disc (H) we can consider

ξ ◦ ψ̇′
τ ′,sc :Mψ′ → (Ŝp2n)sc, which is identified to ψ̇τ,sc for a uniquely determined

ψ ∈ Ψ̃unr,τ
disc (Sp2n). Writing ψ′ = (ψ′

1, ψ
′
2) for a decomposition H ≃ SO4a×Sp2b, we

have ψ = ψ′
1 ⊕ ψ′

2 (if e is trivial then a = 0 and ψ′
1 is understood to be an empty

formal sum). In other words we have a natural map (e, τ ′, ψ′) 7→ (ψ, s), which
is a bijection between the set of equivalence classes of triples (e, τ ′, ψ′) where e is
an elliptic endoscopic datum for G, τ ′ ∈ IC(H) maps to τ and ψ′ ∈ Ψ̃unr,τ̃ ′

disc (H)

(the equivalence being induced by the usual notion of equivalence of endoscopic
data, which acts on the second factor τ ′ and acts trivially on the last factor ψ′)
and the set of pairs (ψ, s) where ψ ∈ Ψ̃unr,τ

disc (Sp2n) and s ∈ Sψ. The fact that
this is a bijection is a special case of an observation of Arthur [Taï19, Proposition
2.4.1], which goes back to a general argument due to Kottwitz [Kot84b, §11]. If e
is non-trivial then |Out(e)| = 2 and the non-trivial outer automorphism does not
fix τ ′, as we have τ ′ = (τ ′1, τ

′
2) where τ ′1 belongs to a θ̂-orbit having two elements.

Thus we can begin rewriting the right-hand side of (4.6.1) purely in terms
of parameters for G (or rather Sp2n), using the reduction from G to PGSp2n

explained in Section 3.5 and the spectral expansion (3.4.2) in Proposition 3.4.7,
along with the spectral characterizations (4.6.2) (at the real place), (4.6.3) (at the
p-adic place) and the fundamental lemma (at all other places): (4.6.1) is equal to

∑
ψ∈Ψ̃unr,τ

disc (Sp2n)

∑
s∈Sψ

ι(e)
∑
τ ′ 7→τ

ϵψ′(sψ′)(−1)q(L
∗
ψ′,τ ′ )

|Sψ′ |
(−1)q(GR)⟨µπgen

∞ , s⟩×

pjn(n+1)/4 tr
(
r−µ(sψ̇τ,sc(cp,sc(ψ))

j)
)∏
q ̸=p

SatGZq
(fq)(ψ̇τ,sc(cq,sc(ψ)))

where e = (H,H, s, ξ) is the elliptic endoscopic datum for G obtained from a lift
s ∈ Ĝ(C) of s and ψ′ ∈ Ψunr,τ̃ ′

disc (H) correspond to (ψ, s). Note that the product
⟨µπgen

∞ , s⟩r−µ(s) does not depend on the choice of s. In the above expression we
also implicitly see ψ̇τ,sc(cp,sc(ψ)) ∈ ̂PGSp2n(C) as an element of Ĝ(C), and πgen

∞ is
the generic element of the L-packet as discussed after (4.6.2).

We proceed to remove any reference to endoscopic objects in this expression.
First we have ϵψ′(sψ′) = ϵψ(ssψ) by [Art13, Lemma 4.4.1]. The quasi-split real
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connected reductive group L∗
ψ′,τ ′ associated to the Adams-Johnson parameter ψ̇′

τ ◦
ψ′
∞ is isomorphic to L∗

ψ,τ , associated to the parameter ψ̇τ ◦ψ∞. Finally if (e, τ ′, ψ′)

corresponds to (ψ, s) then the inclusion Cψ′ ⊂ Cψ induced by ξ turns out to be
an equality because ψ̇τ induces an isomorphism Z(Mψ) → Cψ̇τ and similarly for

ψ′ (see third part of Definition 3.1.6). Thus we have |Sψ|/|Sψ′ | = |Z(Ĥ)| which is
equal to 2 if e is non-trivial and 1 otherwise. Thus we have

ι(e)× |{τ
′|τ ′ 7→ τ}|
|Sψ′ |

= |Sψ|−1,

and the right-hand side of (4.6.1) is also equal to

∑
ψ∈Ψ̃unr,τ

disc (Sp2n)

(−1)q(GR)+q(L
∗
ψ,τ )

|Sψ|
∑
s∈Sψ

ϵψ(ssψ)⟨µπgen
∞ , s⟩

pjn(n+1)/4 tr
(
r−µ(sψ̇τ,sc(cp,sc(ψ))

j)
)∏
q ̸=p

SatSp2n,Zq
(fq)(cq,sc(ψ)).

Recall that in Arthur’s formalism sψ ∈ Sψ is defined in a global manner, as the
image of −1 ∈ SL2 by a morphism Lψ × SL2 → Ŝp2n (denoted ψ̃Sp2n

in [Art13,
§1.4.4]) corresponding to the formal Arthur-Langlands parameter ψ. We shall need
a canonical preimage of sψ in ̂PGSp2n, which we cannot define in exactly the same
way since we are using a slightly weaker formalism whereMψ replaces Lψ × SL2.
Recall from Definition 3.4.4 that there exists ψ∞,sc : WR× SL2 →Mψ,sc(C) lifting
ψ∞ and that this lift is unique up to Z1(WR, ker(Mψ,sc → Mψ)). Therefore
s̃ψ := ψ∞,sc(1,−1) ∈ Mψ,sc satisfies s̃2ψ = 1, lifts Arthur’s sψ ∈ Cψ (see Lemma
3.1.7) and does not depend on the choice of the lift ψ∞,sc. Moreover s̃ψ belongs
to Z(Mψ,sc) because sψ belongs to Z(Mψ). For any ψ∞,sc as above ψ̇τ,sc ◦ψ∞,sc is
an Adams-Johnson parameter, so we can apply [Kot90, Lemma 9.1] and conclude
that (−1)q(L∗

ψ,τ ) = ⟨µπgen
∞ , ψ̇τ,sc(s̃ψ)⟩. Using this identity and the change of variable

s 7→ ssψ in the sum, our expression for the right-hand side of (4.6.1) becomes

(−1)q(GR)
∑

ψ∈Ψ̃unr,τ
disc (Sp2n)

|Sψ|−1
∑
s∈Sψ

ϵψ(s)⟨µπgen
∞ , s⟩

pjn(n+1)/4 tr
(
r−µ(sψ̇τ,sc(s̃ψcp,sc(ψ))

j)
)∏
q ̸=p

SatGZq
(fq)(cq,sc(ψ)). (4.7.1)
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We now use the notations introduced in Section 2.2, in particular the iden-
tification SO2n+1 ≃ Ŝp2n and the parametrization TSO2n+1 ≃ GLn1 , and similarly
for G = GSp2n and PGSp2n. Fix ψ∞ : WR × SL2(C) → Mψ(C) in the conju-
gacy class introduced in Definition 3.1.6. Up to conjugacy 17 we may assume that
ψ̇τ ◦ φψ∞|C× takes values in TSO2n+1(C) and is dominant for BSO2n+1 , i.e. the holo-
morphic part of ψ̇τ ◦ φψ∞|C× : C× → TSO2n+1(C) is z 7→ (zk1+n, . . . , zkn+1). Write
ψ = ⊕ri=0ψi as in Definition 3.1.6. As in Lemma 3.1.7 for 1 ≤ i ≤ r let si ∈ Z(Mψ)

be the element such that for 1 ≤ i′ ≤ r the i′-th projection to Z(Mψi) = {±1}
is non-trivial if and only if i′ = i. Then (s1, . . . , sr) is a basis of Cψ̇τ (seen as a
vector space over F2), and it determines a partition {1, . . . , n} = J0 ⊔ · · · ⊔ Jr as
follows: for 1 ≤ i ≤ r and 1 ≤ j ≤ n we have j ∈ Ji if and only if the j-th
component of si (seen as an element of TSO2n+1(Q) ≃ (Q×

)n) is −1. For 1 ≤ i ≤ r

let s̃i = (x1, . . . , xn, 1, 1) ∈ TGSpin2n+1
(Q) where

xj =

{
−1 if j ∈ Ji
1 otherwise.

In other words s̃i is the image by ψ̇τ,sc of the element of Z(Mψi,sc) mapping to
the non-trivial element of Z(Mψi) and acting by +1 in spin+

ψi
and by −1 in spin−

ψi

(see Definition 4.7.1). Clearly s̃i lifts si and we have s̃i ∈ Cψ̇τ,sc . This gives
us a parametrization (Z/2Z)r × GL1 ≃ Cent(ψ̇τ,sc, Ĝ) mapping ((ϵi)1≤i≤r, λ) to
ν̂(λ)

∏
i s̃
ϵi
i .

A simple computation of weights shows that we have a decomposition into
irreducible constituents

r−µ ◦ ψ̇τ,sc ≃
⊕

(u1,...,ur)∈{±1}r
spinψ0

⊗ spinu1ψ1
⊗ · · · ⊗ spinurψr (4.7.2)

and on each factor the group Cent(ψ̇τ,sc, Ĝ) acts by a character that we de-
note αψ,(u1,...,ur). With the above parametrization of Cent(ψ̇τ,sc, Ĝ), this char-
acter maps ((ϵi)1≤i≤r, λ) to λ−1

∏
i u

ϵi
i . For s as in (4.7.1) the automorphism

⟨µπgen
∞ , s⟩r−µ(s) acts on the factor of (4.7.2) corresponding to (u1, . . . , ur) by the

scalar ⟨µπgen
∞ , s⟩αψ,(u1,...,ur)(s). This scalar clearly does not depend on the choice of s

lifting s and is the evaluation at s of a character of Sψ that we denote βψ,(u1,...,ur).
This last character is easily computed: by (4.1.4) we have ⟨µπgen

∞ , s̃i⟩ = (−1)Ni
where Ni = {j ∈ Ji | j even}. For 1 ≤ i ≤ r define

ui(ψ) = ϵψ(si)⟨µπgen
∞ , s̃i⟩ ∈ {±1} (4.7.3)

17of ψ∞ by Mψ(C) and of ψ̇τ by Ĝ(Q)
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so that (u1(ψ), . . . , ur(ψ)) is the unique (u1, . . . , ur) in {±1}r such that the char-
acter ϵψβψ,(u1,...,ur) of Sψ is trivial. Using orthogonality relations for characters of
Sψ we obtain that (4.7.1) is equal to

(−1)q(GR)
∑

ψ∈Ψ̃unr,τ
disc (Sp2n)

pjn(n+1)/4αψ,(u1(ψ),...,ur(ψ))(ψ̇τ,sc(s̃ψ))

tr
(
spinψ0

cp,sc(ψ0)
j
) r∏
i=1

tr
(
spin

ui(ψ)
ψi

cp,sc(ψi)
j
)∏
q ̸=p

SatGZq
(fq)(cq,sc(ψ)). (4.7.4)

It will also be useful to compute s̃ψ ∈ Z(Mψ,sc) =
∏r

i=0 Z(Mψi,sc) explicitly.
A special case will be used in Proposition 4.7.6 below.

1. For ψ0 = π0[d0] with π0 ∈ Oo(w
(0)
1 , . . . , w

(0)
(n0−1)/2), we need to compute the

image of −1 in the lift of ν⊕n0
d0

: SL2 → SOn0d0 to Spinn0d0 . Computing with
weights we find that this element of Z(Spinn0d0) = {1, s̃0} is s̃(d

2
0−1)/8

0 .

2. For ψi = πi[di] with di even and πi ∈ S(w
(i)
1 , . . . , w

(i)
ki
), computing in the

same way we find that the image of −1 ∈ SL2 is (−1, . . . ,−1, 1) = s̃i ∈
Z(Spinnidi) ⊂ TSpinnidi .

3. For ψi = πi[di] with di odd and πi ∈ Oe(w
(i)
1 , . . . , w

(i)
2ki

), we find that the
image of −1 ∈ SL2 in Z(Spinnidi) ≃ {±1}

2 is trivial.

Thus we have s̃ψ = s̃
(d20−1)/8
0

∏r
i=1 s̃

di−1
i .

We finally obtain that the right-hand side of (4.6.1) equals

∑
ψ∈Ψ̃unr,τ

disc (Sp2n)

(−1)n(n+1)/2+(d20−1)/8

r∏
i=1

ui(ψ)
di−1

× pjn(n+1)/4 tr
(
spinψ0

(cp,sc(ψ0))
j)
) r∏
i=1

tr
(
spin

ui(ψ)
ψi

(cp,sc(ψi))
j)
)

×
∏
q ̸=p

SatGZq
(fq)(cq,sc(ψ)). (4.7.5)

Theorem 4.7.2 reformulates this slightly more conceptually.

Theorem 4.7.2. Let n ≥ 1, ℓ a prime and ι be an isomorphism between the
algebraic closures of Q in C and Qℓ. Let V be an irreducible algebraic representa-
tion of PGSp2n, and let τ be the infinitesimal character of its dual representation
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(understood as a representation of PGSp2n(R)), a semisimple conjugacy class in
so2n+1. In the Grothendieck group K0

(
RepQℓ(GalQ ×Hunr

f (G)Qℓ)
)

we have

[Qℓ⊗QℓH
•((A∗

n)Q, IC(V ))] =
∑

ψ∈Ψ̃unr,τ
disc (Sp2n)

(−1)n(n+1)/2+(d20−1)/8

r∏
i=1

ui(ψ)
di−1σIH

ψ,ι⊗ι(χf,ψ)

(4.7.6)
where in the sum,

• as above ψ = ψ0⊕· · ·⊕ψr, ψi = πi[di], and ui(ψ) = ϵψ(si)⟨µπgen
∞ , s̃i⟩ ∈ {±1},

• σIH
ψ,ι is a continuous semisimple representation GalQ → GL2n−r(Qℓ) charac-

terized by the properties that it is unramified away from ℓ and that for any
p ̸= ℓ, σIH

ψ,ι(Frobp) is conjugated to

ι
(
pn(n+1)/4spinψ0

(cp,sc(ψ0))⊗ spin
u1(ψ)
ψ1

(cp,sc(ψ1))⊗ · · · ⊗ spin
ur(ψ)
ψr

(cp,sc(ψr))
)
.

(4.7.7)

• χf,ψ is the character Hunr
f (G) → Q determined by (ψ̇τ,sc(cp,sc(ψ)))p∈P (see

Proposition 3.4.10), and ι(χf,χ) abusively denotes the Qℓ-linear extension to
Hunr
f (G)Qℓ of its composition with ι.

Proof. Recall that the equality between (4.6.1) and (4.7.5) holds true for f∞ =∏
q fq ∈ Hunr

f (G) with fp = 1 and j sufficiently large. Recall from Remark 4.6.2
that the left-hand side, which a priori belongs to Qℓ, is in fact rational. The right-
hand side a priori belongs to C by definition of endoscopic transfer, but thanks
to Proposition 3.4.10 we see that each term belongs to Q. It follows that for any
f∞ =

∏
q fq ∈ Hunr

f (G)Qℓ with fp = 1 we have, for j sufficiently large,

Tr
(
Frobjp f

∞ ∣∣Qℓ ⊗Qℓ H
•((A∗

n)Q, IC(V ))
)

(4.7.8)

=
∑

ψ∈Ψ̃unr,τ
disc (Sp2n)

(−1)n(n+1)/2+(d20−1)/8

r∏
i=1

ui(ψ)
di−1 × ι(χf,ψ)(f∞)

× ι

(
pjn(n+1)/4 tr

(
spinψ0

(cp,sc(ψ0))
j)
) r∏
i=1

tr
(
spin

ui(ψ)
ψi

(cp,sc(ψi))
j)
))

where the expression between the outer parentheses on the last line belongs to a
finite extension of Q in C which only depends on ψ. By a standard argument using
invertibility of a Vandermonde determinant, (4.7.8) holds true for any j ∈ Z.
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In particular for j = 0 we obtain

Tr
(
f∞ ∣∣H•((A∗

n)Q, IC(V ))
)

=
∑

ψ∈Ψ̃unr,τ
disc (Sp2n)

(−1)n(n+1)/2+(d20−1)/82n−r
r∏
i=1

ui(ψ)
di−1 × ι(χf,ψ)(f∞).

Observe that p does not occur in this formula except in the assumption that
we have fp = 1, which for a given f∞ is satisfied for almost all p. So the for-
mula is satisfied for any f∞ ∈ Hunr

f (G), determining [Qℓ ⊗Qℓ H
•(A∗

n, IC(V ))] in
K0

(
Rep(Hunr

f (G)Qℓ)
)
. By Remark 3.2.1 for any ψ ∈ Ψ̃unr,τ

disc (Sp2n) and any finite
set S of prime numbers there exists f∞ ∈

⊗′
q ̸∈SHunr(GZq)Qℓ such that for any

ψ′ ∈ Ψ̃unr,τ
disc (Sp2n) we have

ι(χf,ψ′)(f∞) =

{
1 if ψ′ = ψ

0 otherwise.

In particular using just S = ∅ we obtain the equality inK0

(
RepQℓ(GalQ ×Hunr

f (G)Qℓ)
)

[Qℓ ⊗Qℓ H
•(A∗

n, IC(V ))]

=
∑

ψ∈Ψ̃unr,τ
disc (Sp2n)

(−1)n(n+1)/2+(d20−1)/8

r∏
i=1

ui(ψ)
di−1 × σIH

ψ,ι ⊗ ι(χf,ψ)

where σIH
ψ,ι ∈ K0

(
RepQℓ(GalQ)

)
is uniquely determined and has virtual dimension

2n−r. Taking S = {p} where p ̸= ℓ and using (4.7.8) yields

tr
(
Frobjp

∣∣σIH
ψ,ι

)
= ι

(
pjn(n+1)/4 tr

(
spinψ0

(cp,sc(ψ0)
j)
) r∏
i=1

tr
(
spin

ui(ψ)
ψi

(cp,sc(ψi)
j)
))

for all j ∈ Z.
To conclude we must show that σIH

ψ,ι is a genuine representation. This follows
from purity ([Del80, Proposition 6.2.6]) which implies that an element of Qℓ

× can
occur as an eigenvalue of Frobp acting on Hk((A∗

n)Fp , IC(V )) in at most one degree
k, and invertibility of a Vandermonde determinant.

Observing the characterization of σIH
ψ,ι (and the general conjecture [Kot90]) we

expect that:

1. the representation σIH
ψ,ι factors as a tensor product of Galois representations

as suggested by (4.7.7), and
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2. each factor is obtained from a Galois representation taking values in a GSpin

group by composing with a spin or half-spin representation.

As explained in the introduction (§1.3) we will show the first point in full
generality, and the second point in almost all cases.

Corollary 4.7.3. Fix a prime number ℓ and an isomorphism ι between Q and the
algebraic closure of Q in Qℓ.

1. Let n ≥ 1, τ ∈ IC(Sp2n) and ψ ∈ Ψunr,τ
disc,ne(Sp2n). Explicitly, we have ψ =

π[2d+1] for some π ∈ Oo(w1, . . . , wk) and d ≥ 0. There exists a continuous
semisimple representation σspin

ψ,ι : GalQ → GL2n(Qℓ) unramified away from ℓ

such that for any p ̸= ℓ, σspin
ψ,ι (Frobp)

ss is conjugated to

ι
(
pn(n+1)/4spinψ(cp,sc(ψ))

)
.

2. Let n ≥ 1, τ̃ ∈ ĨC(SO4n), ψ ∈ Ψ̃unr,τ̃
disc,ne(SO4n). Recall that either ψ =

π[2d + 1] for some π ∈ Oe(w1, . . . , w2k) and d ≥ 0 or ψ = π[2d] for some
π ∈ S(w1, . . . , wk) and d ≥ 1. Let ϵ = (−1)nϵ(1

2
, π) = (−1)nϵ(1

2
, π∞). In the

first case we have ϵ = (−1)n, in the second case it depends on the infinitesimal
character of π∞: we have ϵ = (−1)n+k/2+

∑
i wi. Then there is a continuous

semisimple representation σspin,ϵ
ψ,ι : GalQ → GL22n−1(Qℓ) which is unramified

away from ℓ and such that for any p ̸= ℓ, σspin,ϵ
ψ,ι (Frobp)

ss is conjugated to

ι
(
pn/2spinϵψ(cp,sc(ψ))

)
.

Proof. Let σspin
ψ,ι = σIH

ψ,ι in the first case and σspin,ϵ
ψ,ι = σIH

1⊕ψ,ι(n
2) (Tate twist) in the

second case (note that n2 = (2n(2n+ 1)/2− n/2)/2).

Definition 4.7.4. Let n ≥ 1, τ̃ ∈ ĨC(SO4n) and ψ ∈ Ψ̃unr,τ̃
disc,ne(SO4n). Let GMψ,sc

be quotient of GL1×Mψ,sc by the diagonally embedded subgroup µ2 (on the second
factor, the kernel of Mψ,sc → Mψ). Recall from Definition 4.7.1 the two rep-
resentations spinϵψ of Mψ,sc, for ϵ ∈ {+,−}. They can be extended uniquely to
GMψ,sc by letting z ∈ GL1 act by z id. We simply denote these representations by
spinϵψ. Denote by ν the character GMψ,sc → GL1 induced by GL1×Mψ,sc → GL1,
(z, g) 7→ z2.

Proposition-Definition 4.7.5. Let n,m, d ≥ 1 be integers satisfying n = md.
The representation StdSp2m ⊗Sym2d−1 StdSL2 of Sp2m×SL2 is irreducible and self-
dual of orthogonal type. The set of morphisms α : Sp2m × SL2 → SO4n satisfying
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StdSO4n ◦α ≃ StdSp2m⊗Sym2d−1 StdSL2 consists of two SO4n(Q)-conjugacy classes.
Exactly one of these two conjugacy classes has a representative αm,d restricting to
(using parametrizations from Section 2.2)

TSp2m × TSL2 −→ TSO4n

((x1, . . . , xm), t) 7−→ (x1t
2d−1, x1t

2d−3, . . . , x1t
1−2d, . . . , xmt

2d−1, . . . , xmt
1−2d).

(4.7.9)

It admits a (unique) lift α̃m,d : Sp2m × SL2 → Spin4n. We have an identification

(Sp2m × SL2 ×GL1)/µ2 −→ G(Sp2m × SL2) := {(g1, g2) ∈ GSp2m ×GL2 | ν(g1) = det g2}
(h1, h2, λ) 7−→ (λh1, λh2)

where µ2 is diagonally embedded on the left, and the morphism

Sp2m × SL2 ×GL1 −→ GSpin4n (4.7.10)

(h1, h2, λ) 7−→ λnα̃m,d(h1, h2)

induces a morphism G(Sp2m × SL2) → GSpin4n, that we abusively still denote by
α̃m,d.

Consider τ̃ ∈ ĨC(SO4n) and ψ ∈ Ψ̃unr,τ̃
disc (SO4n) of the form π[2d] (as in the

second case of the second point of Corollary 4.7.3). The Langlands parameter
WR → GL2m(C) of π∞ is symplectic, and so it factors through φ∞ : WR → Sp2m(C)
which is well-defined up to conjugation. There exists αψ : Sp2m × SL2 → Mψ

satisfying StdMψ
◦αψ ≃ StdSp2m ⊗ Sym2d−1 StdSL2 and such that ψ∞ is conjugated

under Mψ(C) to αψ ◦ (φ∞, idSL2), and for these two properties αψ is unique up
to conjugation by Mψ(Q). Taking Mψ = SO4n and τψ = (w1, . . . , w2n) with
w1 > · · · > w2n > 0 integers, we have αψ = αm,d. Let α̃ψ : Sp2m× SL2 →Mψ,sc be
the unique lift of αψ. As above it extends to give a morphism α̃ψ : G(Sp2m×SL2)→
GMψ,sc mapping λ ∈ GL1 to λn.

Proof. The standard representations of Sp2m and SL2 are both self-dual of sym-
plectic type and 2d−1 is odd so StdSp2m⊗Sym2d−1 StdSL2 is of orthogonal type. A
simple weight computation shows that this representation factors through a mor-
phism αm,d whose restriction to TSp2m × TSL2 is given by (4.7.9). The conjugacy
class of this morphism TSp2m × TSL2 → SO4n is not fixed by θ̂, e.g. because there
exists (τ1, τ2) ∈ Lie(TSp2m × TSL2) mapping to (2n, 2n− 1, . . . , 1) ∈ Lie TSO4n . Ex-
istence and uniqueness of α̃m,d is [BT72, Proposition 2.24 (i)]. The restriction of
α̃m,d : Sp2m × SL2 → Spin4n to Z(Sp2m × SL2) ≃ µ2 × µ2 is easily computed:

(z1, z2) 7→ (z1z2, . . . , z1z2, z
n
1 ) ∈ TSpin4n .
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It follows that (4.7.10) is trivial on the diagonally embedded µ2.
The case of α̃ψ follows immediately, using the fact that τψ is not fixed by θ̂.

Proposition 4.7.6. For n ≥ 1, τ̃ ∈ ĨC(SO4n) and π[2d] ∈ Ψ̃unr,τ̃
disc,ne(SO4n) and for

any prime p we have cp(π[2d]) = αψ(cp(π), diag(p
1/2, p−1/2)).

Note that by [Clo88, §3.5] for a pair (π, d) as above there is a finite extension
E of Q in C such that for any prime number p the semisimple conjugacy class
cp(π)p

1/2 in GL2m(C) is defined over E. In particular the corresponding conjugacy
class in GSp2m(C) having similitude character p is also defined over E. Therefore
απ[2d](cp(π), diag(p

1/2, p−1/2)) is also defined over E 18.

Proof. We already know that cp(π[2d]) is either equal to απ[2d](cp(π), diag(p1/2, p−1/2))

or its image by θ̂ (if it is not θ̂-invariant, but the proof below will show that it
never is, i.e. that no eigenvalue in the standard representation is ±1).

Consider ψ = 1 ⊕ π[2d] ∈ Ψ̃unr,τ̃
disc,ne(Sp4n). With notation as in Theorem 4.7.2

we have ψ0 = 1, ψ1 = π[2d] and u1(ψ) is the sign ϵ made explicit in the second
point of Corollary 4.7.3.

As in Definition 4.7.5 we may assume Mψ = SO4n and τψ equal to the con-
jugacy class of (w1, . . . , w2n) ∈ Lie TSO4n where w1 > · · · > w2n > 0. Using the
parametrizations for maximal tori introduced in Section 2.2, the morphism απ[2d]
maps the conjugacy class of ((x1, . . . , xm), t) ∈ TSp2m ×TSp2 to the conjugacy class
of

(x1t
2d−1, x1t

2d−3, . . . , x1t
1−2d, . . . , xmt

2d−1, . . . , xmt
1−2d) ∈ TSO4n .

The two preimages of this element of TSO4n in TSpin4n are

y± = (x1t
2d−1, x1t

2d−3, . . . , x1t
1−2d, . . . , xmt

2d−1, . . . , xmt
1−2d,±(x1 . . . xm)d)

Now we fix some prime number p and take (x1, . . . , xm) to be a representative
of the conjugacy class cp(π) in Sp2m(C) and t = p1/2. By [Clo13] or [Car12] we
know that all xi’s have absolute value one (this also holds in any embedding of
the number field Q(x1, . . . , xm) in C). Therefore any eigenvalue of spin+

π[2d](y+) or
spin+

π[2d](y−) (resp. spin−
π[2d](y+) or spin−

π[2d](y−)) has absolute value pi/2 for some
even (resp. odd) integer i. Consider the sign

(−1)n(n+1)/2+(d20−1)/8

r∏
i=1

ui(ψ)
di−1 = (−1)n(n+1)/2u1(ψ)

18In fact the map πp 7→ c(πp)⊗diag(p(2d−1)/2, . . . , p(1−2d)/2)) from unramified representations
of GL2m(Qp) to semisimple conjugacy classes in GL4n(C) is defined over Q.
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corresponding to ψ in (4.7.6). Choose any prime number ℓ ̸= p and an arbi-
trary isomorphism ι as in Theorem 4.7.2, and let V be the irreducible algebraic
representation of PGSp2n corresponding to the infinitesimal character τ of ψ.
By purity of H•((A∗

n)Q, IC(V )), if u1(ψ) = +1 (resp. u1(ψ) = −1) then any
eigenvalue of spin

u1(ψ)
π[2d] (cp,sc(π[2d])) has absolute value pi/2 for some even (resp.

odd) integer i. Since cp,sc(π[2d]) equals the Weyl orbit of y+, y−, θ̂(y+), or
θ̂(y−) we can rule out the last two possibilities, and conclude that cp(π[2d]) =

απ[2d](cp(π), diag(p
1/2, p−1/2)).

Remark 4.7.7. Of course we expect a stronger relation

cp,sc(π[2d]) = α̃π[2d](cp(π), diag(p
1/2, p−1/2))

(in the notation of the proof above, y+ rather than y−). This could perhaps be
proved by realizing a level one representation of PGSO4n corresponding to π[2d]

as iterated residues of Eisenstein series. We will prove this in Proposition 6.3.2
using Galois-theoretic arguments.

4.8 Intersection versus compactly supported cohomology

The aim of this section is to express, for an irreducible algebraic representation
V of GSp2n,Qℓ , the Euler characteristic eIH(GSp2n,Xn, V ) (notation as in the
introduction, §1.4) of

lim−→
K

H•((A∗
n,K)Q, IC

K
Q (V ))

in terms of

• the analogous Euler characteristics ec(GSp2n′ ,Xn′ , V ′) for compactly sup-
ported cohomology on (An,K)Q, for n′ ≤ n and certain representations V ′,

• the Euler characteristics of the “compactly supported” cohomology (with
coefficients) of certain arithmetic subgroups of GLn′ , for n′ ≤ n.

This relation is a slightly more conceptual reformulation of results of Morel ([Mor08,
Théorème 5.2.2] or [Mor10, Proposition 1.5.3]) that she used to prove Theorem
4.6.1. It serves two purposes: first to obtain in Corollary 4.8.18 crystallineness of
the representations σIH

ψ,ι of Theorem 4.7.2, and later to derive an explicit formula
for ec(GSp2n,Xn, V ) in terms of intersection cohomology (as announced in §1.4 of
the introduction).
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We first recall the adelic version of group cohomology of arithmetic groups in
Section 4.8.1, and spell out the notion of parabolic induction in the setting of
Definition 4.3.1 in Section 4.8.2. We then review boundary strata of the mini-
mal compactifications A∗

n,K and Morel’s weight truncation, before following some
of Morel’s arguments to express the Euler characteristic of intersection cohomol-
ogy in terms of that of ordinary cohomology (Corollary 4.8.14). We then dualize
to replace ordinary cohomology by compactly supported cohomology (Corollary
4.8.16). Finally we deduce in Corollary 4.8.18 that each σIH

ψ,ι is crystalline from
this relation and a theorem of Faltings and Chai.

4.8.1 Arithmetic group cohomology

Let G be a connected reductive group over Q, K∞ an open subgroup of a maximal
compact subgroupKmax

∞ of G(R) and denote by X the real manifold G(R)/K∞AG(R)0.
Consider a representation of G(Q) on a finite-dimensional vector space V over a
field F of characteristic zero. Exactly like in the case G = GSp2n (see the end of
Section 4.2), we have local systems FK(V ) on the manifolds G(Q)\(X×G(Af )/K)

and we get objects H i(G, K∞, V ) (resp. H i
c(G, K∞, V )) of Hecke(G(Af ), F ) with

H i(G, K∞, V )K = H i(G(Q)\(X ×G(Af )/K),FK(V )),

H i
c(G, K∞, V )K = H i

c(G(Q)\(X ×G(Af )/K),FK(V ))

for any neat compact open subgroup K of G(Af ). For K∞ maximal these will
be simply denoted by H i(G, V ) (resp. H i

c(G, V )) 19. Recall that thanks to the
existence of “nice” compactifications, such as the Borel-Serre compactification,
the vector spaces H i(G, K∞, V )K and H i

c(G, K∞, V )K have finite dimension and
vanish for i outside an explicit finite interval (see [Rag67], [BS73, §11]).

The Hecke operators between the cohomology groups H i(G, K∞V )K are de-
fined similarly to the algebro-geometric case of Shimura varieties: for g ∈ G(Af )

and K ′ an open compact subgroup of G(Af ) contained in gKg−1, multiplication
by g defines a cover TK′,g,K : G(Q)\(X ×G(Af )/K

′) → G(Q)\(X ×G(Af )/K)

and there is a natural isomorphism T ∗
K′,g,KFK(V ) ≃ FK′

(V ), which is analogous
to the composition of the first two isomorphisms in Definition 4.3.5. There is also
an integral version that we will not use.

19We hope that this notation will not create any confusion since cohomology of algebraic groups
does not appear in this article.
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By Poincaré duality we have perfect pairings

H i
c(G(Q)\(X×G(Af )/K),FK(V ))×HdimX−i(G(Q)\(X×G(Af )/K),FK(V ∗)⊗O)→ Q

(4.8.1)
where O is the orientation sheaf. As in the algebro-geometric setting (4.3.4) it is
natural to normalize this pairing using a Haar measure on G(Af ) in order to realize
these two admissible representations of G(Af ) (as K varies) as the contragredient
of each other. The connected components of X are simply connected, so choosing
an orientation of X gives us an isomorphism O ≃ FK(χ) where χ is the restriction
to G(Q) of the continuous character G(R) → {±1} whose restriction to Kmax

∞ is
the determinant of the adjoint representation LieG(R)/LieK∞ (or equivalently
of LieK∞, because the adjoint action of G(R) has trivial determinant). In general
this character χ of G(Q) is non-trivial, in particular non-algebraic.

Example 4.8.1. For G = GLN,Q we have χ = sign detN−1 and dimX = N2 −
1−N(N − 1)/2 = N(N + 1)/2− 1.

Remark 4.8.2. Using [RS93, Proposition 2.2] one can check that, at least when
the level K is small enough, the manifold G(Q)\(X × G(Af )/K) is orientable.
Unfortunately it is not canonically so, and so as K varies it does not seem to be
possible to choose orientations uniformly so that they are compatible with all finite
étale covers TK′,g,K.

Even though χ is non-algebraic in general, we can often reduce to the case of
an algebraic representation V , by the following remark. See also Lemma B.0.2.

Remark 4.8.3. Let L be a one-dimensional representation of G(Q) over F , and
denote by χ : G(Q) → F× the corresponding character. Let G ⊂ G(R) be the
stabilizer of a connected component X 0 of X . It is a normal subgroup of G(R), in
fact the quotient is commutative and 2-torsion, and so G does not depend on the
choice of a connected component of X . Assume that there exists a locally constant
character χ̃f : G(Af )→ F× such that χ̃f and χ coincide on G ∩G(Q). Then for
a level K ⊂ G(Af ) such that χ̃f |K = 1, choosing a basis e of L there is a unique
global section s(e, χ̃f ) of FK(L) which on (G∩G(Q))\(X 0×G(Af )/K) is given by
(x, hK) 7→ χ̃f (h)e. Cup-product with s(e, χ̃f ) gives an isomorphism of admissible
representations of G(Af )

H i(G, K∞, V )⊗ χ̃f ≃ H i(G, K∞, V ⊗F L).

Similarly we have an isomorphism H i
c(G, K∞, V )⊗ χ̃f ≃ H i

c(G, K∞, V ⊗F L).
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Note that Remark 4.3.7 over C is a special case of this (via comparison of étale
and singular cohomology), and that a simple way to find a pair (χ, χ̃f ) is to take
χ to be the restriction to G(Q) of χ̃−1

∞ where χ̃ = χ̃∞χ̃f is a character on G(A)
which is trivial on G(Q).

In this section we will only need the case where K∞ is maximal, and for simplic-
ity we make this assumption from now on. We simplify the notation by denoting
H•(G,−) for H•(G, K∞,−), and similarly for H•

c (by conjugacy of maximal com-
pact subgroups of G(R) these cohomology groups do not depend on the choice of
K∞ indeed). The general case will be resumed in Section 8.1.

For a given neat compact open subgroup K of G(Af ) we have a decomposition
into (finitely many) connected components

G(Q)\(X ×G(Af )/K) ≃
⊔

[hj ]∈G(Q)\G(Af )/K

Γj\X

where Γj = hjKh
−1
j ∩G(Q). This gives an isomorphism

H i(G, V )K ≃
⊕
j

H i(Γj\X ,FK(V )).

Since X is connected and contractible and the action of Γj on it is free we have
canonical isomorphisms H i(Γj\X ,FK(V )) ≃ H i(Γj, V ) (see [Gro57, §5.3 Cor. 3]),
giving a purely algebraic interpretation of H i(G, V ) in terms of group cohomology.
If we change representatives, say h′j = γjhjkj with γj ∈ G(Q) and kj ∈ K,
then Γ′

j := h′jK(h′j)
−1 ∩G(Q) = γjΓjγ

−1
j , we have an isomorphism V |Γ′

j
≃ V |Γj

induced by γ−1
j which is compatible with the isomorphism Ad(γj) : Γj → Γ′

j, and
so together they induce an isomorphism H•(Γ′

j, V ) ≃ H•(Γj, V ) which of course
depends on (hj, h

′
j) but not on the choice of (γj, kj) (see [Ser68, Ch. VII Prop. 3]).

In particular we have a canonical isomorphism

H i(G, V )K ≃
⊕

h∈G(Q)\G(Af )/K

colimhK∈cH
i(hKh−1 ∩G(Q), V ). (4.8.2)

Moreover the Hecke operators [K2, g,K1, K
′] : H i(G, V )K1 → H i(G, V )K2 ,

at least when K1, K2 and K ′ are neat, can be rewritten via (4.8.2) in terms
of combinatorics of double quotients G(Q)\G(Af )/K and maps TK′,g,K between
them and restriction and corestriction maps in group cohomology. We do not make
this more explicit here.
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We denote

e(G, V ) =
∑
i≥0

(−1)i[H i(G, V )], resp. ec(G, V ) =
∑
i≥0

(−1)i[H i
c(G, V )]

in the Grothendieck group of admissible representations of G(Af ) over Q.

4.8.2 Parabolic induction

Definition 4.8.4. Let G be a locally profinite group, P a closed subgroup, and N
a closed normal subgroup of P and denote M = P/N . For p ∈ P denote by p its
image in M . Assume that G/P is compact (so that for any compact open subgroup
K of G the double quotient P\G/K is finite). Let F be a field. For K an open
compact subgroup of G and h ∈ G we define compact open subgroups of N , P and
M as follows: let KN,h = hKh−1∩N , KP,h = hKh−1∩P and KM,h = KP,h/KN,h,
which is isomorphic to the image of KP,h in M . For an object V = (VK)K∈C(M) of
Hecke(M,F ), let indGPV be the object of Hecke(G,F ) with

(indGPV )K =

{
f : G/K →

⊔
hK∈G/K

VKM,h

∣∣∣∣ ∀hK ∈ G/K, f(hK) ∈ VKM,h

and ∀hK ∈ G/K, ∀p ∈ P, f(phK) = [KM,ph, p,KM,h, KM,ph]f(hK)

}
and Hecke operators [K2, g,K1, K

′] : (indGPV )K1 → (indGPV )K2 defined by

[K2, g,K1, K
′](f)(h2K2) (4.8.3)

=
∑

[h′]∈P\G/K′

Ph′K2=Ph2K2

∣∣∣∣(K2)N,h′

(K ′)N,h′

∣∣∣∣ [(K2)M,h2 , p
−1
2 p1, (K1)M,h1 , (K

′)M,p−1
2 h′

]
(f(h1K1))

where h1 is any element of Ph′gK1, p1, p2 ∈ P are such that p1h1 ∈ h′gK1 and
p2h2 ∈ h′K2.

Remark 4.8.5. 1. Similarly to the case of Definition 4.3.1, one can replace
the category of vector spaces over F by an arbitrary additive category.

2. In the setting of the definition, choosing representatives h1, . . . , hm for P\G/K,
we have an isomorphism

(indGPV )K −→
m⊕
i=1

VKM,hi

f −→ (f(hiK))1≤i≤m
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because the Hecke operators [KM,ph, p,KM,h, KM,ph] occurring in the defini-
tion are isomorphisms which compose in the obvious way and are equal to
the identity when phK = hK.

3. The same properties are used to checked that each term in the sum (4.8.3)
does not depend on the choice of (h′, h1, p1, p2). For simplicity one could take
h′ ∈ h2K2, h1 = h′g and p1 = p2 = 1.

4. It is not obvious that indGPV satisfies all axioms of Definition 4.3.1. Of
course it is the last axiom that demands more work. The proof is relatively
straightforward but a bit long, so we leave it to the reader. In fact we will
only need the case of Q-vector spaces and Q-linear categories that reduce
to this case, in which case the axioms of Definition 4.3.1 for indGPV follow
from Proposition 4.3.8 and Proposition 4.8.6 below, which of course is the
motivation for Definition 4.8.4.

Proposition 4.8.6. If V is associated to a smooth representation V of M by
Proposition 4.3.2 then indGPV is canonically associated to the (non-normalized)
induced representation indGPV of G.

Proof. The identification of (indGPV )K with (indGPV )K is straightforward, so let us
check that Hecke operators match. Recall from Proposition 4.3.2 that [K2, g,K1, K

′]

is induced by
∑

k∈K2/K′ kg. Fix h2 ∈ G (and not just h2K2 ∈ G/K2). Each
k ∈ K2/K

′ defines [h2k] ∈ P\G/K ′ mapping to [h2] in P\G/K2, and all such
double cosets in P\G/K ′ are obtained in this way. Moreover for h′ ∈ h2K2 and
kK ′ ∈ K2/K

′ we have Ph′kK ′ = Ph′K ′ if and only if k belongs to the image of

(K2)P,h2/(K
′)P,h′

Ad(h′)−1

↪−−−−−→ K2/K
′. Therefore for f ∈ (indGPV )K1 we have

[K2, g,K1, K
′](f)(h2K2) =

∑
k∈K2/K′

f(h2kgK1)

=
∑

[h′]∈(K2)P,h2\h2K2/K′

∑
k′∈(K2)P,h′/(K

′)P,h′

f(k′h′gK1)
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and since f is left P -equivariant we can write∑
k′∈(K2)P,h′/(K

′)P,h′

f(k′h′K1) =
∑

k′∈(K2)M,h′/(K
′)M,h′

∣∣∣∣(K2)N,k′h′

(K ′)N,k′h′

∣∣∣∣ f(k′h′gK1)

=
∑

k′∈(K2)M,h′/(K
′)M,h′

∣∣∣∣(K2)N,h′

(K ′)N,h′

∣∣∣∣ k′ · f(h′gK1)

=

∣∣∣∣(K2)N,h′

(K ′)N,h′

∣∣∣∣ [(K2)M,h2 , 1, (K1)M,h′g, (K
′)M,h′ ] f(h

′gK1)

and we recognize the simplification of (4.8.3) observed in Remark 4.8.5 3.

Corollary 4.8.7. Assume that we are in the setting of Definition 4.8.4. Assume
that F has characteristic zero and that G and N are unimodular. Let δP :M → Q×

be the modulus character, i.e. for any p ∈ P , for any right Haar measure µ on P

and for any measurable set X ⊂ P we have µ(pX) = δP (p)µ(X). Fix right Haar
measures on P and G. Then the contragredient object (defined in Corollary 4.3.4)
(indGPV )∗ is isomorphic to indGP (V

∗ ⊗ δP ).

Proof. Under the assumptions of unimodularity we have a “quotient measure”
which is a morphism indGP δP → F of smooth representations of G. Let V be the
smooth representation of M corresponding to V , and denote by Ṽ its contragre-
dient representation, which naturally corresponds to V ∗. The isomorphism in the
Corollary is obtained by composing the obvious pairing indGPV × indGP (Ṽ ⊗ δP )→
indGP δP with the quotient measure.

As the notation suggests we will use Proposition 4.8.6 in the case of parabolic
induction, that is for G = G(Af ), P = P(Af ) and N = N(Af ) where G is a
connected reductive group over Q, P a parabolic subgroup and N its unipotent
radical.

4.8.3 Stratifications of minimal compactifications of Siegel modular
varieties

For the rest of Section 4.8 we denote G = GSp2n and X denotes the G(R)-
homogeneous space introduced in Section 4.1. Maximal proper standard parabolic
subgroups of G are parametrized by integers 1 ≤ m ≤ n, we denote by Pm

the block upper triangular subgroup of G corresponding to the partition n =

m+2(n−m)+m. Thus standard Levi subgroups of G are parametrized by tuples
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1 ≤ n1 < · · · < nr ≤ n, and P = Pn1 ∩ · · · ∩ Pnr has standard Levi factor MP

isomorphic to GLn1×· · ·×GLnr−nr−1×GSp2(n−nr), the inverse isomorphism being

(g1, . . . , gr, h) 7−→ diag
(
g1ν(h), . . . , grν(h), h, J

−1
n1

tg−1
1 Jn1 . . . , J

−1
nr−nr−1

tg−1
r Jnr−nr−1

)
where (Jk)i,j = δi+j=k+1. In particular we have a decomposition

MP = MP,lin ×MP,her (4.8.4)

where MP,lin ≃ GLn1 × · · · ×GLnr−nr−1 and MP,her = GSp2(n−nr).
We will use the description of boundary strata of minimal compactifications

explained in Section C.4.2, in terms of generalized Shimura varieties introduced
in Definitions C.1.1 and C.1.8. Boundary strata of A∗

n,K are parametrized by
maximal proper parabolic subgroups of G. For such a parabolic subgroup P =

Pm (here 1 ≤ m ≤ n) we have by Proposition C.4.4 an associated generalized
Shimura datum (MP,XP, hP) and for a neat level K = Kp ×G(Zp) the stratum
of A∗

n,K,Fp = Sh(G,X , K)∗Fp corresponding to P may be identified with

colim
gK∈[P(A(p)

f )↷G(A(p)
f )/Kp]

Sh(MP,XP, K(P, gK))Fp ≃
⊔

[g]∈P(A(p)
f )\G(A(p)

f )/Kp

Sh(MP,XP, K(P, gK))Fp

and we denote
iP,gK : Sh(MP,XP, K(P, K))Fp ↪→ A∗

n,K,Fp

the locally closed immersion.
More generally for a standard parabolic subgroup (not assumed to be maximal

or proper) P = Pn1 ∩ · · · ∩Pnr of G we may restrict (in the sense of Proposition-
Definition C.4.5) the generalized Shimura datum (MPnr ,XPnr , hPnr ) to MP, to
obtain a generalized Shimura datum (MP,XP, hP). As explained in Section C.4.3
the double coset

P(A(p)
f )\G(A(p)

f )/Kp ≃ P(Af )\G(Af )/K

parametrizes sequences of boundary strata corresponding to the parabolic sub-
groups Pn1 , Pn1 ∩ Pn2 , . . . , P. In particular for g ∈ G(A(p)

f ) ×G(Zp) we have a
morphism

TP,gK : Sh(MP,XP, K(P, gK))Fp −→ Sh(G,X , K)∗Fp .

If r = 1 this map coincides with the locally closed immersion iP,gK but in general
TP,gK is only finite étale over the boundary stratum corresponding to Pnr and [g] ∈
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Pnr(A
(p)
f )\G(A(p)

f )/Kp. If nr < n (resp. nr = n) then hP : XP → Hom(S,MP,R) is
injective (resp. two-to-one) and hP(XP) is the MP(R)-orbit of

z 7→ (In1 , . . . , Inr−nr−1hn−m,0(z))

where hn−m,0 : S→ GSp2(n−m) is as described around (4.1.3). In any case we are
in the situation of Section C.3: MP,lin(R) acts trivially on XP and (MP,her,XP, hP)

is a Shimura datum, so each Sh(MP,XP, K) is isomorphic to a finite disjoint union
of An−m,K′ for certain neat levels K ′. For ℓ ̸= p prime and V a bounded com-
plex of (finite-dimensional) algebraic representations of MP,Qℓ we also have (see
Proposition-Definition C.2.1) objects AFKV of D+(Sh(MP,XP, K)Fp ,Qℓ) and co-
homological correspondences between them (Definition C.2.7), yielding objects

H i(Sh(MP,XP, ?)Fp ,AF
?V )

of Repadm,cont
Qℓ (MP(A(p)

f ) × GalQ). As explained in Section C.3 the corresponding
Euler characteristic inK0(Rep

adm,cont
Qℓ (MP(A(p)

f )×GalQ)) factorizes as follows when
V is concentrated in degree zero and decomposes as = Vlin ⊗ Vher

e(Sh(MP,XP, ?)Fp ,AF
?V ) = e(MP,lin, Vlin)⊠ e(An−nr,?,Fp ,F

?Vher).

4.8.4 Weight truncation of correspondences

Morel [Mor08, §3.3] associated to the stratification of (A∗
n,K)Fp = Sh(G,X , K)∗Fp

recalled in the previous section and a tuple a ∈ (Z ∪ {±∞})n+1 a t-structure on
the triangulated category of mixed complexes in Db(Sh(G,X , K)∗Fp ,Qℓ). We will
use the same notation, e.g. w≤a denotes truncation for this t-structure.

Proposition 4.8.8. Let a ∈ (Z∪{±∞})n+1. Let ((LK)K∈C , (v(K2, g,K1, K
′))K2,g,K1,K′)

be an object of PreH(A∗
n,?,Fp , C,Qℓ) (Definition 4.4.2) such that each LK is bounded

and mixed. Then

((w≤aLK)K∈C , (w≤av(K2, g,K1, K
′))K2,g,K1,K′)

and ((w>aLK)K∈C , (w>av(K2, g,K1, K
′))K2,g,K1,K′)

are also objects of PreH(A∗
n,?,Fp , C,Qℓ).

Proof. We only treat the first case (w≤a) as the other case (w>a) is entirely sim-
ilar. The proof of the first two axioms in Definition 4.4.2 is straightforward and
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we omit it. For the third and fourth axioms it is enough to check compatibil-
ity of weight truncation with composition of correspondences and pushforward of
correspondences.

For composition, we need to prove the following: assume that we have mor-
phisms

X1
c1←− X ′ c2−→ X2

d1←− X ′′ d2−→ X3

between schemes separated of finite type over Fp and endowed with stratifications
compatible with these morphisms. Let Li ∈ Db

m(Xi,Qℓ) for i = 1, 2, 3, u : c∗1L1 →
c!2L2 and v : d∗1L2 → d!2L3. Then we have an equality of correspondences between
w≤aL1 and w≤aL3 supported on (c1π

′, d2π
′′), where π′ : X ′ ×X2 X

′′ → X ′ and
π′′ : X ′ ×X2 X

′′ → X ′′:

w≤a(v ◦ u) = (w≤av) ◦ (w≤au). (4.8.5)

In the diagram

(π′)∗c∗1L1 (π′)∗c!2L2 (π′′)!d∗1L2 (π′′)!d!2L3

(π′)∗c∗1w≤aL1 (π′)∗c!2w≤aL2 (π′′)!d∗1w≤aL2 (π′′)!w≤aL3

(π)∗u (π′′)!v

(π′)∗w≤au (π′′)!w≤av

the left (resp. right) square is commutative by application of (π′)∗ (resp. (π′′)!) to
the commutative square characterizing w≤au (resp. w≤av), and the middle square
is commutative because it is obtained from the morphism of functors (π′)∗c!2 →
(π′′)!d∗1 applied to the morphism w≤aL2 → L2. So the outer square is commutative,
implying (4.8.5).

For pushforward we need to prove the following: suppose we have a diagram

X ′

X1 X X2

f

c1

c2

of separated schemes of finite type over Fp endowed with stratifications compatible
with these morphisms, Li ∈ Db

m(Xi,Qℓ) for i = 1, 2 and u : f ∗c∗1L1 → f !c!2L2.
Assume that f is proper. Then we have an equality of correspondences from
w≤aL1 to w≤aL2 supported on (c1, c2):

corr-f∗(w≤au) = w≤a(corr-f∗u). (4.8.6)
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In the diagram

c∗1L1 f∗f
∗c∗1L1 f∗f

!c!2L2 c!2L2

c∗1w≤aL1 f∗f
∗c∗1w≤aL1 f∗f

!c!2w≤aL2 c!2w≤aL2

adj f∗u adj

adj f∗w≤au adj

the left and right square are commutative because they arise from a morphism of
functors (id → f∗f

∗ resp. f!f ! → id) applied to a morphism w≤aLi → Li, and
the middle square is commutative by application of f∗ to the commutative square
characterizing w≤au. So the outer square is commutative, implying (4.8.6).

Corollary 4.8.9. Let a(1), . . . , a(r) ∈ (Z∪ {±∞})n+1. For each 1 ≤ i ≤ r let τi be
either w≤a(i) or w>a(i). Then the pair

(τr . . . τ1j∗FK(V ))K , (τr . . . τ1corr-j∗u(K2, g,K1, K
′)Fp)K2,g,K1,K′

is an object of PreH(A∗
n,?,Fp , C,Qℓ), where corr-j∗ denotes the pushforward of cor-

respondences (Definition A.4.1) for the open immersions j : An,K,Fp → A∗
n,K,Fp.

Proof. This will follow from r applications of Proposition 4.8.8 once we prove that

(j∗FK(V ))K , (corr-j∗u(K2, g,K1, K
′)ICFp)K2,g,K1,K′

is an object of PreH(A∗
n,?,Fp , C,Qℓ). This is proved exactly as for Proposition 4.4.4,

using (repeatedly) the first point of Lemma A.5.1 instead of the second one.

4.8.5 Intersection cohomology from ordinary cohomology

Definition 4.8.10. Let P = Pn1 ∩ · · · ∩ Pnr be a standard parabolic subgroup of
G. Let tn1 , . . . , tnr ∈ Z. Let V be an algebraic (finite-dimensional) representation
of MP ≃ GLn1 ×GLn2−n1 × · · · ×GLnr−nr−1 ×GSp2(n−nr). We have a canonical
decomposition

V =
⊕

s1,...,sr∈Z

Vs1,...,sr

where Vs1,...,sr is the eigenspace for Z(GLn1) × · · · × Z(GLnr−nr−1) such that for
each 1 ≤ i ≤ r and λ ∈ GL1,(

λIn1 , . . . , λIni−ni−1
, Ini+1−ni , . . . , Inr−nr−1

)
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acts by λsi on Vs1,...,sr . Denote

V<t = V<tn1 ,...,<tnr =
⊕

s1<tn1 ,...,sr<tnr

Vs1,...,sr

and similarly for V≤t, V>t and V≥t. Being functorial, these truncations extend to
complexes of algebraic representations of MP.

Remark 4.8.11. This definition of truncation differs from the one in [Mor08,
§4.2]. More precisely if the center of GSp2n acts by t 7→ tm on V then Vs1,...,sr is
the largest subspace of V on which

diag(λ2Ini , λI2(n−ni), Ini) ∈ Z(MP)

acts by λm+si for each 1 ≤ i ≤ r. So our V<t is Morel’s V<t′ where t′i = ti +m.
We translated Morel’s conditions so that they become invariant under twisting by
characters of G.

Note that there seems to be a typographical error (certainly related to Remark
C.4.2) in [Mor08, §4.2] for the case ni = n (corresponding to zero-dimensional
strata).

Theorem 4.8.12 (Morel). Let ℓ ̸= p be prime numbers, V an algebraic representa-
tion of GQℓ (or a bounded complex of such representations). In K0(Rep

adm,cont
Qℓ (G(A(p)

f )×
Gal(Fp/Fp))) we have

e(A∗
n,?,Fp , IC

?(V )) =
∑
P

(−1)rP indG(A(p)
f )

P(A(p)
f )
e(Sh(MP,XP, ?)Fp ,AF

?RΓ(LieNP, V )<t)

where the sum ranges over standard parabolic subgroups P = Pn1 ∩ · · · ∩ Pnr of
G, rP = r = dimAP − dimAG and tni = (n− ni)(n− ni + 1)/2− n(n+ 1)/2 for
1 ≤ i ≤ r.

Proof. This is a reformulation of [Mor08, Théorème 5.2.2] (see also the dual version
[Mor10, Proposition 1.5.3]), after taking cohomology. Since we have adopted a
different formulation in order to make the appearance of parabolic induction more
obvious, let us briefly explain how this theorem follows from Morel’s results. We
use the set C of compact open subgroups Kp of G(A(p)

f ) such that Kp ×G(Zp)
is neat. We have an object ((j∗FKV )K , (corr-j∗u(K2, g,K1, K

′)Fp)K2,g,K1,K′) of
PreH(A∗

n,?,Fp , C,Qℓ). By decomposing V we may assume that V is irreducible,
and so we may and do assume that V is pure of some weight m ∈ Z. Let a =
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−m + n(n + 1)/2, so that the perverse sheaves ICK(V )[n(n + 1)/2] are pure of
weight a. Denoting a = (a, . . . , a) ∈ Zn+1 we have by [Mor08, Théorème 3.1.4,
Lemme 3.3.3, Lemme 5.1.3] an isomorphism in PreH(A∗

n,?,Fp , C,Qℓ)

((ICK(V ))K , (u(K2, g,K1, K
′)ICFp)K2,g,K1,K′)

≃ ((w≤aj∗FKV )K , (w≤acorr-j∗u(K2, g,K1, K
′)Fp)K2,g,K1,K′).

Recall from Section C.4.3 (originating from [Mor10, Proposition 1.1.3], see also
the end of the proof of [Mor08, Proposition 4.2.3]) that for a standard parabolic
subgroup P = Pn1 ∩ · · · ∩ Pnr of G and K = Kp × G(Zp) neat, sequences of
boundary strata (S1, . . . , Sr), where S1 is a boundary stratum of Sh(G,X , K)∗Fp
and for 1 ≤ j < r Sj+1 is a boundary stratum of S∗

j corresponding to the image
of Pn1 ∩ · · · ∩Pnj+1

in MPn1∩···∩Pnj , are in bijection with P(A(p)
f )\G(A(p)

f )/K, and

for g ∈ G(A(p)
f )×G(Zp) we have a map

TP,gK : Sh(MP,XP, K(P, gK))Fp −→ (A∗
n,K)Fp .

As in [Mor08] we denote by im the locally closed immersion of

colim
gKp∈[Pm(A(p)

f )↷G(A(p)
f )/Kp]

Sh(MPm ,XPm , K(Pm, gK))Fp

in (A∗
n,K)Fp obtained by collecting the immersions iPm,gK . We need a slightly

more complicated Grothendieck group than in [Mor08, §5.1] and we work with the
Grothendieck group of PreH(A∗

n,?,Fp , C,Qℓ) instead, i.e. the group generated by iso-
morphism classes of objects (LK)K , (u(K2, g,K1, K

′))K2,g,K1,K′ of PreH(A∗
n,?,Fp , C,Qℓ),

with relations

[(LK)K , (u(K2, g,K1, K
′))K2,g,K1,K′ ] + [((L′′

K)K , (u
′′(K2, g,K1, K

′))K2,g,K1,K′)]

= [(L′
K)K , (u

′(K2, g,K1, K
′))K2,g,K1,K′ ]

whenever there exists a family (LK → L′
K → L′′

K
+1−→)K of exact triangles such

that every diagram

Tg
∗
LK1 Tg

∗
L′
K1

Tg
∗
L′′
K1

Tg
∗
LK1 [1]

T1
∗
LK2 T1

∗
L′
K2

T1
∗
L′′
K2

T1
∗
LK2 [1]

u(K2,g,K1,K′) u′(K2,g,K1,K′) u′′(K2,g,K1,K′) u(K2,g,K1,K′)[1]
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commutes. The proof of [Mor08, Proposition 5.1.5] works just as well in this
context thanks to Corollary 4.8.9, and so in K0(PreH(A∗

n,?,Fp , C,Qℓ)) the class of

((ICK(V ))K , (u(K2, g,K1, K
′)ICFp))

is equal to the sum, over standard parabolic subgroups P = Pn1 ∩ · · · ∩Pnr of G,
of (−1)r times

((w>a(nr) . . . w>a(n1)j∗FK(V ))K , (w>a(nr) . . . w>a(n1)corr-j∗u(K2, g,K1, K
′)Fp))

where

a
(ni)
j =

{
a if j = n− ni
+∞ otherwise.

Recall from Proposition 3.3.4 (ii) loc. cit. that each truncation functor w>a(ni) is
(canonically) isomorphic to ini∗w>ai

∗
ni

, and from Lemme 5.1.4 loc. cit. that (via
this identification) we have

w>a(nr) . . . w>a(n1)corr-j∗u(K2, g,K1, K
′)

= corr-inr∗w>acorr-inr
∗ . . . in1∗

w>ain1

∗j∗u(K2, g,K1, K
′)

(pushforward and pullback of correspondences as defined in Section A.4). Now by
Proposition 4.2.3 loc. cit.

inr∗w>ai
∗
nr . . . in1∗w>ai

∗
n1
j∗FKV

is identified with20 ⊕
[h]∈P(A(p)

f )\G(A(p)
f )/K

(TP,gK)∗AFK(P,hK)RΓ(LieNP, V )<t

where
tni =

(n− ni)(n− ni + 1)

2
− a−m

i.e. t as in the theorem (here we are using our convention for truncation in Defini-
tion 4.8.10, see Remark 4.8.11). Translating [Mor10, Proposition 1.5.3], we obtain
that via these identifications each correspondence

corr-inr∗w>acorr-inr
∗ . . . corr-in1∗

w>acorr-in1

∗corr-j∗u(K2, g,K1, K
′)

20As usual this direct sum is really a colimit over the groupoid [P(A(p)
f ) ↷ G(A(p)

f )/Kp].
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is equal to the matrix (uP[h1],[h2])[h1],[h2] where uP[h1],[h2] is the sum over [h′] ∈ P(A(p)
f )\G(A(p)

f )/K ′

satisfying h′g ∈ P(A(p)
f )h1K1 (say, h′g ∈ p1h1K1 where p1 ∈ P(A(p)

f )) and h′ ∈
P(A(p)

f )h2K2 (say, h′ ∈ p2h2K2 where p2 ∈ P(A(p)
f )), of

|h2K2h
−1
2 ∩NP(A(p)

f )/h′K ′(h′)−1 ∩NP(A(p)
f )|

times the pushforward along

Sh(MP,XP, K(P, h1K1)) Sh(MP,XP, K(P, h′K ′)) Sh(MP,XP, K(P, h2K2))

A∗
n,K1

A∗
n,K′ An,K2

TP,h1K1

Tp1

TP,h′K′

Tp2

TP,h2k2

Tg

T1

of the correspondence au(K(P, h2K2), p2, p1, K(P, h1K1), K(P, h′K ′)) (Definition
C.2.7). Taking cohomology (see Proposition A.4.3), we recognize (see Definition
4.8.4)

ind
G(A(p)

f )

P(A(p)
f )
e(Sh(MP,XP, ?)Fp ,AF

?RΓ(LieNP, V )<t).

In order to formulate the analogous result with Fp replaced by Q we need a
weaker notion of Grothendieck group of admissible representations.

Definition 4.8.13. For a characteristic zero field F and a connected reductive
group G over Q, denote by Ktr

0 (Rep
adm
F (G(Af ))) the quotient of the Grothendieck

group of admissible representations of G(Af ) over F by the following equivalence
relation: two virtual admissible representations V and W are equivalent if for
every compact open subgroup K of G(Af ), V K = WK in the Grothendieck group
of finite-dimensional representations of H(G(Af )//K).

Let Ktr
0 (Rep

adm,cont
Qℓ (G(Af )×GalQ)) be the quotient of the Grothendieck group

of admissible representations of G(Af ) with commuting continuous action of GalQ
(meaning that for any compact open K ⊂ G(Af ), the finite-dimensional represen-
tation of GalQ on K-invariant vectors is continuous) by the analogous equivalence
relation with H(G(Af )//K) replaced by H(G(Af )//K)×GalQ.

By the Brauer-Nesbitt theorem, the equivalence relations in the definition
amount to equality of traces (and in the second case one can restrict to a dense
invariant subset of GalQ). The equivalence relation occurring in Definition 4.8.13
is equivalent to the one in [HT01, §I.2], although we will not need this fact. In
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the setting of Definition 4.8.13, if P is a parabolic subgroup of G with unipotent
radical NP and reductive quotient MP = P/NP then (non-normalized) parabolic
induction defines a morphism

ind
G(Af )
P(Af ) : K

tr
0 (Rep

adm,cont
Qℓ (MP(Af )×GalQ))→ Ktr

0 (Rep
adm,cont
Qℓ (G(Af )×GalQ)),

essentially because parabolic induction is an exact functor preserving admissibility.

Corollary 4.8.14. Let ℓ be a prime number and V an algebraic representation of
GQℓ. In Ktr

0 (Rep
adm,cont
Qℓ (G(Af )×GalQ)) we have

e(A∗
n,?,Q, ICℓ(V )) =

∑
P

(−1)rP indG(A(p)
f )

P(A(p)
f )
e(Sh(MP,XP, ?)Q,AF

?RΓ(LieNP, V )<t).

where t is as in Theorem 4.8.12.

Proof. It is enough to show that for f ∈ H(G(Af )) and σ ∈ GalQ the traces of
f × σ on both sides are equal, but for a given Hecke operator f we can apply
Theorem 4.8.12 for almost all p, so we conclude using Propositions 4.5.1 and 4.5.2
and the Čebotarev density theorem.

4.8.6 Intersection cohomology from compactly supported cohomology

To state the dual version for compactly supported cohomology we first need to
recall Kostant’s theorem [Kos61, Theorem 5.14] on Lie algebra cohomology. Recall
that we have fixed a maximal split torus T = TGSp2n

in GSp2n = G, and that
we consider the order on the root system corresponding to the upper triangular
Borel subgroup of G. As usual ρ denotes half the sum of the positive roots of
T in G. Assume that V is an irreducible algebraic representation of G over Qℓ,
corresponding to the highest weight λ ∈ X∗(T). Then we have

H i(LieNP, V ) ≃
⊕
w∈WP

l(w)=i

VMP
w·λ

where

• WP ⊂ W (G) is the set of Kostant representatives for W (MP)\W (G), i.e.
the set of w ∈ W (G) satisfying w−1α > 0 for all simple roots occurring in
MP,

• l : W (G)→ Z≥0 is the length function,
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• w · λ := w(λ+ ρ)− ρ, and

• VMP

λ′ is the irreducible representation of MP admitting highest weight λ′.

Moreover we have a canonical decomposition

RΓ(LieNP, V ) ≃
dimNP⊕
i=0

H i(LieNP, V )[−i]

because each VMP
w·λ occurs with multiplicity one in the Chevalley-Eilenberg com-

plex. We will denote VMP

λ′ = V
MP,lin

λ′lin
⊗ V

MP,her

λ′her
according to the decomposition

(4.8.4). For t = (t0, . . . , tn) ∈ Zn+1 denote by WP
<t(λ) the set of w ∈ WP satisfying

(VMP
w·λ )<t = VMP

w·λ (see Definition 4.8.10), and similarly for > t.

Corollary 4.8.15. Let V be an irreducible algebraic representation of GQℓ, with
highest weight λ. For p ̸= ℓ we have an equality in K0(Rep

adm,cont
Qℓ (G(A(p)

f ) ×
Gal(Fp/Fp)))

e(A∗
n,?,Fp , IC

?(V ))

=
∑
P

∑
w∈WP

>t(λ)

(−1)l(w)indG(A(p)
f )

P(A(p)
f )

(
ec

(
MP,lin, V

MP,lin

(w·λ)lin

)MP,lin(Zp)
⊗ ec

(
An−nr,?,Fp ,F

?V
MP,her

(w·λ)her

))

for the same t ∈ Zn+1 as in Theorem 4.8.12.

Proof. The proof is very similar to the proof of [Mor10, Corollary 1.4.6]. We apply
Theorem 4.8.12 to V ∗ before taking contragredients. The dual of the intersection
complex ICK(V ∗) is identified with ICK(V )(d)[2d] where d = dimAn = n(n+1)/2,
and via this identification the dual of the correspondences u(K2, g,K1, K

′)ICFp are
equal to u(K1, g

−1, K2, g
−1K ′g)ICFp(d)[2d]. So the contragredient of the left-hand

side in Theorem 4.8.12 is
e(A∗

n,?,Fp , IC(V ))(d).

In order to rewrite the contragredient of the right-hand side we first use Corol-
lary 4.8.7 to express, for algebraic representations Wlin of MP,lin and Wher of MP,her

(over Qℓ), the contragredient of

ind
G(A(p)

f )

P(A(p)
f )

(
e(MP,lin,Wlin)

MP,lin(Zp) ⊗ e(An−nr,?,Fp ,F
?(Wher))

)
as

ind
G(A(p)

f )

P(A(p)
f )

(
e(MP,lin,Wlin)

∗,MP,lin(Zp) ⊗ e(An−nr,?,Fp ,F
?(Wher))

∗ ⊗ δ
P(A(p)

f )

)
.
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We have δ
P(A(p)

f )
= |δP|f where δP is the (algebraic) character by which MP acts

on
∧dimNP LieNP. The character δP is easily computed (in the decomposition

(4.8.4)): on each GLni−ni−1
it is equal to det2n+1−ni−ni−1 and on GSp2(n−nr) it is

equal to νd−dnr where dnr = dimAn−nr = (n − nr)(n − nr + 1)/2. By Example
4.8.1 and the observation 2n+ 1− ni − ni−1 ≡ ni − ni−1 − 1 mod 2 we obtain

e(MP,lin,Wlin)
∗,MP,lin(Zp)⊗δP(Af )|MP,lin(Af ) = (−1)2qlin(P)ec(MP,lin,W

∗
lin⊗δ−1

P,lin)
MP,lin(Zp)

where qlin(P) is short for q(MP,lin,der(R)) and δP,lin denotes the restriction of δP to
MP,lin. Using Remark 4.3.7 we also compute

e(An−nr,?,Fp ,F
?Wher)

∗ ⊗ δ
P(A(p)

f )
|
MP,her(A

(p)
f )

= ec(An−nr,?,Fp ,F
?W ∗

her)(dnr)⊗ δP(A(p)
f )
|
MP,her(A

(p)
f )

= ec(An−nr,?,Fp ,F
?(W ∗

her ⊗ δ−1
P,her))(d)

where δP,her denotes the restriction of δP to MP,her. We conclude

ind
G(A(p)

f )

P(A(p)
f )

(
e(MP,lin,Wlin)

MP,lin(Zp) ⊗ e(An−nr,?,Fp ,F
?(Wher))

)∗
=(−1)2qlin(P)ind

G(A(p)
f )

P(A(p)
f )

(
ec(MP,lin,W

∗
lin ⊗ δ−1

P,lin)
MP,lin(Zp) ⊗ e(An−nr,?,Fp ,F

?(W ∗
her ⊗ δ−1

P,her))
)
.

By duality for Lie algebra cohomology [Haz71] we have

H i(LieNP, V
∗)∗ ≃ HdimNP−i(LieNP, V )⊗

dimNP∧
LieNP.

We deduce from the above computation of δP that

diag(λIni , I2(n−ni), λ
−1Ini) ∈ Z(MP,lin)

acts by λ2(d−dni ) on
∧dimNP LieNP. Denoting sni = −tni − 2(d− dni) we obtain

(
H i(LieNP, V

∗)<t
)∗ ≃ HdimNP−i(LieNP, V )>s ⊗

dimNP∧
LieNP.

Note that for tni = dni − d we have sni = tni .
Write a decomposition into irreducible pieces

H i(LieNP, V
∗)<t ≃

⊕
j

Wi,j,lin ⊗Wi,j,her

so that we have
H i(LieNP, V )>s ≃

⊕
j

W ′
i,j,lin ⊗W ′

i,j,her
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with W ′
i,j,? ≃ W ∗

dimNP−i,j,? ⊗ δ−1
P,? for ? ∈ {lin, her}. Putting together the above

computations we get

ind
G(A(p)

f )

P(A(p)
f )
e(Sh(MP,XP, ?)Fp ,AF

?RΓ(LieNP, V
∗)<t)

∗

=
∑
i,j

(−1)iindG(A(p)
f )

P(A(p)
f )

(
e(MP,lin,Wi,j,lin)

∗,MP,lin(Zp) ⊗ e(An−nr,?,Fp ,F
?Wi,j,her)

∗ ⊗ δ
P(A(p)

f )

)
=
∑
i,j

(−1)i+2qlin(P)ind
G(A(p)

f )

P(A(p)
f )

(
ec(MP,lin,W

∗
i,j,lin ⊗ δ−1

P,lin)
MP,lin(Zp) ⊗ ec(An−nr,?,Fp ,F

?(W ∗
i,j,her ⊗ δ−1

P,her))
)
(d)

=
∑
i,j

(−1)i+2qlin(P)+dimNP ind
G(A(p)

f )

P(A(p)
f )

(
ec(MP,lin,W

′
i,j,lin)⊗ ec(An−nr,?,Fp ,F

?(W ′
i,j,her))

)
(d)

We conclude by simplifying signs using the equality

2qlin(P) + rP + 2dnr + dimNP = 2d.

This equality can be checked directly, or deduced from the Iwasawa decomposition
which allows us to see X as a homogeneous space under P(R) and comparing
dimensions.

Corollary 4.8.16. Let V = Vλ be an irreducible algebraic representation of GQℓ
characterized by its highest weight λ. We have an equality in Ktr

0 (Rep
adm,cont
Qℓ (G(Af )×

GalQ))

e(A∗
n,?,Q, ICℓ(V ))

=
∑
P

∑
w∈WP

>t

(−1)l(w)indG(Af )
P(Af )

(
ec

(
MP,lin, V

MP,lin

(w·λ)lin

)
⊗ ec

(
An−nr,?,Q,F

?V
MP,her

(w·λ)her

))
.

Proof. This follows from taking traces in Corollary 4.8.15 and using Proposition
4.5.2.

4.8.7 Crystallineness of intersection cohomology

Recall the following corollary to a result of Faltings-Chai.

Theorem 4.8.17. For any n ≥ 1, M ≥ 3, V an irreducible algebraic representa-
tion of GSp2n over Qℓ and i ≥ 0 the Galois representation H i

c((An,M)Q,F
K(M)
ℓ (V ))

is crystalline if ℓ does not divide M .
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Proof. The dual statement (for ordinary cohomology) follows from [FC90, Theo-
rem 6.2 (ii)] (using also (i) in this theorem and Theorem 5.5 to compare dimen-
sions).

Corollary 4.8.18. Fix an isomorphism ι between the algebraic closures of Q in
C and Qℓ. For any n ≥ 1, τ ∈ IC(Sp2n), ψ ∈ Ψ̃unr,τ

disc (Sp2n) the semisimple Galois
representation σIH

ψ,ι introduced in Theorem 4.7.2 is crystalline at ℓ.

Proof. Let V be the algebraic representation of GSp2n corresponding to τ . By
Corollary 4.8.16 and Theorem 4.8.17 (choosing an auxiliary level M ≥ 3 not di-
visible by ℓ) we know that in the Grothendieck group of continuous ℓ-adic repre-
sentations of GalQ, e(A∗

n, ICℓ(V )) is represented by an alternate sum of crystalline
representations. As was already used in the proof of Theorem 4.7.2, by purity any
irreducible representation of GalQ occurs as a subquotient in at most one degree
in H•(A∗

n, IC(V )).

5 Odd spin Galois representations

5.1 Existence and uniqueness of a lifting in conductor one

Proposition 5.1.1. Let f : H ′ → H be a surjective morphism between reductive
groups over Qℓ such that ker f is a central torus C in H ′. Let ρ : GalQ → H(Qℓ)

be a continuous Galois representation which is unramified away from ℓ and such
that ρ|GalQℓ

is crystalline. Let τ : GL1,Qℓ → H be the Hodge-Tate 1-parameter
subgroup for ρ (well-defined up to H(Qℓ)-conjugation). Assume that there exists
τ ′ : GL1,Qℓ → H ′ lifting τ . Then there exists a unique continuous Galois rep-
resentation ρ′ : GalQ → H ′(Qℓ) unramified away from ℓ, crystalline at ℓ with
Hodge-Tate cocharacter τ ′, and such that ρ = f ◦ ρ′.

Proof. By [Pat, Proposition 2.8.2] there exists a geometric lift ρ′0 : GalQ → H ′(Qℓ)

of ρ with Hodge-Tate 1-parameter subgroup τ ′ (up to H ′(Qℓ)-conjugation). In
fact this proposition is stated for isogenies GSpin2n+1 → SO2n+1, but the proof
obviously applies to the general case.

Now we need to twist ρ′0 by a finite order character GalQ → C(Qℓ) to obtain
ρ′ of conductor one. First we note that for any prime p ̸= ℓ, the representation
ρ′0|GalQp

is unramified up to a twist by a character χp : GalQp → C(Qℓ), and we may
and do assume that this character has finite order. Similarly, ρ′0|GalQℓ

is crystalline
up to a twist by finite order character χℓ : GalQℓ → C(Qℓ). This case (p = ℓ) is
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not quite as straightforward: it follows from the existence of a crystalline lift of
ρ|GalQℓ

having Hodge-Tate 1-parameter subgroup τ ′ ([Con, Proposition 6.5], which
relies on [Win97, §2]).

Denote by Ip the inertia subgroup of GalQp . Since ρ′0 is unramified at almost
all primes, for almost all primes p we have that χp is unramified, i.e. χp|Ip = 1. We
claim that there exists a unique continuous finite order character χ : GalQ → C(Qℓ)

such that for all primes p, χ|Ip = χp|Ip . This claim follows from the local Kronecker-
Weber theorem, which identifies the image of Ip in GalabQp with Z×

p : for any n ≥ 1

and any finite set of primes S, letting N =
∏

p∈S p
n, the Galois group of the abelian

extension Q(ζN)/Q decomposes as a product of inertia subgroups
∏

p∈S(Z/pnZ)×.
Uniqueness follows from Minkowski’s theorem (or the global Kronecker-Weber

theorem).

Proposition 5.1.2. Let ρ1 : GalQ → GL(V1) and ρ2 : GalQ → GL(V2) be semi-
simple continuous representations, where V1, V2 are finite-dimensional Qℓ-vector
spaces having equal dimensions. Assume that ρ1 and ρ2 have conductor one, i.e.
are unramified away from ℓ and crystalline at ℓ. Assume also that there exists an
integer n ≥ 1 such that for all primes p > n, there exists an n-th root of unity
ζ such that the characteristic polynomials of ρ1(Frobp) and ζρ2(Frobp) are equal.
Then ρ1 and ρ2 are isomorphic.

Proof. Choose an open subgroup U ⊂ Qℓ
× such that U ∖ {1} does not contain

any n-th root of unity. There exists a finite Galois extension K/Q such that for
any σ ∈ GalK , the eigenvalues of ρ1(σ) and those of ρ2(σ) belong to U . Then for
almost all primes p of K, we have that ρ1(Frobp) and ρ2(Frobp) have the same
characteristic polynomial, and so by the Čebotarev density theorem the semi-
simple representations ρ1|GalK and ρ2|GalK are isomorphic. Choose an isomorphism
f : V1 → V2 intertwining these restrictions. Then f ∈ HomQℓ(V1, V2)

Gal(K/Q), and
this is a sub-GalQ-representation of HomQℓ(V1, V2), therefore it is also a geometric
representation of conductor one. Since any finite image crystalline representation
of GalQℓ is in fact unramified, we obtain using Minkowski’s theorem that Gal(K/Q)

acts trivially on HomQℓ(V1, V2)
Gal(K/Q), and we conclude that f intertwines ρ1 and

ρ2.

5.2 Odd spin Galois representations

In the following theorem we recall what is already known about the existence of
Galois representations valued in orthogonal groups in our case.
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Theorem 5.2.1. Fix a prime number ℓ and an isomorphism ι : C ≃ Qℓ. Let
n ≥ 1. Let τ ∈ IC(Sp2n). For any ψ ∈ Ψ̃unr,τ

disc (Sp2n), there exists a continu-
ous semisimple representation ρSOψ,ι : GalQ → SO2n+1(Qℓ) unramified away from
ℓ and crystalline at ℓ and such that for any p ̸= ℓ, ρSOψ,ι(Frobp)ss is conjugated
to ι(ψ̇τ (cp(ψ))). The Hodge-Tate cocharacter of ρSOψ,ι|GalQℓ

, a conjugacy class of
morphisms GL1 → SO2n+1, has differential equal to τ .

If ρ : GalQ → SO2n+1(Qℓ) is any continuous semisimple morphism such that
for almost all primes p, ρ is unramified at p and ρ(Frobp)

ss is conjugated to
ι(ψ̇τ (cp(ψ))), then ρ is conjugated to ρSOψ,ι.

Proof. Write ψ = ⊕iπi[di] where πi is a self-dual automorphic representation for
GLni of conductor one, satisfying 2n + 1 =

∑
i nidi. The eigenvalues of the

infinitesimal character of πi,∞ are distinct and belong to di−1
2

+Z, so it follows from
[CH13, Theorem 4.2] that there exists a continuous semisimple representation ρi,ι :
GalQ → GLni(Qℓ) which is unramified away from ℓ and crystalline at ℓ and such
that for any prime number p ̸= ℓ the characteristic polynomial of ρi,ι(Frobp) is equal
to that of p(di−1)/2cp(πi). We have ρ∨i,ι ≃ χdi−1

ℓ ⊗ρi,ι because πi is self-dual. Define a
2n+1-dimensional linear representation σ of GalQ as

⊕
i ρi⊗(1⊕χℓ⊕· · ·⊕χ

di−1
ℓ ). It

is clearly self-dual, and for any index i such that di is odd we know thanks to [BC11,
Corollary 1.3] that the self-dual representation ρi,ι⊗χ(di−1)/2

ℓ is of orthogonal type,
i.e. it factors through the standard representation of the orthogonal group Oni(Qℓ).
It actually factors through SOni(Qℓ) because it is unramified away from ℓ and
crystalline at ℓ, so its determinant is everywhere unramified. It follows that σ is also
of orthogonal type, i.e. it is isomorphic to ρSOψ,ι : GalQ → SO(Qℓ) composed with the
standard representation StdSO2n+1 of SO2n+1. The representation StdSO2n+1 induces
an injective map on semi-simple conjugacy classes, so we deduce from local-global
compatibility at non-ℓ-adic finite places in [CH13, Theorem 4.2] that for all primes
p ̸= ℓ the conjugacy class of ρSOψ,ι(Frobp)ss is equal to that of ι(ψ̇τ (cp(ψ))). Similarly
the Hodge-Tate weights of StdSO2n+1 ◦ ρSOψ,ι|GalQℓ

are given in [CH13, Theorem 4.2],
and so the Hodge-Tate cocharacter of ρSOψ,ι is conjugated under SO2n+1(Qℓ) to τ .

If ρ′ : GalQ → SO2n+1(Qℓ) is another continuous semisimple morphism satis-
fying the same condition at almost all primes p ̸= ℓ, then Čebotarev’s theorem
implies that the traces of ρ′ and ρSOψ,ι are equal, and as they are both semisimple it is
well-known that this implies that ρ′ is conjugated to ρSOψ,ι by some g ∈ GL2n+1(Qℓ).
It then follows from [Gri95, Theorem 2.3] (see also [Lar94, Proposition 2.3]) that
we may take g in O2n+1(Qℓ). We have O2n+1 ≃ µ2 × SO2n+1 and so we may even
take g in SO2n+1(Qℓ).
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Theorem 5.2.2. Fix a prime number ℓ and an isomorphism ι : C ≃ Qℓ. Let
n ≥ 1. Let τ ∈ IC(Sp2n). For any ψ ∈ Ψ̃unr,τ

disc,ne(Sp2n), there exists a continuous
semisimple morphism ρGSpin

ψ,ι : GalQ → GSpin2n+1(Qℓ) unramified away from ℓ

and crystalline at ℓ and such that for any p ̸= ℓ, ρGSpin
ψ,ι (Frobp)

ss is conjugated to
ι(pn(n+1)/4ψ̇τ,sc(cp,sc(ψ))).

Moreover the conjugacy class of ρGSpin
ψ,ι admits the following characterizations.

1. If ρ : GalQ → GSpin2n+1(Qℓ) is any continuous semisimple morphism such
that for almost all primes p, ρ is unramified at p and ρ(Frobp)ss is conjugated
to ι(pn(n+1)/4ψ̇τ,sc(cp,sc(ψ))), then ρ is conjugated to ρGSpin

ψ,ι .

2. If ρ : GalQ → GSpin2n+1(Qℓ) is a continuous morphism which lifts ρSOψ,ι (up
to conjugacy by SO2n+1(Qℓ)), is unramified away from ℓ and crystalline at
ℓ, and satisfies ν ◦ ρ = χ

−n(n+1/2)
ℓ , then ρ is conjugated to ρGSpin

ψ,ι .

Proof. Write τ = (w1, . . . , wn) with w1 > · · · > wn > 0 integers. Since
∑

iwi =

n(n + 1)/2 mod 2, τ ′ = (w1, . . . , wn, (
∑

iwi)/2, n(n + 1)/4) defines a conjugacy
class of cocharacters GL1 → GSpin2n+1 above τ . By Proposition 5.1.1, there
exists a unique continuous ρGSpin

ψ,ι : GalQ → GSpin2n+1(Qℓ) lifting ρSOψ,ι and which
is unramified away from ℓ and crystalline at ℓ with Hodge-Tate cocharacter τ ′.

We also have the representation σspin
ψ,ι from Corollary 4.7.3. For all p ̸= ℓ,

σspin
ψ,ι (Frobp)

ss is conjugated to spin(ρGSpin
ψ,ι (Frobp))

ss or −spin(ρGSpin
ψ,ι (Frobp))

ss in
GL2n(Qℓ). Applying Proposition 5.1.2 to σspin

ψ,ι and spin◦ρGSpin
ψ,ι (which is semisimple

by [Ser05, Corollaire 4.3]), we obtain that these two representations coincide, and
thus ρGSpin

ψ,ι satisfies all desired conditions.
The second characterization of ρGSpin

ψ,ι follows from uniqueness in Proposition
5.1.1 and the fact that the surjective morphism GSpin2n+1 → SO2n+1×GL1, where
the second component is ν, is a central isogeny (with kernel µ2).

We are left to prove the first characterization. If ρ : GalQ → GSpin2n+1(Qℓ)

is continuous semisimple and satisfies the same property as ρGSpin
ψ,ι at almost all

primes p, then spin◦ρ is also continuous semisimple and so by Čebotarev’s theorem
it is conjugated to spin◦ρGSpin

ψ,ι . In particular spin◦ρ is also unramified away from ℓ

and crystalline at ℓ. Since the representation spin : GSpin2n+1 → GL2n is faithful,
this implies that ρ enjoys the same property. By uniqueness in Proposition 5.1.1
we have ρ = χρGSpin

ψ,ι for some continuous character χ : GalQ → Qℓ
× which is

unramified away from ℓ and crystalline at ℓ, and so χ = χNℓ for some integer N .
By composing ρ with ν and evaluating at Frobp for any p ̸= ℓ we see that we have
N = 0.
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5.3 Non-tempered case

In the setting of Theorem 5.2.2, we consider the non-tempered case, i.e. the case
where ψ = π[2d + 1] with d > 0. We have π[1] ∈ Ψunr,τ ′

disc,ne(Sp2m) for a unique
τ ′ ∈ IC(Sp2m) where the integer m is determined by the relation 2n+ 1 = (2m+

1)(2d+ 1). Similarly to Definition 4.7.5 we have a morphism β : SO2m+1 × SL2 →
SO2n+1 such that StdSO2n+1 ◦ β ≃ StdSO2m+1 ⊗ Sym2d StdSL2 , and this morphism is
unique up to conjugation by SO2n+1(Q). Up to conjugacy we may assume that it
restricts to

TSO2m+1 × TSL2 −→ TSO2n+1

((x1, . . . , xm), t) 7−→ (x1t
2d, x1t

2d−2, . . . , x1t
−2d, . . . , xmt

2d, . . . , xmt
−2d, t2d, t2d−2, . . . , t2).

It lifts uniquely to β̃ : Spin2m+1 × SL2 → Spin2n+1, which restricts to

TSpin2m+1
× TSL2 −→ TSpin2n+1

((x1, . . . , xm, s), t) 7−→ (β((x1, . . . , xm), t), s
2d+1td(d+1)/2).

The group Spin2m+1 × SL2 naturally embeds in the group

G :=
{
(g1, g2) ∈ GSpin2m+1 ×GL2

∣∣ ν(g1) = (det g2)
m(m+1)/2

}
and we have a short exact sequence

1→ µ2 → Spin2m+1 × SL2 ×GL1 → G→ 1

where the first map is

µ2 −→ Z(Spin2m+1)× Z(SL2)×GL1

z 7−→ (zm(m+1)/2, z, z)

and the second map is (h1, h2, λ) 7→ (λm(m+1)/2h1, λh2). The morphism

Spin2m+1 × SL2 ×GL1 −→ GSpin2n+1

(h1, h2, λ) 7−→ λn(n+1)/2β̃(h1, h2)

induces an extension G → GSpin2n+1 of β̃ because m(m + 1)/2 + d(d + 1)/2 +

n(n+ 1)/2 is even. We still denote it by β̃.

Proposition 5.3.1. As above assume ψ = π[2d+ 1] with d > 0.
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1. For any prime ℓ and any ι : C ≃ Qℓ the GSpin2n+1(Qℓ)-conjugacy classes of
ρGSpin
ψ,ι and β̃ ◦ (ρGSpin

π[1],ι , 1⊕ χ
−1
ℓ ) are equal.

2. For all primes p we have cp,sc(ψ) = β̃(cp,sc(π[1]), diag(p
1/2, p−1/2)).

Proof. Note that we already know that for all primes p we have cp(ψ) = β(cp(π[1]), diag(p
1/2, p−1/2))

by the very definition of cp(ψ).

1. The composition of the continuous morphism

ρ := β̃ ◦ (ρGSpin
π[1],ι , 1⊕ χ

−1
ℓ ) : GalQ → GSpin2n+1(Qℓ)

with the projection GSpin2n+1(Qℓ) → SO2n+1(Qℓ) is conjugated to ρSOψ,ι, by
uniqueness in Theorem 5.2.1. The composition of ρ with ν is equal to
χ
−n(n+1)/2
ℓ , again using Čebotarev’s theorem. Using the second character-

ization in Theorem 5.2.2 we conclude that ρ is conjugated to ρGSpin
ψ,ι .

2. For a prime p we choose ℓ ̸= p and ι arbitrarily and apply the first point at
Frobp.

Remark 5.3.2. As for Proposition 4.7.6 and Remark 4.7.7, one could perhaps
prove the second point in Proposition 5.3.1 directly using Eisenstein series.

6 Even spin Galois representations

6.1 Local-global compatibility for SO4n yields GSpin-valued
Galois representations

Theorem 6.1.1. Fix a prime ℓ and a field isomorphism ι : C ≃ Qℓ. Let n ≥ 1.
For τ̃ ∈ ĨC(SO4n) and ψ ∈ Ψ̃unr,τ̃

disc (SO4n) there exists a continuous semisimple
morphism ρOψ,ι : GalQ → SO4n(Qℓ) unramified away from ℓ, crystalline at ℓ and
such that for any prime number p ̸= ℓ the O4n(Qℓ)-conjugacy class of ρOψ,ι(Frobp)ss

is equal to c̃p(ψ). The O4n(Qℓ)-conjugacy class of the Hodge-Tate cocharacter of
ρOψ,ι (recall that this is a SO4n(Qℓ)-conjugacy class of morphisms GL1,Qℓ → SO4n,Qℓ)
is equal to τ̃ . Any another continuous semisimple morphism GalQ → SO4n(Qℓ)

satisfying the same condition at almost all primes p ̸= ℓ is conjugated by O4n(Qℓ)

to ρOψ,ι.
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Proof. Identical to that of Theorem 5.2.1, except that for even dimensions con-
jugacy under the orthogonal group does not imply conjugacy under the special
orthogonal group.

We will refine this theorem in most cases in Theorem 6.1.5 below, which will
be proved in the next sections.

Corollary 6.1.2. Let n ≥ 1, τ̃ ∈ ĨC(SO4n) and ψ ∈ Ψ̃unr,τ̃
disc (SO4n). The set of

primes p such that c̃p(ψ) consists of two conjugacy classes in SO4n(C) (swapped
by θ̂) has (natural) density 1, in particular it is infinite.

Proof. Choose any prime ℓ and ι : C ≃ Qℓ. By assumption on τ̃ and Theorem
6.1.1 the Hodge-Tate cocharacter of ρOψ,ι is not fixed by the outer automorphism
group. The corollary thus follows from Sen’s theorem [Sen73] and Čebotarev’s
density theorem.

Corollary 6.1.3. Let n ≥ 1, τ̃ ∈ ĨC(SO4n) and ψ ∈ Ψ̃unr,τ̃
disc (SO4n). For any prime

ℓ and any ι : C ≃ Qℓ the O4n(Qℓ)-conjugacy class of ρOψ,ι in Theorem 6.1.1 consists
of two conjugacy classes under SO4n(Qℓ), distinguished by the conjugacy class of
the semisimple part of the image of Frobp for any p ̸= ℓ such that c̃p(ψ) consists
of two conjugacy classes in SO4n(C).

Definition 6.1.4. Let n ≥ 1 and τ̃ ∈ ĨC(SO4n). There are (uniquely determined)
integers w1 > · · · > w2n > 0 such that τ̃ is represented by (w1, . . . , w2n) using the
parametrization (2.2.2). We say that τ̃ is bad if n is odd and for all 1 ≤ i ≤ n we
have w2i−1 = w2i + 1.

Theorem 6.1.5. Let n ≥ 1, τ̃ ∈ ĨC(SO4n) and ψ ∈ Ψ̃unr,τ̃
disc,ne(SO4n). Assume

either n = 1, n even, ψ = π[2d] or that τ̃ is not bad (Definition 6.1.4). Then
there exists a continuous semisimple morphism ρSOψ,ι : GalQ → Mψ(Qℓ) which is
unramified away from ℓ and crystalline at ℓ and such that for any prime number
p ̸= ℓ we have ρSOψ,ι(Frobp)ss ∈ ι(cp(ψ)). Moreover ρSOψ,ι is unique in the following
sense: any continuous semisimple ρ : GalQ → Mψ(Qℓ) such that for almost all
primes p, ρ is unramified at p with ρ(Frobp)ss ∈ ι(cp(ψ)), is conjugated to ρSOψ,ι by
an element of Mψ(Qℓ).

We will prove existence in Proposition 6.2.1 (n = 1), Proposition 6.3.2 (ψ =

π[2d]), Corollary 6.5.4 (n even) and Proposition 6.6.2 (n > 1 odd and τ̃ not bad).

Proof of uniqueness. Uniqueness follows from uniqueness of ρOψ,ι up to conjugation
by O4n(Qℓ) in Theorem 6.1.1 and Corollary 6.1.3.
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Theorem 6.1.6. Let n ≥ 1, τ̃ ∈ ĨC(SO4n) and ψ ∈ Ψ̃unr,τ̃
disc,ne(SO4n). If Theorem

6.1.5 holds for ψ then there exists a continuous semisimple morphism ρGSpin
ψ,ι :

GalQ → GMψ,sc(Qℓ) unramified away from ℓ, crystalline at ℓ and such that for
any p ̸= ℓ we have ρGSpin

ψ,ι (Frobp)
ss ∈ ι(pn/2cp,sc(ψ)).

1. If ρ : GalQ → GMψ,sc(Qℓ) is a continuous semisimple morphism also satis-
fying this property at almost all primes p then ρ is conjugated to ρGSpin

ψ,ι .

2. If ρ : GalQ → GMψ,sc(Qℓ) is a continuous lift of ρSOψ,ι (up to conjugacy) which
is unramified away from ℓ, crystalline at ℓ and satisfying ν ◦ ρ = χ−n

ℓ then ρ

is conjugated to ρGSpin
ψ,ι .

Proof. The proof is very similar to that of Theorem 5.2.2. Note that Theorem
6.1.5 does not state that the Hodge-Tate cocharacter τHT of ρSOψ,ι|GalQℓ

is equal to
τψ (as would be expected), so we only know from Theorem 6.1.1 that τHT is con-
jugated to τψ under the outer automorphism group of (Mψ)Qℓ . There are two
natural SO4n(Q)-conjugacy classes of identifications Mψ ≃ SO4n, and we fix one
(arbitrarily) for this proof. This also gives an identification GMψ,sc ≃ GSpin4n (see
Section 2.2). Under the parametrization (2.2.2) there is a unique representative
(w1, . . . , w2n) of τHT where w1 > · · · > w2n−1 > |w2n| > 0 are integers. Thus τψ is
the conjugacy class of (w1, . . . , w2n−1,±w2n). Using the parametrization (2.2.4) of
the maximal torus TGSpin4n of GSpin4n, define a lift τ ′ = (w1, . . . , w2n,

1
2

∑
iwi, n/2)

of τHT. This defines a conjugacy class of cocharacters GL1,Qℓ → (GMψ,sc)Qℓ be-
cause n −

∑
iwi is even (see Lemma 3.4.3). By Proposition 5.1.1 there exists a

unique geometric lift ρGSpin
ψ,ι : GalQ → GMψ,sc(Qℓ) of ρSOψ,ι which is unramified away

from ℓ, crystalline at ℓ and having Hodge-Tate cocharacter τ ′. The composition
ν ◦ ρGSpin

ψ,ι is a continuous character unramified away from ℓ and crystalline at ℓ
with Hodge-Tate weight n and so it is equal to χ−n

ℓ . Thus for any p ̸= ℓ we have
ρGSpin
ψ,ι (Frobp)

ss ∈ ±ι(pn/2cp,sc(ψ)). Applying Proposition 5.1.2 to spinϵψ ◦ ρ
GSpin
ψ,ι

and σspin,ϵ
ψ,ι for ϵ as in the second part of Corollary 4.7.3 allows us to conclude

ρGSpin
ψ,ι (Frobp)

ss ∈ ι(pn/2cp,sc(ψ)) for all p ̸= ℓ.
The first characterization of ρGSpin

ψ,ι is proved essentially as in Theorem 5.2.2.
Let ρ : GalQ → GMψ,sc(Qℓ) be another continuous morphism satisfying the same
condition at almost all primes p. Composing ρ with the faithful representation
spinϵψ⊕Std of GMψ,sc we obtain a representation isomorphic to σspin,ϵ

ψ,ι ⊕Std◦ρOψ,ι and
we deduce that ρ is also unramified away from ℓ and crystalline at ℓ. Composing
with the projection GMψ,sc → Mψ we deduce from Theorem 6.1.5 (uniqueness
part) that up to conjugation by Mψ(Qℓ), ρ is also a lift of ρSOψ,ι. We deduce as
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in the proof of Theorem 5.2.2 that up to conjugation by GMψ,sc(Qℓ) we have
ρ = χNℓ ρψ,ι for some integer N , and then that we have N = 0 by composing with
ν : GMψ,sc → GL1 (see Definition 4.7.4) and considering the image of a Frobenius
element at any prime p ̸= ℓ.

The second characterization of ρGSpin
ψ,ι follows from uniqueness in Proposition

5.1.1.

6.2 Local-global compatibility for SO4

We first handle the case n = 1 (i.e. the case of SO4) directly. The adjoint group
PGSO4 of SO4 is isomorphic to PGL2×PGL2, say with the first simple root α1

(see labelling after (2.2.2)) corresponding to the second factor PGL2. The dual
morphism SL2 × SL2 → SO4 restricts to

TSL2 × TSL2 −→ TSO4

(t1, t2) 7−→ (t1t2, t1/t2)

and we recognize the morphism α1,1 of Definition 4.7.5. Note that α̃1,1 : G(SL2 ×
SL2)→ GSpin4 is an isomorphism.

Recall that for an integer k ≥ 1, discrete level one automorphic representations
π for PGL2 such that π∞ has infinitesimal character k− 1/2 ∈ Lie TSL2 are either
trivial (if k = 1) or are in bijection with eigenforms in S2k(SL2(Z)), the latter
ones being cuspidal. In both cases we know the existence of continuous semi-
simple (irreducible in the latter case) Galois representations, for any prime ℓ and
any ι : C ≃ Qℓ, ρπ,ι : GalQ → GL2(Qℓ) unramified away from ℓ, crystalline at
ℓ and such that for any p ̸= ℓ we have ρπ,ι(Frobp)ss ∈ ι(p1/2cp(π)), unique up to
conjugation. In the first case we simply have ρ1,ι = 1⊕χ−1

ℓ , in the second case ρπ,ι
is up to a twist the Galois representation associated by Deligne to π and ι. Note
that we have det ρπ,ι = χ−1

ℓ .

Proposition 6.2.1. Let τ̃ ∈ ĨC(SO4), say represented by τ = (w1, w2) with w1 >

w2 > 0 integers. By Lemma 3.4.3 we have Ψ̃unr,τ̃
disc,ne(SO4) = ∅ unless w1 + w2 is

odd, so we make this assumption and write w1 = k1 + k2 − 1, w2 = k1 − k2 where
k1 > k2 ≥ 1 are integers.

1. Elements of Ψ̃unr,τ̃
disc,ne(SO4) are either of the form π[1] or π[2], the latter be-

ing possible only if k2 = 1. The set Ψ̃unr,τ̃
disc,ne(SO4) is in bijection with pairs

(π1, π2) of level one discrete automorphic representations for PGL2 having
respective infinitesimal characters at the real place k1−1/2 and k2−1/2, the
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bijection being characterized by the relation cp,sc(ψ) = α̃ψ(cp(π1), cp(π2)) for
all primes p. In particular a pair (π1, π2) where π2 is the trivial representa-
tion corresponds to π1[2], and other pairs (both πi’s are cuspidal) correspond
to level one self-dual cuspidal automorphic representations for GL4 having
infinitesimal character τ (these are automatically of orthogonal type).

2. Theorem 6.1.5 holds for all ψ ∈ Ψ̃unr,τ̃
disc,ne(SO4), and the representation ρGSpin

ψ,ι :

GalQ → GSpin4(Qℓ) of Theorem 6.1.6 is equal to α̃ψ ◦ (ρπ1,ι, ρπ2,ι).

Proof. The classification of elements of Ψ̃unr,τ̃
disc,ne(SO4) (π[1] or π[2]) is straightfor-

ward. For f∞ a pseudo-coefficient for the unique discrete series representation
of PGL2(R)2 having infinitesimal character α−1

1,1(τ) = (k1 − 1/2, k2 − 1/2) and∏
p fp ∈ Hunr

f (PGL2
2)C we have

I
PGL2

2
disc (f∞

∏
p

fp) =
∑
π1,π2

∏
p

SatPGL2
2,Zp

(cp(π1), cp(π2))

− δk1=1

∑
π2

∏
p

SatPGL2
2,Zp

(cp(π1), diag(p
1/2, p−1/2)) (6.2.1)

where π1, π2 range over level one cuspidal automorphic representations for PGL2

having respective infinitesimal characters k1−1/2 and k2−1/2 at the real place. We
compare this expansion with the spectral expansion (3.4.3) obtained in Corollary
3.4.8 for G = PGSO4 ≃ PGL2 ×PGL2. As recalled in Remark 3.2.1 the results
of [JS81] imply that there are no cancellations in either of these expansions, and
so we have a bijection between families of Satake parameters contributing non-
trivially to each expansion. It is clear that for k2 = 1 the term in the second sum
in (6.2.1) corresponding to π1 corresponds to the parameter π1[2] ∈ Ψ̃unr,τ̃

disc (SO4)

in (3.4.3). We deduce cp,sc(π1[2]) = α̃π1[2](cp(π1), diag(p
1/2, p−1/2)) for all primes

p. Considering the remaining terms, we obtain a bijection between level one self-
dual cuspidal automorphic representations π for PGL4 and pairs (π1, π2) as above,
satisfying cp,sc(π[1]) = α̃(cp(π1), cp(π2)) for all primes p.

Defining ρSOψ,ι as the composition of α̃ψ◦(ρπ1,ι, ρπ2,ι) with the projection GMψ,sc(Qℓ)→
Mψ(Qℓ), we obtain existence in Theorem 6.1.5. The formula ρGSpin

ψ,ι ∼ α̃ψ ◦
(ρπ1,ι, ρπ2,ι) follows from uniqueness in Theorem 6.1.6 (either characterization can
be used here).

Remark 6.2.2. The map (π1, π2) 7→ ψ in Proposition 6.2.1 is a special case of
functoriality (automorphic tensor product) from GL2×GL2 to GL4, see [Ram00,
Theorem M].
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Corollary 6.2.3. Let ψ = π[d] be a parameter for SO4 as in Proposition 6.2.1,
associated to a pair (π1, π2) of discrete automorphic representations for PGL2.
We have

spin+
ψ ◦ ρ

GSpin
ψ,ι ≃ ρπ1,ι

and

spin−
ψ ◦ ρ

GSpin
ψ,ι ≃

{
ρπ2,ι if π2 is cuspidal,
1⊕ χ−1

ℓ if π2 is trivial.

Proof. Compare images of Frobenius elements.

6.3 Local-global compatibility for parameters π[2d]

Let n ≥ 1, τ̃ ∈ IC(SO4n) and ψ ∈ Ψ̃unr,τ̃
disc,ne(SO4n). Assume that we are in the

situation of Proposition 4.7.6, i.e. ψ = π[2d] where π is a self-dual automorphic
cuspidal representation for GL2m (necessarily of symplectic type and with n =

md). In this case it turns out that we can prove Theorem 6.1.5 using Galois-
theoretic arguments, essentially as in the case π1[2] of Proposition 6.2.1.

Theorem 6.3.1. Let ι : C ≃ Qℓ be a field isomorphism. There exists a continuous
semisimple morphism ρGSp

π,ι : GalQ → GSp2m(Qℓ), which is unramified away from ℓ,
crystalline at ℓ and such that for all p ̸= ℓ we have ρGSp

π,ι (Frobp)
ss ∈ p1/2cp(π) (here

cp(π) is considered as a conjugacy class in Sp2m(C)), unique up to conjugation.

Proof. This follows from [CH13, Theorem 4.2] and [BC11, Corollary 1.3] as in the
proof of Theorem 6.1.1, uniqueness follows from [GT11, Lemma 6.1].

Proposition 6.3.2. Recall the morphism α̃ψ : G(Sp2m × SL2) → GMψ,sc from
Definition 4.7.5.

1. For all primes p we have cp,sc(ψ) = α̃ψ(cp(π), diag(p
1/2, p−1/2)).

2. Let ι : C ≃ Qℓ be a field isomorphism. Theorem 6.1.5 holds for ψ = π[2d]

and ρGSpin
ψ,ι (defined in Theorem 6.1.6) is conjugated to α̃ψ ◦ (ρGSp

π,ι , 1⊕ χ−1
ℓ ).

Proof. Thanks to Proposition 4.7.6 we already know cp(ψ) = αψ(cp(π), diag(p
1/2, p−1/2))

for all primes p. It follows that the composition ρSOψ,ι of α̃ψ◦(ρGSp
π,ι , 1⊕χ−1

ℓ ) : GalQ →
GMψ,sc(Qℓ) with the projection GMψ,sc(Qℓ) → Mψ(Qℓ) satisfies the conditions
in Theorem 6.1.5. The morphism α̃ψ ◦ (ρGSp

π,ι , 1 ⊕ χ−1
ℓ ) is a continuous lift of ρSOψ,ι

which is unramified away from ℓ, crystalline at ℓ and whose composition with ν is
χ−n
ℓ , so the second characterization of ρGSpin

ψ,ι in Theorem 6.1.6 implies that they
are conjugated.
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6.4 The other half spin Galois representation for SO8n

Let n ≥ 1 be an integer. Let (L, q) be an even unimodular lattice of rank 8n

and G the corresponding special orthogonal group SO(L, q). In particular G is
a semi-simple connected reductive group over Z, G(R) is compact and connected
and for any prime p the group GZp is split. The choice of (L, q) will be irrelevant
in the applications below. We may realize GQ as a pure inner form of SO8n,Q

by choosing a basis of Q ⊗Z L splitting q, giving identifications Ĝ ≃ SO8n and
Ĝsc ≃ Spin8n (see Section 2.2). Changing the realization of GQ as a pure inner
form of SO8n,Q yields the same identifications up to SO8n(Q)⋊ {1, θ̂}.

For each prime ℓ we choose a Borel pair (Bℓ,Tℓ) of the split group GQℓ,ad. Let
∆ ⊂ X∗(Tℓ) be the set of simple roots of Tℓ in GQℓ,ad with respect to Bℓ. The
maximal compact subgroup T0 of Tℓ(Qℓ) is isomorphic to (Z×

ℓ )
∆ ≃ (Z×

ℓ )
4n. The

weight space W is the rigid analytic space over Qℓ parametrizing locally analytic
(equivalently, continuous) characters of T0. It is isomorphic to the product of
an open polydisc of dimension 4n and a rigid space finite over Qℓ. We will be
particularly interested in the subset of W (Qℓ) consisting of algebraic and dominant
characters, i.e. characters T0 → Q×

ℓ induced by elements of X∗(Tℓ) which are
dominant with respect to Bℓ.

Definition 6.4.1. Let ℓ be a prime, ι : C ≃ Qℓ a field isomorphism and E a
finite subextension of Qℓ/Qℓ. A simple ℓ-adic family of level one automorphic
representations for Gad is a smooth rigid analytic curve21 C over E endowed with

1. a morphism w : C → W such that C is finite over an open affinoid of W ,

2. a point x0 ∈ C (E) and a subset Z of the set of points of C , accumulating at
x0 (i.e. any neighborhood of x0 contains a point of Z different from x0),

3. a morphism of OE-algebras Ξ : H(∞,ℓ) → O(C ) whereH(∞,ℓ) =
⊗′

p ̸=ℓH(Gad,Zp ,OE)
is the unramified Hecke algebra away from ℓ over OE,

such that for any finite subextension E ′ of Qℓ/E and any x ∈ C (E ′) taking values
in {x0} ∪Z, the character w(x) : T0 → O×

E′ is algebraic dominant and there exists
a level one automorphic representation π ≃ π∞ ⊗ πℓ ⊗ π(∞,ℓ) such that π∞ is
isomorphic to the restriction to Gad(R) of the irreducible algebraic representation
of Gad,C corresponding to w(x), and the action of H(∞,ℓ) on the one-dimensional

21Since we will only be interested in local properties around a point x0 of C (E), one could
take for C the open unit disk.
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Qℓ-vector space ι∗
(
π(∞,ℓ)

)∏
p̸=ℓGad(Zp) is by the character Ξx. We will denote it by

(C , x0, Z, w,Ξ), or simply (C , x0, Z). If π corresponds to the point x0 ∈ C (E) we
will also say that the simply ℓ-adic family (C , x0, Z, w,Ξ) interpolates π (for the
given field isomorphism ι).

For a point x ∈ C (Qℓ) and p ̸= ℓ a prime number we denote by cp(Ξx) the
semi-simple conjugacy class in Ĝsc(Qℓ) corresponding to the restriction of the spe-
cialization Ξx : H(∞,ℓ) → Qℓ to the unramified Hecke algebra H(Gad,Zp ,Qℓ).

Let x ∈ C (E ′) taking values in Z be such that w(x) is not invariant under
θ. Let (B, T ) be a Borel pair in Ĝsc, in particular T is naturally isomorphic to
T̂ℓ. Similarly to Definition 4.7.1, we distinguish the two half-spin representations
of Ĝsc as follows. The (algebraic dominant) weight w(x) may be seen as a Ĝad-
orbit of cocharacters taking values in Ĝsc, and there is a unique tuple of integers
k1 ≥ · · · ≥ k4n > 0 such that in the standard representation of Ĝsc, w(x) becomes
a direct sum of the 8n characters ±ki of GL1 (as usual we identify characters of
GL1 with Z). The integer

∑4n
i=1 ki is even. We denote by spin+

x (resp. spin−
x ) the

half-spin representation of Ĝsc such that the representation spin+ ◦ w(x) (resp.
spin− ◦ w(x)) of GL1 is the direct sum, over all (ϵi)i ∈ {±1}4n such that the
cardinality of {i ∈ {1, . . . , 4n} | ϵi = +1} is even (resp. odd), of the character
1
2

∑
i ϵiki.

Proposition 6.4.2. Let ℓ be a prime, ι : C ≃ Qℓ a field isomorphism, E a fi-
nite subextension of Qℓ/Qℓ and (C , x0, Z, w,Ξ) a simple ℓ-adic family of level one
automorphic representations for Gad, interpolating an automorphic representation
π. Let r be an algebraic representation of Ĝsc,Qℓ of dimension d. Assume that
for any x ∈ C (Qℓ) taking values in Z there exists a continuous semisimple rep-
resentation ρx : GalQ → GLd(Qℓ) which is unramified away from ℓ and such that
for any prime number p ̸= ℓ the semi-simplification ρx(Frobp)

ss belongs to the im-
age of cp(Ξx) under r. Then there exists a continuous semisimple representation
ρx0 : GalQ → GLd(Qℓ) satisfying the same properties at x0.

Proof. This follows from [Che04, Proposition 7.1.1] as explained in §7.4 loc. cit.

Definition 6.4.3. Let H be a split semisimple algebraic group over Qℓ, Γ a profi-
nite topological group, and ρ : Γ→ H(Qℓ) a continuous morphism. Then Lie (ρ(Γ))

is a finite-dimensional sub-Qℓ-vector space of Qℓ ⊗Qℓ Lie(H). We say that ρ has
maximal infinitesimal image if Lie (ρ(Γ)) spans the Qℓ-vector space Qℓ⊗Qℓ Lie(H).

Theorem 6.4.4. Let π be a level one automorphic representation for Gad, whose
infinitesimal character is not invariant under θ∗. Let E/Qℓ be a finite subextension
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of Qℓ/Qℓ containing the image by ι of a number field ⊂ C over which πf is defined.
Let r be one of the two half-spin representations of Ĝsc.

There exist

• a simple ℓ-adic family (C , x0, Z) interpolating π,

• for each x1 ∈ Z, a simple ℓ-adic family (Cx1 , x
′
1, Zx1) interpolating the rep-

resentation π1 corresponding to x1,

• for each x1 ∈ Z and each x2 ∈ Zx1, a simple ℓ-adic family (Cx1,x2 , x
′
2, Zx1,x2)

interpolating the representation π2 corresponding to x2,

such that

• for any x ∈ Z (resp. x1 ∈ Z and x ∈ Zx1, resp. x1 ∈ Z, x2 ∈ Zx1 and
x ∈ Zx2), w(x) is not invariant under θ∗ and we have spin+

x ≃ r (recall that
spin+

x was introduced in Definition 6.4.1),

• for any x1 ∈ Z, x2 ∈ Zx1 and x3 ∈ Zx1,x2, the Galois representation ρOπ3,ι at-
tached to the level one automorphic representation π3 for Gad corresponding
to x3 has maximal infinitesimal image.

Proof. The proof is almost identical to that of [Taï16, Corollary 4.0.2], which itself
is a simpler version of the proof of Theorem 3.2.2 and Corollary 3.2.3 loc. cit. so
we simply highlight the differences.

In §4 loc. cit. we worked over a totally real number field of even degree. This as-
sumption was made only to guarantee the existence of a non-degenerate quadratic
form in dimension 4 which is anisotropic at all real places and split at all finite
places, but everything works the same over Q in dimension divisible by 8.

In loc. cit. we worked with the group G, working with Gad only gives us more
Hecke operators.

In loc. cit. we worked with eigenvarieties over the whole weight space W , now
we restrict to (i.e. take the fiber product over W with) certain curves in W to
simplify our families. More precisely, using the parametrization (2.2.2), for Z we
restrict to weights of the form

t = (t1, . . . , t4n) 7→ w(x0)(t)
4n∏
i=1

χ(ti)
4n+1−i

for some (uniquely determined) character χ of Z×
ℓ , and similarly for the other

families. Note that this does define a weight for Gad, despite being described as a
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weight for G, because the integer
∑4n

i=1 4n+1−i = 2n(4n+1) is even. In the proof
of Corollary 4.0.2 loc. cit. the arguments only require classical weights (k1, . . . , k4n)
such that k1 − k2, . . . , k4n−1 − k4n and k4n are bigger than some constant, and it
is clear that weights of the form above satisfying this condition abound.

Corollary 6.4.5. Let π = ⊗′
vπv be a level one automorphic representation for Gad,

and let r : Ĝ → GL24n−1(C) be any of the two half-spin representations. Then
for any prime number ℓ, and any ι : C ≃ Qℓ, there exists a unique continuous
semisimple representation σrπ,ι : GalQ → GL24n−1(Qℓ) which is unramified away
from ℓ and such that for any prime p ̸= ℓ we have σrπ,ι(Frobp)ss ∈ ι(pnr(cp(πp))).

Proof. Note that in Theorem 6.4.4, for any x1 ∈ Z, x2 ∈ Zx1 and x3 ∈ Zx1,x2 ,
the parameter in Ψ̃unr,τ̃

disc (SO8n) attached to the automorphic representation π(3)

corresponding to x3 (here τ = w(x3)+ρ) is a single automorphic cuspidal self-dual
level one representation for GL8n, since the associated Galois representation σStd

π(3),ι

is irreducible.
For any x1 ∈ Z, x2 ∈ Zx1 , and x3 ∈ Zx1,x2 we have spin+

x3
≃ r, so that the

existence of σrx3,ι as in the Corollary follows from the second point of Corollary
4.7.3 (we are in the first case with d = 0 and so ϵ = (−1)2n = 1). Thanks to
Proposition 6.4.2 these Galois representations interpolate and we obtain in turn
the existence of the representations σrx2,ι, σ

r
x1,ι

and finally σrπ,ι.

Corollary 6.4.6. Let τ̃ ∈ ĨC(SO8n) and ψ ∈ Ψ̃unr,τ̃
disc,ne(SO8n). For any prime ℓ, any

ι : C ≃ Qℓ, and any ϵ ∈ {+,−}, there is a unique continuous semisimple σspin,ϵ
ψ,ι :

GalQ → GL24n−1(Qℓ) which is crystalline at ℓ and unramified away from ℓ and such
that for any prime number p ̸= ℓ we have σspin,ϵ

ψ,ι (Frobp)
ss ∈ ι(pnspinϵψ(cp,sc(ψ))).

Proof. Since Sψ = 1, so if we choose τ ∈ IC(SO8n) mapping to τ̃ the multiplicity
formula for Gad (see22 Example 3.4.9) provides us with a unique automorphic level
one representation π for Gad such that π∞ has infinitesimal character τ and for
any prime p we have c(πp) = ψ̇τ,sc(cp(ψ)). The previous corollary provides us
with two continuous semisimple representations σspin,ϵ

ψ,ι unramified away from ℓ and
with Frobenius elements at all p ̸= ℓ having characteristic polynomial as stated.
We are left to check that both these representations are crystalline at ℓ. Thanks
to Theorem 4.7.2 we already know that one is, and their tensor product can be
written as a sum of Schur functors applied to σStd

ψ,ι , which we already know to be
crystalline at ℓ (see Theorem 6.1.1).

22Using a realization of Gad as an inner form of PGSO8n as explained at the beginning of
Section 6.4.
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6.5 Local-global compatibility for SO8n

n ≥ 1 is still fixed, and G = SO8n (definite).
Can now lift the whole spin. when big image, get local-global compatibility.

Deform this.

Lemma 6.5.1. Let m ≥ 2 be an integer.

1. Let c be a semisimple conjugacy class in SO2m(C). Recall from [FH91, §19]
that the representation

∧m Std of SO2m decomposes as the sum of two in-
equivalent irreducible representations permuted by θ, say δ1 and δ2. If c does
not admit ±1 as an eigenvalue in the standard representation then the traces
of δ1(c) and δ2(c) are distinct.

2. Let r1, r2 be the two half-spin representations of Spin2m. Let c be a semisim-
ple conjugacy class in Spin2m(C). Assume that c does not admit ±1 as an
eigenvalue in the standard representation. Then we have

tr (r1(c))
2 ̸= tr (r2(c))

2 .

Proof. 1. Also recall from [FH91, §19] that for 1 ≤ j ≤ m−1 the representation∧j Std of SO2m is irreducible and invariant under θ. Moreover the analysis
loc. cit. shows that any irreducible representation of SO2m occurs in a tensor
product of representations

∧j Std for 1 ≤ j ≤ m− 1, δ1 and δ2. This implies
(see [Ste65, §6]) that the C-algebra of conjugation-invariant functions on
SO2m,C is generated by the traces in the representations

∧j Std for 1 ≤ j ≤
m− 1 and the representations δ1 and δ2. Also recall from Corollary 6.6 loc.
cit. that the traces in these representations determine semi-simple elements
in SO2m(C) up to conjugacy. The assumption on the eigenvalues of c is
equivalent to θ(c) ̸= c, and the first point follows.

2. The representations r⊗2
i factor through Spin2m(C) → SO2m(C). A simple

calculation with dominant weights shows that, up to swapping δ1 and δ2,

each tensor square r⊗2
i decomposes as δi ⊕

⊕
1≤j≤m−1

(∧j Std
)⊕e(i,j)

where
e(i, j) ∈ Z≥0. So this point follows from the previous one.

Lemma 6.5.2. Let ι : C ≃ Qℓ be a field isomorphism. Let π be a level one
automorphic representation for Gad, and (C , x0, Z, w,Ξ) a simple ℓ-adic family
interpolating π (for ι). Assume that for any finite subextension E ′ of Qℓ/E and
any x ∈ C (E ′) taking values in Z the following conditions are satisfied:
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• the weight w(x) is not invariant under θ, and

• there exists a continuous semisimple morphism ρx : GalQ → Ĝ(Qℓ) which is
unramified away from ℓ and such that for any p ̸= ℓ we have ρx(Frobp)ss ∈
pr (cp(Ξx)), where pr : Ĝsc → Ĝ is the natural projection.

Then there exists a continuous semisimple morphism ρx0 : GalQ → Ĝ(Qℓ) which
is unramified away from ℓ and such that for any p ̸= ℓ we have

ρx0(Frobp)
ss ∈ pr (cp(Ξx0)) = pr (ι(c(πp))) .

Proof. For any x ∈ Z we have σStd
π(x),ι ≃ Std ◦ ρx where the automorphic represen-

tation π(x) for Gad corresponds to x (using ι) as in Definition 6.4.1. By [Che04,
Proposition 7.1.1] there is a unique continuous pseudocharacter T : GalQ → O(C )

of dimension 8n interpolating the traces of these representations. By normaliz-
ing and restricting to a connected component we can assume that C is smooth
and connected. By [Tay91, Theorem 1.2] there exists a finite extension K of
FracO(C ) and a representation of GalQ over K having trace T . Up to replacing
K by a finite extension we can assume that this representation decomposes as a
direct sum of absolutely irreducible representations. Using (the proof of) [BC09,
Lemma 7.8.11] we obtain that, up to replacing C by a finite curve over C , we
can assume that we have a decomposition T =

∑
i Ti where each Ti is a generi-

cally irreducible pseudocharacter and that there are finite projective OC -modules
Li and continuous representations ρ̃i : GalQ → GLO(C )(Li) such that tr(ρ̃i) = Ti.
Normalizing again, we can still assume that C is smooth and connected. Using
Burnside’s theorem we obtain that, up to restricting to a neighbourhood of x0,
for any i the specialization of ρ̃i at any point of C different from x0 is absolutely
irreducible. Since generically the eigenvalues of the Sen polynomial of

⊕
i ρ̃i|GalQℓ

are distinct thanks to the hypothesis that w(x) is not invariant under θ for x ∈ Z,
the pseudocharacters Ti’s are (generically) distinct. Moreover T is self-dual, so
for any index i, either Ti is self-dual or its dual is isomorphic to Tj for a uniquely
determined index j ̸= i. In the latter case we denote i∨ = j. By [BC11, Corol-
lary 1.3] any self-dual Ti is generically of orthogonal type, i.e. the (unique up to
scalar) non-degenerate ρ̃i(GalQ)-invariant bilinear form ⟨·, ·⟩i on Frac (O(C ))⊗Li
is symmetric. Up to multiplying it by a non-zero element of O(C ) and restricting
C , we can assume that ⟨·, ·⟩i takes values in O(C ) on Li × Li and is residually
non-degenerate away from x0. For an index i such that Ti is not self-dual, we can
replace Li∨ by L∨

i , and we endow Li ⊕ Li∨ with the non-degenerate symmetric
bilinear form ⟨(v1, v∨1 ), (v2, v∨2 )⟩ = v∨1 (v2) + v∨2 (v1).
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Let L :=
⊕

i Li, endowed with ρ̃ =
⊕

i ρ̃i : GalQ → GLO(C )(L) and ⟨·, ·⟩. Let
A = OC ,x0 , a discrete valuation ring, and let ϖ be a uniformizer. Let n ≥ 1

be minimal and such that ϖnL∨ ⊂ L. If n > 1, let L′ = L + ϖn−1L∨, which
properly contains L, is such that ⟨·, ·⟩ is still A-valued on L′ × L′, and is stable
under ρ̃(GalQ). Replacing L by L′ and iterating this procedure, we can assume
that we have n = 1, i.e.

ϖL ⊂ ϖL∨ ⊂ L.

Let π =
√
ϖ and A′ = A[π]. Replacing A by A′ (thereby replacing C by a

finite flat cover) and L by A′L + πA′L∨, we can finally assume that the ρ̃(GalQ)-
stable lattice L is self-dual, i.e. L∨ = L. Up to restricting C we can assume that
L is free over OC , and after replacing C by a finite étale cover we can assume
that the form ⟨·, ·⟩ on L is split, i.e. that there exists a basis of L such that the
Gram matrix of ⟨·, ·⟩ is equal to J2n. Choosing such a basis identifies ρ̃ with a
morphism GalQ → SO8n(O(C )). We can specialize ρ̃ at x0 to obtain a continuous
morphism ρ̃x0 : GalQ → SO8n(Qℓ), and we have Std ◦ ρ̃x0 ≃ σStd

π,ι . In this proof it
is convenient to define the split connected reductive group Ĝ over Q, instead of Q
as in Section 2.2. We have (see Section 2.2 and the beginning of Section 6.4) two
natural Ĝad(Q)-orbits of isomorphisms α : SO8n,Q ≃ Ĝ, swapped by θ̂, and we
need to show that choosing α suitably yields ρx0 := α◦ ρ̃x0 satisfying the condition
of the lemma. We will also denote ρ = α ◦ ρ̃ : GalQ → Ĝ(O(C )), again leaving α
implicit.

We know that for any prime number p ̸= ℓ and any x ∈ Z the characteristic
polynomial of ρ̃x(Frobp) (in the standard representation of SO8n) is given by the
image via the standard representation of Ĝ of the Satake parameter corresponding
to the restriction of Ξx to H(GZp). Any isomorphism α : SO8n,Q ≃ Ĝ in one the
two Ĝad(Q)-orbits recalled above induces an isomorphism of Q-algebras

O(Ĝ)Ĝ,θ̂
α∗
−→
∼
O(SO8n,Q)

O8n,Q

for the conjugation actions of Ĝ and O8n,Q, and this isomorphism does not depend
on the choice of α. Moreover the Satake isomorphism SatGZp

: H(GZp) ≃ O(Ĝ)Ĝ,
which is defined over Q because the sum of the positive roots for SO8n is divisible
by 2, induces an isomorphism

H(GZp)
θ∗ ≃ O(Ĝ)Ĝ,θ̂.

It is classical that the morphism of Q-algebras

O(GL8n,Q)
GL8n,Q −→ O(SO8n,Q)

O8n,Q
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induced by the standard representation of O8n is surjective. It follows that the
above compatibility at x ∈ Z and p ̸= ℓ may be reformulated as saying that for
any f ∈ H(GZp)

θ∗ we have

SatGZp
(f)(ρx(Frobp)) = Ξx(f).

By Zariski density of Z in the reduced curve C we have, for any p ̸= ℓ and any
f ∈ H(GZp)

θ∗ , the equality in O(C ):

SatGZp
(f)(ρ(Frobp)) = Ξ(f). (6.5.1)

Specializing at x0 we see in particular that, for any choice of α as above, we have
ρx0(Frobp)

ss ∈ ι(c(πp)) or ρx0(Frobp)ss ∈ ι(θ̂(c(πp))).
If for all p ̸= ℓ the semi-simple conjugacy class c(πp) is invariant under θ̂ then

clearly any choice of α works. So we may assume that there exists a prime number
p ̸= ℓ such that c(πp) is not invariant under θ̂, and we fix such a prime number
p. This determines a choice of isomorphism α (up to composing with Ĝad(Q))
mapping the conjugacy class of ρ̃x0(Frobp)ss to c(πp), and we use this isomorphism
to form ρ := α ◦ ρ̃. Recall from [FH91, §19] that the algebraic representation∧4nQ8n of SO8n,Q (exterior power of the standard representation) decomposes as
r1 ⊕ r2, where r1 and r2 are absolutely irreducible. For q a prime distinct from
ℓ let Tq,1, Tq,2 ∈ H(GZq) be the Hecke operators corresponding, via the Satake
isomorphism, to the traces of r1α−1 and r2α

−1. As a special case of (6.5.1) we
have

2∑
i=1

Ξ(Tq,i) =
2∑
i=1

tr (riρ̃(Frobq)) and
2∏
i=1

Ξ(Tq,i) =
2∏
i=1

tr (riρ̃(Frobq))

because Tq,1+Tq,2 and Tq,1Tq,2 are both invariant under θ̂. Up to swapping r1 and r2,
at p we have Ξ(Tp,i)x0 = tr (riρ̃x0(Frobp)), and tr (r1ρ̃x0(Frobp)) ̸= tr (r2ρ̃x0(Frobp))

by the first point in Lemma 6.5.1. Since C is integral this implies the equalities
Ξ(Tp,i) = tr (riρ̃(Frobp)) in O(C ). As recalled in the proof of Lemma 6.5.1, the Q-
algebraH(GZp) is generated byH(GZp)

θ∗ and Tp,1, and so the equality (6.5.1) holds
for all f ∈ H(GZp). By continuity, up to removing finitely many points from Z we
can assume that for all x ∈ C (E ′) taking values in Z we have tr (r1ρ̃x(Frobp)) ̸=
tr (r2ρ̃x(Frobp)). This implies that ρx is, up to conjugation by Ĝ(Qℓ), the unique
morphism GalQ → Ĝ(Qℓ) satisfying both Std ◦ ρx ≃ σStd

π(x),ι and tr (r1ρx(Frobp)) =

Ξ(Tp,1)x. By assumption this then holds with p replace by any prime number
distinct from ℓ. It follows that for any x ∈ Z, any prime q ̸= ℓ and any f ∈ H(GZq)
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we have SatGZq
(f)(ρx(Frobq)) = Ξx(f). By Zariski density of Z in the reduced

curve C we deduce the equality SatGZq
(f)(ρ(Frobq)) = Ξ(f) in O(C ). Specializing

at x0 yields the result.

Proposition 6.5.3. Let π be a level one automorphic representation for Gad, ℓ
a prime number and ι : C ≃ Qℓ. Then there exists a continuous semisimple
morphism ρSOπ,ι : GalQ → Ĝ(Qℓ) which is unramified away from ℓ and such that for
any prime number p ̸= ℓ we have ρSOπ,ι(Frobp)ss ∈ pr (ι(cp(πp))), where pr : Ĝsc → Ĝ

is the natural projection. If the infinitesimal character of π∞ is not invariant under
θ̂ then ρSOπ,ι is crystalline at ℓ.

Proof. First we assume that the infinitesimal character τ of π∞ is not invariant
under θ̂, and that the representation ρOπ,ι (see Theorem 6.1.1) has maximal in-
finitesimal image. Thanks to the multiplicity formula (see Example 3.4.9) we
know that π corresponds to a parameter ψ ∈ Ψ̃unr,τ̃

disc (G): for all primes p we
have c(πp) = ψ̇τ,sc(cp,sc(ψ)). The composition σStd

π,ι of ρOπ,ι with the standard rep-
resentation of O4n(Qℓ) is irreducible and so ψ is non-endoscopic. Fix a prime
p ̸= ℓ such that cp(ψ) is not fixed by θ̂ (see Corollary 6.1.2). By the first point
of Lemma 6.5.1 we have θ̂(pr(c(πp))) ̸= pr(c(πp)). There exists a unique mor-
phism ρ : GalQ → Ĝ(Qℓ) such that Std ◦ ρ ≃ σStd

π,ι and ρ(Frobp)
ss ∈ pr(ι(c(πp))),

uniquely determined up to conjugation by Ĝ(Qℓ). We are left to show that for
any q ̸∈ {p, ℓ} we also have ρ(Frobq)ss ∈ pr(ι(cq(πq))), i.e. that ρ does not depend
on the choice of p as above. By Proposition 5.1.1, there exists a unique geometric
lift ρ̃ : GalQ → Ĝsc(Qℓ) of ρ of conductor one. We can see 1 ⊕ ρOπ,ι as a mor-
phism GalQ → SO8n+1(Qℓ), well-defined up to conjugation. The composition of ρ̃
with the natural embedding Ĝsc(Qℓ) ↪→ Spin8n+1(Qℓ) is the unique geometric lift
of 1 ⊕ ρOπ,ι of conductor one. Denote by r+, r− the two half-spin representations
of Ĝsc, distinguished using the infinitesimal character τ of π∞ by the condition
rϵ◦ψ̇τ,sc ≃ spinϵψ. The composition of Ĝsc ↪→ Spin8n+1 with the spin representation
of Spin8n+1 is isomorphic to r+ ⊕ r−. Applying Proposition 5.1.2 as in the proof
of Theorem 5.2.2, we obtain

(r+ ◦ ρ̃)⊕ (r− ◦ ρ̃) ≃ σspin,+
ψ,ι ⊕ σspin,−

ψ,ι .

The representations on the right hand side are those defined in Corollary 6.4.6.
Since by assumption ρ has maximal infinitesimal image, both r+ ◦ ρ̃ and r− ◦ ρ̃ are
irreducible, and so r+ ◦ ρ̃ is isomorphic to σspin,+

ψ,ι or σspin,−
ψ,ι . We will show that the

latter is impossible. By construction we have ρ̃(Frobp)ss ∈ Z(Ĝsc)ι(ψ̇τ,sc(cp,sc(ψ))),
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and so

tr
(
(r+ ◦ ρ̃)(Frobp)

)2
= ι
(
tr
(
spin+

ψ (cp,sc(ψ))
))2

= tr
(
σspin,+
ψ,ι (Frobp)

)2
.

By the second point in Lemma 6.5.1 applied to cp,sc(ψ), this is not equal to

ι
(
tr
(
spin−

ψ (cp,sc(ψ))
))2

= tr
(
σspin,−
ψ,ι (Frobp)

)2
which implies r+ ◦ ρ̃ ̸≃ σspin,−

ψ,ι , and so r+ ◦ ρ̃ ≃ σspin,+
ψ,ι . Now consider a prime

q ̸∈ {ℓ, p}. The equality

tr
(
(r+ ◦ ρ̃)(Frobq)

)2
= tr

(
σspin,+
ψ,ι (Frobq)

)2
= ι
(
tr
(
spin+

ψ (cq,sc(ψ))
))2

implies ρ(Frobq)ss ∈ ι(ψ̇τ (cq(ψ))) = ι(cq(πq)), again using Lemma 6.5.1. This con-
cludes the proof of the existence of ρSOπ,ι under the assumptions that the infinitesimal
character of π∞ is not invariant under θ and ρOπ,ι has maximal infinitesimal image.

Existence in the general case now follows from Lemma 6.5.2 and Theorem 6.4.4.
Now assume that the infinitesimal character of π∞ is not invariant under θ. As

above the multiplicity formula (Example 3.4.9) tells us that π corresponds to a
parameter ψ ∈ Ψ̃unr,τ̃

disc (G), and Theorem 6.1.1 implies that ρSOπ,ι is crystalline.

Corollary 6.5.4. Let n ≥ 1, τ̃ ∈ ĨC(SO8n) and ψ ∈ Ψ̃unr,τ̃
disc,ne(SO8n). Theorem

6.1.5 holds for ψ (for any ι : C ≃ Qℓ).

Proof. Recall from Definition 3.1.6 that we may take Mψ = Ĝ. Thanks to the
multiplicity formula (Example 3.4.9) there exists a (unique) level one automorphic
representation π for Gad corresponding to ψ, i.e. such that π∞ has infinitesimal
character τψ and for any prime number p we have c(πp) = cp,sc(ψ). The corollary
thus follows from Proposition 6.5.3.

6.6 SO8n−4: using endoscopy

We would like to extend Corollary 6.5.4 to the case of SO8n−4, for any n ≥ 1.
Unfortunately we do not know how to ℓ-adically deform an arbitrary element
of Ψ̃unr,τ̃

disc,ne(SO8n−4) as in Theorem 6.4.4. We circumvent this problem by using
endoscopic parameters for SO8n. This is only possible in “almost all” cases.

For f ∈ S2k(SL2(Z)) an eigenform, denote by ap(f) the corresponding (real)
eigenvalue for the Hecke operator Tp, and let a′p(f) = ap(f)/p

k−1/2. In particular
the corresponding level one cuspidal automorphic representation π for PGL2 (as
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in Section 6.2) is such that the semisimple conjugacy class c(πp) in SL2(C) has
characteristic polynomial X2 − a′p(f)X + 1. The Ramanujan conjecture (proved
by Deligne) implies |a′p(f)| ≤ 2.

Lemma 6.6.1. Let n ≥ 1, τ̃1 ∈ ĨC(SO8n−4), and ψ1 ∈ Ψ̃unr,τ̃1
disc,ne(SO8n−4). We

consider a definite inner form G of SO8n as in Section 6.4. Assume that ψ1 =

π1[d1] with d1 odd, and that τ̃1 is not bad (Definition 6.1.4). Let S be a finite set of
prime numbers. Then there exists τ̃2 ∈ ĨC(SO4) and ψ2 ∈ Ψ̃unr,τ̃2

disc,ne(SO4) of shape
π2[1] satisfying

1. for all primes in S the conjugacy class cp(ψ2) is not fixed by θ̂,

2. we have τ̃1⊕ τ̃2 ∈ ĨC(SO8n) and there exists an automorphic level one repre-
sentation π for Gad with corresponding parameter ψ1⊕ψ2 (for the multiplicity
formula in Example 3.4.9).

Proof. We may assume that τ̃1 is the class of (w1, . . . , w4n−2) where w1 > · · · >
w4n−2 are integers. Since τ̃1 is not bad, there exists 1 ≤ i ≤ 2n − 1 satisfying
w2i−1 > w2i + 1. Let w′

2 = w2i + 1. We are looking for level one eigenforms f1, f2
of respective weights 2(k+w′

2), 2k such that the associated (by Proposition 6.2.1)
ψ2 ∈ Ψ̃unr,τ̃2

disc,ne(SO4), for τ̃2 the class of (2k+w′
2− 1, w′

2), satisfies the first condition
in the lemma for all p ∈ S. In terms of the Hecke eigenvalues, this condition can
be restated as a′p(f1)2 ̸= a′p(f2)

2. Let N = |S|. Using [Ser97, Corollaire 1, p. 80] we
see that there exists a family (Ij)1≤j≤N+1 of closed intervals included in [0, 4] and
covering [0, 4], and k0 ≥ 8 such that for all k ≥ k0, p ∈ S and 1 ≤ j ≤ N + 1, the
proportion of eigenforms f ∈ S2k(SL2(Z)) satisfying a′p(f)2 ∈ Ij is less than 1/N .
Fix k ≥ k0 satisfying 2k + w′

2 − 1 > w1, and an eigenform f2 ∈ S2k(SL2(Z)). For
any p ∈ S, there exists j such that a′p(f2)2 ∈ Ij and so the proportion of eigenforms
f ∈ S2(k+w′

2)
(SL2(Z)) satisfying a′p(f)2 = a′p(f2)

2 is less than 1/N . Therefore the
proportion of f satisfying a′p(f)

2 ̸= a′p(f2)
2 for all p ∈ S is positive, and we let

f1 be such an eigenform and ψ2 be the parameter corresponding to (f1, f2) by
Proposition 6.2.1.

We are left to check that the level one representation of Gad(A) associated to
ψ = ψ1⊕ψ2 and any choice of τ ∈ IC(G) mapping to τ̃ := τ̃1⊕ τ̃2 is automorphic,
i.e. that we have ⟨·, π∞⟩|Sψ = ϵψ, by Example 3.4.9. Let v1 > · · · > vm > −vm >

· · · > −v1 be the eigenvalues of the infinitesimal character of (π1)∞, so that

(w1, . . . , w4n−2) =

(
v1 +

d1 − 1

2
, . . . , v1 +

1− d1
2

, . . . , vm +
d1 − 1

2
, . . . , vm +

1− d1
2

)
.
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We have w2i = vj +(d1− 1)/2 for some 1 < j ≤ m, and we have 2i = d1(j− 1)+1

with d1 odd so j is even. So the indices corresponding to 2k + w′
2 − 1 and w′

2 in
τ̃ = (w′′

1 > · · · > w′′
4n) are 1 and 2 + d1(j − 1), which are both odd. It follows

from the recipe in Example 3.4.9 that the character ⟨·, π∞⟩ of the group (with two
elements) Sψ is trivial. By Lemma 3.1.7, more precisely the second formula in the
last point, we have ϵψ(s) = 1 because d1 and 1 are odd.

Proposition 6.6.2. Let n ≥ 2, τ̃ ∈ ĨC(SO8n−4) and ψ ∈ Ψ̃unr,τ̃
disc,ne(SO8n). Assume

that τ̃ is not bad. Then Theorem 6.1.5 holds for ψ (for any ι : C ≃ Qℓ).

Proof. Fix a prime p ̸= ℓ such that cp(ψ) is not fixed by θ̂ (see Corollary 6.1.2).
By Corollary 6.1.3 there is up to conjugation by Mψ(Qℓ) a unique morphism
ρ : GalQ →Mψ(Qℓ) such that α ◦ ρ is conjugated by O8n−4(Qℓ) to the morphism
ρOψ,ι of Theorem 6.1.1 and ρ(Frobp)ss is conjugated to ι(cp(ψ)). We are left to show
that for any q ̸= ℓ the conjugacy class of ρ(Frobq)ss is also equal to cq(ψ). Fix
q ̸= ℓ. Apply Lemma 6.6.1 to ψ and S = {p, q} to obtain τ ′ ∈ IC(SO8n), a
parameter ψ′ = ψ ⊕ ψ2 ∈ Ψ̃unr,τ̃ ′

disc (SO8n) and a level automorphic representation π

for Gad such that π∞ has infinitesimal character τ ′ and for any prime q we have
c(πq) = ψ̇′

τ ′,sc(cq,sc(ψ
′)). By Proposition 6.5.3 there exists a continuous semisim-

ple morphism ρ′ : GalQ → SO8n(Qℓ) unramified away from ℓ and such that for
any prime r ̸= ℓ we have ρ′(Frobr) ∈ ψ̇′

τ ′(cr(ψ
′)). So ρ′ belongs to one of the two

SO8n(Qℓ)-conjugacy classes making up the O4n(Qℓ)-conjugacy class of ρOψ′,ι of The-
orem 6.1.1. We claim that ρ′ is conjugated to ψ̇′

τ ′ ◦ (ρ, ρSOψ2,ι
), where ρSOψ2,ι

is defined
by Proposition 6.2.1. By Corollary 6.1.3 it is enough to check that ρ′(Frobp)ss and
ψ̇′
τ ′(ρ(Frobp), ρ

SO
ψ2,ι

(Frobp))
ss are conjugated in SO8n(Qℓ) and that this conjugacy

class is not invariant under θ̂. The first property follows from the definition of
ρ, while the second follows from the fact that neither cp(ψ) (by choice of p) nor
cp(ψ2) (because p ∈ S) is invariant under θ̂. We obtain that ιψ̇′

τ ′(cq(ψ), cq(ψ2))

and ψ̇′
τ ′(ρ(Frobq)

ss, ι(cq(ψ2))) are conjugated in SO8n(Qℓ), and since cq(ψ2) is not
invariant under θ̂ (because q ∈ S) this implies that ι(cq(ψ2)) and ρ(Frobq)

ss are
conjugated inMψ(Qℓ).

6.7 Non-tempered parameters π[2d+ 1]

Similarly to Section 5.3, in the case of parameters ψ ∈ Ψ̃unr,τ̃
disc,ne(SO4n) of the form

π[2d+ 1] with d > 0 (other non-tempered parameters were treated in Section 6.3)
we would like to relate the lifted Satake parameters (cp,sc(ψ))p of ψ to those of
π[1] ∈ Ψunr,τ ′

disc,ne(SO4m) where n = m(2d+1). Similarly to Definition 4.7.5 we have a
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morphism β :Mπ[1] × SL2 →Mψ such that StdMψ
◦ β ≃ StdMπ[1]

⊗ Sym2d StdSL2

and whose differential maps (τπ[1], 1/2) to τψ, unique up to conjugation byMψ(Q).
We may take Mπ[1] = SO4m with τπ[1] = (w1, . . . , w2m) with w1 > · · · > w2m > 0

integers and Mψ = SO4n with τψ = (τ1, . . . , τ2n) with τ1 > · · · > τ2n > 0 integers.
Then up to conjugacy we may assume that β restricts to

TSO4m × TSL2 −→ TSO4n

((x1, . . . , x2m), t) 7−→ (x1t
2d, x1t

2d−2, . . . , x1t
−2d, . . . , x2mt

2d, . . . , x2mt
−2d).

It lifts uniquely to β̃ :Mπ[1],sc × SL2 →Mψ,sc, which restricts to

TSpin4m × TSL2 −→ TSpin4n
((x1, . . . , x2m, s), t) 7−→ (β((x1, . . . , x2m), t), s

2d+1).

In particular β̃ is trivial on the center of SL2 and so it induces β̃ :Mπ[1],sc×PGL2 →
Mψ,sc. The morphism

GL1 ×Mπ[1],sc × PGL2 −→ GMψ,sc

(λ, h, x) 7−→ λ2d+1β̃(h, x)

induces an extension GMπ[1],sc × PGL2 → GMψ,sc of β̃, that we still denote by β̃.

Proposition 6.7.1. Assume that n is even or that τ̃ is not bad. Exactly one of
the following holds true.

• 1. For any prime ℓ and any ι : C ≃ Qℓ the Mψ(Qℓ)-conjugacy classes of
ρGSpin
ψ,ι and β̃ ◦ (ρGSpin

π[1],ι , 1⊕ χ
−1
ℓ ) are equal.

2. For all primes p we have cp,sc(ψ) = β̃(cp,sc(π[1]), diag(p
1/2, p−1/2)).

• 1. For any prime ℓ and any ι : C ≃ Qℓ the Mψ(Qℓ)-conjugacy classes of
θ̂ ◦ ρGSpin

ψ,ι and β̃ ◦ (ρGSpin
π[1],ι , 1⊕ χ

−1
ℓ ) are equal.

2. For all primes p we have θ̂(cp,sc(ψ)) = β̃(cp,sc(π[1]), diag(p
1/2, p−1/2)).

Proof. The proof is similar to that of Proposition 5.3.1. We already know that
for all primes p the conjugacy class of β(cp(π[1]), diag(p1/2, p−1/2)) is equal either
to cp(ψ) or to θ̂(cp(ψ)). Note that m is even or τ̃ ′ is not bad. By Theorem 6.1.1
the representation ρSOψ,ι obtained using Theorem 6.1.5 is conjugated underMψ(Qℓ)

to either β ◦ (ρSOπ[1],ι, 1⊕ χ
−1
ℓ ) or θ̂β ◦ (ρSOπ[1],ι, 1⊕ χ

−1
ℓ ) (ρSOπ[1],ι is also obtained using

Theorem 6.1.5), the two being exclusive by Corollary 6.1.3. Distinguishing these
two cases, the rest of the proof is identical to that of 5.3.1.
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Remark 6.7.2. Similarly to Remarks 4.7.7 and 5.3.2, this could perhaps be proved
using Eisenstein series, yielding a stronger result that does not require τ̃ to not be
bad and without ambiguity under θ̂.

7 Applications

7.1 Tensor product decomposition in intersection cohomol-
ogy

Definition 7.1.1. Let ℓ be a prime number and ι : C ≃ Qℓ. Let n ≥ 1, τ̃ ∈
ĨC(SO4n) and ψ ∈ Ψ̃unr,τ̃

disc,ne(SO4n). Assume either n = 1, n even, ψ = π[2d] or
that τ̃ is not bad (Definition 6.1.4). For ϵ ∈ {+,−} let σspin,ϵ

ψ,ι be the continuous
semisimple representation of GalQ over Qℓ of dimension 22n−1 which is obtained
by composing the morphism ρGSpin

ψ,ι : GalQ → GMψ,sc(Qℓ) of Theorem 6.1.6 with
the representation spinϵψ (Definition 4.7.4).

Remark 7.1.2. This extends the definition in the second part of Corollary 4.7.3,
which included only one possible value for the sign ϵ for a given parameter ψ. Thus
σspin,ϵ
ψ,ι is defined in all cases except when the following conditions are simultaneously

satisfied: n > 1 is odd, τ̃ is bad, ψ = π[d] with d odd and ϵ = +1. If these
conditions are satisfied we will say that the pair (ψ, ϵ) is unreachable.

Theorem 7.1.3. In the setting of Theorem 4.7.2, for any ψ = ψ0 ⊕ · · · ⊕ ψr we
have

1. for any 1 ≤ i ≤ r the pair (ψi, ui(ψ)) is not unreachable,

2. a decomposition

σIH
ψ,ι ≃ σspin

ψ0,ι
⊗σspin,u1(ψ)

ψ1,ι
⊗· · ·⊗σspin,ur(ψ)

ψ,ι

(
n0d0(n0d0 + 1)/4 +

r∑
i=1

nidi/8− n(n+ 1)/4

)

where the expression in the Tate twist is an integer.

Proof. The second point immediately follows from the first point, the Čebotarev
density theorem, (4.7.7), Theorem 5.2.2, Theorem 6.1.6 and the second part of
Corollary 4.7.3.

Let us prove the first point. For 1 ≤ i ≤ r it follows from the definition (4.7.3)
of ui(ψ) that if ψi ∈ Ψ̃unr,τ̃i

disc,ne(SOnidi) with di odd, ni ≡ 4 mod 8 and τ̃i bad then
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ui(ψ) = −ϵψ(si). We can compute ϵψ(si) using Lemma 3.1.7:

ϵψ(si) =
∏
j

ϵ(1/2, πi × πj)

where the product is over indices 1 ≤ j ≤ r such that dj is even and dj > di.
We have πi ∈ Oo(w1, . . . , wni/2) where the integers w1 > · · · > wni/2 > 0 satisfy
w2k−1 = w2k+di for all 1 ≤ k ≤ ni/4. For j as above we have πj ∈ S(w′

1, . . . , w
′
nj/2

)

where w′
k ∈ 1/2 + Z satisfy w′

1 > · · · > w′
nj/2

> 0. We have (see [CR15, §3.9])

ϵ(1/2, πi × πj) =
∏

1≤a≤ni/2
1≤b≤nj/2

(−1)1+2max(wa,w′
b)

and since for any 1 ≤ k ≤ ni/4 and 1 ≤ b ≤ nj/2 we have w2k−1 > w2k and either
w′
b < w2k or w′

b > w2k−1 by badness of τ̃i and disjointness of τ̃i and τ̃j, we obtain
ϵ(1/2, πi × πj) = 1 and ui(ψ) = −1. Thus (ψi, ui(ψ)) is not unreachable.

7.2 Siegel modular forms

Let n ≥ 1. We recall a few facts about the translation between (level one) genus n
vector-valued Siegel modular forms and automorphic representations for PGSp2n

from [Taï17, §5.2]. For a tuple k = (k1 ≥ · · · ≥ kn) of integers, that we interpret as
a highest weight for the complex Lie group GLn(C), we have a finite-dimensional
complex vector space Sk(Sp2n(Z)) of vector-valued Siegel cusp forms which has
an action of the Hecke algebra Hunr

f (GSp2n). There are several competing nor-
malizations for this action (see the two normalizations in [Gee08, Definition 8]),
and we find it convenient to use yet another normalization, the unitary normal-
ization: add a factor η(γ)

∑
i ki/2 in [Gee08, Definition 8]. In level one the action of

Hunr
f (GSp2n) then factors through Hunr

f (PGSp2n), in particular to an eigenform f

is associated a family (cunitp (f))p of Satake parameters which are semi-simple conju-
gacy classes in Spin2n+1(C). The relation with the notation introduced in Section
1.1 is carithp (f) = p

∑
i ki/2−n(n+1)/4cunitp (f). Let g = C ⊗R LiePGSp2n(R) and K a

maximal compact subgroup of PGSp2n(R). By a celebrated theorem of Gelfand,
Graev and Piatetski-Shapiro the space of cuspidal automorphic forms for PGSp2n

decomposes discretely, in particular we have a (g, K)×Hunr
f (PGSp2n)-equivariant

isomorphism

Acusp(PGSp2n(Q)\PGSp2n(A))PGSp2n(Ẑ) ≃
⊕

π≃π∞⊗πf

(
π∞ ⊗ πPGSp2n(Ẑ)

f

)⊕m(π)
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where the sum is over isomorphism classes of irreducible unitary (g, K)-modules π∞
(resp. admissible representations πf of PGSp2n(Af )) and m(π) are integers (only
countably many of them are non-zero). Of course we may restrict to irreducible
admissible representations πf of PGSp2n(Af ) which are everywhere unramified,
i.e. such that the space πPGSp2n(Ẑ)

f is non-zero, in which case it has dimension one.
This gives a Hunr

f (PGSp2n)-equivariant isomorphism

Sk(Sp2n(Z)) ≃
⊕
πf

(
π
PGSp2n(Ẑ)
f

)m(π∞(k)⊗πf )

where π∞(k) is a certain explicit irreducible (g, K)-module associated to k (essen-
tially a generalized Verma module). It may fail to be unitarizable, in which case
by convention we set m(π∞(k)⊗ πf ) = 0 for all πf . For kn ≥ n+1 the irreducible
(g, K)-module π∞(k) is unitarizable, in fact it is the holomorphic discrete series
(g, K)-module having infinitesimal character (k1− 1, . . . , kn− n). Under this con-
dition m(π∞(k) ⊗ πf ) is also the multiplicity of π∞(k) ⊗ πf in the larger space
A2(PGSp2n(Q)\PGSp2n(A)) of square-integrable automorphic forms.

Theorem 7.2.1. Let n ≥ 1 and k1 ≥ · · · ≥ kn ≥ n + 1 be integers. Denote
τ = (k1 − 1, . . . , kn − n) ∈ IC(Sp2n). We have a decomposition in eigenspaces
(lines) under Hunr

f (PGSp2n)

Sk(Sp2n(Z)) ≃
⊕
ψ

χf,ψ

where the sum is over ψ = ψ0 ⊕ · · · ⊕ ψr ∈ Ψunr,τ
disc (Sp2n) satisfying

• the odd-dimensional factor ψ0 is tempered, i.e. of the form π0[1],

• the holomorphic discrete series (g, K)-module π∞(k) satisfies ⟨·, π∞(k)⟩ = ϵψ,

and the character χf,ψ of Hunr
f (PGSp2n) was introduced in Theorem 4.7.2.

Proof. This decomposition is already known for the action of the (smaller) Hecke
algebra Hunr

f (Sp2n) thanks to Arthur’s endoscopic classification [Art13] and the
comparison [AMR] of Arthur packets for Sp2n,R with the more explicit Adams-
Johnson packets when the infinitesimal character is regular algebraic, see [Taï17,
§5.2] or [CR15, §9]. More precisely this analysis shows that the eigenspace in
A2(PGSp2n(Q)\PGSp2n(A))

PGSp2n(Ẑ)
τ for the character ofHunr

f (Sp2n) correspond-
ing to (cp(ψ))p
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• either does not contain the (g, K0)-module π∞(k) if any one of the two
conditions in Theorem 7.2.1 is not satisfied, or

• is isomorphic to π∞(k)⊕
⊕

π′
∞
π′
∞ otherwise, where the last sum ranges over

a finite set of irreducible (g, K)-modules π′
∞ in which the trace of a pseudo-

coefficient for π∞(k) vanishes (see Proposition 3.3.2).

Thus Corollary 3.4.8 completely describes the Hunr
f (PGSp2n)-module

Homg,K(π∞(k),A2(PGSp2n(Q)\PGSp2n(A))PGSp2n(Ẑ)).

Corollary 7.2.2. Let n ≥ 1 and k1 ≥ · · · ≥ kn ≥ n + 1 be integers. Let
f ∈ Sk(Sp2n(Z)) be an eigenform for the action of Hunr

f (PGSp2n). Let ℓ be
a prime number and ι : C ≃ Qℓ. Then there exists a continuous semisim-
ple morphism ρGSpin

f,ι : GalQ → GSpin2n+1(Qℓ) which is crystalline at ℓ, unram-
ified away from ℓ and such that for any prime p ̸= ℓ the conjugacy class of
ρGSpin
f,ι (Frobp)

ss is equal to ι(carithp (f)). Any other continuous semisimple morphism
ρ : GalQ → GSpin2n+1(Qℓ) satisfying this property at almost all primes p is conju-
gated to ρGSpin

f,ι .

Proof. Denoting τ = (k1 − 1, . . . , kn − n) ∈ IC(Sp2n), the eigenspace Cf corre-
sponds to a unique

ψ = ψ0 ⊕ · · · ⊕ ψr ∈ Ψunr,τ
disc (Sp2n)

satisfying the two conditions in Theorem 7.2.1. We claim that for 1 ≤ i ≤ r

the parameter ψi ∈ Ψ̃unr,τ̃i
disc,ne(SOnidi) satisfies the assumption in Theorem 6.1.5.

More precisely we show that the condition ⟨·, π∞(k)⟩|Sψ = ϵψ implies that τ̃i is
not bad. As in Section 4.7 up to conjugacy we may assume that ψ̇τ ◦ φψ∞|C×

takes values in TSO2n+1(C) and is dominant for BSO2n+1 , i.e. the holomorphic part
of ψ̇τ ◦ φψ∞|C× : C× → TSO2n+1(C) is z 7→ (zk1−1, . . . , zkn−n). Now the character
⟨·, π∞(k)⟩ is known to be (see [CR15, Lemma 9.1] and [Taï17, §5.1])

{(z1, . . . , zn, s) ∈ TSpin2n+1
| z2i = 1, s2 = z1 . . . zn = 1} −→ {±1}

(z1, . . . , zn, s) 7−→
⌊n/2⌋∏
j=1

z2i.
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Note the similarity23 with the character occurring in Example 3.4.9 for the case
of definite special orthogonal groups. The claim follows from essentially the same
computations as in the proof of Theorem 7.1.3.

Thus we have GSpin-valued Galois representations for all constituents ψi (The-
orem 5.2.2 for i = 0, Theorem 6.1.6 for 1 ≤ i ≤ r). As usual (see Definition 4.7.5)
we extend ψ̇τ,sc :

∏
iMψi,sc → Spin2n+1 to obtain ψ̇τ,sc :

∏
i GMψi,sc → GSpin2n+1

induced by ∏
i

GL1 ×Mψi,sc −→ GSpin2n+1

(zi, hi)i 7−→
∏
i

zi × ψ̇τ,sc((hi)i).

Define ρGSpin
f,ι as ψ̇τ,sc ◦ (ρGSpin

ψi,ι
)i twisted by χNℓ where

N =
n0d0(n0d0 + 1)

4
+

r∑
i=1

nidi
2
−
∑n

j=1 kj

2
+
n(n+ 1)

4

is an integer (as proved in Theorem 7.1.3, because
∑

j kj is even). This clearly sat-
isfies the conditions of the theorem. Uniqueness is proved exactly as for Theorem
5.2.2.

8 Explicit formulas for compactly supported Euler
characteristics

The first goal of this section is to deduce from Corollary 4.8.16 a simpler expression
(Theorem 8.2.4) for e(A∗

n,?, ICℓ(V )) (in K0(RepQℓ(GSp2n(Af )×GalQ))) in terms of
ec(An′,?,Q,Fℓ(V ′)) (for n′ ≤ n and certain algebraic representations V ′ of GSp2n′)
and L2-cohomology of arithmetic locally symmetric spaces for the groups GL1

and GL2, again via parabolic induction. To prove it we first recall in Section
8.1 Franke’s formula expressing, for V an irreducible algebraic representation of a
reductive group G over Q, the Euler characteristic e(G, V ) (in K0(RepQ(G(Af ))),
notation as in Section 4.8.1) in terms of e(2)(L, V ′) (see (1.4.1)) for R-cuspidal Levi
subgroups L of G. Since R-cuspidal Levi subgroups of GLN are products of GL1’s
and GL2’s, Franke’s formula plugged in Corollary 4.8.16 gives a new formula for
e(A∗

n,?,Q, ICℓ(V )), now with a double sum. Simplifying this to obtain a single sum
is a combinatorial matter.

23This is no coincidence since the two are related by the theta correspondence.
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In Section 8.3 we invert this formula to obtain an explicit formula (Theorem
8.3.1) expressing compactly supported cohomology of local systems on An,?,Q in
terms of intersection cohomology (and again e(2)(GLN , V

′) for N ∈ {1, 2}). This
is again a combinatorial matter. Specializing to level one, together with Theorem
7.1.3 this gives an explicit (and, we believe, as simple as possible) description
of ec(An,Q,F(V )) in terms of formal Arthur-Langlands parameters ψ and their
associated Galois representations. The case n = 3 (forgetting the Hecke action)
verifies the main conjecture of Bergström, Faber and van der Geer in [BFG14].

8.1 Franke’s formula

In this section we consider an arbitrary connected reductive group G over Q. Fix
an open subgroup K∞ of a maximal compact subgroup Kmax

∞ of G(R) and denote
X = G(R)/K∞AG(R)0. Let V be an irreducible algebraic representation24 of
GC, that we will consider as a representation of G(R) or G(Q). Franke’s spectral
sequence (I in [Fra98, Theorem 19]) implies a formula for the Euler characteristic
e(G, K∞, V ) of the admissible graded representation of G(Af )

lim−→
Kf

H•(G(Q)\(X ×G(Af )/Kf ),FKf (V )),

already considered in Section 4.8, in terms of (l, K∞,L)-cohomology of the discrete
automorphic spectrum for L with respect to certain finite-dimensional representa-
tions of L(R), as L varies among the Levi subgroups of G (over Q, up to conju-
gacy) which are R-cuspidal. We found it clearer to reformulate Franke’s filtration
for the space of automorphic forms (Theorem 8.1.16) and to deduce the formula
for the Euler characteristic (thanks to Borel’s conjecture, also proved by Franke,
see Theorem 8.1.1 below) following [Fra98, §7.4]. The final result for the Euler
characteristic is Corollary 8.1.25.

In fact we will only require the case where G = GLN and K∞ is maximal in
later sections, but it would also be natural to take G = GSp2n and K∞ connected
to compare Franke’s formula in this case (or rather its dual for compactly supported
cohomology) to Theorem 8.3.1 via Zucker’s conjecture ([Loo88], [SS90], [LR91]).
We give the explicit formula for G = GLN in Corollary 8.1.27.

24More generally we may consider an irreducible finite-dimensional (g,Kmax
∞ )-module, see Ap-

pendix B.
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8.1.1 Borel’s conjecture

We recall Borel’s conjecture (proved by Franke in [Fra98, §7.4]). Recall from the
beginning of Section 4.8 that any representation V of G(Q) over C gives rise
to local systems FKfV on the manifolds G(Q)\(X × G(Af )/Kf ) for any neat
compact open subgroup Kf of G(Af ). Taking cohomology and the colimit over
all such levels yields admissible representations of G(Af )

H i(G, K∞, V ) := lim−→
Kf

H i(G(Q)\(X ×G(Af )/Kf ),FKfV ).

Now assume that V is the restriction of an irreducible (g, Kmax
∞ )-module (by

Lemma B.0.2 this is equivalent to an irreducible finite-dimensional representation
of G(R)). Translating the de Rham comparison isomorphism gives

H i(G, K∞, V ) ≃ H i((g/aG, K∞), (C∞(G(Q)\G(A))⊗ V )AG(R)0)

where
C∞(G(Q)\G(A)) := lim−→

Kf

C∞(G(Q)\G(A)/Kf ).

Denote by A(G) the space of automorphic forms on G(Q)\G(A). The following
theorem is [Fra98, Theorem 18].

Theorem 8.1.1 (Franke). The inclusion A(G) ↪→ C∞(G(Q)\G(A)) induces an
isomorphism of admissible representations of G(Af )

H•((g/aG, K∞), (A(G)⊗V )AG(R)0) ≃ H•((g/aG, K∞), (C∞(G(Q)\G(A))⊗V )AG(R)0).

8.1.2 Euler characteristic of the discrete automorphic spectrum

Let us first precise our notation for the cohomology of the discrete automorphic
spectrum, and make precise the dependence on the finite-dimensional representa-
tion of a Lie group that occurs. As above let V be an irreducible finite-dimensional
(g, Kmax

∞ )-module.
Denote by ωV the central character of V and let ξ−1 its restriction to AG(R)0.

Denote by A2(G, ξ) the space of automorphic forms on G(Q)\G(A) transforming
under AG(R)0 by ξ and square-integrable modulo AG(R)0. Note that this makes
sense because AG(R)0 is canonically a direct factor of G(A) (with complement
G(A)1, the subgroup of g such that |χ(g)| = 1 for all χ ∈ X∗(G)GalQ), and that
there is a canonical isomorphism A2(G, ξ) ≃ A2(G, 1) ⊗ ξ as (g, K∞) ×G(Af )-
modules, where on the right-hand side ξ is considered as a character of G(A)
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(trivial on G(A)1). These modules are semisimple, with finitely many constituents
having given infinitesimal character and level. Consider for a level Kf ⊂ G(Af )

the cohomology groups

H i
(2)(G, K∞, V )Kf := H i((g/aG, K∞),A2(G, ξ)Kf ⊗ V )

endowed with the action of H(G(Af )//Kf ). By Wigner’s lemma [BW00, Corol-
lary I.4.2] one can replace A2(G, ξ)Kf by the direct sum of its constituents (for
the action of g) having infinitesimal character opposite to that of V , so that
H i

(2)(G, K∞, V )Kf has finite dimension over C. Of course by varying Kf we obtain
an admissible graded object of Hecke(G(Af ),C), which justifies the notation. If
G(R)/AG(R) admits discrete series representations these cohomology groups can
be identified to L2-cohomology groups (see [BC83]), and in the Hermitian case
to intersection cohomology groups as in Section 4.4 by Zucker’s conjecture (see
[Loo88], [SS90], [LR91]). For χ ∈ C⊗X∗(G)GalQ there is a canonical isomorphism
H i

(2)(G, K∞, V ⊗ |χ|) ≃ H i
(2)(G, K∞, V ) ⊗ |χ|−1

f , where for χ = s ⊗ χ0 we denote
|χ|f ((gp)p) =

∏
p |χ(gp)|sp (compare with Remarks 4.3.7 and 4.8.3).

Definition 8.1.2. In the setting above we denote e(2)(G, K∞, V ) the Euler charac-
teristic of H•

(2)(G, K∞, V ) in the Grothendieck group of admissible representations
of G(Af ).

We know that this Euler characteristic vanishes if G is not R-cuspidal (see
[Fra98, bottom of p. 266]). Recall that G is said to be R-cuspidal if (G/AG)(R) has
discrete series, or equivalently if there exists a Langlands parameter φ : WR → LG

such that Cent(φ, L̂)/Z(L̂)GalQ is finite. Note that this notion depends on the Q-
structure of G, not just on GR. For example GLN,Q is R-cuspidal if and only if
N ≤ 2.

Proposition-Definition 8.1.3. Let H be a connected reductive group over R and
let K be a maximal compact subgroup of H(R). Let V be an irreducible finite-
dimensional (h, K)-module and denote by τV its infinitesimal character and by ωV
its central character. Assume that H(R) admits essentially discrete series repre-
sentations (equivalently, that modulo its center it admits an anisotropic maximal
torus). There exists a unique (up to conjugation by Ĥ(C)) essentially discrete
Langlands parameter φV : WR → LH(C) such that the L-packet of φV is the set
of essentially discrete (h, K)-modules with infinitesimal character −τV and central
character ω−1

V .
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Proof. Up to a reduction using a z-extension this follows from the definition of
discrete L-packets in [Lan89] and the description of irreducible finite-dimensional
(h, K)-modules in Appendix B.

Now assume that G is R-cuspidal. Denote by τV the infinitesimal character of
V . In general V is not determined by τV and so H•

(2)(G, K∞, V ) really depends
on V . However, it turns out (Corollary 8.1.5 below) that the Euler characteristic
e(2)(G, K∞, V ) only depends on the discrete Langlands parameter φV : WR →
LG(C). This is remarkable since it is not true that the individual cohomology
groups only depend on φV , nor is it true that Euler characteristics for ordinary
or compactly supported cohomology only depend on φV . Let us now prove this
independence statement for e(2)(G, K∞, V ). The question is clearly local at the
real place, i.e. it is enough to show that e((g/a, K∞), π∞⊗V ) = e((g/a, K∞), π∞⊗
V ′) for any finite-dimensional irreducible continuous representations V and V ′ of
G(R) having equal infinitesimal characters and central characters and any finite
length admissible (g, Kmax

∞ )-module π∞ with opposite central character. Of course
both Euler characteristics only depends on the image of π∞ in the Grothendieck
group, and so they may be computed in the basis of standard modules. The
argument on p. 214 of [CD90] also applies to show that for π∞ a standard module
corresponding to a proper Levi subgroup of G we have e((g/aG, K0

∞), π∞ ⊗ V ) =

0 as a representation of the finite 2-torsion group Kmax
∞ /K0

∞ = G(R)/G(R)0.
Wigner’s lemma implies that cohomology (and thus Euler characteristic) vanishes
for tempered representations which are not part of the discrete series (modulo AG)
L-packet corresponding to φV . We are thus reduced to the case of discrete series
π∞, for which cohomology is completely computed in [BW00, §II.5]. We recall (a
slight variation of) this result in the following theorem.

Theorem 8.1.4. Let G be a connected reductive group over R, ZG its center and
AG its maximal split central torus. Fix a maximal compact subgroup Kmax of
G(R), and let q(G) = 1

2
dimG(R)/KmaxAG(R)0. Denote by KZG(R) the maximal

compact subgroup of the center ZG(R) of G(R). Let V be a finite-dimensional
(g, Kmax)-module and let ωV be its central character, a character of ZG(R). Let
K be an open subgroup of Kmax, and K ′ = KKZG(R), also an open subgroup of
Kmax. Let π be a discrete series (g, Kmax)-module with central character ωπ which
coincides with ω−1

V on AG(R)0. We have

dimH i((g/aG, K), π⊗V ) =

{
|Kmax/K ′| if i = q(G) and ωπωV |ZG(R)∩K = 1 and τπ = −τV
0 otherwise.
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Proof. This follows from [BW00, Theorem II.5.3] and the proof of Proposition
II.5.7 loc. cit., using the precise description of discrete series (from the case where
G is semisimple and simply connected studied by Harish-Chandra) in [Lan89, pp.
134-135]. Let us give the details. First note that V is irreducible as a g-module. If
Gder is simply connected this was already observed in the proof of Lemma B.0.2,
and the general case follows by taking a z-extension of G. Let K0 = K0KZG(R).
The restriction of π to K has r := |Kmax/K ′| irreducible constituents π′

1, . . . , π
′
r

which are distinct discrete series (g, K)-modules. We have

HomK

(
i∧
(g/(aG ⊕ k)), π ⊗ V

)
≃

r⊕
j=1

HomK

(
i∧
(g/(aG ⊕ k)), π′

j ⊗ V

)

≃
r⊕
j=1

HomK∩K0

(
i∧
(g/(aG ⊕ k)), π′

0,j ⊗ V

)
where π′

0,j is any of the constituents of the restriction of π′
j to K ∩ K0, so that

π′
j ≃ IndKK∩K0

(π′
0,j). Let Ksc be the preimage of Kmax in the connected semisimple

Lie group Gsc(R) (note that Ksc is connected, so it is also the preimage of K0).
Then (K ∩K0)/(K ∩KZG(R)) = K0/(K0 ∩KZG(R)) is naturally a quotient of Ksc.
Taking cohomology, we obtain

H i ((g/aG, K), π ⊗ V ) ≃
r⊕
j=1

H i
(
(g/aG, K ∩K0), π

′
0,j ⊗ V

)
=

r⊕
j=1

H i
(
(g/zG, (K ∩K0)/(K ∩ ZG(R))), (π′

0,j ⊗ V )K∩ZG(R))
=

r⊕
j=1

H i
(
(gsc, Ksc), (π

′
0,j ⊗ V )K∩ZG(R))

where [BW00, Corollary I.6.6] is used for the second line. The last expression is
computed by [BW00, Theorem II.5.3].

We can finally deduce the independence result.

Corollary 8.1.5. Let G be a connected reductive group over Q. Assume that G
is R-cuspidal. Let V and V ′ be finite-dimensional continuous irreducible repre-
sentations of G(R) such that φV and φV ′ are conjugated by Ĝ. Let K∞ be an
open subgroup of a maximal compact subgroup of G(R). Then e(2)(G, K∞, V ) =

e(2)(G, K∞, V
′) in K0(RepC(G(Af ))).
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Using a z-extension and following the proof of Lemma B.0.2 it is easy to see
that any discrete Langlands parameter φ : WR → LG can be written as φV
for some V as above. Together with Corollary 8.1.5 this justifies the following
definition/notation: e(2)(G, K∞, φ) := e(2)(G, K∞, V ) for any V such that φV ∼ φ.

Example 8.1.6. For G = GL1 this provides no simplification. For a ∈ Z we
denote

e(GL1, a) := e(2)(GL1, {±1}, x 7→ xa) =
∑

χ:Q×\A×→C×

χ|R×=x 7→x−a

χf . (8.1.1)

Note that all other characters of R× are obtained by twisting by x 7→ |x|s for some
s ∈ C. Note also that e(GL1, a)

GL1(Ẑ) = 0 if a is odd.
For G = GL2 (over Q) the center of G(R) is included in its identity component

and so φV ∼ φV ′ if and only if τV = τV ′. In the sequel we will only need to consider
V with real infinitesimal character, which can then be written (a + 1/2, b − 1/2)

with a, b ∈ R and a − b ∈ Z≥0 (i.e. V ≃ Syma−b Std ⊗ | det |b or Syma−b Std ⊗
det | det |b−1), and we will simply denote e(2)(GL2, a, b) for e(2)(GL2, K∞, V ) with
K∞ maximal. This can be easily described in terms of modular cusp forms. First
note that for (a, b) as above and s ∈ C we have

e(2)(GL2, a+ s, b+ s) = e(2)(GL2, a, b)⊗ | det |−sf .

Denote Sk = lim−→Γ
Sk(Γ) where Γ ranges over congruence subgroups of SL2(Z), with

the usual action of GL2(Af ). Then for k ∈ Z≥2 we have

e(2)(GL2, k − 2, 0) =

{
−Sk if k > 2,

−S2 + e(GL1, 0) ◦ det if k = 2.
(8.1.2)

In particular e(2)(GL2, a, b)
GL2(Ẑ) = 0 if a− b is odd.

8.1.3 Franke’s filtration of the space of automorphic forms

We recall in Theorem 8.1.16 below Franke’s filtration of the space of automorphic
forms, and his description of the associated graduated pieces. This description
uses the Langlands positivity condition on characters of parabolic subgroups (see
[Wal88, §5.4.1] in the real case, [Fra98, p.233 l.-4] for the case at hand), indeed
Franke’s filtration may be interpreted as the global analogue of Langlands’ classi-
fication of irreducible (g, K)-modules as Langlands quotients of standard modules
[Lan89]. This positivity condition is usually expressed using relative root systems.
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We favor formulating this condition using Langlands dual groups (and thus ab-
solute root systems), which require some preparation. Although we give proofs
for this reformulation in the general case, we will ultimately only use the case
of GLn,Q for which the following lemmas are essentially trivial. The reader only
interested in this case may safely skip the proofs and focus on the examples.

In this section G is a connected reductive group over Q. Following [Kot84b,
§1] we consider the Langlands dual group of G as an extension Ĝ → LG → WQ

of WQ by Ĝ together with a Ĝ(Q)-conjugacy class of splittings, i.e. quadruples
(B, T , (Xα)α∈∆(T ,B), s) where (B, T , (Xα)α) is a pinning of Ĝ and s : WQ → LG is
a section such that each s(σ) stabilizes this pinning. We will call such quadruples
distinguished splittings. Recall from [Bor79, §I.3] the notion of parabolic and Levi
subgroups of LG, and the fact that there is a natural injective map

{parabolic subgroups of G}/G(Q)−conj ↪→ {parabolic subgroups of LG}/Ĝ−conj.
(8.1.3)

This injection is a bijection if G is quasi-split. If P is a parabolic subgroup of G
with reductive quotient L, choosing distinguished splittings ζG and ζL for LG and
LL yields an embedding

ι[P, ζG, ζL] :
LL→ LG

with image the standard (for ζG) Levi subgroup of LG, and denoting by B the
Borel subgroup of Ĝ occurring in ζG we have that ι[P, ζG, ζL](LL)B is the standard
parabolic subgroup of LG corresponding to P in (8.1.3). For g ∈ Ĝ(Q) and
l ∈ L̂(Q) we have

ι[P,Ad(g)ζG,Ad(l)ζL] = Ad(g) ◦ ι[P, ζG, ζL] ◦ Ad(l)−1.

We can slightly change the point of view: if P and P are parabolic subgroups of
G and LG corresponding to each other in (8.1.3), and if we choose a Levi factor
L of P , then we have an embedding

ι[P,P ,L] : LL→ LG

well-defined up to composing with Ad(l) for some l ∈ L̂(Q) and satisfying ι[P,P ,L](LL) =
L (choose any distinguished splitting ζL for LL and a distinguished splitting ζG
for LG for which (P ,L) is standard). It is clear that the Ĝ(Q)-conjugacy class of
ι[P,P ,L] does not depend on the choice of (P ,L).

Lemma 8.1.7. Let L be a Levi subgroup of G.
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1. Let P and P′ be parabolic subgroups of G admitting L as a Levi factor. Then
ι[P,P ,L] and ι[P′,P ′,L′] are conjugated under Ĝ(Q). In particular we have
a well-defined conjugacy class E(L,G) of embeddings LL→ LG.

2. For ιL ∈ E(L,G) we have a bijection P 7→ LP, compatible with (8.1.3),
between the set of parabolic subgroups of G having L as a Levi factor and
the set of parabolic subgroups of LG having L := ιL(

LL) as a Levi factor,
compatible with (8.1.3). The bijection is determined by the property that ιL
belongs to the L̂(Q)-orbit of ι[P, LP,L].

Proof. The first statement is [Lan89, Lemma 2.5]. In order to prove the second
statement we briefly recall the construction. Fix a Borel pair (BL,T) in LQ. This
defines a Borel subgroup B (resp. B′) of PQ (resp. P′

Q) by the relation B∩LQ = BL

(resp. B′ ∩ LQ = BL). Let ζG = (B, T , (Xα)α, s) be a distinguished splitting
for G. The pairs (B,T) and (B, T ) yield identifications X∗(T ) ≃ X∗(T) and
W (T,GQ) ≃ W (T , Ĝ). There is a unique x ∈ W (T,GQ) satisfying Ad(x)B = B′,
and denoting by n : W (T , Ĝ) → N(T , Ĝ) the set-theoretic section induced by
(B, T , (Xα)α) (see [Spr98, §9.3.3]) we have

Ad(n(x)) ◦ ι[P′, ζG, ζL] = ι[P, ζG, ζL].

We now turn to the second point. Fix ιL ∈ E(L,G). It is straightforward
to define a map P 7→ LP such that ιL belongs to the L̂(Q)-orbit of ι[P, LP,L]:
starting from any parabolic subgroup P of LG corresponding to P via (8.1.3)
we can choose a Levi factor L0 of P and ι[P,P ,L0] in the corresponding L̂(Q)-
orbit, and there exists g ∈ Ĝ(Q) satisfying Ad(g) ◦ ι[P,P ,L0] = ιL and we define
LP = Ad(g)P , which does not depend on the choice of P , L0 and g (g is unique
up to left multiplication by Z(L) ∩ L0). We now define the inverse map. We
may assume ιL = ι[P, ζG, ζL] and as above we fix a Borel pair (BL,T) in LQ
and denote by B the corresponding Borel subgroup of PQ. Let P ′ be a parabolic
subgroup of LG admitting L := ιL(

LL) as a Levi factor. There is a unique g ∈
W (T , Ĝ) such that Ad(g−1)P ′ is a standard (for ζG) parabolic subgroup of LG

and Ad(g−1)(B ∩ L0) ⊂ B. Let x ∈ W (T,GQ) corresponding to g. We now
check that Ad(x)B contains BL and that the simple roots for (BL,T) are also
simple for (Ad(x)B,T) (this means that LQ is standard for (Ad(x)B,T) and so
the corresponding (Ad(x)B,T)-standard parabolic subgroup P′ of GQ admits LQ
as a Levi factor). Because Ad(g−1)L0 is (B, T )-standard and Ad(g−1)(B∩L0) ⊂ B
we know

Ad(g−1)
(
∆∨(T ,B ∩ L0)

)
⊂ ∆∨(T ,B ∩ Ad(g−1)L0)
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(where ∆∨ denotes the set of simple coroots). Thus Ad(x)∗ : α 7→ α ◦Ad(x) maps
∆(T,BL) to ∆(T,B). Since Ad(x)∗ induces a bijection ∆(T,Ad(x)B) ≃ ∆(T,B)

we deduce ∆(T,BL) ⊂ ∆(T,Ad(x)B). We thus have a parabolic subgroup P′ of
GQ admitting LQ as a Levi factor and Ad(x)B as a Borel subgroup, and we
now check that it is defined over Q. For this we use the fact that W (T,GQ) ≃
W (T , Ĝ) is GalQ-equivariant in the following sense. For σ ∈ GalQ write σ(B,T) =

Ad(gσ)
−1(B,T) where gσ ∈ L(Q) because P is defined over Q. Then gσσ(x)g−1

σ ∈
W (T,GQ) corresponds to s(σ)gs(σ)−1 ∈ W (T , Ĝ). Now σ(P′) contains

σ(Ad(x)B) = Ad(σ(x)g−1
σ )B = Ad(g−1

σ gσσ(x)g
−1
σ )B.

We have s(σ) ∈ L (because L = ιL(
LL) is formed using ζG) and s(σ) ∈ Ad(g−1)L

(because Ad(g−1L) is standard for ζG) and so we have

s(σ)gs(σ)−1g−1 ∈ L0

which translates to
gσσ(x)g

−1
σ x−1 ∈ N(T,L(Q))

and so σ(P′) contains Ad(nx)B for some n ∈ L(Q), which implies σ(P′) = P′ and
so P′ is defined over Q. Comparing with the proof of the first point we see that
we have just defined the inverse of P′ 7→ LP′.

Example 8.1.8. Let us describe in simpler terms the content of Lemma 8.1.7 in
the case G = GLn. A Levi subgroup L of G corresponds to a family (Vi)i∈I of
non-zero subspaces of Qn satisfying Qn =

⊕
i∈I Vi, with L equal to the intersection

of the stabilizers of the Vi’s. A parabolic subgroup P of G corresponds to a total
order on the index set I, with P equal to the intersection of the stabilizers of the⊕

i≤j Vi (as j ∈ I varies). In other words using the identification of AL with
GLI1, where for a commutative Q-algebra R we let λ = (λi)i ∈ (R×)I act by λi on
R⊗Q Vi, the set of roots of AL in the unipotent radical of P is (λ 7→ λi/λj)i<j.

There is a natural identification of LL with
∏

i∈I GLni,Q × WQ where ni =

dimQ Vi, and for any distinguished splitting (B, T , (Xα)α, s) the section s : WQ →
LL is the obvious one. This also applies to G instead of L, and the parabolic
subgroups of LG are simply the ones of the form P0×WQ where P0 is a parabolic
subgroup of GLn,Q. With these identifications the orbit E(L,G) is the obvious one:
if I = {i1, . . . , ik} it contains

LL −→ LG

((gi)i, w) 7−→ (diag(gi1 , . . . , gik), w).
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In particular for ιL ∈ E(L,G) the set of parabolic subgroups of LG admitting
L := ιL(

LL) as a Levi factor is also parametrized by total orders on I, and with
these parametrizations the bijection in the second part of Lemma 8.1.7 is simply
the identity map (on total orders on I).

Levi subgroups of LG of the form ιL(
LL) (for some Levi subgroup L of G and

some ιL ∈ E(L,G)) are called relevant.

Lemma 8.1.9. Let L be a Levi subgroup of G. Let ιL ∈ E(L,G) and denote
L = ιL(

LL).

1. For a Levi subgroup M of G containing L and ιL,M ∈ E(L,M) there exists
ιM ∈ E(M,G) satisfying ιM ◦ ιL,M = ιL, and ιM is unique up to composing
with Ad(g) for some g ∈ Z(L)∩ Ĝ(Q). The class {ιM ◦Ad(m) |m ∈ M̂(Q)}
does not depend on the choice of ιL,M, in particular ιM(LM) does not depend
on this choice.

2. For a Levi subgroup M of LG containing L there exists a unique Levi sub-
group M of G containing L satisfying ιM(LM) =M.

Proof. 1. Choose a parabolic subgroup Q of G admitting Levi factor M and a
parabolic subgroup PM of M admitting Levi factor L. Then there is a unique
parabolic subgroup P of Q satisfying P∩M = PM, and it admits Levi factor
L. Fix a distinguished splitting ζL for LL. There exists a distinguished
splitting ζM for LM (resp. ζG for LG) satisfying ιL,M = ι[P ∩M, ζM, ζL]

(resp. ιL = ι[P, ζG, ζL]). Checking that the composition

LL
ι[P∩M,ζM,ζL]−−−−−−−−→ LM

ι[Q,ζG,ζM]−−−−−−→ LG

is equal to ι[P, ζG, ζL] is a formality. This proves the existence of ιM. The
uniqueness statements are easily checked and we leave the details to the
reader.

2. Let M ⊃ L be a Levi subgroup of LG. Recall from [Bor79, Lemma 3.5]
that L may be recovered as the centralizer of the torus Z(L)0 in LG, and
similarly for M. Choose xM ∈ R ⊗ X∗(Z(M)) generic, i.e. such that the
eigenvalues of xM on ĝ/LieM0 (which are real) are all non-zero. Choose
xL ∈ R ⊗X∗(Z(L)) similarly. Let N be the unipotent subgroup of Ĝ such
that LieN is the direct sum of the eigenspaces corresponding to positive
eigenvalues for the adjoint action of xM on ĝ. Then MN is a parabolic

147



subgroup of LG admitting Levi factorM. Let U be the unipotent subgroup
of Ĝ such that LieU is the direct sum of the eigenspaces corresponding
to positive eigenvalues for the adjoint action of xM + ϵxL on ĝ, for small
enough ϵ > 0. Then LU is a parabolic subgroup of LG admitting Levi factor
L, and LU is contained in MN . By the second part of Lemma 8.1.7 LU
corresponds to a parabolic subgroup P of G admitting Levi factor L, more
precisely we have ιL = ι[P, ζG, ζL] for some splitting ζG = (B, T , (Xα)α, s)

for LG satisfying B ⊂ L0U . It is now easy to check that M0N corresponds
to a parabolic subgroup Q of G containing P (and defined over Q), and that
its Levi factor M containing L maps toM.

For uniqueness we observe that if we choose a maximal torus T in LQ and a
maximal torus T in L0 then we have an identification T ≃ T̂ which is well-
defined up to W (T,LQ) and fixing such an identification the set of coroots
for T ⊂MQ corresponds to the set of roots for T ⊂M0.

Example 8.1.10. Again for G = GLn this lemma is almost a tautology. Reusing
the notation of Example 8.1.8 if L corresponds to (Vi)i∈I (satisfying Qn =

⊕
i∈I Vi)

then Levi subgroups of G containing L are parametrized by partitions of I: if P is
such a partition then M ⊃ L corresponds to (⊕i∈SVi)S∈P .

Definition 8.1.11. Let τ be a semi-simple conjugacy class in ĝC = Lie ĜC. The
Harish-Chandra isomorphism (see e.g. [Wal88, §3.2]) Z(U(g)) ≃ O(ĝC)ĜC allows
us to see τ as a morphism of C-algebras Z(U(g)) → C. We have a natural map
from aG = C⊗X∗(AG) = C⊗RLieAG(R) to Z(U(g)), so τ induces an element τA
of a∗G = HomC(aG,C). Let CG be the largest quotient of G which is a split torus,
i.e. X∗(CG) = Hom(G,GL1) = X∗(G)GalQ. The restriction map C⊗X∗(CG)→
C⊗X∗(AG) is an isomorphism so we also see τA as an element of C⊗X∗(CG).

This can also be interpreted dually: we have a natural map Ĝ→ ÂG and it is
easy to check on the definition of the Harish-Chandra isomorphism that

τA ∈ a∗G ≃ C⊗X∗(AG) ≃ C⊗X∗(ÂG) ≃ Lie ÂGC

is the image of τ under the differential of this map. We also have an identification
ĈG ≃ Z(Ĝ)GalQ,0 and we may also see τA as an element of LieZ(Ĝ)

GalQ
C . We thus

has a canonical decomposition τ = τA + τ0 where τA ∈ LieZ(Ĝ)
GalQ
C and τ0 is a

semi-simple Ĝ(C)-conjugacy class in to the kernel of Lie ĜC → Lie ÂGC.
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Definition 8.1.12. Let L be a Levi subgroup of G and τL a semi-simple conjugacy
class in l̂C = Lie L̂C. Choose ιL ∈ E(L,G) and denote L = ιL(

LL). Let τL,A ∈
LieZ(LC)

0 be the image of τL,A (Definition 8.1.11) under the differential of ιL,C.
LetM be the centralizer of ℜτL,A ∈ R⊗X∗(Z(L)0) in LG, a Levi subgroup of LG
(essentially by [Bor79, Lemma 3.5]). Let N be the unipotent subgroup of Ĝ such
that LieNC is the direct sum of the eigenspaces for positive eigenvalues for the
adjoint action of ℜτL,A. ThenMN is a parabolic subgroup of LG. Let Π(L, τL) be
the set of parabolic subgroups P of LG admitting L as a Levi factor and which are
contained inMN . Let Π(L, τL) be the set of parabolic subgroups of G admitting L

as a Levi factor which corresponds by the second part of Lemma 8.1.7 to Π(L, τL).
As the notation suggests Π(L, τL) does not depend on the choice of ιL.

Remark 8.1.13. In the setting of Definition 8.1.12 we have a bijection P 7→
P ∩M between Π(L, τL) and the set of parabolic subgroups of M admitting L as
a Levi factor. We have a Levi subgroup M ⊃ L of G corresponding to M by the
second part of Lemma 8.1.9, and a parabolic subgroup Q = MN corresponding to
MN by the second part of Lemma 8.1.7. Then Π(L, τL) is the set of parabolic
subgroups P of Q admitting L as a Levi factor.

We may also give an equivalent definition of Π(L, τL) which does not use dual
groups: if we choose a maximal torus T of LQ then a parabolic subgroup P of G
admitting L as a Levi factor belongs to Π(L, τL) if and only if for any root α of T
in PQ we have

ℜ⟨α∨, resCL
T τL,A⟩ ≥ 0.

Example 8.1.14. Let us work out these definitions in the case where G = GLn.
Consider as in Example 8.1.8 a Levi subgroup L corresponding to (Vi)i∈I . The
semi-simple conjugacy class τL in C ⊗Q l̂ ≃

∏
i∈I glni(C) is given by the family

([xi,1, . . . , xi,ni ])i∈I of multisets of eigenvalues. The factor τL,A equals([∑ni
a=1 xi,a
ni

, . . . ,

∑ni
a=1 xi,a
ni

])
i∈I

.

The parabolic subgroups in Π(L, τL) are the ones corresponding to the total orders
on I satisfying i < j whenever ℜ(

∑
a xi,a)/ni > ℜ(

∑
b xj,b)/nj.

In Lemma 8.1.15 below we compare this definition with a notion that is more
commonly used to express the Langlands classification. First we need to recall a
few facts about relative root systems. Let P0 be a minimal parabolic subgroup of
G, and let A0 be a maximal split torus in P0. Let R(A0,G) be the set of roots of
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A0 in G. By [Sgad, Exposé XXVI Théorème 7.4]25 there is a unique root datum
(possibly non-reduced)

(X∗(A0), R(A0,G), X∗(A0), R
∨(A0,G))

such that the associated Weyl group, seen as a group of automorphisms of A0,
is equal to the image of the normalizer of A0 in G(Q). The parabolic subgroup
P0 yields an order on the underlying root system and we denote by ∆(A0,P0) ⊂
R(A0,P0) the set of simple roots. Now consider a parabolic subgroup P of G

which contains P0. There is a unique Levi factor L of P which contains A0, and
AL is the centralizer of L in A0. As in Definition 8.1.11 let CL be the largest
quotient of L which is a split torus. For α ∈ ∆(A0,P0) not occurring in L (i.e.
occurring in Ru(P)) with corresponding coroot α∨ ∈ R∨(A0,G) ⊂ X∗(A0) we
denote by α∨

P its image in X∗(CL).

Lemma 8.1.15. Let P be a parabolic subgroup of G. Let L be a Levi factor of P.
Let τL be a semi-simple conjugacy class in C ⊗Q l̂. By Definition 8.1.11 it yields
τL,A ∈ C⊗X∗(CL).

Let P0 be a minimal parabolic subgroup of P. Let A0 be a maximal split torus
in P0∩L. We have P ∈ Π(L, τL) if and only if for any simple root α ∈ ∆(A0,P0)

occurring in Ru(P) we have ⟨α∨
P,ℜτL,A⟩ ≥ 0.

Proof. See [Taïb, Lemma 3.8].

Fix a maximal compact subgroup Kmax
∞ of G(R). Recall that G(A)1 denotes

the subgroup of g ∈ G(A) satisfying |χ(g)| = 1 for all χ ∈ X∗(G)GalQ . We have
an isomorphism mG : G(A)/G(A)1 ≃ LieAG(R) characterized by the relation

exp⟨χ,mG(g)⟩ = |χ(g)|

for all χ ∈ X∗(G)GalQ . We have G(A) = G(A)1 × AG(R)0 and the restriction
of expAG(R) ◦mG to AG(R)0 is the identity. We denote by A(G) the space of
automorphic forms for G, which are functions G(Q)\G(A) → C. We have (see
[MW95, §I.3.2]) an isomorphism of (g, Kmax

∞ ,G(Af ))-modules⊕
ν

A(G)AG(R)0 ⊗ C(ν)⊗ Sym a∗G −→ A(G) (8.1.4)

f ⊗ a⊗ P 7−→ aν × (P ◦mG)× f
25See also [BT65, Corollaire 5.8], although the proof seems to be incomplete in the non-reduced

case.
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where the sum ranges over ν ∈ C⊗X∗(G)GalQ (seen as a character of G(A)/G(A)1

via s⊗ χ 7→ (g 7→ |χ(g)|s)) and Sym a∗G is the space of complex polynomial func-
tions on LieAG(R). For a semi-simple conjugacy class τ in C⊗Q ĝ, corresponding
via Harish-Chandra’s isomorphism to a maximal ideal mτ of Z(U(C⊗RLieG(R))),
we denote by A(G)τ the subspace of automorphic forms which are killed by some
power of mτ . Thus we have A(G) =

⊕
τ A(G)τ . Note that A(G)τ is contained

in a single factor in (8.1.4), corresponding to the character ν = τA (Definition
8.1.11). Let A2(G) be the space of automorphic forms in A(G) whose restriction
to G(Q)\G(A)1 is square-integrable. Restricting (8.1.4) we obtain an isomorphism
of (g, Kmax

∞ ,G(Af ))-modules⊕
ν

A2(G)AG(R)0 ⊗ C(ν)⊗ Sym a∗G ≃ A2(G). (8.1.5)

Note that A2(G)AG(R)0 is the space of square-integrable automorphic forms on
AG(R)0G(Q)\G(A), in particular it is semi-simple. We also combine these two
notations: A2(G)τ is the subspace of A2(G) consisting of forms killed by some
power of mτ .

For a parabolic subgroup P of G with Levi factor L we letKmax
P,∞ := P(R)∩Kmax

∞
and we denote by indG

P the parabolic induction functor from (p, Kmax
P,∞,P(Af ))-

modules to (g, Kmax
∞ ,G(Af ))-modules, obtained by composing the smooth induc-

tion functor indG(Af )
P(Af ) and the induction functor indg,Kmax

∞
(p,Kmax

P,∞) (recalled [Fra98, p.208]).
Let 2ρP ∈ X∗(CL) be the determinant of the adjoint action of L on Ru(P). We
denote IndG

P (−) := indG
P (−⊗ |ρP|) for normalized induction.

Theorem 8.1.16 (Franke). Let τ be a regular semi-simple conjugacy class in
C ⊗Q ĝ. There exists a finite, separated and exhaustive filtration of A(G)τ by
sub-(g, Kmax

∞ ,G(Af ))-modules with associated graded pieces

IndG
PA2(L)τL

where

• (L, τL) ranges over G(Q)-conjugacy classes of pairs consisting of a Levi sub-
group L of G and a semi-simple L̂(C)-conjugacy class τL in C⊗Q l̂ mapping
to τ via the differential of ιL,C (for any ιL ∈ E(L,G)),

• P is an arbitrary element of Π(L, τL) (we recall in Remark 8.1.17 why the
choice of P is irrelevant).
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Note that we do not specify the order in which these occur as graded pieces,
as we will not require this knowledge.

Proof. This follows from [Fra98, Theorem 14]. Since our notation differs substan-
tially we explain in more detail. Franke restricts to automorphic forms invariant
under AG(R)0, using the decomposition (8.1.4) it is easy to reduce to this case.
Our maximal ideal mτ of Z(U(C⊗RLieG(R))) corresponds to Franke’s J . Franke’s
result is more refined than Theorem 8.1.16 in a number of ways.

• In [Fra98, Theorem 14] a certain parameter τ in a cone occurs, corresponding
to a certain growth condition imposed on automorphic forms (Franke’s spaces
FinJSρ−τ+log(. . . )), taking it to be very far in this cone (or taking the union
over all such parameters τ) simply yields all automorphic forms.

• We have imposed that τ be regular in order to simplify the statement: in
general the terms occurring on the left-hand side in [Fra98, Theorem 14] are
colimits over certain groupoids, but as observed in [Fra98, Theorem 19 I] for
regular infinitesimal characters these groupoids are simply equivalent to sets.

• Franke fixes a conjugacy class of Levi subgroups of G (in the terminology of
his paper, a class of associate parabolic subgroups, denoted {P} by Franke,
see [Fra98, p.201]) and restricts to forms whose cuspidal support corresponds
to this class. We simply sum over these classes.

The groupoids Mk,T,i
J ,{P},τ appearing in [Fra98, Theorem 14] are defined at the

bottom of p.233, and we now translate between this definition and our formulation.
As explained above Franke’s τ is irrelevant for us (we take τ = ∞). Franke’s
function T and integer i index the filtration, we do not need to make this precise.
His parabolic subgroup R is our P. His continuous character Λ (of what we
denote AL(A)/AL(Q)AG(R)0) is given by two independent pieces: the continuous
character λt (of what we denote AL(R)0/AG(R)0) and the unitary character Λ̃.
We do not refine automorphic forms in A(L)AL(R)0 by central character Λ̃, so one
has to group the terms corresponding to various Λ̃ in [Fra98, Theorem 14] to obtain
the statement in Theorem 8.1.16. Franke’s λt and χ together correspond to our
τL, in fact his λt corresponds to our component τL,A of τL (Definition 8.1.11). His
condition “λt ∈ supputJ ” on p.234 (see also p.230 for the definition of supp) is
equivalent to our condition that τL maps to τ . Finally Franke’s condition ℜλt ∈ ǎ+R
at the bottom of p.233 is equivalent to our condition P ∈ Π(L, τL) (Definition
8.1.12) by Lemma 8.1.15.
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Finally the (g, Kmax
∞ ,G(Af ))-modules M(t) appearing in [Fra98, Theorem 14]

are defined on p.234 as W (ut) ⊗ Dt. The space W (ut) is defined on p.218 as (in
our notation) IndG

PV (ut) for a certain subspace V (ut) of A2(L)AL(R)0 . The space
Dt is precisely C(ν)⊗ Sym a∗L for ν = τL,A in (8.1.5) (for L instead of G).

Remark 8.1.17. In the setting of Theorem 8.1.16, for a pair (L, τL) and P,P′ ∈
Π(L, τL) we have an isomorphism

IndG
PA2(L)τL ≃ IndG

P′A2(L)τL

given by the standard intertwining operator (defined by meromorphic continuation)
which is holomorphic [Fra98, Lemma 2 p.234], which is why the choice of P ∈
Π(L, τL) is irrelevant. This is perhaps clearer using the parabolic subgroup Q =

MN associated to τL introduced in Remark 8.1.13: denoting PM = P∩M we have
IndG

P ≃ IndG
Q ◦ IndM

PM
and similarly for P′, and we have τL,A ∈ R ⊗ X∗(CM) ⊕

iR⊗X∗(CL).

Remark 8.1.18. In Theorem 8.1.16 instead of considering classes of pairs (L, τL)
we could just as well choose a Levi L in each G(Q)-conjugacy class and for each
such Levi consider orbits of L̂(C)-conjugacy classes τL under the normalizer of L
in G(Q).

8.1.4 Euler characteristic of (g, K∞)-cohomology of automorphic forms

Following [Fra98, §7.4] we deduce from Theorem 8.1.16 a formula for the Euler-
characteristic of (g, K∞)-cohomology. Let K∞ be an open subgroup of Kmax

∞ . For
a parabolic subgroup P of G we denote KP,∞ = P(R) ∩ K∞, and similarly for
Kmax

∞ . Let V be an irreducible finite-dimensional (g, Kmax
∞ )-module. Let τV be the

infinitesimal character of V . By Wigner’s lemma26 [BW00, Corollary I.4.2] the
natural map

H•((g, K∞),A(G)−τV ⊗ V ) −→ H•((g, K∞),A(G)⊗ V )

is an isomorphism. The following lemma provides a further simplification of these
cohomology spaces but we defer using it until later.

Lemma 8.1.19. We have an isomorphism

H•((g, K∞),A(G)−τV ⊗ V ) ≃ H•((g/aG, K∞), (A(G)−τV ⊗ V )AG(R)0).

26More precisely we use a straightforward generalization to generalized eigenspaces (instead of
eigenspaces) for the action of Z(U(C⊗R LieG(R))).
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Proof. This follows from the Hochschild-Serre spectral sequence (see [BW00, The-
orem I.6.5] and [Fra98, Appendix A]) associated to the ideal aG of g and the fact
(explained at the bottom of p.256 of [Fra98]) that H i(aG, Sym a∗G) vanishes for
i > 0. Note that the Chevalley-Eilenberg complex computing these cohomology
groups may be identified with the (algebraic) de Rham complex of the complex
affine space associated to aG, so this vanishing may be interpreted as the algebraic
Poincaré lemma.

Now Theorem 8.1.16 for τ = −τV implies

e((g, K∞),A(G)⊗ V ) =
∑
[L,τL]

e
(
(g, K∞), IndG

PA2(L)τL ⊗ V
)
.

Separating parabolic induction at the real and finite places we write

H•((g, K∞), IndG
PA2(L)τL ⊗ V )

=Ind
G(Af )
P(Af )H

•((g, K∞), ind
(g,Kmax

∞ )
(p,Kmax

P,∞)(A
2(L)τL ⊗ V ⊗ |ρP|∞))

where V on the second line is really res
(g,Kmax

∞ )
(p,Kmax

P,∞) V . Recall that for a (p, Kmax
P,∞)-

module M the parabolically induced (g, Kmax
∞ )-module ind

(g,Kmax
∞ )

(p,Kmax
P,∞)M is defined as

the largest sub-U(g)-module of HomU(p)(U(g),M) (where U(g) is seen as a left
U(p)-module and a right U(g)-module by multiplication) on which the action of
U(k∞) is locally finite and integrates into an action of K0

∞ (it then extends to an
action of Kmax

∞ because π0(Kmax
P,∞)→ π0(K

max
∞ ) is surjective). We see that there is

an isomorphism of functors

res
(g,K∞)
(g,Kmax

∞ ) ◦ind
(g,Kmax

∞ )
(p,Kmax

P,∞) ≃ ind
(g,K∞)
(p,KP,∞) ◦ res

(p,Kmax
P,∞)

(p,KP,∞)

and we deduce

H•((g, K∞), ind
(g,Kmax

∞ )
(p,Kmax

P,∞)(A
2(L)τL⊗V⊗|ρP|∞)) ≃ H•((g, K∞), ind

(g,K∞)
(p,KP,∞)(A

2(L)τL⊗V⊗|ρP|∞)).

Staring at the definition also makes evident that ind
(g,K∞)
(p,KP,∞) is right adjoint to

res
(g,K∞)
(p,KP,∞), which implies

H•((g, K∞), ind
(g,K∞)
(p,KP,∞)(A

2(L)τL⊗V⊗|ρP|∞)) ≃ H•((p, KP,∞),A2(L)τL⊗V⊗|ρP|∞).

(8.1.6)
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Denoting N := Ru(P), we use the Hochschild-Serre spectral sequence for n ⊂ p,
but since we have a semi-direct product p ≃ l⋊n we can be more precise. The coho-
mology groups on the right-hand side of (8.1.6) may be computed with Chevalley-
Eilenberg complexes C•

CE((p, KP,∞),−) and a simple computation identifies (8.1.6)
with the cohomology of the total complex associated to the double complex

C•
CE((l, KP,∞),A2(L)τL ⊗ |ρP|∞ ⊗ C•

CE(n, V )).

Here we have used the identification of LR with the Levi factor PR ∩ θ(PR) of PR,
where θ is the Cartan involution of GR satisfying Kmax

∞ = G(R)θ. Now assume
temporarily that V is (the restriction of) an irreducible algebraic representation
of GC. The proof of Kostant’s theorem (already recalled before Corollary 4.8.15)
computing H•(n, V ) shows that C•

CE(n, V ) is quasi-isomorphic to a direct sum of
complexes concentrated in one degree, so we simply have

H i((g, K∞), ind
(g,K∞)
(p,KP,∞)(A

2(L)τL⊗V⊗|ρP|∞)) ≃
⊕
a+b=i

Ha((l, KP,∞),A2(L)τL⊗|ρP|∞⊗Hb(n, V )).

It turns out that there is only one degree b for which Hb(n, V ) can be non-zero,
to see this we briefly recall Kostant’s theorem. Choose a Borel subgroup BL of
LQ and denote by B the Borel subgroup of PQ satisfying B ∩ LQ = BL. Let T

be a maximal torus of BL. The irreducible algebraic representation V of GC is
parametrized by its dominant (for B) weight λ ∈ X∗(T). As usual denote

ρ = ρB =
1

2

∑
α∈R(T,B)

α ∈ 1

2
X∗(T).

The infinitesimal character τV of V is represented by λ + ρ. A Kostant rep-
resentative (for P, L and (BL,T)) is w ∈ W (T,GQ) such that w(λ + ρ) ∈
1
2
X∗(T) is dominant for BL. The set of Kostant representatives is in bijection

with W (T,LQ)\W (T,GQ). Kostant’s theorem says

Hb(n, V ) ≃
⊕
l(w)=b

V L
w(λ+ρ)−ρ

where the sum ranges over Kostant representatives of length b and V L
λ′ is the

irreducible algebraic representation of LC with highest weight λ′.

Definition 8.1.20. In the situation above there is a unique Kostant representative
w satisfying −w−1(τL) = τV , that we denote wP,τL. Define WV,P,τL as the piece
of the semi-simple (l, KP,∞)-module H l(wP,τL

)(n, V ) ⊗ |ρP|∞ having infinitesimal
character −τL.
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More generally it can be useful to start from an irreducible finite-dimensional
(g, K∞) module V of the form V G

λ ⊗ χ for some χ ∈ C⊗X∗(G)Gal(C/R) (seen as a
character of G(R)). With the same definition we thus have

WV,P,τL ≃ V L
wP,τL

(λ+ρ)−ρ ⊗ |ρP|∞ ⊗ χ.

(The general case of an arbitrary irreducible finite-dimensional (g, K∞)-module V
can be reduced to this case using a z-extension and Lemma B.0.2.) Using Wigner’s
lemma and Lemma 8.1.19 (for L instead of G) we conclude

H i((g, K∞), ind
(g,K∞)
(p,KP,∞)(A

2(L)τL ⊗ V ⊗ |ρP|∞))

≃ H i−l(wP,τL
)((l, KP,∞),A2(L)τL ⊗WV,P,τL)

≃ H i−l(wP,τL
)((l/aL, KP,∞), (A2(L)τL ⊗WV,P,τL)

AL(R)0).

Recall that the subspace of A2(L) on which AL(R)0 acts by the inverse of the
central character of WV,P,L is semi-simple. Returning to Euler characteristics we
deduce

e
(
(g, K∞), IndG

PA2(L)τL ⊗ V
)
= ϵ(wP,τL)Ind

G(Af )
P(Af )e

(
(l/aL, KP,∞), (A2(L)τL ⊗WV,P,τL)

AL(R)0
)

(8.1.7)
where ϵ(w) = (−1)l(w). As explained on [Fra98, p.266] the Euler characteristic
vanishes if L is not R-cuspidal, i.e. if (L/AL)R does not admit an anisotropic
maximal torus. Using the notation introduced in Definition 8.1.2 the right-hand
side of (8.1.7) is

Ind
G(Af )
P(Af )e(2)(L, KP,∞,WV,P,τL).

We state in the following corollary what we have deduced from Franke’s The-
orem 8.1.16 following [Fra98, §7.7].

Corollary 8.1.21 (Franke). Let G be a connected reductive group over Q. Let
K∞ be an open subgroup of a maximal compact subgroup of G(R). Let V be an
irreducible finite-dimensional (g, Kmax

∞ )-module, and denote by τV its infinitesimal
character. The Euler characteristic e((g, K∞),A(G)⊗ V ) is equal to∑

[L,τL]

ϵ(wP,τL)Ind
G(Af )
P(Af )e(2)(L, KP,∞,WV,P,τL)

where

• the sum ranges over G(Q)-conjugacy classes of pairs (L, τL) where L is an
R-cuspidal Levi subgroup of G and τL is a semi-simple conjugacy class in l̂C
mapping to −τV ,
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• P is an arbitrary element of Π(L, τL),

• wP,τL and WV,P,τL are defined in Definition 8.1.20,

• e(2)(L, KP,∞,−) is defined in Definition 8.1.2.

It follows from Remark 8.1.17 and the computation above that choosing another
P ∈ Π(L, τL) does not change the term in the sum, but this is less obvious now.
In the next section we make this more evident.

8.1.5 On coefficient systems for Levi subgroups

Example 8.1.22. Consider the case where G = GL3, V is the irreducible alge-
braic representation of GC with infinitesimal character τV = (k, 0,−k) for some
integer k > 0, L is the block diagonal Levi subgroup GL1 × GL2 of G and
τL = (0, k,−k). We have τL,A = 0, so any parabolic subgroup of G with Levi
factor L belongs to Π(L, τL). We will use Borel subgroups of G containing the di-
agonal maximal torus T. We choose the upper triangular Borel subgroup BL of L.
For P ∈ Π(L, τL) the upper block triangular parabolic subgroup the corresponding
Borel subgroup B of G is the upper triangular subgroup (i.e. ρB = (1, 0,−1)) and
we have λ = (k − 1, 0,−k + 1) and

wP,L(λB + ρB)− ρB = (0, k,−k)− (1, 0,−1) = (−1, k,−k + 1)

and so WV,P,τL = V L
(−1,(k,−k+1)) ⊗ |ρP|. For the lower block triangular parabolic

subgroup P′ ∈ Π(L, τL) we have ρB′ = (−1, 1, 0) and thus λB′ = (−k + 1, k − 1, 0)

and we compute

wP,L(λB′ + ρB′)− ρB′ = (0, k,−k)− (−1, 1, 0) = (−1, k − 1,−k)

and so
WV,P′,τL = V L

(−1,(k−1,−k)) ⊗ |ρP′ | ≃ WV,P,τL ⊗ (1, sign det).

In particular the representations WV,P,τL and WV,P′,τL are not isomorphic. Lemma
8.1.24 below implies l(wP,τL) = l(wP′,τL). We can check directly that for any open
subgroup KL,∞ of a maximal compact subgroup of L(R) we have

H•(L, KL,∞,WV,P,τL) ≃ H•(L, KL,∞,WV,P′,τL)

because τL is very regular (on the factor GL2 of L) and so any (l, Kmax
L,∞)-module

occurring in A2(L, τL,A)τL is part of the discrete series, so Theorem 8.1.4 shows
that its (l, KL,∞)-cohomologies relative to WV,P,τL and WV,P′,τL are equal.
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Remark 8.1.23. Example 8.1.22 seems to contradict the first part of [Fra98, §7.7
Lemma 1]. The issue seems to be the statement on the first line of p.272: (g, Kmax

∞ )-
modules with infinitesimal character equal to that of the trivial representation are
parametrized not just by G(R)-orbits of pairs (H,∆+) (where H = T(R) with (T
a maximal torus of GR and ∆+ an order on R(TC,GC)), but by triples consisting
in addition of a character of π0(H) (see [Vog81, Theorem 2.2.4]).

Lemma 8.1.24. Assume we are in the setting of Corollary 8.1.21: V is an irre-
ducible finite-dimensional (g, Kmax

∞ )-module, L is an R-cuspidal Levi subgroup of G
and τL a semisimple conjugacy class in l̂C mapping to −τV . Then neither the length
l(wP,τL) nor the essentially discrete Langlands parameter φV,P,τL : WR → LL(C)
corresponding to WV,P,τL (i.e. with corresponding L-packet the set of discrete se-
ries representations of L(R) having infinitesimal character τL and central character
equal to the inverse of that of WV,P,τL) depend on the choice of P ∈ Π(L, τL).

Proof. We first consider the length l(wP,τL). Choose a distinguished splitting ζG =

(B, T , (Xα)α, s) for LG and a distinguished splitting ζL for LL. This gives us an
embedding ιL := ι[P, ζG, ζL] ∈ E(L,G) and we denote L := ιL(

LL) and P :=

LB. Let U be the unipotent radical of P . As in Definition 8.1.12 we denote by
τL the image of τL by the differential of ιL, and recall the parabolic subgroup
Q = MN ⊃ P of LG. We identify τV with an element of C ⊗ X∗(T ) which is
strictly dominant for B. There is a unique representative τL ∈ C ⊗ X∗(T ) (in
its L0(C)-conjugacy class) which is stricly anti-dominant for B ∩ L. Using (B,T)

and (B, T ) to identify based root data we obtain an identification of the Weyl
group of T in GC with the Weyl group of T in Ĝ, and our Kostant representative
w = wP,τL is determined by w(τV ) = −τL. The length l(w) is equal to the number
of roots α ∈ R(T ,B) satisfying ⟨w(τV ), α⟩ < 0. Recall from Definition 8.1.11 the
decomposition τL = τL,A + τL,0. For any α ∈ R(T , Ĝ) the (a priori complex)
pairings ⟨τL,A, α⟩ and ⟨τL,0, α⟩ are both real. Let w0,L be the longest element of
the Weyl group W (T ,L0) (for B ∩ L0). Let j ∈ WR be any element of WR ∖WC

satisfying j2 = −1. Then conjugation by x := w0,Ls(j) is an involution of T which
leaves R(T ,U) invariant. It maps τL,0 to −τL,0 because L is R-cuspidal. So for
α ∈ R(T , Ĝ) we have

⟨τL, α⟩ = ⟨τL,A, α⟩+ ⟨τL,0, α⟩
⟨τL, x(α)⟩ = ⟨τL,A, α⟩ − ⟨τL,0, α⟩

By regularity of τL we have |⟨τL,A, α⟩| ≠ |⟨τL,0, α⟩|. For α ∈ R(T ,U), which
satisfies ⟨τL,A, α⟩ ≥ 0, we distinguish two cases:
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• if ⟨τL,A, α⟩ < |⟨τL,0, α⟩| then in particular ⟨τL,0, α⟩ ̸= 0 and so x(α) ̸= α. Up
to swapping α and x(α) we have ⟨τL, α⟩ > 0 and ⟨τL, x(α)⟩ < 0.

• if ⟨τL,A, α⟩ > |⟨τL,0, α⟩| then ⟨τL, α⟩ > 0.

We conclude

l(w) =
dim Ĝ− dimL0

2
− 1

4

∣∣∣{α ∈ R(T , Ĝ)∖R(T ,L0)
∣∣∣ |⟨τL,A, α⟩| < |⟨τL,0, α⟩|}∣∣∣

(8.1.8)
which clearly does not depend on the choice of P .

We now consider the Langlands parameter φV,P,τL . Using a z-extension of GR

we can reduce to the case where V = Vλ is (the restriction of) an irreducible
algebraic representation of GC. The infinitesimal character of φV,P,τL is clearly τL,
so we are left to check that the restriction of27 (w(λ+ρ)−ρ)⊗|ρP| to Z0

L(R) does not
depend on this choice. The restriction to ZL(R)0 is imposed by the infinitesimal
character, and the finite 2-torsion group of torsion elements in AL(R) ≃ (R×)dimAL

surjects onto π0(Z0
L(R)), so it is enough to check that the image of w(λ + ρ) − ρ

in X∗(AL)/2X
∗(AL) does not depend on the choice of P. We have in X∗(AL)

(w(λ+ ρ)− ρ)|AL
= (−τL − ρP)|AL

so we are left to show that the image of ρP in 1
2
X∗(AL)/2X

∗(AL) does not depend
on the choice of P ∈ Π(L, τL). This is similar to the previous proof, but for a
change we do not argue on the dual side. Let Tan be a maximal torus of LR

such that Tan/AL is anisotropic. Denoting {1, σ} = Gal(C/R) the action of σ on
R(Tan,C,GC) (which corresponds to the action of x on the dual side considered
above) preserves R(Tan,C,UC) where U is the unipotent radical of P, in particular
for α ∈ R(Tan,C,GC) ∖ R(Tan,C,LC) we have σ(α) ̸= −α. For α ∈ R(Tan,C,UC)

we distinguish two cases.

• If σ(α) ̸= α then since σ(α)|AL
= α|AL

the contribution of α and σ(α) to the
restriction of

ρP =
1

2

∑
β∈R(Tan,C,UC)

β

is simply α|AL
, which is equal mod 2X∗(AL) to its opposite.

• If σ(α) = α then we have ⟨α∨, τL,0⟩ = 0 and thus ⟨α∨, τL⟩ = ⟨α∨, τL,A⟩ > 0.
27Unfortunately we have to mix additive and multiplicative notation here, we hope no confusion

will arise.
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So if we partition the {±id}×Gal(C/R)-orbits in R(Tan,C,GC)∖R(Tan,C,LC) as
O1 ⊔ O2 where O1 is the set of orbits [α] satisfying σ(α) ̸= α (i.e. orbits with 4

elements, so O2 is the set of orbits with two elements {±α}) then we have

ρP|AL
=
∑

[α]∈O1

α|AL
+

1

2

∑
[α]∈O2

⟨α∨,τL⟩>0

α|AL
mod 2X∗(AL) (8.1.9)

which clearly does not depend on the choice of P.

The lemma allows us to unambiguously define a sign ϵτL := ϵ(wP,τL) and an
essentially discrete Langlands parameter (up to conjugation by L̂(C)) φV,L,τL :=

φV,P,τL , where P is any element of Π(L, τL). Note that the proof of Lemma 8.1.24
gives us a relatively simple way of computing these two objects.

We require two small remarks before reformulating Corollary 8.1.21.

• For K∞ an open subgroup of a maximal compact subgroup Kmax
∞ of G(R),

P a parabolic subgroup of G and L a Levi factor of P, denote by KL,∞ the
image of K∞∩P(R) in L(R) (realized as a quotient of P(R)). This subgroup
of L(R) actually depends on the choice of P, but its L(R)-conjugacy class
does not: there exists g ∈ G(R) = P(R)Kmax

∞ such that gKmax
∞ g−1 contains a

maximal compact subgroup of L(R), and we deduce that the L(R)-conjugacy
class of K∞,L only depends on the G(R)-conjugacy class of K∞ and on L

(not on P).

• For a Levi subgroup L of G and M ∈ Ktr
0 (Rep

adm
C (L(Af ))) (see Definition

4.8.13) the element Ind
G(Af )
P(Af )M of Ktr

0 (Rep
adm
C (G(Af ))) does not depend on

the choice of a parabolic subgroup P of G admitting L as a Levi factor. We
denote this element of Ktr

0 (Rep
adm
C (G(Af ))) by Ind

G(Af )
L(Af )M .

Corollary 8.1.25. Let G be a connected reductive group over Q. Let K∞ be
an open subgroup of a maximal compact subgroup Kmax

∞ of G(R), V an irreducible
finite-dimensional (g, K∞)-module. Then we have the equality in Ktr

0 (Rep
adm
C (G(Af ))

e(G, K∞, V ) =
∑
[L,τL]

ϵτLInd
G(Af )
L(Af ) e(2)(L, KL,∞, φV,L,τL) (8.1.10)

where the sum is over G(Q)-conjugacy classes of pairs (L, τL) with L an R-cuspidal
Levi subgroup of G and τL a semisimple conjugacy class in l̂C mapping to −τV .
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Remark 8.1.26. The proof of Lemma 8.1.24 actually shows a bit more than what
we stated, and shows that Formula (8.1.10) is “uniform in V ” in a sense to be
made precise below. Let (B,T) be a Borel pair in GC. For an irreducible algebraic
representation V parametrized by a dominant (for B) weight λ ∈ X∗(T) we let
τV = λ+ ρB. Fix a representative L of a G(Q)-conjugacy class of Levi subgroups
of G. The set of L̂(C)-conjugacy classes τL mapping to τV is parametrized by

N(L,G)(C)\{g ∈ G(C) | Ad(g)T ⊂ LC}

where N(L,G) denotes the normalizer of L in G. We fix a class in this quotient,
and we even fix a class in

L(C)\{g ∈ G(C) | Ad(g)T ⊂ LC} (8.1.11)

mapping to this class. Now fix a Borel pair (BL,TL) in LC. In our chosen class
in (8.1.11) there is a unique left coset TL(C)g such that Ad(g)T = TL and such
that

Ad(g−1)∗ : X∗(T) ≃ X∗(TL)

maps the Weyl chamber

C := {x ∈ R⊗X∗(T) | ∀α ∈ R(T,B), ⟨α∨, x⟩ > 0}

to the Weyl chamber CL for (BL,TL). Denote τL = −Ad(g−1)∗τV , which we will
see alternatively as a function of τV ∈ C or a function of the dominant weight λ.
For P ∈ Π(L, τL) we then have (8.1.8)

l(wP,τL) =
dimG− dimL

2
−1

4
|{α ∈ R(TL,GC)∖R(TL,LC) | |⟨α∨, τL,A⟩| < |⟨α∨τL,0⟩|}|

and this set of roots does not depend on the choice of a dominant weight λ: in fact
it makes sense for any τV ∈ C and the continuous function

C −→ R
τV 7−→ |⟨α∨, τL,A⟩| − |⟨α∨τL,0⟩|

does not vanish because we have ⟨α∨, τL⟩ ≠ 0 for all α ∈ R(TL,GC). Thus l(wP,τL),
which does not depend on the choice of P ∈ Π(L, τL) does not depend on λ either.
We now consider the central characters of the local systems WV,P,τL. For P ∈
Π(L, τL) we have

WV,P,τL ≃ V L
−τL−ρBL

−ρP ⊗ |ρP|∞.
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Define an involution σ of X∗(TL) by requiring that it acts by −id on X∗(TL/Z
0
L)

and as the complex conjugation on the quotient X∗(Z0
L). (Note that if TL =

Tan,C where Tan is a maximal torus of LR which is anisotropic modulo center
then this action is the natural one.) As in the proof of Lemma 8.1.24 we have a
decomposition O1⊔O2 of the set of {±id}×{1, σ}-orbits of R(TL,GC)∖R(TL,LC).
By (8.1.9) we have

ρP|AL
=
∑

[α]∈O1

α|AL
+

1

2

∑
[α]∈O2

⟨α∨,τL⟩>0

α|AL
mod 2X∗(AL).

and the index sets, which we argued do not depend on the choice of P in the proof
of Lemma 8.1.24, do not depend on the choice of a dominant weight λ either.
Let δ ∈ 1

2
X∗(AL) be any representative of this class (e.g. obtained by choosing

a representative in each orbit in O1). Then varphiV,τL : WR → LL(C) is the
discrete Langlands parameter with infinitesimal character τL such that composing
with LL→ LAL yields the parameter of the character (τL|AL

+ δ)⊗|δ|−1 of AL(R)
(note that τL|AL

+ δ belongs to X∗(AL)).

8.1.6 Example: GLn

Let us make the formula in Corollary 8.1.25 more explicit for G = GLn,Q. We
actually deduce it from the earlier Corollary 8.1.21, but the formula exemplifies
the irrelevance of P proved for Corollary 8.1.25, as well as the “uniformity in V ”
explained in Remark 8.1.26.

Corollary 8.1.27. Let n ≥ 1. For a, b ∈ Z≥0 such that a + 2b = n denote by
La,b ≃ GLa1 × GLb2 the corresponding standard Levi subgroup of GLn, and let
S(a, b) be the subset of Sn consisting of σ such that

1. σ−1(1) < · · · < σ−1(a),

2. σ−1(a+ 1) < σ−1(a+ 2), . . . , σ−1(a+ 2b− 1) < σ−1(a+ 2b),

3. σ−1(a+ 1) < σ−1(a+ 3) < · · · < σ−1(a+ 2b− 1).

Consider a dominant weight λ = (λ1 ≥ · · · ≥ λn) for GLn and let

τ = (τ1 > · · · > τn) := λ+ ρ
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so that τi = λi +
n+1
2
− i. For σ ∈ Sn denote σ(τ)i = τσ−1(i) and (σ · λ)i =

λσ−1(i) − σ−1(i) + i, i.e. σ · λ = σ(τ) − ρ. Using notation introduced in Example
8.1.6 we have

e(GLn, Vλ) =
∑

a+2b=n

(−1)a(a−1)/2
∑

σ∈S(a,b)

ϵ(σ)

Ind
GLn(Af )
La,b(Af )

( a⊗
i=1

e(GL1, (σ · λ)i + a+ 1)| · |(σ·λ)i+a+1−σ(τ)i
f

⊗
b⊗
i=1

e(2)(GL2, σ(τ)a+2i−1 − 1/2, σ(τ)a+2i + 1/2)
)
.

Proof. Conjugacy classes of Levi subgroups of GLn are parametrized by unordered
partitions of n, n = n1 + · · · + nr (ni ∈ Z≥1) corresponding to Levi subgroups
isomorphic to GLn1 × · · · ×GLnr (see Example 8.1.8). Such a Levi subgroup is
R-cuspidal if and only if ni ∈ {1, 2} for all i. So in (8.1.10) GLn(Q)-conjugacy
classes of pairs (L, τL) are parametrized by partitions n = a+2b together with an
unordered partition of τ (equivalently, of {1, . . . , n}) into a singletons and b pairs.
Note that S(a, b) parametrizes unordered partitions of {1, . . . , n} into a singletons
and b pairs. Fix a pair (L, τL) as in (8.1.10), and let σ ∈ S(a, b) be the unique
element such that L can be conjugated to La,b, identifying τL to(
−τσ−1(1), . . . ,−τσ−1(a), {−τσ−1(a+1),−τσ−1(a+2)}, . . . , {−τσ−1(n−1),−τσ−1(n)}

)
.

It remains to compute ϵτL and φV,L,τL in (8.1.10). By Example 8.1.6 on GL2 factors
of L the parameter φV,L,τL is determined by τL, so we only need to consider GL1

factors.
Choose a parabolic subgroup P as explained before Lemma 8.1.24. Up to

conjugation by GLn(Q), we may assume that P and L are standard (with L ̸= La,b
in general). There is a unique enumeration

{x1, . . . , xr} = {{σ−1(1)}, . . . , {σ−1(a)}, {σ−1(a+1), σ−1(a+2)}, . . . , {σ−1(n−1), σ−1(n)}}

such that, denoting ck = |xk| and τxk = {τi|i ∈ xk}, we have that L is the block
diagonal GLc1×· · ·×GLcr and τL = (−τx1 , . . . ,−τxr). By definition of P, denoting

s(τxk) =

{
τi if xk = {i},
(τi + τj)/2 if xk = {i, j} with i ̸= j,

we have −s(τx1) ≥ · · · ≥ −s(τxr). Let w ∈ Sn be the Kostant representative
for the pair (P,L) mapping τ to −τL. Then w = w2w1σ where w1 stabilizes
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{1, . . . , a} and satisfies w1(a+2i) = w1(a+2i− 1) + 1 for 1 ≤ i ≤ b (in particular
w1 permutes the pairs (a + 1, a + 2), . . . , (n − 1, n)), and w2 moves some pairs
between the singletons, i.e. w2(1) < · · · < w2(a), w2(a + 2i) = w2(a + 2i − 1) + 1

for 1 ≤ i ≤ b and w2(a+ 2i) < w2(a+ 2i+ 1) for 1 ≤ i < b. By definition of P we
have w1(i) = a+ 1− i for 1 ≤ i ≤ a, and so the first a entries of w1σ · λ are

(λσ−1(a+1−i) − σ−1(a+ 1− i) + i)1≤i≤a = ((σ · λ)a+1−i − a− 1 + 2i)1≤i≤a

Now the set of indices corresponding to the GL1 factors of L is w2({1, . . . , a}) and
we have ρw2(i)− ρi ∈ 2Z for any 1 ≤ i ≤ a, so that (w · λ)w2(i)− (w1σ · λ)i ∈ 2Z for
any 1 ≤ i ≤ a. Finally it is easy to see that ϵ(w1) = (−1)a(a−1)/2 and ϵ(w2) = 1.

Example 8.1.28. For n ≤ 7 the dimension of all cohomology groups H i(GLn(Z),Q)

are known [LS78] [EVGS13] (except for n = 4 for which only H i(SL4(Z),Q) is
explicitly computed in [LS78]). Let us check that our formula specialized at λ = 0

agrees with these computations. The Euler characteristic e(GLn, V0)
GLn(Ẑ) belongs

to the Grothendieck group of finite-dimensional representations of the unramified
Hecke algebra Hunr

f (GLn), and we compute the multiplicity en of the “trivial” char-
acter (the one corresponding to the trivial representation of GLn(Af )) in this Euler
characteristic. Thanks to [JS81] this corresponds to retaining only the power of
| · |f in the formula (8.1.1) for e(GL1,−) and discarding Sk from the formula
(8.1.2) for e(2)(GL2,−). For n < 12 we have Sk = 0 for all k ≤ n and we deduce
e(GLn(Z),C) = en. We see that the only terms (corresponding to σ ∈ S(a, b))
contributing in Corollary 8.1.27 are the ones satisfying σ(τ)a+2i−1 = σ(τ)a+2i + 1,
i.e.

σ−1(a+ 2i) = σ−1(a+ 2i− 1) + 1 for all 1 ≤ i ≤ b. (8.1.12)

This implies ϵ(σ) = +1 and i− σ−1(i) even for all 1 ≤ i ≤ a. We have (σ · λ)i +
a+ 1 = i− σ−1(i) + a+ 1 = n+ 1 mod 2.

First consider the case where n is even. The contribution of σ vanishes if
a > 0, so we have in fact a single contribution corresponding to a = 0 and σ =

id. We conclude en = 1. For n even we may also consider the multiplicity ẽn
of the trivial character of Hunr

f (GLn) to e(GLn, C̃)GLn(Ẑ) where C̃ is C endowed
with the character sign(det) of GLn(R). By Shapiro’s lemma we have en + ẽn =

e(SLn(Z),C). Taking e.g. λ = (1, . . . , 1) allows us to compute ẽn using Corollary
8.1.27. We still have the condition (8.1.12) but now (σ · λ)i + a + 1 = 0 mod 2

for any 1 ≤ i ≤ a and so we find

ẽn =
∑

a+2b=n

(−1)a/2
∑
σ

1
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where the sum is over all σ ∈ S(a, b) satisfying (8.1.12). The number of such
permutations is easily computed, and equal to

(
n−b
b

)
. Define for an integer m ≥ 0

(with the usual convention
(
x
y

)
= 0 for y < 0)

f(m) =
∑
b≥0

(−1)b
(
m− b
b

)
.

We have f(0) = f(1) = 1 and for m > 0

f(m+ 1) =
∑
b≥0

(−1)b
((

m− b
b

)
+

(
m− b
b− 1

))
= f(m)− f(m− 1)

and we deduce

f(m) =



1 if m = 0 mod 6

1 if m = 1 mod 6

0 if m = 2 mod 6

−1 if m = 3 mod 6

−1 if m = 4 mod 6

0 if m = 5 mod 6

and for even n > 0

ẽn = (−1)n/2f(n) =



1 if m = 0 mod 12

0 if m = 2 mod 12

−1 if m = 4 mod 12

−1 if m = 6 mod 12

0 if m = 8 mod 12

1 if m = 10 mod 12.

This is consistent with

H i(GL2(Z),Q) = H i(SL2(Z),Q) ≃

{
Q if i = 0,

0 if i > 0,

with the computation in [LS78]

H i(SL4(Z),Q) ≃

{
Q if i ∈ {0, 3}
0 otherwise.

and with the computation of H•(GL6(Z),Q) and H•(SL6(Z),Q) in [EVGS13,
§7.3]. We also deduce that GL4(Z)/SL4(Z) acts by −id on the line H3(SL4(Z),Q).
Presumably the method in [LS78] could be used to compute H•(GL4(Z),Q) as well.
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Now consider the case where n is odd. For any pair (a, b) satisfying a+2b = n

and any σ ∈ S(a, b) satisfying (8.1.12) we have (σ·λ)i+a+1 even for all 1 ≤ i ≤ a,
so we find

en =
∑

a+2b=n

(−1)a(a−1)/2
∑
σ

1 = (−1)(n−1)/2f(n) =



1 if m = 1 mod 12

1 if m = 3 mod 12

0 if m = 5 mod 12

−1 if m = 7 mod 12

−1 if m = 9 mod 12

0 if m = 11 mod 12.

This is consistent with [Sou78]

H i(SL3(Z),Q) ≃

{
Q if i = 0,

0 if i > 0,

and with the computation of H•(SLn(Z),Q) for n ∈ {5, 7} in [EVGS13, §7.3].

Corollary 8.1.29. For n ≥ 1 and λ = (λ1 ≥ · · · ≥ λn), using notation as in
Corollary 8.1.27 we have

ec(GLn, Vλ) = (−1)n(n+1)/2−1
∑

a+2b=n

(−1)a(a−1)/2
∑

σ∈S(a,b)

ϵ(σ)

Ind
GLn(Af )
La,b(Af )

(( a⊗
i=1

e(GL1, (σ · λ)i)| · |(σ·λ)i−σ(τ)if

)

⊗
b⊗
i=1

e(2)(GL2, σ(τ)a+2i−1 − 1/2, σ(τ)a+2i + 1/2)
)
.

Proof. This follows from the preceding Corollary using Example 4.8.1, writing the
character sign(det)n−1 of GLn(R) as detn−1 /| det |n−1, using Remark 4.8.3 and the
duality between Ind

GLn(Af )
Pa,b(Af ) π and Ind

GLn(Af )
Pa,b(Af ) π

∨ for any admissible representation
π of La,b(Af ).

8.2 Intersection in terms of compactly supported cohomol-
ogy

In this section we essentially plug Corollary 8.1.29 into Corollary 4.8.16 and sim-
plify the resulting expansion, ultimately obtaining Theorem 8.2.4. For calcula-
tions we need to choose a basis of X∗(TGSp2n

), our convention consists of writing
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λ = (λ1, . . . , λn,m) when λ maps (t1, . . . , tn, s) ∈ TGSp2n
(notation as in Section

2.2) to

sm
n∏
i=1

tλii .

The character λ is dominant if and only if we have λ1 ≥ · · · ≥ λn ≥ 0. Composing
λ with the cocharacter

x ∈ GL1 7→ xI2n = (x−1, . . . , x−1, x2) ∈ TGSp2n

gives 2m−
∑n

i=1 λi. The Weyl group W (GSp2n) of TGSp2n
in GSp2n is identified

as usual with {±1}n ⋊Sn:

• for w = σ ∈ Sn and λ = (λ1, . . . , λn,m) ∈ X∗(TGSp2n
) we have

w(λ) = (λσ−1(1), . . . , λσ−1(n),m),

• for w = (ϵi)1≤i≤n ∈ {±1}n we have

w(λ) =

ϵ1λ1, . . . , ϵnλn,m− ∑
1≤i≤n
ϵi=−1

λi

 .

We will also identifyW (GSp2n) with the group of permutations w of {±1, . . . ,±n}
satisfying w(−i) = −w(i) (elements of the subgroup Sn of W (GSp2n) are the ones
preserving {1, . . . , n}). Finally for 0 ≤ h ≤ n the isomorphism

GLh1 ×TGSp2(n−h) −→ TGSp2n

((t1, . . . , th), (th+1, . . . , tn, s)) 7−→ (t1, . . . , tn, s)

identifies λ with ((λ1, . . . , λh), (λh+1, . . . , λn,m)), which will also be denoted by
(λlin, λher).

For the rest of this section we fix a dominant weight λ for GSp2n and let Vλ
be an irreducible algebraic representation with highest weight λ. Let

τ := λ+ ρ = (λ1 + n, . . . , λn + 1,m+ n(n+ 1)/4).

Our first step consists of grouping terms in Corollary 4.8.16 corresponding to the
same value for nr. To this end we introduce some notation. For a positive integer h
we take the diagonal torus and upper triangular Borel subgroup to define standard
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parabolic and Levi subgroups of GLh, and as usual we identify the Weyl group of
GLh with the symmetric group Sh. For an integer r ≥ 1 and integers 0 < n1 <

· · · < nr−1 < h, denoting nr = h and n = (n1, . . . , nr), let Ln be the standard
Levi subgroup GLn1 × · · · ×GLnr−nr−1 of GLh and let Qn be the corresponding
standard parabolic subgroup of GLh. For τ ′′ ∈ Rh let Sh(n, τ

′′) ⊂ Sh be the
set of Kostant representatives σ for the standard Levi subgroup Ln of GLh which
satisfy

∑nj
i=1 σ(τ

′′)i > 0 for all 1 ≤ j ≤ r. For λ′ ∈ Zh a dominant weight for GLh
and τ ′′ ∈ Rh define C(λ′, τ ′′) ∈ Ktr

0 (Rep
adm
Q (GLh(Af ))) by

C(λ′, τ ′′) =
∑

1≤r≤h
0<n1<···<nr−1<h

∑
σ∈Sh(n,τ ′′)

ϵ(σ)ind
GLh(Af )
Qn(Af ) (ec(Ln, σ · λ′)) . (8.2.1)

where the dot action σ · λ′ is for GLh. For h = 0 we define C(λ′, τ ′′) = 1 ∈
Ktr

0 (Rep
adm
Q (GL0(Af ))) ≃ K0(Q) ≃ Z.

Lemma 8.2.1. The Euler characteristic

e(A∗
n,?,Q, ICℓ(Vλ)) ∈ Ktr

0 (Rep
adm,cont
Qℓ (G(Af )×GalQ))

is equal to∑
0≤h≤n

∑
w2∈WPh

ϵ(w2)ind
GSp2n(Af )
Ph(Af )

(
C((w2 · λ)lin, w2(τ)lin)⊗ ec(An−h,?,Q,F?

ℓ (V
GSp2(n−h)
(w2·λ)her ))

)
.

(8.2.2)

Proof. Of course we start from the formula in Corollary 4.8.16. First we make the
positivity condition (Definition 4.8.10) appearing in the indexing set WP

>t(λ) more
explicit. Denoting dm = (n−m)(n−m+ 1)/2 this condition reads

nj∑
i=1

(w · λ)i > dnj − d0 for all 1 ≤ j ≤ r.

We have (w · λ)i = w(τ)i − (n+ 1− i), and so these inequalities are equivalent to

nj∑
i=1

w(τ)i > 0 for all 1 ≤ j ≤ r.

We rewrite the double sum Corollary 4.8.16 by first summing over 0 ≤ h ≤ n,
then summing over standard parabolic subgroups P = Pn1 ∩ · · · ∩ Pnr of GSp2n

satisfying nr = h (the case where P = GSp2n corresponding to h = 0). Kostant
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representatives in WP decompose uniquely as σw2 where w2 ∈ WPh and σ is a
Kostant representative for Ln ⊂ GLh, and we have (σw2 ·λ)her = (w2 ·λ)her. Finally
the dot action for MPh coincides with the restriction of the dot action of GSp2n

because ρ− ρMPh
is fixed by the Weyl group of MPh .

We now aim to simplify the expression (8.2.1) for C(λ′, τ ′′) using Corollary
8.1.29. It will be more convenient to use the more symmetric normalized parabolic
induction: we start from the equality in Ktr

0 (Rep
adm
R (GLh(Af )))

C(λ′, τ ′′) =
∑

1≤r≤h
0<n1<···<nr−1<h

∑
σ∈Sh(n,τ ′′)

ϵ(σ)Ind
GLh(Af )
Ln(Af )

(
ec(Ln, σ · λ′)⊗ |δQn|

−1/2
f

)
(8.2.3)

where δQn is the determinant of the adjoint action of Ln on the unipotent radical of
Qn. Note that for normalized parabolic induction we only indicate the Levi factor
of the parabolic subgroup, since the semi-simplification of this induced representa-
tion does not depend on the choice of parabolic. As usual working with normalized
induction compromises on algebraicity, although it should be clear that all com-
putations below could be done over Q. In any case the Brauer-Nesbitt theorem
implies that the natural map

Ktr
0 (Rep

adm
Q (GLh(Af ))) −→ Ktr

0 (Rep
adm
R (GLh(Af )))

is injective. We need to introduce more notation. For (a, b) ∈ Z2
≥0 such that

h := a+2b is positive let Pa,b be the set of triples (r, (aj, bj)1≤j≤r, δ) where r ∈ Z≥1,
aj, bj ∈ Z≥0 and δ ∈ Sh satisfy:

• a =
∑

j aj, b =
∑

j bj and for any 1 ≤ j ≤ r we have aj + 2bj > 0,

• denoting n0 = 0 and nj − nj−1 = aj + 2bj, so that 0 < n1 < · · · < nr = h,
we have for any 1 ≤ j ≤ r:

δ−1(nj−1 + 1) < · · · < δ−1(nj−1 + aj) ≤ a,

a+ 1 ≤ δ−1(nj−1 + aj + 1) < · · · < δ−1(nj−1 + aj + 2bj − 1),

and for any 1 ≤ i ≤ bj:

δ−1(nj−1 + aj + 2i− 1) ∈ a+ 1 + 2Z≥0 and

δ−1(nj−1 + aj + 2i) = δ−1(nj−1 + a+ 2i− 1) + 1.
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Note that such triples simply parametrize ordered partitions {1, . . . , h} = I1⊔· · ·⊔
Ir such that for any 1 ≤ i ≤ b, a+ 2i− 1 and a+ 2i belong to the same subset Ij,
by taking

Ij =
{
δ−1(i)

∣∣nj−1 < i ≤ nj
}
. (8.2.4)

For τ ′′ ∈ Rh we also define

Pa,b(τ ′′) =

{
(r, (aj, bj)1≤j≤r, δ) ∈ Pa,b

∣∣∣∣∣ ∀j ∈ {1, . . . , r},
nj∑
i=1

τ ′′δ−1(i) > 0

}
.

Lemma 8.2.2. Let h be a positive integer. Let λ′ = (λ′1 ≥ · · · ≥ λ′h) ∈ Zh

be a dominant weight for GLh and τ ′′ ∈ Rh. Denote τ ′ = λ′ + ρGLh, i.e. τ ′i =

λ′i + (h+ 1)/2− i for 1 ≤ i ≤ h. Then C(λ′, τ ′′) is equal to∑
a,b≥0
a+2b=h

∑
η∈S(a,b)

ϵ(η)(−1)a+b
∑

(r,(aj ,bj)1≤j≤r,δ)∈Pa,b(η(τ ′′))

(−1)rϵ(δ)

Ind
GLh(Af )
La,b(Af )

( a⊗
i=1

e(GL1, (η · λ′)i + δ(i)− i)| · |(η·λ
′)i+δ(i)−i−η(τ ′)i

f

⊗
b⊗
i=1

e(2)(GL2, η(τ
′)a+2i−1 − 1/2, η(τ ′)a+2i + 1/2)

)
. (8.2.5)

Recall that S(a, b) was defined in Corollary 8.1.27.

Proof. We start from the expression (8.2.3) for C(λ′, τ ′′). For 0 < n1 < · · · < nr =

h, a permutation σ ∈ Sh is a Kostant representative for Ln if and only if for every
1 ≤ j ≤ r,

σ−1(nj−1 + 1) < · · · < σ−1(nj)

where by convention n0 = 0. We observe that such Kostant representatives corre-
spond bijectively to ordered partitions {1, . . . , h} = I1⊔· · ·⊔Ir with |Ij| = nj−nj−1:
set Ij = {σ−1(i) |nj−1 < i ≤ nj}.

For such an ordered partition of {1, . . . , h} we will be led to consider families
(aj, bj, γj)1≤j≤r where aj, bj ∈ Z≥0 satisfy aj + 2bj = |Ij| and γj ∈ S(aj, bj), which
we can think of as a partition of each Ij into aj singletons and bj pairs. In this
situation we define γ ∈ Sh by γ−1(nj−1 + i) = nj−1 + γ−1

j (i) for 1 ≤ j ≤ r and
1 ≤ i ≤ nj − nj−1. We apply Corollary 8.1.29 for each GLnj−nj−1

, and observing
that the restriction of δQn to the diagonal maximal torus of GLh is equal (in
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additive notation) to 2ρGLh − 2ρLn we obtain that C(λ′, τ ′′) equals the sum over
r ≥ 1, (nj)1≤j≤r, σ ∈ Sh(n, τ

′′) and (aj, bj, γj)1≤j≤r as above of

ϵ(σ)

(∏
j

(−1)(nj−nj−1)(nj−nj−1+1)/2−1+aj(aj−1)/2ϵ(γj)

)
×

Ind
GLh(Af )∏
j Laj,bj (Af )

(⊗
j

( aj⊗
i=1

e(GL1, (γσ · λ′)nj−1+i)| · |
(γσ·λ′)nj−1+i

−γσ(τ ′)nj−1+i

f

⊗
bj⊗
i=1

e(2)(GL2, γσ(τ
′)nj−1+aj+2i−1 − 1/2, γσ(τ ′)nj−1+aj+2i + 1/2)

))
. (8.2.6)

Let us simplify the first line. We clearly have
∏r

j=1 ϵ(γj) = ϵ(γ), and we claim

r∏
j=1

(−1)(nj−nj−1)(nj−nj−1+1)/2−1+aj(aj−1)/2 = (−1)a+b+r. (8.2.7)

This follows from the congruence

a′(a′ − 1)

2
+

(a′ + 2b′)(a′ + 2b′ + 1)

2
≡ a′ + b′ mod 2

which holds for any pair (a′, b′) of non-negative integers and is easily proved by
induction on b′, applied to each pair (aj, bj).

Consider r ≥ 1, 0 < n1 < · · · < nr = h, σ ∈ Sh(n, τ
′′) and (aj, bj, γj)1≤j≤r as

above, with γ ∈ Sh defined as above. We can associate to this datum a =
∑

j aj,
b =

∑
j bj and η ∈ S(a, b) characterized by the relations

{η−1(i) | 1 ≤ i ≤ a} = {σ−1γ−1(nj−1 + i) | 1 ≤ j ≤ r, 1 ≤ i ≤ aj}

{(η−1(a+ 2i− 1), η−1(a+ 2i)) | 1 ≤ i ≤ b} =
{(σ−1γ−1(nj−1+ aj +2i− 1), σ−1γ−1(nj−1+ aj +2i− 1)) | 1 ≤ j ≤ r, 1 ≤ i ≤ bj}

and then δ := γση−1 is such that P := (r, (aj, bj)j, δ) belongs to Pa,b(τ ′′). In fact
this yields a bijection

(r, (nj)1≤j≤r, σ, (aj, bj, γj)1≤j≤r) 7−→ (a, b, η, P )

with the set of quadruples satisfying a+ 2b = h, η ∈ S(a, b) and P ∈ Pa,b(η(τ ′′)).
It is rather tedious to check this formally, but note that we are simply reordering
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choices here: instead of choosing first an ordered partition {1, . . . , h} = I1⊔· · ·⊔Ir
and then a partition of each Ij into singletons and pairs, we can first choose a
partition of {1, . . . , h} into singletons and pairs and then choose how to distribute
these singletons and pairs in r packets; the conditions involving τ ′′ are equivalent
because we have γσ = δη. This bijection allows us to reindex the sum of (8.2.6)
over r ≥ 1, (nj)1≤j≤r, σ ∈ Sh(n, τ

′′) and (aj, bj, γj)1≤j≤r, first summing over (a, b)
such that a+ 2b = h and η ∈ S(a, b). Using (8.2.7) and the equality{

((γσ · λ′)nj−1+i, γσ(τ
′′)nj−1+i)

∣∣ 1 ≤ j ≤ r, 1 ≤ i ≤ aj
}

= {((η · λ′)i + δ(i)− i, η(τ ′′)i) | 1 ≤ i ≤ a}

we obtain the formula claimed in the lemma.

We now aim to simplify the innermost sum in (8.2.5). Recall from Example
8.1.6 that for k ∈ Z and s ∈ C, the representation e(GL1, k)|·|k−sf of GL1(Af ) only
depends on (s, k mod 2). For this reason we can formalize our computations using
the ring Z[t1, . . . , ta]/(t2i − 1)1≤i≤a, which as Z-module admits (

∏a
i=1 t

ϵi
i )ϵ∈{0,1}a as

a basis. Let

f(a, b, τ ′′) =
∑

(r,(aj ,bj)j ,δ)∈Pa,b(τ ′′)

(−1)rϵ(δ)
a∏
i=1

t
δ(i)−i
i ∈ Z[t1, . . . , ta]/(t2i − 1)1≤i≤a

and for ϵ ∈ {0, 1}a let f(a, b, τ ′′)ϵ ∈ Z be the coefficient of
∏a

i=1 t
ϵi
i in f(a, b, τ ′′).

Then (8.2.5) can be rewritten

∑
a,b,η

ϵ(η)(−1)a+b
∑
ϵ

f(a, b, η(τ ′′))ϵ×Ind
GLh(Af )
La,b(Af )

( a⊗
i=1

e(GL1, (η·λ′)i+ϵi)|·|(η·λ
′)i+ϵi−η(τ)i

f

⊗
b⊗
i=1

e(2)(GL2, η(τ
′)a+2i−1 − 1/2, η(τ ′)a+2i + 1/2)

)
. (8.2.8)

Lemma 8.2.3. For a, b ∈ Z≥0 satisfying a + 2b > 0 and τ ′′ ∈ Ra+2b satisfying
τ ′′1 ≥ · · · ≥ τ ′′a we have

f(a, b, τ ′′) =


0 if a > 0 and τ ′′a ≤ 0,

0 if τ ′′a+2i−1 + τ ′′a+2i ≤ 0 for some 1 ≤ i ≤ b,

(−1)a(a+1)/2+b(t1 . . . ta)
a−1 otherwise.

Proof. In this proof we use the interpretation of Pa,b (and its subset Pa,b(τ ′′)) as
parametrizing certain partitions (see (8.2.4)).
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1. Assume b > 0 and that there exists 1 ≤ i0 ≤ b for which we have τ ′′a+2i0−1 +

τ ′′a+2i0
≤ 0. Let us show that f(a, b, τ ′′) vanishes. The set Pa,b(τ ′′) can be

partitioned into two subsets P(i)
a,b(τ

′′), i ∈ {1, 2}, where P(i)
a,b(τ

′′) is the set
of partitions P = (I1, . . . , Ir) such that Ij = {a + 2i0 − 1, a + 2i0} for some
1 < j ≤ r. Note that we cannot have I1 = {a + 2i0 − 1, a + 2i0} because
τ ′′a+2i0−1 + τ ′′a+2i0

≤ 0. There is a natural bijection P(1)
a,b (τ

′′) ≃ P(2)
a,b (τ

′′): if
P1 = (I1, . . . , Ir1) is such that Ij = {a+2i0− 1, a+2i0} for some 1 < j ≤ r1,
consider P2 = (I1, . . . , Ij−1 ⊔ Ij, Ij+1, . . . , Ir2). Note that surjectivity uses
the inequality τ ′′a+2i0−1 + τ ′′a+2i0

≤ 0. For P1, P2 as above the permutations
δ1, δ2 ∈ Sa+2b associated to P1 and P2 differ by |Ij−1∩{a+2i0+1, . . . , a+2b}|
(an even number) of transpositions and we have r2 = r1 − 1. By pairwise
cancellation we obtain f(a, b, τ ′′) = 0 in this case.

2. Assume now a > 0 and τ ′′a ≤ 0. We now have a partition Pa,b(τ ′′) = P [1]
a,b(τ

′′)⊔
P [2]
a,b(τ

′′) where P [1]
a,b(τ

′′) is the set of partitions P = (I1, . . . , Ir) such that
Ij = {a} for some 1 < j ≤ r. Again we have a natural bijection P [1]

a,b(τ
′′) ≃

P [2]
a,b(τ

′′): if P1 = (I1, . . . , Ir1) is such that Ij = {a} for some 1 < j ≤
r1, consider P2 = (I1, . . . , Ij−1 ⊔ Ij, Ij+1, . . . , Ir2). Now δ1 and δ2 differ by
|Ij−1 ∩ {a+ 1, . . . , a+ 2b}| (an even number) of transpositions, δ1(i) = δ2(i)

for 1 ≤ i < a, δ1(a) = nj−1 + 1 and δ2(a) = nj−2 + aj−1 + 1 = nj−1 − 2bj + 1

(where (aj, bj)1≤j≤r1 and consequently (nj−1)1≤j≤r1 are associated to P1). As
before we obtain pairwise cancellation in the sum defining f(a, b, τ ′′).

3. Finally we assume [a = 0 or τ ′′a > 0] and τ ′′a+2i−1+ τ ′′a+2i > 0 for all 1 ≤ i ≤ b.
Now we simply have Pa,b(τ ′′) = Pa,b. If b > 0 we have a partition Pa,b =⊔3
i=1P

(i)
a,b where

• P(1)
a,b is the set of partitions P = (I1, . . . , Ir) such that Ij = {a + 2b −

1, a+ 2b} for some 1 < j ≤ r.

• P(2)
a,b is the set of partitions P = (I1, . . . , Ir) such that Ij ̸= {a + 2b −

1, a+ 2b} for all 1 ≤ j ≤ r,

• P(3)
a,b is the set of partitions P = (I1, . . . , Ir) such that I1 = {a + 2b −

1, a+ 2b}.

We have a bijection P(1)
a,b ≃ P

(2)
a,b defined as in the first step (although it is a
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bijection for slightly simpler reasons), and we obtain

f(a, b, τ ′′) =
∑

P∈P(3)
a,b

(−1)rϵ(δ)
a∏
i=1

t
δ(i)−i
i = −f(a, b− 1, (τ ′′1 , . . . , τ

′′
a+2b−2))

where the second equality follows from consideration of the bijection P(3)
a,b ≃

Pa,b−1, P = (I1, . . . , Ir) 7→ P ′ = (I2, . . . , Ir): if δ ∈ Sa+2b (resp. δ′ ∈ Sa+2b−2)
is associated to P (resp. P ′), we have δ′(i) = δ(i)− 2 for 1 ≤ i ≤ a+ 2b− 2,
and so ϵ(δ) = ϵ(δ′) and δ′|{1,...,a} ≡ δ|{1,...,a} mod 2. By induction on b we
get

f(a, b, τ ′′) = (−1)bf(a, 0, (τ ′′1 , . . . , τ ′′a )).

Thus we can assume b = 0 for the rest of the proof. We denote Pa = Pa,0. If
a = 0 the result is obvious, and we will conclude the proof by induction on a.
Suppose a > 0. We now use the decomposition Pa =

⊔3
i=1P

[i]
a where P [i]

a are
defined as in the second step and P [3]

a is the set of partitions P = (I1, . . . , Ir)

satisfying I1 = {a}.

• P [1]
a is the set of partitions P = (I1, . . . , Ir) such that Ij = {a} for some

1 < j ≤ r.

• P [2]
a is the set of partitions P = (I1, . . . , Ir) such that Ij ̸= {a} for all

1 ≤ j ≤ r,

• P [3]
a is the set of partitions P = (I1, . . . , Ir) such that I1 = {a}.

Again the terms for P [1]
a and P [2]

a cancel and we obtain

f(a, 0, τ ′′) =
∑
P∈P [3]

a

(−1)rϵ(δ)
a∏
i=1

t
δ(i)−i
i

= (−1)at1 . . . ta−1t
a−1
a f(a− 1, 0, (τ ′′1 , . . . , τ

′′
a−1))

using the bijection P [3]
a ≃ Pa−1, P = (I1, . . . , Ir) 7→ P ′ = (I2, . . . , Ir) and the

fact that for δ ∈ Sa (resp. δ′ ∈ Sa−1) associated to P (resp. P ′) we have
δ(a) = 1 and δ′(i) = δ(i) − 1 for 1 ≤ i < a. Using the induction hypothesis
we conclude

f(a, 0, τ ′′) = (−1)a(a+1)/2(t1 . . . ta)
a−1.
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Let S(a, b, τ ′′) be the set of η ∈ S(a, b) such that(
η(τ ′′)i

)
1≤i≤a,

(
η(τ ′′)a+2i−1 + η(τ ′′)a+2i

)
1≤i≤b

are all positive. We deduce from (8.2.8) and Lemma 8.2.3 the following expression
for C(λ′, τ ′′):

∑
a,b≥0
a+2b=h

∑
η∈S(a,b,τ ′′)

ϵ(η)(−1)a(a−1)/2×IndGLh(Af )
La,b(Af )

( a⊗
i=1

e (GL1, (η · λ′)i + a− 1) |·|(η·λ
′)i+a−1−η(τ ′)i

f

⊗
b⊗
i=1

e(2) (GL2, η(τ)a+2i−1 − 1/2, η(τ)a+2i + 1/2)
)
.

This can be slightly simplified further. For η ∈ S(a, b, τ ′′) define η′ ∈ Sh by

(η′)−1(i) =

{
η−1(a+ 1− i) if 1 ≤ i ≤ a

η−1(i) if a < i ≤ h.

Then η 7→ η′ defines a bijection S(a, b, τ ′′) → S′(a, b, τ ′′) where S′(a, b, τ ′′) is
defined as S(a, b, τ ′′) except that the condition 0 < η−1(1) < · · · < η−1(a) (see
Corollary 8.1.27) is replaced by the condition 0 < η′−1(a) < · · · < η′−1(1). We
obtain the following expression for C(λ′, τ ′′):

∑
a,b≥0
a+2b=h

∑
η′∈S′(a,b,τ ′′)

ϵ(η′)× Ind
GLh(Af )
La,b(Af )

( a⊗
i=1

e (GL1, (η
′ · λ′)i) | · |(η

′·λ′)i−η′(τ ′)i

⊗
b⊗
i=1

e(2) (GL2, η
′(τ ′)a+2i−1 − 1/2, η′(τ ′)a+2i + 1/2)

)
.

We convert back to unnormalized parabolic induction:

C(λ′, τ ′′) =
∑
a,b≥0
a+2b=h

∑
η′∈S′(a,b,τ ′′)

ϵ(η′) ind
GLh(Af )
Qa,b(Af )

(
e(2)(La,b, η

′ · λ′)
)

(8.2.9)

where Qa,b is the standard parabolic subgroup of GLh with Levi factor GLa1×GLb2.
Note that each individual term on the right-hand side is defined over Q (not just
R). This formula trivially holds true for h = 0 as well.
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Theorem 8.2.4. For n ≥ 1 and a, b ≥ 0 such that a + 2b ≤ n let W ′(a, b, n) be
the set of w ∈ W (GSp2n) satisfying (as permutations of {±1, . . . ,±n})

w−1(1) > · · · > w−1(a) > 0

0 < w−1(a+ 1) < w−1(a+ 3) < · · · < w−1(a+ 2b− 1)

|w−1(a+ 2)| > w−1(a+ 1), . . . , |w−1(a+ 2b)| > w−1(a+ 2b− 1)

0 < w−1(a+ 2b+ 1) < · · · < w−1(n).

For any dominant weight λ for GSp2n the Euler characteristic

e(A∗
n,?,Q, ICℓ(Vλ)) ∈ Ktr

0 (Rep
adm,cont
Qℓ (G(Af )×GalQ))

is equal to∑
a,b≥0
a+2b≤n

∑
w∈W ′(a,b,n)

ϵ(w) ind
GSp2n(Af )
Pa,b,n(Af )

(
e(2)(GLa1 ×GLb2, (w · λ)lin)

⊗ ec(An−a−2b,?,Q,F?
ℓ (V

GSp2(n−a−2b)

(w·λ)her ))
)

where Pa,b,n is the standard parabolic subgroup of GSp2n with Levi GLa1 ×GLb2 ×
GSp2(n−a−2b) and the linear and hermitian parts of w · λ are as defined at the
beginning of section 8.2.

Proof. We plug the final expression (8.2.9) for C(λ′, τ ′′) into (8.2.2), taking λ′ =
(w2 ·λ)lin and τ ′′ = w2(τ)lin where w2 ∈ WPh . An element w2 ∈ W is a Kostant rep-
resentative for Ph ⊂ GSp2n if and only if w2(τ)lin and w2(τ)her are both dominant.
The second condition is equivalent to (seeing w2 as a permutation of {±1, . . . ,±n})

0 < w−1
2 (h+ 1) < · · · < w−1

2 (n).

Translating the first condition, we see that it is equivalent to the existence of (a
unique) i ∈ {0, . . . , h} for which we have

0 < w−1
2 (1) < · · · < w−1

2 (i) and w−1
2 (i+ 1) < · · · < w−1

2 (h) < 0.

Then for a, b ∈ Z≥0 satisfying a+2b = h and σ ∈ Sh, we have σ ∈ S′(a, b, w2(τ)lin)

if and only if

• 0 < σ−1(1) < · · · < σ−1(a) ≤ i,
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• σ−1(a+ 1) < · · · < σ−1(a+ 2b− 1), and

• for any 1 ≤ j ≤ b we have either

– σ−1(a+2j−1) < σ−1(a+2j) ≤ i (i.e. σw2(τ)a+2j−1 and σw2(τ)a+2j are
both positive), or

– σ−1(a+2j − 1) ≤ i < σ−1(a+2j) and −w−1
2 σ−1(a+2j) > w−1

2 σ−1(a+

2j − 1) (i.e. σw2(τ)a+2j is negative and σw2(τ)a+2j−1 > −σw2(τ)a+2j).

We deduce {
σw2

∣∣w2 ∈ WPh , σ ∈ S′(a, b, w2(τ)lin)
}
= W ′(a, b, n)

and the theorem follows.

8.3 Compactly supported in terms of intersection cohomol-
ogy

The result of the previous section can be roughly described as saying that the
matrix expressing intersection cohomology in terms of compactly supported coho-
mology is unipotent with coefficients in {−1, 0, 1}. Somewhat surprisingly, this is
also the case for the inverse matrix that we compute in this section.

For a, b, n ∈ Z≥0 satisfying a+2b ≤ n letW (a, b, n) be the set of w ∈ W (GSp2n)

satisfying (as permutations of {±1, . . . ,±n}):

0 < w−1(1) < · · · < w−1(a)

0 < w−1(a+ 1) < · · · < w−1(a+ 2b− 1)

|w−1(a+ 2)| > w−1(a+ 1), . . . , |w−1(a+ 2b)| > w−1(a+ 2b− 1)

0 < w−1(a+ 2b+ 1) < · · · < w−1(n).

(The only difference with W ′(a, b, n) is the first line of inequalities.) To w ∈
W (a, b, n) is associated an unordered partition of {1, . . . , n} into a singletons, b
pairs and a set having n − a − 2b elements. The fiber of any such partition is
parametrized by {±1}b via w 7→ (sign(w−1(a+ 2i)))1≤i≤b.

Theorem 8.3.1. For an integer n ≥ 1, a dominant weight λ for GSp2n and a
prime number ℓ the Euler characteristic

ec(An,?,Q,F?
ℓ (Vλ)) ∈ Ktr

0 (Rep
adm,cont
Qℓ (GSp2n(Af )×GalQ))
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is equal to∑
a,b≥0
a+2b≤n

∑
w∈W (a,b,n)

(−1)a+bϵ(w)

ind
GSp2n(Af )
Pa,b,n(Af )

(
e(2)
(
GLa1 ×GLb2, (w · λ)lin

)
⊗ e(A∗

n−a−2b,?,Q, ICℓ(V(w·λ)her))
)
.

(8.3.1)

Proof. Using Theorem 8.2.4 we find that the right-hand side of (8.3.1) equals∑
a2,b2≥0
a2+2b2≤n

∑
w2∈W (a2,b2,n)

(−1)a2+b2ϵ(w2)
∑

a1,b1≥0
a1+2b1≤n−n2

∑
w1∈W ′(a1,b1,n−n2)

ϵ(w1)

ind
GSp2n(Af )
Pa2,b2,a1,b1,n(Af )

(
e(2)
(
GLa21 ×GLb22 , (w2 · λ)lin

)
⊗e(2)

(
GLa11 ×GLb12 , (w1 · (w2 · λ)her)lin

)
⊗ ec(An−n2−n1,?,QFℓ(V(w1·(w2·λ)her)her))

)
(8.3.2)

where ni = ai + 2bi and Pa2,b2,a1,b1,n is the standard parabolic subgroup of GSp2n

with Levi factor GLa21 ×GLb22 ×GLa11 ×GLb12 ×GSp2(n−n2−n1) (in this order). We
will reorder the sums, summing over a = a1 + a2 and b = b1 + b2 first, and we will
show that the resulting inner sums for (a, b) ̸= (0, 0) vanish.

To this end we first introduce, for a2, a1, b ≥ 0 satisfying a2 + a1 + 2b ≤ n the
set W ′′(a2, a1, b, n) of w ∈ W (GSp2n) satisfying

0 < w−1(1) < · · · < w−1(a2)

w−1(a2 + 1) > · · · > w−1(a2 + a1) > 0

0 < w−1(a+ 1) < · · · < w−1(a+ 2b− 1)

|w−1(a+ 2)| > w−1(a+ 1), . . . , |w−1(a+ 2b)| > w−1(a+ 2b− 1)

0 < w−1(a+ 2b+ 1) < · · · < w−1(n)

where a = a1 + a2. For b2, b1 ≥ 0 satisfying b1 + b2 = b we have a well-defined map

ξ : W (a2, b2, n)×W ′(a1, b1, n− n2) −→ W ′′(a2, a1, b, n)

characterized by the following conditions. For w2 ∈ W ′(a2, b2, n) and w1 ∈
W (a1, b1, n− n2), denoting w = ξ(w2, w1) ∈ W ′′(a2, a1, b, n) we have

• w−1(i) = w−1
2 (i) for 1 ≤ i ≤ a2,
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• w−1(a2 + i) = w−1
2 (n2 + w−1

1 (i)) for 1 ≤ i ≤ a1, and

• the set {
(w−1(a+ 2i− 1), w−1(a+ 2i))

∣∣ 1 ≤ i ≤ b
}

equals{
(w−1

2 (a2 + 2i− 1), w−1
2 (a2 + 2i))

∣∣ 1 ≤ i ≤ b2
}⊔{

(w−1
2 (n2 + w−1

1 (a1 + 2i− 1)), w−1
2 (n2 + w−1

1 (a1 + 2i)))
∣∣ 1 ≤ i ≤ b1

}
.

(8.3.3)

In fact we have w = w0w1w2 where w0 ∈ Sn ⊂ W (GSp2n) satisfies

• for any 1 ≤ i ≤ a2 we have w−1
0 (i) = i,

• for any 1 ≤ i ≤ a1 we have w−1
0 (a2 + i) = n2 + i,

• for any 1 ≤ i ≤ b we have

– w−1
0 (a + 2i − 1) is either equal to a2 + 2j − 1 for some j ∈ {1, . . . , b2}

or to n2 + a1 + 2j − 1 for some j ∈ {1, . . . , b1} and

– w−1
0 (a+ 2i) = w−1

0 (a+ 2i− 1) + 1,

• for any a+ 2b < i ≤ n we have w−1
0 (i) = i.

We omit the straightforward but tedious verification that the map ξ is well-defined,
satisfies ϵ(ξ(w2, w1)) = ϵ(w2)ϵ(w1) for all w2 and w1 (this follows from ϵ(w0) =

+1), and is surjective with each fibre having
(
b
b2

)
elements, corresponding to the

possible partitions in (8.3.3). (These facts are clear when considering elements of
W (a2, b2, n), W ′(a1, b1, n − n2) and W ′′(a2, a1, b, n) as partitions into singletons,
pairs and an extra set along with sign changes.) For 1 ≤ i ≤ a2 we have (w · λ)i =
(w1w2 · λ)i and for 1 ≤ i ≤ a1 it is easy to check that we have

(w · λ)a2+i = (w1w2 · λ)n2+i − 2b2 ≡ (w1w2 · λ)n2+i mod 2.

We deduce that (8.3.2) is equal to

∑
a2,a1,b≥0

a2+a1+2b≤n

∑
w∈W ′′(a2,a1,b,n)

(−1)a2
b∑

b2=0

(−1)b2
(
b

b2

)
ϵ(w)

ind
GSp2n(Af )
Pa,b,n(Af )

(
e(2)
(
GLa1 ×GLb2, (w · λ)lin

)
⊗ ec(An−n2−n1,?,QFℓ(V(w·λ)her))

)
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For b > 0 we simply have
∑b

b2=0(−1)b2
(
b
b2

)
= (1− 1)b = 0 so this simplifies as∑

0≤a≤n

∑
0≤a2≤a

w∈W ′′(a2,a−a2,0,n)

(−1)a2ϵ(w)indGSp2n(Af )
Pa,0,n(Af )

(
e(2) (GLa1, (w · λ)lin)⊗ ec(An−a,?,QFℓ(V(w·λ)her))

)
.

(8.3.4)
To conclude it is enough to check that for a > 0 the inner sum in (8.3.4) vanishes.
As in the previous section (the proof of Lemma 8.2.3 in particular) this follows from
cancelling pairs of terms. Fix 0 < a ≤ n. We define a partition of

⊔
0≤a2≤a{a2} ×

W ′′(a2, a − a2, 0, n) as W1 ⊔ W2 and a bijection β : W1 ≃ W2. Let W1 be the
disjoint union of {0} ×W ′′(0, a, 0, n) and⊔

0<a2<a

{a2} ×
{
w ∈ W ′′(a2, a− a2, 0, n)

∣∣w−1(a2 + 1) > w−1(a2)
}

and let W2 be the disjoint union of {a} ×W ′′(a, 0, 0, n) and⊔
0<a2<a

{a2} ×
{
w ∈ W ′′(a2, a− a2, 0, n)

∣∣w−1(a2 + 1) < w−1(a2)
}
.

The bijection β is simply defined by β(a2, w) = (a2 + 1, w). Thanks to the sign
(−1)a2 we obtain that for any 0 < a ≤ n the inner sum in (8.3.4) vanishes.

9 Special cases

9.1 Genus n ≤ 3

We work out Theorems 4.7.2, 7.1.3, and 8.2.4 or 8.3.1 for n ≤ 3 and deduce
[BFG14, Conjecture 7.1] at the level of ℓ-adic Galois representations (for any prime
number ℓ). While comparing two rather large formulas is not terribly exciting, this
comparison serves two purposes: it gives us confidence that the formulas in the
present article are correct, and because it makes the computation by Bergström,
Faber and van der Geer of the traces of certain Hecke operators on certain spaces
of Siegel cusp forms in genus 3 unconditional (as in Examples 7.5 and 7.6 loc. cit.,
see also §9 loc. cit.).

We fix a prime number ℓ and ι : C ≃ Qℓ, although the formulas in this
section will ultimately not depend on the choice of ι. First we note that in (8.3.1),
forgetting the Hecke action we have

ind
GSp2n(Af )
Pa,b,n(Af )

(
e(2)
(
GLa1 ×GLb2, (w · λ)lin

)
⊗ e(A∗

n−a−2b,?,Q, ICℓ(V(w·λ)her))
)GSp2n(Ẑ)

= dim e(2)
(
GLa1 ×GLb2, (w · λ)lin

)(GLa1×GL2)(Ẑ) × e(A∗
n−a−2b,Q, ICℓ(V(w·λ)her))
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and we have for a ∈ Z

dim e(GL1, a)
GL1(Ẑ) = δa even

and for a, b ∈ R satisfying a− b ∈ Z≥0

dim e(2)(GL2, a, b) = − dimSa−b+2(SL2(Z)) + δa=b

(see Example 8.1.6). For a ∈ Z≥0 we denote

sa+2 = − dim e(2)(GL2, a, 0).

This notation is consistent with [BFG14, §2]. Since we work in level one in this
section we will keep the level implicit and the notation and simply write Fℓ(V )

for FGSp2n(Ẑ)
ℓ (V ). As recalled in Section 4.2 for λ = (λ1 ≥ · · · ≥ λn) the local

system denoted by Vλ1,...,λn loc. cit. is our Fℓ(Vλ,0) where Vλ,0 is the irreducible
representation of GSp2n,Q of highest weight (λ1, . . . , λn, 0) (parametrization of
weights as in Section 8.2). We can reduce to this case by Remark 4.3.7. If

∑
i λi

is odd then cohomology (ordinary, compactly supported or intersection) vanishes.
If
∑

i λi is even then defining m ∈ Z by 2m =
∑

i λi the representation Vλ,m ≃
Vλ,0⊗ νm has trivial central character (as assumed in Theorem 4.7.2) and we have

e(A∗
n,Q, ICℓ(Vλ,0)) = e(A∗

n,Q, ICℓ(Vλ,m))⊗ χ−m
ℓ

and similarly for compactly supported cohomology.
For integers λ1 ≥ · · · ≥ λn ≥ 0 denote

k(λ) = (λ1 + n+ 1, . . . , λn + n+ 1) ∈ Zn,

which represents the same highest weight for GLn as n(λ) in [BFG14, Notation
4.3], except that our parametrizations of highest weights differ (we already used
our parametrization in Section 7.2). Reformulating [BFG14, §5] using Corollary
7.2.2, the authors conjectured for any n > 1 and integers λ1 ≥ · · · ≥ λn ≥ 0 the
existence of a virtual motive over Q, S[k(λ)] (in their notation, S[n(λ)]) such that
for any prime ℓ we have

S[k(λ)]ℓ =
∑
f

spin ◦ ρGSpin
f,ι (9.1.1)

where the sum is over eigenforms in Sk(Sp2n(Z)), ρ
GSpin
f,ι was defined in Corollary

7.2.2 and m = (
∑

i λi)/2 (recall that Sk(Sp2n(Z)) vanishes if
∑

i λi is odd). We
simply take 9.1.1 as a definition. We recall the (slightly different in the weight
zero case) definition of S[−]ℓ for n = 1 in the next section.
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9.1.1 Genus one

First consider the case n = 1. Let k ≥ 0 be an integer. Let τ ∈ IC(Sp2) be the
orbit of k + 1 ∈ Lie TSO3 . Any ψ ∈ Ψ̃unr,τ

disc,ne(Sp2) is either [3] (only if k = 0) or
a single self-dual cuspidal representation of PGL3 of infinitesimal character (the
S3-orbit of) (k + 1, 0,−k − 1). Similarly to Proposition 6.2.1 in the latter case ψ
is the Gelbart-Jacquet lift ad0π (defined in [GJ78]) of a uniquely determined level
one automorphic representation π for PGL2 having infinitesimal character (the
S2-orbit of) ((k+1)/2,−(k+1)/2). Such automorphic representations for PGL2

correspond bijectively to eigenforms in Sk+2(SL2(Z)), in particular such represen-
tations exist only for k ≥ 10 even. Deligne proved the existence of a unique (up to
conjugation) continuous Galois representation ρπ,ι : GalQ → GL2(Qℓ) unramified
away from ℓ such that for all primes p ̸= ℓ we have ρπ,ι(Frobp)ss ∈ ι(p1/2c(πp)).
(The more common normalization associates χ−k

ℓ ρπ,ι to π.) In any case the spin
representation spinψ : GMψ,sc → GL2 is an isomorphism and

σspin
ψ,ι ≃

{
1 + χ−1

ℓ if ψ = [3],

ρπ,ι if ψ = ad0π.

For k ≥ 0 an integer, following [BFG14, §2] define in K0(Rep
cont
Qℓ

(GalQ))

S[k + 2]ℓ =


0 if k is odd,
−1− χ−1

ℓ if k = 0,∑
ψ χ

−k/2
ℓ ρπ,ι if k > 0 even.

For any even integer k ≥ 0 by Theorem 4.7.2 applied to the representation Vk,k/2 ≃
Vk,0 ⊗ νk/2 of PGSp2 and Remark 4.3.7 we have (in K0(Rep

cont
Qℓ

(GalQ)))

e(A∗
1,Q, ICℓ(Vk,0)) = −S[k + 2]ℓ

which shows in particular that the right-hand side does not depend on the choice
of ι. Theorem 8.3.1 for n = 1 yields

ec(A1,Q,Fℓ(Vk,0)) = e(A∗
1,Q, ICℓ(Vk,0))− δk even

because the only possible pairs (a, b) occurring in the sum (8.3.1) are (0, 0) and
(1, 0), and W (1, 0, 1) = {id}. We thus recover [BFG14, Theorem 2.3].
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9.1.2 Genus two

We now consider the case n = 2, which is also already known (see [Pet]) but is
a good sanity check. Following [BFG14, Conjecture 6.3] we define for integers
λ1 ≥ λ2 ≥ 0 an element e2,extr(λ1, λ2)ℓ of K0(Rep

cont
Qℓ

(GalQ))) as

−sλ1+λ2+4 (S[λ1− λ2 +2]ℓ+1)χ−λ2−1
ℓ + sλ1−λ2+2−S[λ1 +3]ℓ+S[λ2 +2]ℓ+ δλ1 even

(9.1.2)
(We note that this definition for λ = (0, 0) will not be used until we consider the
genus three case.) First we compare the contributions of a parameter ψ to S[k(λ)]ℓ
and to e(A∗

2,Q, ICℓ(Vλ,0)), assuming λ ̸= (0, 0) and λ1 + λ2 even.

1. If ψ = π is a single self-dual automorphic cuspidal representation for GL5 then
it contributes

−χ−m
ℓ σspin

ψ,ι = −χ−m
ℓ spin ◦ ρGSpin

π,ι

to e(A∗
2,Q, ICℓ(Vλ,0)), and the opposite to S[k(λ)]ℓ.

2. Assume ψ = π1 ⊗ π2 ⊕ 1 where each πi is a self-dual automorphic cuspidal
representation for GL2, π1,∞ has infinitesimal character ±(λ1 + λ2 + 3)/2 and
π2,∞ has infinitesimal character ±(λ1 − λ2 + 1). We compute (see (4.7.3))

u1(ψ) = ⟨µπgen
∞ , s̃1⟩ = −1

and so ψ contributes
−χ−m−1

ℓ ρπ2,ι

to e(A∗
2,Q, ICℓ(Vλ,0)), and does not contribute to S[k(λ)]ℓ as an application of

Arthur’s multiplicity formula (see the proof of Corollary 7.2.2). Parameters of
this shape contribute

−δλ1>λ2 χ−λ2−1
ℓ sλ1+λ2+4 S[λ1 − λ2 + 2]ℓ

to e(A∗
2,Q, ICℓ(Vλ,0)) + S[k(λ)]ℓ.

3. Assume ψ = π[2]+ 1 where π is a self-dual automorphic cuspidal representation
for GL2 and π∞ has infinitesimal character ±(λ1 + λ2 + 3)/2. This imposes
λ1 = λ2. This is rather similar to the previous case except that ϵψ is not always
trivial and we have u1(ψ) = −ϵψ(s1).

(a) if ϵψ(s1) = +1 then ψ contributes χ−m−1
ℓ + χ−m−2

ℓ to e(A∗
2,Q, ICℓ(Vλ,0)) and

does not contribute to S[k(λ)]ℓ,
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(b) if ϵψ(s1) = −1 then ψ contributes −χ−m−1
ℓ ρπ,ι to e(A∗

2,Q, ICℓ(Vλ,0)) and con-
tributes χ−m−1

ℓ (ρπ,ι + 1 + χ−1
ℓ ) to S[k(λ)]ℓ.

Parameters of this shape contribute

−δλ1=λ2 χ−λ2−1
ℓ sλ1+λ2+4 S[λ1 − λ2 + 2]ℓ

to e(A∗
2,Q, ICℓ(Vλ,0)) + S[k(λ)]ℓ.

We conclude for λ ̸= (0, 0)

e(A∗
2,Q, ICℓ(Vλ,0)) + S[k(λ)]ℓ = −sλ1+λ2+4χ

−λ2−1
ℓ S[λ1 − λ2 + 2]ℓ.

Now we use Theorem 8.3.1 to express ec(A2,Q,Fℓ(Vλ,0)) as e(A∗
2,Q, ICℓ(Vλ,0)) plus

the following contributions.

1. For (a, b) = (1, 0) we have W (1, 0, 2) = {id, (12)}, contributing respectively

−δλ1 even e(A∗
1,Q, ICℓ(Vλ2,0)) = δλ1 even S[λ2 + 2]ℓ,

δλ2 odd e(A∗
1,Q, ICℓ(Vλ1+1,0)) = −δλ2 odd S[λ1 + 3]ℓ.

Note that as we assume λ1 + λ2 even the two Kronecker δ are superfluous.

2. For (a, b) = (2, 0) we have W (2, 0, 2) = {id}, contributing δλ1 and λ2 even.

3. For (a, b) = (0, 1) we have W (0, 1, 2) = {id, (1 7→ 1, 2 7→ −2)}, contributing
respectively

sλ1−λ2+2,

−sλ1+λ2+4 χ
−λ2−1
ℓ .

We conclude for λ ̸= (0, 0)

ec(A2,Q,Fℓ(Vλ,0))
= − S[k(λ)]ℓ − sλ1+λ2+4 χ

−λ2−1
ℓ (1 + S[λ1 − λ2 + 2]ℓ) + S[λ2 + 2]ℓ − S[λ1 + 3]ℓ

+ δλ1 even + sλ1−λ2+2

= − S[k(λ)]ℓ + e2,extr(λ1, λ2)ℓ,

recovering [BFG14, Conjecture 6.3], already proved by Petersen [Pet].
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9.1.3 Genus three

Theorem 9.1.1. Conjecture 7.1 of [BFG14] holds true at the level of ℓ-adic Galois
representations, i.e. in K0(Rep

cont
Qℓ

(GalQ))) we have for any λ ̸= (0, 0, 0)

ec(A3,Q,Fℓ(Vλ,0)) = S[k(λ)]ℓ+
∑

(η,a,b,c)∈X(λ)

η×
(
ec(A2,Q,Fℓ(Va,b,0)) + e2,extr(a, b)ℓ ⊗ S[c]ℓ

)
where

X(λ) = {(−1, λ1 + 1, λ2 + 1, λ3 + 2), (1, λ1 + 1, λ3, λ2 + 3), (−1, λ2, λ3, λ1 + 4)}

and e2,extr(−,−)ℓ defined in (9.1.2).

This section is devoted to the proof of Theorem 9.1.1.
First we compare ec(A∗

3,Q, ICℓ(Vλ,0)) and S[k(λ)]ℓ. Along the way we prove
[BFG14, Conjecture 7.7] (thanks to Theorem 7.2.1) when it holds true (see Remark
9.1.2), “upgrading” [CR15, Proposition 9.5] to Satake parameters in Spin7(C).

1. For ψ = π a single level one self-dual automorphic cuspidal representation for
PGL7 such that the infinitesimal character of π∞ is (±(λ1+3),±(λ2+2),±(λ1+
1), 0), it contributes

χ−m
ℓ σspin

ψ,ι = χ−m
ℓ spin ◦ ρGSpin

π,ι

to both e(A∗
3,Q, ICℓ(Vλ,0)) and S[k(λ)]ℓ.

2. For ψ = π1⊗π2⊕ ad0π0 where each πi is a cuspidal automorphic representation
for PGL2, there are three subcases:

(a) infinitesimal characters π1,∞ 7→ ±(λ1 + λ2 + 5)/2, π2,∞ 7→ ±(λ1 − λ2 + 1)/2,
π3,∞ 7→ ±(λ3 + 1)/2. We have u1(ψ) = ⟨µπgen

∞ , s̃1⟩ = −1 and so ψ contributes

χ−m−2
ℓ ρπ2,ι ⊗ ρπ3,ι

to e(A∗
3,Q, ICℓ(Vλ,0)), and does not contribute to S[k(λ)]ℓ. These parameters

contribute

δλ1>λ2 δλ3>0 sλ1+λ2+6 χ
−λ2−2
ℓ S[λ1 − λ2 + 2]ℓ ⊗ S[λ3 + 2]ℓ

to e(A∗
3,Q, ICℓ(Vλ,0))− S[k(λ)]ℓ.
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(b) infinitesimal characters π1,∞ 7→ ±(λ1 + λ3 + 4)/2, π2,∞ 7→ ±(λ1 − λ3 + 2)/2,
π3,∞ 7→ ±(λ2 + 2)/2. We have u1(ψ) = ⟨µπgen

∞ , s̃1⟩ = +1 and so ψ contributes

χ−m−2
ℓ ρπ1,ι ⊗ ρπ3,ι

to e(A∗
3,Q, ICℓ(Vλ,0)), and contributes

χ−m−2
ℓ (ρπ1,ι + ρπ2,ι)⊗ ρπ3,ι

to S[k(λ)]ℓ (this corresponds to case (i) in [BFG14, Conjecture 7.7]). These
parameters contribute

−sλ1+λ3+5 χ
−λ3−1
ℓ S[λ1 − λ3 + 3]ℓ ⊗ S[λ2 + 3]ℓ

to e(A∗
3,Q, ICℓ(Vλ,0))− S[k(λ)]ℓ.

(c) infinitesimal characters π1,∞ 7→ ±(λ2 + λ3 + 3)/2, π2,∞ 7→ ±(λ2 − λ3 + 1)/2,
π3,∞ 7→ ±(λ1 + 3)/2. As in the first case we have u1(ψ) = −1 and so ψ

contributes
χ−m−2
ℓ ρπ2,ι ⊗ ρπ3,ι

to e(A∗
3,Q, ICℓ(Vλ,0)), and does not contribute to S[k(λ)]ℓ. These parameters

contribute

δλ2>λ3 sλ2+λ3+4 χ
−λ3−1
ℓ S[λ2 − λ3 + 2]ℓ ⊗ S[λ1 + 4]ℓ

to e(A∗
3,Q, ICℓ(Vλ,0))− S[k(λ)]ℓ.

3. For ψ = π1⊗π2⊕ [3] with infinitesimal characters π1,∞ 7→ ±(λ1+λ2+5)/2 and
π2,∞ 7→ ±(λ1 − λ2 + 1)/2 (and imposing λ3 = 0) we have

u1(ψ) = ϵψ(s1)⟨µπgen
∞ , s̃1⟩ = −ϵ(π1 × π2) = −1

and so ψ contributes
−χ−m−2

ℓ ρπ2,ι ⊗ (1 + χ−1
ℓ )

to e(A∗
3,Q, ICℓ(Vλ,0)), and does not contribute to S[k(λ)]ℓ because of the factor

[3] of ψ (see [CR15, Lemma 9.2]). Parameters of this shape contribute

δλ1>λ2 δλ3=0 sλ1+λ2+6 χ
−λ2−2
ℓ S[λ1 − λ2 + 2]ℓ ⊗ S[λ3 + 2]ℓ

to e(A∗
3,Q, ICℓ(Vλ,0))− S[k(λ)]ℓ.
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4. For ψ = π1[2]⊕ ad0π2 there are two cases to consider:

(a) for infinitesimal characters π1,∞ 7→ ±(λ1 + λ2 +5)/2 and π2,∞ 7→ ±(λ3 +1)/2

(imposing λ1 = λ2) we have

u1(ψ) = ϵψ(s1)⟨µπgen
∞ , s̃1⟩ = −ϵ(π1×ad0π2) = −(−1)1+max(λ1+λ2+5,2λ3+2)(−1)λ1+3 = (−1)λ1

so

i. if λ1 is even then ψ contributes

χ−m−2
ℓ ρπ1,ι ⊗ ρπ2,ι

to e(A∗
3,Q, ICℓ(Vλ,0)), and

χ−m−2
ℓ (ρπ1,ι + 1 + χ−1

ℓ )⊗ ρπ2,ι

to S[k(λ)]ℓ,
ii. if λ1 is odd then ψ contributes

−χ−m−2
ℓ (1 + χ−1

ℓ )⊗ ρπ2,ι

to e(A∗
3,Q, ICℓ(Vλ,0)), and does not contribute to S[k(λ)]ℓ.

In particular part (iii) of [BFG14, Conjecture 7.7] holds true if and only if λ1
(denoted by a loc. cit.) is even. In any case parameters of this shape thus
contribute

δλ1=λ2 δλ3>0 χ
−λ2−2
ℓ S[λ1 − λ2 + 2]ℓS[λ3 + 2]ℓ

to e(A∗
3,Q, ICℓ(Vλ,0))− S[k(λ)]ℓ.

5. for infinitesimal characters π1,∞ 7→ ±(λ2 + λ3 + 3)/2 and π2,∞ 7→ ±(λ1 + 3)/2

(imposing λ2 = λ3) we have u1(ψ) = −ϵψ(s1) with

ϵψ(s1) = (−1)λ2+2(−1)1+max(2λ2+3,2λ1+6) = (−1)λ2+1

so

(a) if λ2 is odd then ψ contributes

−χ−m−2
ℓ (1 + χ−1

ℓ )⊗ ρπ2,ι

to e(A∗
3,Q, ICℓ(Vλ,0)) and does not contribute to S[k(λ)]ℓ,
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(b) if λ2 is even then ψ contributes

χ−m−2
ℓ ρπ1,ι ⊗ ρπ2,ι

to e(A∗
3,Q, ICℓ(Vλ,0)) and contributes

χ−m−2
ℓ (ρπ1,ι + 1 + χ−1

ℓ )⊗ ρπ2,ι

to S[k(λ)]ℓ.

In particular part (ii) of [BFG14, Conjecture 7.7] holds true if and only if λ2
(denoted by b loc. cit.) is even. In any case parameters of this shape thus
contribute

δλ2=λ3 sλ2+λ3+4 χ
−λ3−1
ℓ S[λ2 − λ3 + 2]ℓ ⊗ S[λ1 + 4]ℓ

to e(A∗
3,Q, ICℓ(Vλ,0))− S[k(λ)]ℓ.

6. Finally for ψ = π[2]⊕ [3] where π1,∞ has infinitesimal character ±(λ1+λ2+5)/2

(and imposing λ1 = λ2 and λ3 = 0) we have

u1(ψ) = ϵψ(s1)⟨µπgen
∞ , s̃1⟩ = −ϵ(π1)2 = −1

and so ψ contributes
χ−m−2
ℓ (1 + χ−1

ℓ )⊗ (1 + χ−1
ℓ )

to e(A∗
3,Q, ICℓ(Vλ,0)) and does not contribute to S[k(λ)]ℓ. Parameters of this

shape contribute

δλ1=λ2 δλ3=0 sλ1+λ2+6 χ
−λ2−2
ℓ S[λ1 − λ2 + 2]ℓ ⊗ S[λ3 + 2]ℓ

to e(A∗
3,Q, ICℓ(Vλ,0))− S[k(λ)]ℓ.

Summing all these contributions we obtain for λ ̸= (0, 0, 0)

e(A∗
3,Q, ICℓ(Vλ,0))− S[k(λ)]ℓ

= sλ1+λ2+6 χ
−λ2−2
ℓ S[λ1 − λ2 + 2]ℓ ⊗ S[λ3 + 2]ℓ

− sλ1+λ3+5 χ
−λ3−1
ℓ S[λ1 − λ3 + 3]ℓ ⊗ S[λ2 + 3]ℓ

+ sλ2+λ3+4 χ
−λ3−1
ℓ S[λ2 − λ3 + 2]ℓ ⊗ S[λ1 + 4]ℓ (9.1.3)

Remark 9.1.2. Note that there are parity conditions for the existence of the lifts
predicted in cases (ii) and (iii) [BFG14, Conjecture 7.7], in agreement with [CR15,
Proposition 9.5]. In [BFG14, Table 2] the authors seem to be aware of these
conditions, so it seems that they were simply forgotten in the statement of [BFG14,
Conjecture 7.7].
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Now we use Theorem 8.2.4 to express ec(A3,Q,Fℓ(Vλ,0)) as e(A∗
3,Q, ICℓ(Vλ,0))

plus the following contributions (assuming
∑

i λi even)

1. for (a, b) = (1, 0) we have W ′(1, 0, 3) = {id, (12), (123)}, respectively contribut-
ing

−δλ1 even ec(A2,Q,Fℓ(Vλ2,λ3,0)),

δλ2 odd ec(A2,Q,Fℓ(Vλ1+1,λ3)),

−δλ3 even ec(A2,Q,Fℓ(Vλ1+1,λ2+1,0)).

The Kronecker δ’s are superfluous.

2. For (a, b) = (2, 0) the set W ′(2, 0, 3) has three elements: {(12), (123), (13)},
respectively contributing

(a) w =

(
1 2 3
2 1 3

)
yields

δλ1 odd δλ2 odd ec(A1,Q,Fℓ(Vλ3,0)) = −δλ1 odd S[λ3 + 2]ℓ − δλ1 odd δλ2 odd.

(b) w =

(
1 2 3
2 3 1

)
yields

−δλ1 odd δλ3 even ec(A1,Q,Fℓ(Vλ2+1,0)) = δλ1 odd S[λ2 + 3]ℓ + δλ1 odd δλ2 odd.

(c) w =

(
1 2 3
3 2 1

)
yields

δλ2 even δλ3 even ec(A1,Q,Fℓ(Vλ1+2,0)) = −δλ2 even S[λ1 + 4]ℓ − δλ1 even δλ2 even

3. For (a, b) = (3, 0) we have W ′(3, 0, 3) = {(13)}, contributing δλ1 even δλ2 even.

4. For (a, b) = (0, 1) the set W ′(0, 1, 3) has six elements:

(a) w = id yields

sλ1−λ2+2 ec(A1,Q,Fℓ(Vλ3,0)) = −sλ1−λ2+2 S[λ3 + 2]ℓ − sλ1−λ2+2

(b) w =

(
1 2 3
1 −2 3

)
yields

−sλ1+λ2+6 ec(A1,Q,Fℓ(Vλ3,−λ2−2)) = sλ1+λ2+6 χ
−λ2−2
ℓ S[λ3+2]ℓ+sλ1+λ2+6 χ

−λ2−2
ℓ
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(c) w =

(
1 2 3
1 3 2

)
yields

−sλ1−λ3+3 ec(A1,Q,Fℓ(Vλ2+1,0)) = sλ1−λ3+3 S[λ2 + 3]ℓ + sλ1−λ3+3

(d) w =

(
1 2 3
1 3 −2

)
yields

sλ1+λ3+5 ec(A1,Q,Fℓ(Vλ2+1,−λ3−1)) = −sλ1+λ3+5 χ
−λ3−1
ℓ S[λ2+3]ℓ−sλ1+λ3+5 χ

−λ3−1
ℓ

(e) w =

(
1 2 3
3 1 2

)
yields

sλ2−λ3+2 ec(A1,Q,Fℓ(Vλ1+2,0)) = −sλ2−λ3+2 S[λ1 + 4]ℓ − sλ2−λ3+2

(f) w =

(
1 2 3
3 1 −2

)
yields

−sλ2+λ3+4 ec(A1,Q,Fℓ(Vλ1+2,−λ3−1)) = sλ2+λ3+4 χ
−λ3−1
ℓ S[λ1+4]ℓ+sλ2+λ3+4 χ

−λ3−1
ℓ

5. For (a, b) = (1, 1) the set W ′(1, 1, 3) has six elements:

(a) w = id yields
δλ1 even sλ2−λ3+2 = sλ2−λ3+2.

(b) w =

(
1 2 3
1 2 −3

)
yields

−δλ1 even sλ2+λ3+4χ
−λ3−1
ℓ = −sλ2+λ3+4χ

−λ3−1
ℓ .

(c) w =

(
1 2 3
2 1 3

)
yields

−δλ2 odd sλ1−λ3+3 = −sλ1−λ3+3.

(d) w =

(
1 2 3
2 1 −3

)
yields

δλ2 odd sλ1+λ3+5χ
−λ3−1
ℓ = sλ1+λ3+5χ

−λ3−1
ℓ .

(e) w =

(
1 2 3
2 3 1

)
yields

δλ3 even sλ1−λ2+2 = sλ1−λ2+2.
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(f) w =

(
1 2 3
2 −3 1

)
yields

−δλ3 even sλ1+λ2+6χ
−λ2−2
ℓ = −sλ1+λ2+6χ

−λ2−2
ℓ .

Note that these contributions simplify the previous ones (for (a, b) = (0, 1)).

Summing all these contributions with (9.1.3) and factoring by S[λi + 5 − i]ℓ we
obtain that for λ ̸= (0, 0, 0)

ec(A3,Q,Fℓ(Vλ,0))− S[k(λ)]ℓ

is equal to

− ec(A2,Q,Fℓ(Vλ2,λ3,0)) + ec(A2,Q,Fℓ(Vλ1+1,λ3,0))− ec(A2,Q,Fℓ(Vλ1+1,λ2+1,0))

− (e2,extr(λ2, λ3) + S[λ2 + 3]ℓ − S[λ3 + 2]ℓ)⊗ S[λ1 + 4]ℓ

+ (e2,extr(λ1 + 1, λ3) + S[λ1 + 4]ℓ − S[λ3 + 2]ℓ)⊗ S[λ2 + 3]ℓ

− (e2,extr(λ1 + 1, λ2 + 1) + S[λ1 + 4]ℓ − S[λ2 + 3]ℓ)⊗ S[λ3 + 2]ℓ

and the terms ±S[λi + 5 − i]ℓ ⊗ S[λj + 5 − j]ℓ cancel each other out, concluding
the proof of Theorem 9.1.1.

9.2 Trivial local systems: |An(Fq)| for small n

In this section we prove Theorem 1. Consider a dominant weight λ = (λ1 ≥
· · · ≥ λn ≥ 0) for Sp2n, and the dominant weight (λ, 0) = (λ1, . . . , λn, 0 for GSp2n

(recall our choice of parametrization from Section 2.2). First we use Theorem 8.3.1
in level one, forgetting the Hecke action. From Example 8.1.6 we easily deduce
formulas for e(GL1, a)

Ẑ× and e(2)(GL2, a, b)
GL2(Ẑ), and we deduce formulas (in

the Grothendieck group of continuous finite-dimensional ℓ-adic representations of
GalQ), for any λ1 ≥ . . . λn ≥ 0, expressing ec(An,Q,Fℓ(Vλ,0)) in terms of

eIH(λ
′) := eIH(GSp2n′ ,Xn′ , Vλ′,0)

GSp2n′ (Ẑ)

where n′ ≤ n and λ′1 + n′ ≤ λ1 + n, more precisely as a linear combination with
integral coefficients of eIH(λ′)χ−N

ℓ (where N ≥ 0 is an integer). Next we apply
Theorems 4.7.2 and 7.1.3 to decompose

eIH(λ
′) = eIH(GSp2n′ ,Xn′ , Vλ′,m′)GSp2n′ (Ẑ) χ−m′

ℓ ,
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where 2m′ =
∑

i λ
′
i (so that the central character of Vλ′,m′ is trivial), by parameter

ψ ∈ Ψ̃unr,τ ′

disc (Sp2n′), where τ ′ = (λ′1 + n′, . . . , λ′n′ + 1) is the infinitesimal character
for associated to λ′. Each such parameter ψ decomposes as

ψ0 ⊕ · · · ⊕ ψr = π0[d0]⊕ · · · ⊕ πr[dr],

and for λ′1 + n′ ≤ 12 the classification theorems [CL, Theorem 9.3.3] and [CT20,
Theorems 3 and 4] tell us that each πi belongs to an explicit (short) list of possi-
bilities. For the cases at hand we even have λ′1 + n′ ≤ 7, so one of the following
holds:

• ψ = ψ0 = [2d+ 1] with d = n′, and λ′ = (0, . . . , 0),

• ψ = ψ0 + ψ1 = [2d + 1] + ∆11[2] with d = n′ − 2 and λ′ = (6 − n′, 6 −
n′, 0, . . . , 0) (this can occur only if n′ ≥ 2), where ∆11 is the unique level one
cuspidal automorphic representation for PGL2 with infinitesimal character
(11/2,−11/2) (corresponding to the unique eigenform in S12(SL2(Z)))

• ψ = ψ0 + ψ1 = [2d+ 1] +∆11[4] with d = n′ − 4 and λ′ = (7− n′, 7− n′, 7−
n′, 7− n′, 0, . . . , 0) (this can occur only if n′ ≥ 4).

We give more details for the case n = 6: the cases where n is < 6 are easier,
and we briefly discuss the case n = 7 below. Discarding highest weights λ′ which
are not of the form (0, . . . , 0) or (6− n′, 6− n′, 0, . . . , 0), we28 obtain

ec(A6,Q,Qℓ) = eIH(0, 0, 0, 0, 0, 0)− eIH(0, 0, 0, 0, 0)− eIH(0, 0, 0, 0)χ−5
ℓ

+ eIH(0, 0, 0)(1 + χ−5
ℓ )− eIH(0, 0)− eIH(0)χ−5

ℓ − eIH(1, 1, 0, 0, 0)
+ eIH(3, 3, 0)− eIH(4, 4).

For λ′ = (0, . . . , 0) the contribution of the parameter [2n′ + 1] to eIH(λ′) is

n′∏
i=1

(1 + χ−i
ℓ ).

For n′ ∈ {2, 3, 5, 6} and λ′ = (6− n′, 6− n′, 0, . . . , 0) we also need to compute the
contribution of the parameter ψ = [2d + 1] ⊕∆11[2] (here d = n′ − 2) to eIH(λ′).
With notation as in Theorem 4.7.2 we have

u1(ψ) = −ϵ(1/2,∆11)
min(2,2d+1) = −1.

28In fact we had this computation done by a computer.
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Using Corollary 6.2.3 we compute (for any ι)

σ
spin,u1(ψ)
ψ1,ι

= σspin,−
ψ1,ι

= 1 + χ−1
ℓ

and so by Theorem 7.1.3 the contribution of ψ to eIH(λ′) is

χn
′−6
ℓ σIH

ψ,ι = χ−5
ℓ (1 + χ−1

ℓ )×
d∏
i=1

(1 + χ−i
ℓ ).

Adding all contributions we obtain ec(A6,Q,Qℓ) = P6(χ
−1
ℓ ) (defined in Theorem 1),

which is equivalent (via the Grothendieck-Lefschetz trace formula) to the formula
|A6(Fq)| = Pn(q) for all prime powers q.

For n = 7 we also have to consider parameters of the form

ψ = ψ0 ⊕ ψ1 = [2d+ 1]⊕∆11[4]

for which we compute

u1(ψ) = ϵ(1/2,∆11)
min(4,2d+1) = +1.

A simple weight computation shows that in Proposition 6.3.2 we have

spin+
ψ1
◦ α̃ψ1|Sp2×SL2 ≃

(
(Sym2 StdSp2)⊗ 1

)
⊕
(
1⊗ Sym4 StdSL2

)
and we deduce

σ
spin,u1(ψ)
ψ1,ι

= σspin,+
ψ1,ι

= Sym2 ρ∆11,ι +
3∑

i=−1

χ−i
ℓ .

The contribution of ψ to eIH(λ′) is thus

χ2n′−14
ℓ σIH

ψ,ι = χ−10
ℓ σspin,+

ψ1,ι
×

d∏
i=1

1 + χ−i
ℓ .

We have
trχ−10

ℓ Sym2 ρ∆11,ι(Frob
m
p ) = ι

(
p11m tr Sym2 cp(∆11)

)
where the semi-simple conjugacy class cp(∆11) in SL2(C) is determined by

tr cp(∆11) = p−11/2τ(p)

(recall the Ramanujan τ function from Theorem 1). The well-known relation
τ(p)2 = τ(p2) + p11 and elementary computations give

trχ−10
ℓ Sym2 ρ∆11,ι(Frob

m
p ) = a(pm).

We omit the details leading to the formula for |A7(Fq)| in Theorem 1.
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Remark 9.2.1. In principle the classification theorems [CL, Theorem 9.3.3] and
[CT20, Theorems 3 and 4] allow us to obtain explicit formulas for ec(An,Q,Fℓ(Vλ,0))
for λ1 + n ≤ 12.

Remark 9.2.2. 1. We checked that the dimensions of the Euler characteristics
(ec(An,Q,Qℓ))1≤n≤7 (for n ≤ 6 this amounts to evaluating the polynomial Pn
at q = 1) coincide with the values that we computed independently using the
trace formula (see [HT18, Appendix, Proposition 4] and [Taï17]).

2. The method explained above to compute ec(An,Q,Qℓ) for small n clearly also
works to compute ec(An,Q,F(Vλ,0)) for small λ1+n. For example we checked
that we recover [BFG14, Theorem 8.1].
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A Cohomological correspondences

A.1 Definitions and induced maps in cohomology

Let ℓ be a prime number. Let B be a scheme over Z[1/ℓ] assumed29 to be Noethe-
rian, regular and of dimension≤ 1. Fix a dualising complex on B, thus determining
dualising complexes on schemes separated of finite type over B. Let πi : Xi → B

for i = 1, 2 be separated finite type schemes over B, and Li ∈ Db
c(Xi,Qℓ). Let

π : X → B be also separated of finite type, and suppose that ci : X → Xi for
i = 1, 2 are morphisms over B. Recall that a correspondence from L1 to L2 with
support in (c1, c2) is a morphism u : c∗1L1 → c!2L2.

The dual D(u) of u is a correspondence from D(L2) to D(L1) with support in
(c2, c1) defined in the obvious way using the identifications

Hom(c∗1L1, c
!
2L2) ≃ H0(RΓ(RHom(c∗1L1, c

!
2L2))) and

RHom(c∗1L1, c
!
2L2) ≃ D(c∗1L1 ⊗L D(c!2L2)) ≃ D(c∗2D(L2)⊗L c!1D(L1)).

If c1 (resp. c2) is proper then u induces a morphism “in cohomology”

u! : π1!L1 → π2!L2 (A.1.1)

(resp. u∗ : π1∗L1 → π2∗L2), (A.1.2)

see [Fuj97, (1.3.2)] and [Pin92b, (1.3)] (see also [Var07]). For example in the first
case u! is obtained as the composition

π1!L1 → π1!c1∗c
∗
1L1 ≃ π2!c2!c

∗
1L1

π2!c2!∗u−−−−→ π2!c2!c
!
2L2 → π2!L2

where the first map is the unit for the pair of adjunct functors (c∗1, c1∗), the isomor-
phism follows from the composition rule for ·! and the fact that c1 is proper, and
the last map is the counit for (c2!, c

!
2). There is an obvious notion of morphism of

correspondences having the same support (L1, L2, u)→ (K1, K2, v), and it is easy
to check that if c1 (resp. c2) is proper then the following diagram commutes.

π1!L1 π2!L2

π1!K1 π2!K2

u!

v!

resp.
π1∗L1 π2∗L2

π1∗K1 π2∗K2

u∗

v∗

29More generally one could assume that B is a regular excellent Noetherian scheme, or an
excellent Noetherian scheme endowed with a dimension function, see [ILO14, Exposé XVII]. We
will not need this generality.
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We leave it to the reader to check that the formation of u! (resp. u∗) is com-
patible with duality: D(u!) : π2∗D(L2)→ π1∗D(L1) coincides with D(u)∗.

We briefly recall the definition of composition for correspondences (see also
[Sgaa, Exposé III §5.2]). Consider a diagram of schemes separated of finite type
over B

X ′ X ′′

X1 X2 X3

c1

c2

d2

d3

and correspondences u : c∗1L1 → c!2L2 and v : d∗2L2 → d!3L3. Denote p1 : X ′ ×X2

X ′′ → X ′ and p2 : X ′ ×X2 X
′′ → X ′′ the two projections. The composition v ◦ u

is the correspondence supported on (c1p1, d3p2) defined as the composition

p∗1c
∗
1L1

p∗1(u)−−−→ p∗1c
!
2L2 → p!2p2!p

∗
1c

!
2L2

BC−1

−−−→ p!2d
∗
2c2!c

!
2L2 → p!2d

∗
2L2

p!2(v)−−−→ p!2d
!
3L3

where as before unlabelled maps are (co)units and BC is the base change isomor-
phism d∗2c2! ≃ p2!p

∗
1 ([Sgag, Exposé XVII Théorème 5.2.6]). It is formal to check

that this notion is compatible with cohomology ((A.1.1) and (A.1.2)) when this
makes sense.

A.2 Base change

We now discuss base change. Let f : B′ → B be morphism such that one of the
following holds:

1. f is separated of finite type, or

2. f is flat with geometrically regular fibres and B′ is Noetherian and excellent.

Denote π′
i : X ′

i → B′ and π′ : X ′ → B′ the objects obtained by base change,
c′i : X ′ → X the natural morphisms obtained from ci and gi : X ′

i → Xi, g :

X ′ → X parallel to f . There is a notion of base change for correspondences f ∗ :

Hom(c∗1, c
!
2L2)→ Hom(c′∗1 g

∗
1L1, c

′!
2g

∗
2L2) (resp. f ! : Hom(c∗1, c

!
2L2)→ Hom(c′∗1 g

!
1L1, c

′!
2g

!
2L2)

mapping u to f ∗u (resp. f !u) defined as the composition

c′∗1 g
∗
1L1 ≃ g∗c∗1L1 → c′!2c

′
2!g

∗c∗1L1
BC−1

−−−→ c′!2g
∗
2c2!c

∗
1L1

u−→ c′!2g
∗
2c2!c

!
2L2 → c′!2g

∗
2L2,

resp.

c′∗1 g
!
1L1 → c′∗1 g

!
1c1∗c

∗
1L1

u−→ c′∗1 g
!
1c1∗c

!
2L2

D(BC)−−−−→ c′∗1 c
′
1∗g

!c2!L2 → g!c2! ≃ c′!2g
!
2L2.

Unsurprisingly, D(f ∗u) = f !D(u).
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Lemma A.2.1. For f : B′ → B and u ∈ Hom(c∗1L1, c
!
2L2) as above, if c1 is

proper then (f ∗u)! = f ∗(u!), i.e. (f ∗u)! : π
′
1!g

∗
1L1 → π′

2!g
∗
2L2 is obtained from u! by

applying f ∗ and via the base change isomorphisms f ∗πi! ≃ π′
i!g

∗
i .

Proof. Details are left to the reader, essentially uses compatibility of proper base
change with composition [Sgag, Exposé XVII Lemme 5.2.4] and the unit/counit
relations for pairs of adjoint functors.

Of course if c2 is proper the dual assertion (f !u)∗ = f !(u∗) is a direct conse-
quence.

A.3 Pushforward and pullback

We now discuss proper pushforward and étale pullback (for X), and compatibility
with base change and induced morphisms in cohomology. We do not consider the
most general situation.

Consider a commutative diagram of schemes separated of finite type over B:

X ′

X

X1 X2

c′1 c′2

f

c1

c2

(A.3.1)

Under hypotheses on f , correspondences with support in (c1, c2) and (c′1, c
′
2) can

be related in both directions (see [Fuj97, §1.4] for the proper pushforward).

1. If f is proper, we have a pushforward morphism corr-f∗ : Hom(c′∗1 L1, c
′!
2L2)→

Hom(c∗1L1, c
!
2L2): for u ∈ Hom(c′∗1 L1, c

′!
2L2), corr-f∗u is obtained as the com-

position

c∗1L1 → f∗f
∗c∗1L1 = f∗c

′∗
1 L1

f∗(u)−−−→ f∗c
′!
2L2 = f!f

!c!2L2 → c!2L2

where the first and last morphisms are given by unit and counit of ad-
junctions. As before denote πi : Xi → B. If c1 is proper (resp. c2 is
proper) then (corr-f∗u)∗ ∈ Hom(π1∗L1, π2∗L2) equals u∗ (resp. (corr-f∗u)! ∈
Hom(π1!L1, π2!L2) equals u!). This follows from the compatibility of adjunc-
tions with compositions.
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2. If f is étale and u ∈ Hom(c∗1L1, c
!
2L2), define corr-f ∗u as the composition

c′∗1 L1 ≃ f ∗c∗1L1 ≃ f !c∗1L1
f !(u)−−−→ f !c!2L2 ≃ c′!2L2.

For f étale this defines a pullback morphism

corr-f ∗ : Hom(c∗1L1, c
!
2L2) −→ Hom(c′∗1 L1, c

′!
2L2).

When f is an open immersion corr-f ∗ is just the restriction morphism.

Lemma A.3.1. In the situation of (A.3.1) above, if f is finite étale of con-
stant degree N then for any correspondence u with support in (c1, c2) we have
corr-f∗(corr-f

∗u) = Nu.

Proof. This follows from the fact that the composition id → f∗f
∗ ≃ f!f

! → id is
multiplication by N ([Sgag, Exposé XVIII Proposition 3.1.8(iii)] and [Sgag, Exposé
XVII Théorème 6.2.3 (Var 4)]).

A.4 More pushforwards and pullbacks

The pushforward in the previous section admits the following variant.

Definition A.4.1. Consider a commutative diagram of qcqs schemes

X1 X ′ X2

Y1 Y ′ Y2

f1

c1

f

c2

f2

d1

d2

(A.4.1)

in which all morphisms are separated of finite type and d2 and c2 are proper. Let
u : c∗1L1 → c!2L2 be a correspondence supported on (c1, c2). Define a correspondence
from f1∗L1 to f2∗L2 supported on (d1, d2):

d∗1f1∗L1 → f∗c
∗
1L1

f∗(u)−−−→ f∗c
!
2L2 → d!2d2!f∗c

!
2L2 ≃ d!2f2∗c2!c

!
2L2 → d!2f2∗L2

where the first map is obtain from two adjunctions, the third map is an adjunction,
the fourth map follows from d2,! ≃ d2,∗ and c2,∗ ≃ c2,! because d2 and c2 are proper
and the last map is also an adjunction. Denoting f = (f1, f, f2), we will denote by
corr-f ∗u this correspondence.
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It is often more convenient to see the correspondence u as a morphism u :

c2!c
∗
1L1 → L2, by adjunction, and then its pushforward corr-f ∗u by f = (f1, f, f2),

seen as a morphism d2!d
∗
1f1∗L1 → f2∗L2, is equal to the composition

d2!d
∗
1f1∗L1 → d2!f∗c

∗
1L1 ≃ f2∗c2!c

∗
1L1

f2∗(u)−−−→ f2∗L2.

As usual this follows from the adjunction formalism.

Remark A.4.2. Assume that we have a commutative diagram (A.4.1), and in-
stead of assuming that d2 and c2 are proper, assume that f and f2 are proper. In
this situation we may define, for a correspondence u : c∗1L1 → c!2L2, its pushfor-
ward along f as above, deriving d2!f∗ ≃ f2∗c2! from f∗ = f! and f2∗ = f2!. If all
four morphisms c2, d2, f and f2 are proper then the two notions of pushforward
coincide. In particular when f1 = id, f2 = id and f and d2 are proper the pushfor-
ward defined in the present section is equal to the pushforward defined in Section
A.3.

In practice the assumption that c2 and d2 are proper is always satisfied (at least
in this article), whereas the vertical morphisms are not always proper.

As in the previous section, pushfoward of correspondences is compatible with
cohomology, as the following proposition shows.

Proposition A.4.3 (Compare [Fuj97, §1.4]). In the setting of Definition A.4.1,
assume that the diagram is a diagram of schemes over B, and denote πi : Yi → B

and π : Y → B. Then the morphisms u∗ : (π1f1)∗L1 → (π2f2)∗L2 and (corr-f ∗u)∗ :

π1∗f1∗L1 → π2∗f2∗L2 are equal.

Proof. Here it is convenient to see u as a morphism c2!c
∗
1L1 → L2 and similarly for

corr-f ∗u. Writing the “base change” morphism d∗1f1∗ → f∗c
∗
1 as the composition

d∗1f1∗ → d∗1f1∗c1∗c
∗
1 ≃ d∗1d1∗f∗c

∗
1 → f∗c

∗
1

and plugging this in the definition of (corr-f ∗u)∗, we obtain a long composition
where the unit and counits for (d∗1, d1∗) both appear and may be eliminated. Details
are left to the reader.

We now recall from [Mor08, §5] a definition of pullback for correspondences.
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Definition A.4.4. Consider a commutative diagram of qcqs schemes

X1 X ′ X2

Y1 Y ′ Y2

f1

c1

f

c2

f2

d1

d2

(A.4.2)

in which all morphisms are separated of finite type and assume that the right square
is Cartesian up to nilpotents. Let u : d∗1L1 → d!2L2 be a correspondence supported
on (d1, d2). Define its pullback corr-f ∗u as the composition

c∗1f
∗
1L1 ≃ f ∗d∗1L1

f∗u−−→ f ∗d!2L2 → c!2f
∗
2L2

where the morphism of functors f ∗d!2 → c!2f
∗
2 is [Sgag, Exposé XVIII (3.1.14.2)],

i.e. it is obtained by adjunction from the base change isomorphism f ∗
2d2! ≃ c2!f

∗.

As for pushforwards, this notion of pullback coincides with the one defined in
the previous section when both make sense, but proving this requires some work.
The general compatibilities in the following lemma are probably folklore.

Lemma A.4.5. Let
X ′ Y ′

X Y

f

c d

g

be a Cartesian diagram of qcqs schemes in which all morphisms are separated of
finite type.

1. Assume that d is proper (whence also c). Then the isomorphism g!c∗ ≃ d∗f!
(see [Sgag, Exposé XVII §3.3.2.3]) is equal to the composition

g!c∗
adj−→ d∗d

∗g!c∗
BC−−→
∼

d∗f!c
∗c∗

adj−→ d∗f!

2. Assume that g is étale, so that we have an adjoint pair (g!, g
∗) (see [Sgag,

Exposé XVII Proposition 6.2.11]), and similarly for f . Then the composition

c∗
adj−→ c∗g∗g! ≃ f ∗d∗g!

BC−−→
∼

f ∗f!c
∗

is equal to the unit id→ f ∗f! applied to c∗.
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3. Assume that g is étale (whence also f). Then the base change isomorphism
c!f

∗ ≃ g∗d! is equal to the composition

c!f
∗ adj−→ g∗g!c!f

∗ ≃ g∗d!f!f
∗ adj−→ g∗d!.

4. Assume that g is étale (whence also f). Then the morphism of functors
f ∗d! → c!g∗ defined in [Sgag, Exposé XVIII (3.1.14.2)] is equal to

f ∗d! ≃ f !d! ≃ (df)! = (gc)! ≃ c!g! ≃ c!g∗.

Proof. 1. Writing g as the composition of an open immersion and a proper
morphism, we are reduced to proving that our two compositions coincide in
the following cases.

If g is proper then g! = g∗ and f! = f∗ and we are left with an exercise in
adjunction. Details are left to the reader.

If g is an open immersion then the isomorphism g!c∗ ≃ d∗f! is defined (see
[Sgag, Exposé XVII (5.1.5.2)]) as

g!c∗
adj−→
∼

g!c∗f
∗f!

BC←−−
∼

g!g
∗d∗f!

adj−→
∼

d∗f!

and it follows readily from the definition (see Lemme 5.1.2 loc. cit. and its
proof) that the base change isomorphism f!c

∗ ≃ d∗g! is equal to

f!c
∗ adj−→

∼
f!c

∗g∗g! ≃ f!f
∗d∗g!

adj−→ d∗g!.

So we are left to check that the two paths from g!c∗ to d∗f! in the diagram

g!c∗ g!c∗f
∗f! g!g

∗d∗f! d∗f!

d∗d
∗g!c∗ d∗f!f

∗d∗g!c∗ d∗f!c
∗g∗g!c∗ d∗f!c

∗c∗

∼
adj

adj

BC
∼

adj

∼

adj

∼
∼ adj

∼

adj

are equal. The bottom path is also equal to

g!c∗
adj−→
∼

g!c∗f
∗f!

adj−→ d∗d
∗g!c∗f

∗f! ≃ d∗f!c
∗g∗g!c∗f

∗f!
adj←−
∼
d∗f!c

∗c∗f
∗f!

adj−→ d∗f!f
∗f!

adj−→
∼

d∗f!

so we have to show that the (anti-clockwise) cycle from d∗f! to itself in the
diagram

g!c∗f
∗f! g!g

∗d∗f! d∗f! d∗f!f
∗f!

d∗d
∗g!c∗f

∗f! d∗f!f
∗d∗g!c∗f

∗f! d∗f!c
∗g∗g!c∗f

∗f! d∗f!c
∗c∗f

∗f!

adj

BC
∼

adj

∼
adj

∼

adj

∼
∼ adj

∼

adj
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is the identity. We observe that this diagram is obtained by applying a
similar diagram to f!, and so it is enough to show that the composition

g!g
∗d∗

BC−−→
∼

g!c∗f
∗ adj−→ d∗d

∗g!c∗f
∗ adj←−

∼
d∗f!f

∗d∗g!c∗f
∗

≃ d∗f!c
∗g∗g!c∗f

∗ adj←−
∼
d∗f!c

∗c∗f
∗ adj−→ d∗f!f

∗ adj−→ d∗

is simply equal to the counit g!g∗ → id applied to d∗. We may reorder:

g!g
∗d∗

adj−→ d∗d
∗g!g

∗d∗
adj←−
∼
d∗f!f

∗d∗g!g
∗d∗

≃ d∗f!c
∗g∗g!g

∗d∗
adj←−
∼
d∗f!c

∗g∗d∗
BC−−→
∼

d∗f!c
∗c∗f

∗ adj−→ d∗f!f
∗ adj−→ d∗.

Using the fact that the inverse of g∗ adj−→ g∗g!g
∗ (counit applied to g∗) is

g∗g!g
∗ adj−→ g∗ (g∗ applied to unit), and the equality of compositions(

c∗g∗d∗
BC−−→ c∗c∗f

∗ adj−→ f ∗
)
=
(
c∗g∗d∗ ≃ f ∗d∗d∗

adj−→ f ∗
)

we obtain

g!g
∗d∗

adj−→ d∗d
∗g!g

∗d∗
adj←−
∼
d∗f!f

∗d∗g!g
∗d∗

≃ d∗f!c
∗g∗g!g

∗d∗
adj−→ d∗f!c

∗g∗d∗ ≃ d∗f!f
∗d∗d∗

adj−→ d∗f!f
∗ adj−→ d∗

which is simply

g!g
∗d∗

adj−→ d∗d
∗g!g

∗d∗
adj←−
∼
d∗f!f

∗d∗g!g
∗d∗

adj−→ d∗f!f
∗d∗d∗

adj−→ d∗f!f
∗ adj−→ d∗.

Moving the counit f!f ∗ → id to the left simplifies the composition:

g!g
∗d∗

adj−→ d∗d
∗g!g

∗d∗
adj−→ d∗d

∗d∗
adj−→ d∗

and one last reordering and unit/counit relation for (d∗, d∗) yields the result.

2. We need to prove that the composition

c∗
adj−→ c∗g∗g! ≃ f ∗d∗g!

BC−−→
∼

f ∗f!c
∗

is equal to the unit id → f ∗f! applied to c∗. All functors occurring are
derived from exact functors, as are the morphisms between them, so we may
check this equality for sheaves, and for this it is enough to prove equality on
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stalks. For x′ a geometric point of X ′ and F an abelian sheaf on X we have
a commutative diagram

(c∗F)x′ (c∗g∗g!F)x′ (f ∗d∗g!F)x′ (f ∗f!c
∗F)x′

Fc(x′)
⊕
x

g(x)=g(c(x′))

Fx
⊕
x

g(x)=d(f(x′))

Fx
⊕
t

f(t)=f(x′)

Fc(t)

∼

∼

∼ ∼

BC
∼

∼

∼

where x denotes a geometric point of X and t denotes a geometric point of
X ′, the first map on the bottom line is the obvious inclusion and the third
map is induced by the bijection t 7→ c(t) from lifts of f(x′) along f to lifts of
d(f(x′)) along g, by the Cartesian property. We see that the composition at
the bottom coincides with the adjunction (c∗F)x′ → (f ∗f!c

∗F)x′ for (f!, f ∗).

3. Spelling out the definition of d! and c! by writing d as the composition of
an open immersion and a proper morphism, we are reduced to proving the
statement in two special cases: if d is an open immersion or if d is proper.

If d is an open immersion then all functors involved are derived from exact
functors on sheaves and equality may be checked on stalks. (Alternatively we
may check equality after applying c∗ because both source and target vanish
on the complement of X ′ in X, and this is rather formal.)

So we assume that d is proper for the rest of the proof, and we need to show
that the composition

c∗f
∗ adj−→ g∗g!c∗f

∗ ≃ g∗d!f!f
∗ adj−→ g∗d∗

BC−−→
∼

c∗f
∗

is the identity. Thanks to the first point of the lemma this composition may
be rewritten as

c∗f
∗ adj−→ g∗g!c∗f

∗ adj−→ g∗d∗d
∗g!c∗f

∗ BC−−→
∼

g∗d∗f!c
∗c∗f

∗ adj−→ g∗d∗f!f
∗ adj−→ g∗d∗

BC−−→
∼

c∗f
∗.

Writing the second base change isomorphism as the composition

g∗d∗
adj−→ c∗c

∗g∗d∗ ≃ c∗f
∗d∗d∗

adj−→ c∗f
∗,

reordering and noticing that the unit and counit for (d∗, d∗) cancel each other
out, we obtain

c∗f
∗ adj−→ c∗c

∗c∗f
∗ adj−→ c∗c

∗g∗g!c∗f
∗ ≃ c∗f

∗d∗g!c∗f
∗ BC−−→

∼
c∗f

∗f!c
∗c∗f

∗ adj−→ c∗f
∗f!f

∗ adj−→ c∗f
∗.
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The second point of the lemma allows us to simplify the composition of the
second, third and fourth morphisms:

c∗f
∗ adj−→ c∗c

∗c∗f
∗ adj−→ c∗f

∗f!c
∗c∗f

∗ adj−→ c∗f
∗f!f

∗ adj−→ c∗f
∗.

This is equal to the identity by unit/counit relations.

4. The morphism of functors f ∗d! → c!g∗ is, by definition, equal to the compo-
sition

f ∗d!
adj−→ c!c!f

∗d!
BC−−→
∼

c!g∗d!d
! adj−→ c!g∗

and by the previous point in the lemma this is equal to

f ∗d!
adj−→ c!c!f

∗d!
adj−→ c!g∗g!c!f

∗d! ≃ c!g∗d!f!f
∗d!

adj−→ c!g∗d!d
! adj−→ c!g∗.

The first two units may be combined into the unit for ((gc)!, (gc)!), expanded
into two units for (f!, f

∗) and (d!, d
!), compensating the last two counits.

Remark A.4.6. It seems likely that in Lemma A.4.5 one could replace “étale” by
“smooth” (introducing the appropriate shifts and Tate twists), but of course our
proof (the second point in particular) does not obviously extend to this case. It
may be possible to give a more conceptual proof that applies to the smooth case as
well, probably using tensor products.

Corollary A.4.7. Assume that we have a commutative diagram

X1 X ′ X2

Y1 Y ′ Y2

f1

c1

f

c2

f2

d1

d2

(A.4.3)

of qcqs schemes, where all morphisms are separated of finite type and f and f2 are
étale. Let u : d∗1L1 → d!2L2 be a correspondence. We obtain a correspondence

c∗1f
∗
1L1 ≃ f ∗d∗1L1

f∗u−−→ f ∗d!2L2 ≃ c!2f
∗
2L2

where we used f ∗ ≃ f ! and f !
2 ≃ f2, generalizing the notion of pullback defined in

Section A.3.
If the right square in the above diagram is Cartesian up to nilpotent elements,

then this pullback coincides with corr-f ∗u (Definition A.4.4).
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Proof. This follows directly from the last point in Lemma A.4.5.

The compatibility in Corollary A.4.7 will be useful to apply the following lemma
(compatibility of pullback and pushforward) in a setting where we simply consider
pullback along open immersions.

Proposition A.4.8. Assume that we have commutative diagrams of qcqs schemes

X1 X ′ X2 X ′ X

Y1 Y ′ Y2 Y ′ Y

f1

c1

f

c2

f2

g

f ′ f

d1

d2 h

in which all morphisms are separated of finite type, the right square of the left
diagram and the right diagram are Cartesian up to nilpotents, and h is proper (and
thus also g). Denote f = (f1, f, f2) and f ′ = (f1, f

′, f2). For any correspondence
u : h∗d∗1L1 → h!d!2L2 we have corr-f ∗(corr-h∗u) = corr-g∗(corr-(f

′)∗u).

Proof. Unwinding definitions we find that it is enough to prove commutativity
for the following diagrams of functors, where the unlabelled morphisms are [Sgag,
Exposé XVIII (3.1.14.2)].

f ∗ f ∗h∗h
∗ f ∗h∗h

!d!2 f ∗d!2 c!2f
∗
2

g∗g
∗f ∗ g∗(f

′)∗h∗ g∗(f
′)∗h!d!2 g∗g

!c!2f
∗
2 c!2f

∗
2

adj

adj BC∼ ∼BC

adj

∼ adj

For the left diagram we expand the base change morphism as

f ∗h∗
adj−→ g∗g

∗f ∗h∗ ≃ g∗(f
′)∗h∗h∗

adj−→ g∗(f
′)∗

and note that unit and counit for (h∗, h∗) cancel each other. For the right diagram,
expanding the definition of (f ′)∗h!d!2 → g!c!2f

∗
2 involves the unit id → g!g! which

cancels with the bottom right counit g∗g! → id, and by compatibility of base
change with composition the composition via the bottom path is equal to

f ∗h∗h
!d!2

adj−→ c!2c2!f
∗h∗h

!d!2
BC−−→ c!2f

∗
2d2!h∗h

!d!2
adj−→ c!2f

∗
2

i.e. the same composition as the top path but with natural transformations applied
in a different order.
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Proposition A.4.9. Consider a commutative diagram of qcqs schemes where all
morphisms are separated of finite type

U1 U ′ U2 U ′′ U3

X1 X ′ X2 X ′′ X3

f1

c1

f ′

c2

□ f2

c3

f ′′

c4

□ f3

d1

d2

d3

d4

in which the two marked squares are Cartesian. Denote q1, q2, p1, p2 and g the
morphisms

U ′ ×U2 U
′′ U ′′

X ′ ×X2 X
′′ X ′′

U ′ U2

X ′ X2

q1

q2

g

c3

f ′′

p2

d3
c2

f ′

f2

p1

d2

and g = (f1, g, f3), f ′ = (f1, f
′, f2) and f ′′ = (f2, f

′′, f3). Then the right square in
the commutative diagram

U1 U ′ ×U2 U
′′ U3

X1 X ′ ×X2 X
′′ X3

f1

c1q1

g

c4q2

f3

d1p1 d4p2

is Cartesian and for any correspondences u : d∗1L1 → d!2L2 and v : d∗3L2 → d!4L3

we have an equality of correspondences supported on (c1q1, c4q2):

corr-g∗(v ◦ u) = (corr-f ′′∗v) ◦ (corr-f ′∗u).

Proof. It is easy to deduce that the top square in the cube above is Cartesian
from the fact that the left marked square is Cartesian in the first diagram, and by
composition we deduce that the right square in the last diagram is also Cartesian.

We only sketch the rather tedious comparison of correspondences. Unraveling
definitions, we obtain long compositions for both sides involving units and counits
for (p2!, p

!
2) (only for the left-hand side, with both unit and counit appearing),

(d2!, d
!
2), (c4!, c!4), (q2!, q!2) (d4!, d!4), (c2!, c!2) (only for the right-hand side, with both

unit and counit appearing), and base change isomorphisms:
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• for the left-hand side, for the squares

X ′ ×X2 X
′′ X ′′ U ′ ×U2 U

′′ U ′′ U3

X ′ X2 X ′ ×X2 X
′′ X ′′ X3

p1

p2

d3 g

q2

f ′′

c4

f3

d2 p2 d4

• for the right-hand side, for the three squares in

U ′ ×U2 U
′′ U ′′ U ′′ U3

U ′ U2 X ′′ X3

X ′ X2

q1

q2

c3 f ′′

c4

f3

f ′

c2

f2

d4

d2

where pullback is for vertical maps and exceptional direct image for horizontal
maps, and all base change isomorphisms are directed from top to bottom (i.e. left
to right). One can reorder both compositions to remove the redundant unit/counit
pairs (p2!, p

!
2) and (c2!, c

!
2), and use compatibility of base change isomorphisms

with composition (both horizontally and vertically) to express on both sides the
composition of all base change isomorphisms as the composition of two base change
isomorphisms for the same squares.

A.5 Compactifications and canonical extensions

The first part of the following lemma restates [Fuj97, Lemma 1.3.1] and extends
it to intermediate extensions of perverse sheaves.

Lemma A.5.1. Suppose that we have a commutative diagram

U

U1 U2

X

X1 X2

c1 c2

j

j1 j2

c̄1 c̄2
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of schemes separated and of finite type over B, where j, j1, j2 are open immersions.
Let Z := X ∖ j(U) and Zk = Xk ∖ jk(Uk) for k = 1, 2. Assume that for any k we
have Z = c̄−1

k (Zk), i.e. that both squares in the above diagram are cartesian (the
inclusion c̄−1

k (Zk) ⊂ Z holds automatically).

1. For any L1 ∈ Db
c(U1) and L2 ∈ Db

c(U2), the restriction morphisms

Hom(c̄∗1j1!L1, c̄
!
2j2!L2) −→ Hom(c∗1L1, c

!
2L2)

Hom(c̄∗1j1∗L1, c̄
!
2j2∗L2) −→ Hom(c∗1L1, c

!
2L2)

are isomorphisms.

2. Assume moreover that B is the spectrum of a field and that the morphisms
bk : Z → Zk are quasi-finite. Then for any perverse sheaves L1, L2 on U1, U2,
the restriction morphism

Hom(c̄∗1j1!∗L1, c̄
!
2j2!∗L2)→ Hom(c∗1L1, c

!
2L2)

is an isomorphism.

Proof. We only prove the second case of intermediate extensions, the other case
(proved in [Fuj97, Lemma 1.3.1] in a slightly different generality) being similar but
using i∗1j1!L1 = 0 and i!2j2∗L2 = 0. Denote i : Z ↪→ X and ik : Zk ↪→ Xk. We
have c̄k ◦ i = ik ◦ bk where bk : Z → Zk is quasi-finite by assumption. In particular
b∗1 (resp. b!2) is left (resp. right) t-exact [BBD82, Proposition 2.2.5]. Using the
induction formula [Sgag, Exposé XVIII Corollaire 3.1.12.2]30 we get

i!RHom(c̄∗1j1!∗L1, c̄
!
2j2!∗L2) ≃ RHom(i∗c̄∗1j1!∗L1, i

!c̄!2j2!∗L2)

≃ RHom(b∗1i
∗
1j1!∗L1, b

!
2i

!
2c̄

!
2j2!∗L2).

Moreover i∗1j1!∗L1 ∈ pD≤−1 and i!2j2!∗L2 ∈ pD≥1 [BBD82, Proposition 1.4.14], and
by [BBD82, Proposition 2.1.20]31

A := RHom(b∗1i
∗
1j1!∗L1, b

!
2i

!
2c̄

!
2j2!∗L2)

is an object of D≥2. Applying i∗i
! → id → j∗j

∗ to RHom(c̄∗1j1!∗L1, c̄
!
2j2!∗L2) we

obtain a distinguished triangle

i∗A→ RHom(c̄∗1j1!∗L1, c̄
!
2j2!∗L2)→ j∗RHom(c∗1L1, c

!
2L2)

+1−→ .

30For an immersion i the induction formula can be proved directly using the formalism of
[Sgae, Exposé IV §14].

31The proof is given for topological spaces there, but it applies without modification to the
categories Db

S,L(−) for pairs (S,L) as in §2.1.10 loc. cit.
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Taking global sections and cohomology in degree 0, we find the desired isomor-
phism since H0(RΓA) = H1(RΓA) = 0.

In the situation of (a) in this lemma, for a correspondence u : c∗1L1 → c!2L2,
the induced correspondence c̄∗1j1!L1 → c̄!2j2!L2 can be defined directly as follows:

c̄∗1j1!L1
BC−−→
∼

j!c
∗
1L1

j!∗u−−→ j!c
!
2L2

BC−−→ c̄!2j2!L2.

and dually for c̄∗1j1∗L1 → c̄!2j2∗L2.

A.6 Nearby cycles

For the rest of this section we consider the case where the base B = {s, η} is a
Henselian trait, with special point s and generic point η. We use the notation
of [Sgab, Exposé XIII], except that we continue to suppress the letter R from
our notation (all objects considered are in derived categories, unless explicitly
mentioned otherwise). For simplicity we fix a “separable closure” η → η and take,
for X a scheme over s, Construction 1.2.4 loc. cit. as the definition of X ×s η.
We will denote by FX : Xs̄ → X ×s η “the” morphism of toposes for which F ∗

X

is “forgetting the action of Gal(η/η)”. We will say that a sheaf in abelian groups
F of X ×s η is constructible if F ∗

XF is constructible. The morphism FX can be
thought as an analogue of the base change morphism of toposes BCX : Xs → X,
and the two are related by the specialization morphism sp : X ×s η → X since
we have F ∗

Xsp
∗ = BC∗

X . By [Del77, Théorèmes de finitude §3] if X is a scheme of
finite type over B and F is a constructible sheaf in abelian groups over Xη then
ΨηF is constructible.

A.6.1 Direct image

Recall from [Sgab, Exposé XIII (2.1.6.2)] that any morphism f : X → Y of
schemes over s induces a morphism of toposes X×s η → Y ×s η and thus a derived
direct image functor f∗ : D+(X ×s η,OE/mN

E ) → D+(Y ×s η,OE/mN
E ). Recall

that the formation of f∗ is even a (contravariant) normalized pseudo-functor (see
[Sgac, Exposé VI §8]), i.e. we can impose (idX)∗ = id for any X, the obvious
isomorphisms of functors (fg)∗ ≃ f∗g∗ satisfy a cocycle condition and are obvious
when f or g is an identity morphism. we have the “base change” morphism of
functors F ∗

Y f∗ → fs̄,∗F
∗
X (before derivation, this is simply an equality by definition).
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If f is qcqs then this morphism of functors is an isomorphism 32. Using the
analogous property for BC∗

X instead of F ∗
X and the equality F ∗

Xsp
∗ = BC∗

X we
see that if f is qcqs then the morphism of functors sp∗f∗ → f∗sp

∗ obtained by
deriving the obvious isomorphism of functors between categories of sheaves, is also
an isomorphism.

Recall ((2.1.7.1) loc. cit.) that if f : X → Y is a morphism of schemes over B
then we have a morphism of functors Ψηfη∗ → fs∗Ψη which is an isomorphism if
f is proper.

Lemma A.6.1. The morphisms of functors Ψηfη∗ → fs∗Ψη are compatible with
composition, in the sense that for qcqs morphisms f : X → Y and g : Y → Z

between schemes over B the following diagram of functors is commutative.

Ψηgη∗fη∗ gs∗Ψηfη∗ gs∗fs∗Ψη

Ψη(gf)η∗ (gf)s∗Ψη

∼ ∼ (A.6.1)

Proof. In this proof we momentarily denote by fs∗ etc. the underived functors, and
denote by R? the right derived functor of ?.

Before derivation the commutativity of (A.6.1) may be checked after forgetting
the action of Gal(η/η). This amounts to the compatibility of base change maps
(for i∗) with composition (see [Sgaf, Exposé XII Proposition 4.4]; this can also
be proved by considering the category fibered and cofibered over the category of
schemes over B, with fiber over a scheme X the opposite category to that of étale
sheaves ofOE/mN

E -modules overX, using the characterization of base change maps
given by [Sgaf, Exposé XVII Proposition 2.1.3]).

One can then derive the diagram, and obtain the following commutative dia-
32Deligne claims loc. cit. that quasi-compact is enough for this to hold, but we cannot think

of an argument that does not require f to be quasi-separated. This can be proved by a familiar
argument (analogous to [Sgaf, Exposé VII Théorème 5.7], for the projective system (Xs′×s′ η′)η′ ,
where η′ ranges over all the finite étale covers of η covered by η and s′ is the corresponding finite
étale cover of s).
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gram

RΨηRgη∗Rfη∗ Rgs∗RΨηRfη∗

R(Ψηgη∗)Rfη∗ R(gs∗Ψη)Rfη∗ Rgs∗R(Ψηfη∗) Rgs∗R(fs∗Ψη) Rgs∗Rfs∗RΨη

R(Ψηgη∗fη∗) R(gs∗Ψηfη∗) R(gs∗fs∗Ψη) R(gs∗fs∗)RΨη

RΨηR(gf)η∗ R(Ψη(gf)η∗) R((gf)s∗Ψη) R(gf)s∗RΨη

∼ ∼

∼

∼

using the general fact that if F,G,H are composable additive functors between
abelian categories such that F , G, H, FG, GH and FGH are everywhere right
derivable, the two composite morphisms of functors R(FGH)→ R(FG) ◦RH →
RF ◦RG ◦RH and R(FGH)→ R(F ) ◦R(GH)→ RF ◦RG ◦RH coincide. The
original diagram (A.6.1) is easily extracted.

We see no reason for the forgetful functors F ∗
X between derived categories to be

faithful, which is why the proof begins with the underived case. All of the above
admit parallel statements for the toposes X ×s B and the morphisms of functors
Ψf∗ → fs∗Ψ, that we leave to the reader.

A.6.2 Inverse image

Similarly, for f : X → Y a morphism of schemes over s we have f ∗ : D+(Y ×s
η,OE/mN

E ) → D+(X ×s η,OE/mN
E ), which is “the” pseudo-functor (as f varies)

left adjoint to f∗. More explicitly, it is also obtained by deriving the obvious
exact functor on OE/mN

E -modules. In particular we have isomorphisms of functors
F ∗
Xf

∗ ≃ f ∗
sF

∗
Y and f ∗sp∗ ≃ sp∗f ∗. For f : X → Y a morphism of schemes over

B one can define a morphism of functors f ∗
sΨη → Ψηf

∗
η , either directly (before

derivation and ignoring the action of Gal(η/η), this is a base change map) or by
adjunction, as the composition

f ∗
sΨη → f ∗

sΨηfη∗f
∗
η → Ψηf

∗
η fη∗f

∗
η → Ψηf

∗
η .

Again these morphisms of functors are compatible with composition as f varies (a
diagram similar to (A.6.1) is commutative), and there are analogous constructions
and statements for the toposes X ×s B and Ψ.
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A.6.3 Exceptional direct image

Recall from [Sgab, Exposé XIII 2.1.6 c)] that, for a separated morphism f : X → Y

between schemes of finite type over s, we have f! : Db
c(X×sη,Qℓ)→ Db

c(Y ×sη,Qℓ)

defined by compactifying f as in [Sgag, Exposé XVII]. We have an isomorphism of
functors F ∗

Y f! ≃ fs̄,!F
∗
X : the case of open immersions is trivial, the case of proper

morphisms was considered in A.6.1 and the general case follows. Similarly we have
an isomorphism of functors sp∗f! ≃ f!sp

∗. Again the formation of f! is a pseudo-
functor (by construction: it is obtained by “glueing” the pseudo-functors f 7→ f∗ for
f proper and f 7→ f! for f an open immersion using the analogue of [Sgag, Exposé
XVII §5.1.5] for the toposes X ×s η as “glueing datum”). Also by compactification
(over B) and using the proper base change theorem, for f : X → Y a separated
morphism between schemes of finite type over B, we have a morphism of functors
fs!Ψη → Ψηfη!.

Lemma A.6.2. For f : X → Y and g : Y → Z separated morphisms between
schemes of finite type over B the following diagram of functors is commutative.

Ψηgη!fη! gs!Ψηfη! gs!fs!Ψη

Ψη(gf)η! (gf)s!Ψη

∼ ∼ (A.6.2)

Proof. 1. If f is an open immersion and g is proper then this is the very defi-
nition of (gf)s!Ψη → Ψη(gf)η!.

2. If f and g are proper all horizontal morphisms in the diagram (A.6.2) are iso-
morphisms and are the inverses of the horizontal morphisms in the diagram
(A.6.1).

3. In the case where f and g are open immersions we can argue as in the proof
of Lemma A.6.1 (again we momentarily consider functors before derivation,
and explicitly denote the right derived functors by R?).

(a) First we check the commutativity of the analogue of (A.6.1) before
derivation, and for this we can forget the action of Gal(η/η). We have
a commutative diagram of functors

i
∗
g!f ! gs!i

∗
f ! gs!fs!i

∗

i
∗
gf ! (gf)s!i

∗

∼ ∼

∼
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thanks to the commutativity of the analogous diagram with ! replaced
by ∗ (already used in the proof of Lemma A.6.1) and the characteriza-
tion of the isomorphism of functors i∗f ! → fs!i

∗ in [Sgag, Exposé XVII
Lemme 5.1.2]. We also have a commutative diagram of functors

j∗gη!fη! g!j∗fη! g!f !j∗

j∗(gf)η! gf !j∗

This can be checked directly on the definition (details left to the reader).
We thus obtain the commutativity of the underived analogue of (A.6.2).

(b) As in the proof of Lemma A.6.1, deriving gives us a commutative dia-
gram containing (A.6.2), using the fact that the morphism of functors
R(fs! ◦ Ψη) → Rfs! ◦ RΨη and the analogues for g and gf are isomor-
phisms (fs! is exact).

4. To conclude the proof it remains to consider the case where f is proper and
g is an open immersion. Factoring gf as ba where b : T → Z is proper
and a : X → T is an open immersion, we need to show that the following
diagram of functors is commutative.

gs!Ψηfη∗ Ψηgη!fη∗ Ψηbη∗aη!

gs!fs∗Ψη bs∗as!Ψη bs∗Ψηaη!

∼

∼

∼

∼

(A.6.3)

where the top right and bottom left horizontal isomorphisms are induced by
the isomorphisms gη!fη∗ ≃ bη∗aη! and gs!fs∗ ≃ bs∗as! defined in [Sgag, Exposé
XVII §5.1.5]. Since the morphism X → Y ×Z T is a proper open immersion,
we can easily reduce the problem to the case where the square

X T

Y Z

a

f b

g

is Cartesian. As usual to check the commutativity of the underived analogue
of (A.6.3) one can ignore the action of Gal(η/η). Details are left to the reader
(ingredients are formal properties of adjunction, the triviality of base change
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by open immersions and the compatibility of base change maps with com-
position). Deriving and contemplating the resulting commutative diagram,
one can extract the commutative diagram (A.6.3) (this is very similar to the
second part of the proof of Lemma A.6.1).

Note that the fourth case with f = id is already used to show that the morphism
of functors hs!Ψη → Ψηhη! is well-defined, i.e. does not depend on the choice of a
compactification of h. Again, analogous statements hold for the toposes X ×s B
and with respect to the functors Ψ.

A.6.4 Exceptional inverse image

According to [Ill94, p. 45] following the same method as in [Sgag, Exposé XVIII
§3.1] one obtains, for f : X → Y a separated morphism between schemes of finite
type over s, “the” functor f ! : D+(Y ×s η,OE/mN

E ) → D+(X ×s η,OE/mN
E ) right

adjoint to f!, which maps D+
c (Y ×s η,OE/mN

E ) to D+
c (X ×s η,OE/mN

E ). We have
a morphism of functors F ∗

Xf
! → f !

sF
∗
Y defined by adjunction as the composition

F ∗
Xf

! → f !
sfs!F

∗
Xf

! ≃ f !
sF

∗
Y f!f

! → f !
sF

∗
Y . (A.6.4)

To check that this is an isomorphism, we will adapt the site-theoretic arguments of
[Sgag, Exposé XVIII §3]. For this we will need a “nice” site CX,B whose category of
sheaves can be identified with X ×s η. We model the definition on [Sgag, Exposé
XVIII 3.1.15]: consider the category CX,B of pairs (η′, U) where η′ is finite étale over
η, with residual scheme s′ → s, and U is a scheme étale over Xs′ . A morphism
(η1, U1) → (η2, U2) is given by a morphism η1 → η2 over η and a morphism
U1 → U2 compatible with Xs1 → Xs2 . In particular the morphism U1 → U2 is
étale. One easily checks that (η,X) is a final object in this category and that
fiber products exist in this category, thus so do finite projective limits. Define a
family of morphisms ((ηi, Ui)→ (η′, U))i to be a covering if the family (Ui → U)i
is jointly surjective. It is not difficult to check that this defines a pretopology, and
so a site with underlying category CX,B. From [Sgaf, Exposé VII 2.a)] one can
easily deduce that the site CX,B is subcanonical.

• If F is an object of X ×s η, then

F ′ : (η′, U) 7−→ lim←−
α:η→η′

F(U ×s′ s),
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where the projective limit is over the groupoid of morphisms compatible with
the morphisms to η, defines a sheaf on CX,B. Note that if η′ is connected (i.e.
a point) and if we choose α0 : η → η′ then the right-hand side is identified
with F(U×s′s)Gal(η/η′), and a general (η′, U) can be written as a finite disjoint
union of pairs (η′′, U ′) with η′′ a point.

• Conversely, if F ′ is a sheaf on CX,B then we can define an object F of X×s η
by

F(U) = lim−→
(α:η→η′,U,φ)

F ′(η′, U)

for U a scheme étale over Xs with U affine (or qcqs), where the injective limit
is over the category opposite to the category IU of triples (α : η → η′, U, φ)

where η′ is finite étale over η, U is a scheme étale over Xs′ and φ : U ≃ U×s′ s
(the morphism s→ s′ used here being the reduction of α). Note that thanks
to the qcqs assumption on U the index category Iopp

U
is filtered (essentially by

[Gro66, Théorème 8.8.2] and [Gro67, Proposition 17.7.8]), and if (α0 : η →
η′0, U0, φ0) is any object then the subcategory of (α : η → η′, U0 ×s′0 s

′, φ0)

given by some η → η′ → η′0, is cofinal. For σ ∈ Gal(η/η) with reduction
σred the action aσ : F(σ∗

redU) ≃ F(U) is defined by the equivalence of index
categories IU → Iσ∗

redU
, (α, U, φ) 7→ (ασ, U, φ× σred).

Proposition A.6.3. The first (resp. second) construction gives a sheaf F ′ on CX,B
(resp. an object of X ×s η), and the two constructions are inverse of each other.

Proof. Let F be an object of X ×s η, and let ((ηi, Ui) → (η′, U)) be a covering
family of morphisms in CX,B. Let (fi)i be a family of sections fi ∈ F ′(ηi, Ui).
We may see each fi as a family (fi,αi)αi indexed by all morphisms αi : η → ηi,
where fi,αi ∈ F(Ui,αi) with Ui,αi = Ui ×si s for the morphism s → si obtained
by reduction from αi. The action of Gal(η/η) on F induces isomorphisms, for
each σ ∈ Gal(η/η), aσ,αi : F(Ui,αiσ) → F(Ui,αi) satisfying the cocycle condition
aτσ,αi = aτ,αiaσ,αiτ . By definition we have aσ,αi(fi,αiσ) = fi,αi for all σ ∈ Gal(η/η)

and all αi : η → ηi. Now assume that for all indices i and j the images of fi and fj
in F ′(ηi,j, (Ui×U Uj)×(si×s′sj) si,j) coincide, where we have denoted ηi,j = ηi×η ηj,
with residue scheme si,j. This means that for any α : η → η′ and for any αi and
αj above α, the images of fi,αi and fj,αj in F(Ui,αi ×U ′

α
Uj,αj) coincide. For any

α : η → η′ the family (Ui,αi → U ′
α)i,αi is an étale covering, and so the family

(fi,αi)i,αi comes from a unique fα ∈ F(U ′
α). The relation aσ,α(fασ) = fα for

σ ∈ Gal(η/η) is clear.
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Conversely let F ′ be a sheaf on CX,B. The fact that the associated functor F
is a sheaf on the étale site of Xs (restricted to qcqs objects) follows from standard
arguments, and the fact that the Galois action is continuous is obvious.

We leave it to the reader to check that the two functors are inverse of each
other.

If (η′, U) is an object of CX,B such that η′ is a point, with corresponding trait
B′ → B, we have an identification of the sites CX,B/(η′, U) and CU,B′ and thus
an identification of the toposes ˜CX,B/(η′, U) and U ×s′ η′. In general η′ is a finite
disjoint union of points and we define CU,B′ and U ×s′ η′ as products over these
points in an obvious way.

We now describe certain points of the site CU,B′ , similarly to the usual case
[Sgaf, Exposé VIII Proposition 3.9]. Let α : η → η′ be a morphism over η 33,
inducing a morphism αred : s → s′ over s. Let β : Spec(k) → U be a geometric
point, inducing a geometric point of s′, and let γ : Spec(k) → s be a morphism
over s′. We will call such triples (α, β, γ) geometric points of (η′, U). Consider the
category Cα,β,γU,B′ with objects 34 (η′′, V, α̃, β̃, γ̃) where (η′′, V ) is an object of CU,B′

(the morphism to (η′, U) being implied) and (α̃, β̃, γ̃) is a geometric point of (η′′, V )

lifting (α, β, γ). Using a variation of the proof loc. cit. one easily checks that this
category is cofiltered. The functor C̃U,B′ → Sets,

F ′ 7−→ F ′
α,β,γ := lim−→

(Cα,β,γ
U,B′ )opp

F ′ (A.6.5)

is a fiber functor. In fact α induces a morphism of toposes FU,α : Us → U ×s′ η′
(here Us = U ×s′ s uses αred), and (A.6.5) is identified with the fiber functor of the
étale site of Us obtained by composing F ∗

U,α with the fiber functor corresponding
to the geometric point β×γ : Spec(k)→ Us. In particular if (αi, βi, γi)i is a family
of points such that the αi’s are jointly surjective then it is a conservative family
of points.

If f : X → Y is a morphism between schemes over s then the associated
morphism of toposes X ×s η → Y ×s η can also be obtained from the morphism
of sites CX,B → CY,B given by the functor CY,B → CX,B, (η′, V ) 7→ (η′, V ×Y X)

(this is almost identical to [Sgaf, Exposé XVII §1.4]). Let j : (η′, V ) → (η, Y ) be
33one could more generally consider morphisms from the spectrum of an arbitrary separably

closed (or algebraically closed) field, but this would complicate the compatibility constraint given
by γ

34and obvious morphisms . . .
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an object of CY,B, then we can form the “Cartesian diagram” 35

(η′, V ×Y X) (η,X)

(η′, V ) (η, Y )

k

g f

j

(A.6.6)

We will need various compatibilites for this “diagram”, generalising the ones already
known when η′ = η. We obviously have j∗g∗ = f∗k∗, and by transposition we have
an isomorphism of functors k∗f ∗ ≃ g∗j∗, compatibly with composition of f or j.
We also have the usual “tautological base change” isomorphism j∗f∗ ≃ g∗k

∗, also
compatible with compositions in two ways. If f is an open immersion then the gen-
eral [Sgag, Exposé XVII Lemme 5.1.2] gives a canonical isomorphism j∗f! ≃ g!k

∗.
If X and Y are separated and of finite type over s then by compactifying f we ob-
tain an isomorphism j∗f! ≃ g!k

∗, and by the same arguments as in Lemmas 5.2.3,
5.2.4 and 5.2.5 in [Sgag, Exposé XVII] this isomorphism does not depend on the
compactification and is compatible with composition (both horizontal and verti-
cal). Before giving more compatibilities, we recall and compare two constructions,
horizontal or vertical in (A.6.6), of trace maps.

Lemma A.6.4. If f : X → Y is a flat and quasi-finite morphism between separated
schemes of finite type over s, there is a unique morphism of functors trf : f!f ∗ → id

on OE/mN
E -modules in Y ×s η which after applying F ∗

Y is the usual trace map for
fs [Sgag, Exposé XVII Théorème 6.2.3].

Proof. For once we are dealing with sheaves and not objects in derived categories,
and so it is enough to observe that the trace map for fs is Gal(η/η)-equivariant,
which follows from compatibility with base change.

This trace map is also characterized by taking stalks at all geometric points in
CX,B as above.

Consider a scheme X over s and j : (η1, U1) → (η2, U2) a morphism in CX,B.
For any α1 : η → η1 over η we have an obvious isomorphism F ∗

U1,α1
j∗ ≃ j∗α1

F ∗
U2,α2

where jα1 is the morphism from U1 ×s1 s (using the reduction s → s1 of α1) to
U2×s2 s (using the reduction s→ s2 of α2 : η → η2 obtained by composing α1 and

35In general it only is a Cartesian diagram in a category that we have not defined, so this
“diagram” is only a visual aid. One could extend the (at least) 4 functors formalism to this
category, but we will not need this generality. If f is étale then this is a Cartesian diagram in
CY,B .

217



η1 → η2). This isomorphism is compatible with the identifications of stalks (A.6.5)
of pullbacks. Recall that the restriction functor j∗ (on OE/mN

E -modules) admits a
left adjoint that we denote by j! (see [Sgae, Exposé IV Proposition 11.3.1]). The
formation of j!, like j∗, is a pseudo-functor on CX,B. This notation does not conflict
with the previous one: if η′ is finite étale over η and η1 = η2 = η′ then the trace map
of Lemma A.6.4 realizes j! (as previously defined by compactification, replacing B
by the trait B′ corresponding to η′) as the left adjoint to j∗ (see [Sgag, Exposé
XVII Proposition 6.2.11]). For α1 : η → η1 over η consider the composition, where
α2 : η → η2 is α1 composed with η1 → η2,

jα1!F
∗
U1,α1

→ jα1!F
∗
U1,α1

j∗j! ≃ jα1!j
∗
α1
F ∗
U2,α2

j! → F ∗
U2,α2

j!.

Summing all possible α1’s we obtain, for α2 : η → η2 over η, a morphism of functors⊕
α1

jα1!F
∗
U1,α1

−→ F ∗
U2,α2

j! (A.6.7)

where the sum is over all morphisms α1 : η → η1 whose composition with η1 → η2
is α2. If (α2, β2, γ2) is a geometric point of (η2, U2) and F is a sheaf of OE/mN

E -
modules in C̃U1,B1 then as usual we have an identification

(j!F)α2,β2,γ2 ≃
⊕

(α1,β1,γ1)

Fα1,β1,γ1 (A.6.8)

where the sum is over all geometric points of (η1, U1) lifting (α2, β2, γ2). Using
this identification one can easily check that the morphism of functors (A.6.7) is
an isomorphism. By construction it is compatible with the adjunctions of functors
(j!, j

∗) and (jα1!, j
∗
α1
). The functor j! (on OE/mN

E -modules) is exact, and we will
still denote by j! the induced functor between derived categories.

We get back to the situation of (A.6.6), given by a morphism f : X → Y of
schemes over s and an object j : (η′, V )→ (η, Y ) in CY,B. Consider the morphism
of functors obtained as the following composition

k!g
∗ −→ k!g

∗j∗j! ≃ k!k
∗f ∗j! → f ∗j!. (A.6.9)

Applying the forgetful functor F ∗
X and using the identifications above (in particular

(A.6.7)) we see that this morphism of functors is an isomorphism. Under the
assumption that X and Y be separated and of finite type over s we can define
a second morphism of functors (now between derived categories) j!g! → f!k! by
abstract nonsense, as the composition

j!g! → j!g!k
∗k! ≃ j!j

∗f!k! → f!k!. (A.6.10)
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Applying the forgetful functor F ∗
Y and using the above identification (A.6.7), we

see that this morphism of functors is also an isomorphism.
For a scheme X over s and an integer n invertible on s we can pull back the

sheaf µn via the morphism of toposes sp : X×s η → X and then define Tate twists
as usual by tensoring with tensor powers of sp∗µn.

Lemma A.6.5. Let f : X → Y be a morphism between schemes which are
separated and of finite type over s. Assume that f is a flat and that all of its
fibers are purely of dimension 1. Then there exists, for any abelian group ob-
ject F of Y ×s η killed by an integer invertible on B, a unique trace morphism
trf : H2(f!f

∗F)(1) → F which after applying F ∗
Y and using the identification

F ∗
Y f!f

∗ ≃ fs!f
∗
sF

∗
Y is the usual trace morphism defined in [Sgag, Exposé XVIII

Proposition 1.1.6].

Proof. We are considering sheaves rather than objects in the derived category and
so it is enough to show that the trace morphism for fs is Gal(η/η)-equivariant,
which follows from compatibility of trace maps with base change.

Lemma A.6.6. Let f : X → Y be a flat morphism between schemes which are
separated and of finite type over s. Assume that all fibers of f are purely of
dimension one. Let j : (η′, V )→ (η, Y ) be an object of CY,B, and let g and k be as
in (A.6.6). Let F be an OE/mN

E -module in V ×s′ η′. Then the following diagram
commutes.

H2(f!k!g
∗F) H2(f!f

∗j!F)

H2(j!g!g
∗F) j!F(−1)

∼
(A.6.9)

trf ∗j!∼ (A.6.10)

j!∗trg

Proof. All morphisms in the diagram are compatible with the forgetful functor F ∗
Y

by definition, and so we are reduced to check that for any α : η → η′, the following
diagram is commutative.

H2(fs!kα!g
∗
αF

∗
V,αF) H2(fs!f

∗
s jα!F

∗
V,αF)

H2(jα!gα!g
∗
αF

∗
V,αF) jα!F

∗
V,αF(−1)

∼

trfs ∗jα!∼

jα!∗trgα

This can be checked on stalks at any geometric point of Ys, using compatibility of
trace maps with base change 36.

36the fact that similar diagrams commute seems to be used implicitly in the proof of [Sgag,
Exposé XVIII Théorème 3.2.5]
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Let f be a flat curve as in the previous lemma. Fix a compactification of f and
a conservative set of points of the topos X×sη (for example one for each geometric
point of X). As in [Sgag, Exposé XVIII §3.1.15] we have a site ΓB(f) equivalent
to CX,B and adapted to f ∗. Namely, the underlying category of ΓB(f) is that
of quadruples (η′, U, V, φ) where (η′, V ) is an object of CY,B, (η′, U) is an object
of CX,B and φ : U → V ×Y X is a morphism of schemes over X (automatically
étale); morphisms are defined in the obvious manner, and a family of morphisms
(ηi, Ui, Vi, φi)→ (η′, U, V φ) is covering if it induces a covering of U . For (η′, U, V, φ)
an object of ΓB(f) denote (somewhat abusively)

(η′, U)
φ−→ (η′, V ×Y X)

k−→ (η,X)

in CX,B and define K(η′, U, V, φ) as the complex concentrated in degrees 0, 1, 2

analogous to [Sgag, Exposé XVIII (3.1.4.7)] computing f!k!φ!OE/mN
E . Denoting

j the morphism (η′, V ) → (η, Y ) in CY,B, define K ′′(η′, U, V, φ) as j!OE/mN
E (−1)

concentrated in degree 2. The composition of the trace map for φ, the identification
(A.6.9) k!g∗ ≃ f ∗j! and the trace map for f gives a morphism of complexes of
OE/mN

E -modules in Y ×s η:

K(η′, U, V, φ) −→ K ′′(η′, U, V, φ)

analogous to [Sgag, Exposé XVIII (3.2.1.1)]. We obtain a morphism of functors
K → K ′′ from ΓB(f) to the category of complexes of OE/mN

E -modules in Y ×s η.
We have seen in Lemma A.6.6 that this morphism can be described using the
trace map for g : V ×Y X → V . Using this description we obtain the following
consequence of the “fundamental lemma” [Sgag, Exposé XVIII Lemme 1.6.9].

Lemma A.6.7. Let f : X → Y be a smooth relative curve between separated
schemes of finite type over s. Let (η′, U, V, φ) be an object of ΓB(f). Let (α, β, γ)
be a geometric point of CU,B′. There exist an object (η′, U ′, V ′, φ′) of ΓB(f) over
(η′, U, V, φ) and a geometric point (α′, β′, γ′) of (η′, U ′, V ′, φ′) lifting (α, β, γ) such
that

1. in cohomology in degrees 0 and 1, the morphism

K(η′, U ′, V ′, φ′) −→ K(η′, U, V, φ)

induces zero maps.

2. in cohomology in degree 2, the morphism K(η′, U ′, V ′, φ′)→ K ′′(η′, U ′, V ′, φ′)

induces an isomorphism.
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Proof. This follows from Lemme 1.6.9 loc. cit. using Lemma A.6.6 twice (“base
change” the trace map for f : X → Y by (η′, V ) → (η, Y ) and the trace map for
U → V (with B replaced by B′) by (η′, V ′) → (η′, V ) (this second case is easier
than Lemma A.6.4)

Exactly as in [Sgag, §3.2.1], for f a flat relative curve which is a morphism
between separated schemes of finite type over s the morphism of functors K → K ′′

induces a morphism of functors f ∗(1)[2] → f ! (on derived categories) which, by
the same proof as in Lemma 3.2.3 loc. cit., coincides with the composition

f ∗(1)[2] −→ f !f!f
∗(1)[2]

trf−→ f ! (A.6.11)

where trf : f!f
∗(1)[2]→ id is deduced from Lemma A.6.5 as in (2.13.2) loc. cit.

Proposition A.6.8. Let f : X → Y be a smooth relative curve between separated
schemes of finite type over s. Then the morphism of functors f ∗(1)[2]→ f ! defined
by (4.3.4) is an isomorphism.

Proof. Using the previous lemma, the proof is identical to that of Théorème 3.2.5
loc. cit.

It seems likely that the analogue of Théorème 3.2.5 loc. cit. (i.e. the general-
ization of this proposition to smooth morphisms of arbitrary relative dimension)
could be proved using the same strategy, but fortunately we will not need this
statement.

Corollary A.6.9. Under the same assumption, the morphism of functors (A.6.4)
is an isomorphism.

Proof. This follows from the proposition and the fact that the following diagram
commutes.

F ∗
Xf

∗(1)[2] F ∗
Xf

!f!f
∗(1)[2] F ∗

Xf
! f !

sfs!F
∗
Xf

!

f ∗
s (1)[2]F

∗
Y f !

sfs!f
∗
s (1)[2]F

∗
Y f !

sF
∗
Y f !

sF
∗
Y f!f

!

∼

trf

∼

trfs

This commutativity follows from the compatibility of trf and trfs using the ad-
junction formalism.

Proposition A.6.10. For f : X → Y a morphism between schemes separated
and of finite type over s the morphism of functors (A.6.4) F ∗

Xf
! → f !

sF
∗
Y is an

isomorphism.
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Proof. The morphism of functors (A.6.4) is compatible with composition. We
are thus reduced to proving that this morphism is an isomorphism Zariski-locally
(or even étale-locally) on X, since for g an open immersion into X we have an
isomorphism g! ≃ g∗ given by the trace map (Lemma A.6.4) and similarly for gs,
and we already know the compatibility of g∗ with F ∗

? . Thus we can assume that
f is a morphism between affine schemes of finite type over s. We can factor f as
πi where π : Ad

Y → Y is the typical affine space of relative dimension d and i is a
closed immersion. We are reduced to proving the statement with f replaced by i
or π.

So let us assume first that f : X → Y is a closed immersion between affine
schemes of finite type over s. Denote by g : U → Y the complementary open
immersion. The right adjoint functor f ! also arises as the right derived functor
of the “sections with support in X” functor 0f !, and similarly for fs and we leave
it to the reader to check that the morphism F ∗

Xf
! → f !

sF
∗
Y which is defined by

adjunction coincides with the one obtained by deriving the obvious isomorphism
of functors F ∗

X
0f ! ≃ 0f !

sF
∗
Y

37. Thus we have a commutative diagram whose rows
are (functors in) distinguished triangles.

F ∗
Xf∗f

! F ∗
X F ∗

Xg∗g
∗

fs∗f
!
sF

∗
X F ∗

X gs∗g
∗
sF

∗
X

+1

+1

The middle and right vertical morphisms are isomorphisms, so the left one is also
an isomorphism, and applying f ∗

s gives us the lemma in this case.
Finally, assume that Y is affine and that f : X → Y is a typical affine space

of relative dimension d. By composition we are easily reduced to the case where
d = 1, which is covered by Corollary A.6.9.

Corollary A.6.11. For f : X → Y a morphism between schemes separated and
of finite type over s the composite morphism of functors

sp∗f ! → f !f!sp
∗f ! ≃ f !sp∗f!f

! → f !sp∗ (A.6.12)

is an isomorphism.
37Note that, as in the case of the derived direct image functor, there is no a priori reason for

F ∗
Y to map an injective sheaf of OE/mNE -modules to one that is acyclic for 0f !s, and a priori so

the morphism of functors between derived categories may not be an isomorphism.
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Proof. The same arguments used to prove Proposition A.6.10 show that the com-
posite morphism of functors

BC∗
X f

! → f !
sfs! BC

∗
X f

! ≃ f !
s BC

∗
Y f!f

! → f !
s BC

∗
Y

is also an isomorphism, and using the fact that the isomorphisms of functors
BC∗

? ≃ F ∗
? sp

∗, sp∗f! ≃ f!sp
∗, BC∗

Y f! ≃ fs! BC
∗
X and F ∗

Y f! ≃ fs!F
∗
X are compatible

one can deduce formally that (A.6.12) is also an isomorphism.

For f : X → Y a separated morphism between schemes of finite type over B,
from the morphism of functors fs!Ψη → Ψηfη! we obtain by adjunction a morphism
of functors Ψηf

!
η → f !

sΨη. The analogue of Lemma A.6.2 holds true for formal
reasons.

A.6.5 Correspondences and nearby cycles

Let ci : X → Xi for i = 1, 2 be a pair of separated morphisms between schemes of
finite type over B, and Li an object of Db

c(Xi,η,OE/mN
E ) (resp. Db

c(Xi,OE/mN
E )).

Denote πi : Xi → B. If u is a correspondence from L1 to L2 with support in
(c1,η, c2,η) (resp. (c1, c2)) then we get a correspondence Ψηu (resp. Ψu) from ΨηL1

to ΨηL2 (resp. ΨL1 to ΨL2) with support in the pair of morphisms between 2-fibred
toposes (c1,s, c2,s) (resp. (c1, c2)). In the case of Ψη it is defined as the composition

c∗1,sΨηL1 → Ψηc
∗
1,ηL1

Ψη∗u−−−→ Ψηc
!
2,ηL2 → c!2,sΨηL2. (A.6.13)

In the case of Ψu, note that (Ψu)s : c∗1,si∗L1 → c!2,si
∗L2 is simply i∗u, defined using

i∗c!2 → c!2,si
∗, and that we get a morphism of correspondences sp∗i∗(L1, L2, u) →

Ψηj
∗(L1, L2, u).

Proposition A.6.12. If u is a correspondence from L1 ∈ ObD+
c (X1,η,OE/mN

E )

to L2 ∈ ObD+
c (X2,η,OE/mN

E ) and if c1 (resp. c2) is proper then the diagram

π1,s!ΨηL1 π2,s!ΨηL2

Ψηπ1,η!L1 Ψηπ2,η!L2

(Ψηu)!

u!

resp.
π1,η∗L1 π2,η∗L2

π1,s∗ΨηL1 π2,s∗ΨηL2

u∗

(Ψηu)∗

in D+
c (η,OE/mN

E ) is commutative.
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Proof. We only prove the commutativity of the first diagram, as the second case
is very similar. For the proof it will be slightly simpler to view u as a morphism
c2,η!c

∗
1,ηL1 → L2 (by adjunction). It is a formal exercise in adjunction to check

that Ψηu : c2,s!c
∗
1,sΨηL1 → ΨηL2 is the composite

c2,s!c
∗
1,sΨηL1 → c2,s!Ψηc

∗
1,ηL1 → Ψηc2,η!c

∗
1,ηL1

Ψη∗u−−−→ ΨηL2

and that u! : π1,η!L1 → π2,η!L2 is the composite

π1,η!L1 → π1,η!c1,η∗c
∗
1,ηL1 ≃ π2,η!c2,η!c

∗
1,ηL1

π2,η!∗u−−−−→ π2,η!L2

and similarly for (Ψηu)!. We want to show that the diagram

π1,s!ΨηL1 π1,s!c1,s∗c
∗
1,sΨηL1 π2,s!c2,s!c

∗
1,sΨηL1 π2,s!c2,s!Ψηc

∗
1,ηL1 π2,s!Ψηc2,η!c

∗
1,ηL1

Ψηπ1,η!L1 Ψηπ1,η!c1,η∗c
∗
1,ηL1 Ψηπ2,η!c2,η!c

∗
1,ηL1 Ψηπ2,η!L2 π2,s!ΨηL2

∼

∼

commutes. Reordering the morphisms of functors used along both paths as we
may, we find that the diagram commutes thanks to the commutativity of

Ψη c1,s∗c
∗
1,sΨη

Ψηc1,η∗c
∗
1,η c1,s∗Ψηc

∗
1,η

which follows formally from the definition of c∗1,sΨη → Ψηc
∗
1,η by adjunction, and

Lemma A.6.2 applied with (g, f) = (π1, c1) and (π2, c2).

A.7 Nearby cycles of perverse sheaves

We will need the notion of perverse sheaves for the topos X×sη where X is scheme
of finite type over s. The properties of §1.4.3 in [BBD82] are satisfied for any open
subtopos of an arbitrary topos, with an arbitrary sheaf of rings. Note that the
open subtoposes of X ×s η are precisely the U ×s η for U an open subscheme
of X (to check this one is immediately reduced to finite étale descent of open
immersions). The consequences in §1.4.2.1 loc. cit. are thus satisfied as well, and
they also hold for OE-sheaves and E-sheaves. Thus the results of §1.4 loc. cit. can
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be applied without modification. The definitions of §2.2.9 and 2.2.10 loc. cit. only
need to be slightly modified: we consider stratifications of X satisfying the same
smoothness condition over s, and for a stratum S a finite set of isomorphism classes
of local systems (with coefficients OE/mE, OE or E) over Ss. The argument at
the end of §2.2.10 loc. cit. still applies since for j : U ↪→ X we have F ∗

Xj∗ ≃ js∗F
∗
U .

Assuming as usual that the perversity function and its dual are non-increasing, the
argument using cohomological purity in §2.2.11 loc. cit. also applies to show that
by refining the stratification and enlarging the finite collections of isomorphism
classes of local systems on strata considered, we get compatible t-structures. Note
that this uses Proposition A.6.10. This gives us a t-structure on Dctf(X,OE/mN

E )

(or Db
c(X,OE) or Db

c(X,E)) associated to a perversity function. From now on we
will only consider the case of E-coefficients and the self-dual perversity function.
To sum up, we have a t-structure on Db

c(X ×s η, E) which is compatible with the
usual one on Db

c(Xs, E): a complex K in Dc
c(X ×s η, E) is in pD≥0 if and only if

F ∗
XK is in pD≥0. In particular the functor sp∗ : Db

c(X,E)→ Db
c(X ×s η, E) is also

compatible with the perverse t-structures.
These compatibilities rely on the compatibility of F ∗

? with the four operations
associated to a morphism between separated schemes of finite type over s. We will
also need the following compatibility with (derived, as usual) “internal Hom”.

Lemma A.7.1. For a complex K in Dctf(X×s η,OE/mN
E ) (resp. Db

c(X×s η,OE),
resp. Db

c(X×sη, E)) and a complex L in D(X×sη,OE/mN
E ) (resp. D(X×sη,OE),

resp. D(X×sη, E)), the morphism F ∗
XRHom(K,L)→ RHom(F ∗

XK,F
∗
XL) obtained

by adjunction from [Sgaf, Exposé IV (13.4.2)] is an isomorphism.

Proof. This follows from [Sgaf, Exposé VI Corollaire 8.7.9].

Lemma A.7.2. The conclusion of Lemma A.5.1 2 holds true if we consider
schemes over the base s and perverse sheaves Lk in Db

c(Uk ×s η, E).

Proof. The ingredients in the proof of Lemma A.5.1 are still valid over toposes
?×s η:

1. The induction formula

RHom(i∗K, i!L) ≃ i!RHom(K,L)

holds for any inclusion i : F ↪→ X of a closed subtopos F (complementary
to an open subtopos U) of a topos X.
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2. The inclusion ([BBD82, Proposition 2.1.20] in the usual setting)

RHom(pD≥a
c , pD≤b

c ) ⊂ D≤b−a

holds true thanks to the previous lemma 38.

Lemma A.7.3. Suppose that we have a commutative diagram of schemes separated
and of finite type over B

U

U1 U2

X

X1 X2

c1 c2

j

j1 j2

c̄1 c̄2

where j, j1, j2 are open immersions and both squares are cartesian. For k = 1, 2

let Lk be an object of Db
c(Xk,η, E). Then the diagram of groups of correspondences

Hom(c̄∗1,ηL1, c̄
!
2,ηL2) Hom(c∗1,ηj

∗
1,ηL1, c

!
2,ηj

∗
2,ηL2)

Hom(c̄∗1,sΨηL1, c̄
!
2,sΨηL2) Hom(c∗1,sΨηj

∗
1,ηL1, c

!
2,sΨηj

∗
2,ηL2)

is commutative.

Proof. This follows from Lemmas A.6.1 and A.6.2 and their adjoints. Details are
left to the reader.

B Irreducible finite-dimensional (g, K)-modules

In this appendix we denote Γ = Gal(C/R). Let G be a (connected) reductive
group over R. Choose a maximal compact subgroup K of G(R). Let g be the
complexification of LieG(R), i.e. the Lie algebra of GC in the algebraic sense.

38this could certainly also be proved for an arbitrary topos endowed with a stratification.

226



Denote by X∗(G)Γ the group of morphisms G → GL1,R (defined over R). We
have an injective morphism

C⊗Z X
∗(G)Γ −→ Homcont(G(R),C×)

s⊗ χ 7−→ (g 7→ |χ(g)|s)

and we will implicitly identify C⊗ZX
∗(G)Γ with a subgroup of Homcont(G(R),C×).

Our next goal in Lemma B.0.2 is to show that if Gder is simply connected then
irreducible finite-dimensional (g, K)-modules are obtained by twisting an algebraic
representation of GC by a character in C⊗ZX

∗(G)Γ, but first we consider the case
of tori.

Lemma B.0.1. Let T be a torus over R.

1. Any continuous character χ : T(R) → C× can be written as the product of
an element of C ⊗Z X

∗(T) and the restriction of an algebraic character of
T(C).

2. A character in C ⊗Z X
∗(T)Γ is the restriction of an algebraic character

T(C)→ C× if and only if it belongs to (1 + σ)X∗(T).

Proof. 1. Assume first that T = GL1,R. Up to multiplying χ by the restriction
of the identity character we can assume that χ(−1) = −1, so that χ belongs
to C⊗Z X

∗(T)Γ.

Assume next that T is anisotropic of dimension one, i.e. T(C) ≃ C× and
for z ∈ T(C) we have σ(z) = z−1. The character χ of the circle T(R) can
be written z 7→ za for some integer a, and is clearly the restriction of an
algebraic character of T(C).

Assume that T = ResC/R GL1,C, so that T(C) ≃ C××C× with Galois action
given by σ(z1, z2) = (z2, z1). In particular T(R) ≃ {(z, z) | z ∈ C×}. The
character χ of T(R) can be written (z, z) 7→ (z/|z|)a|z|b for a ∈ Z and b ∈ C.
We have χ(z, z) = za|z|b−a. The character T(R) → R>0, (z, z) 7→ |z|b−a
belongs to C ⊗Z X

∗(T)Γ and the character T (R) → C×, (z, z) 7→ za is the
restriction of the algebraic character T(C)→ C×, (z1, z2) 7→ za1 .

Finally if T is an arbitrary torus then T decomposes as a product of in-
decomposable tori which are isomorphic to one of the three tori considered
above.

227



2. As for the previous point this can be checked easily for each isomorphism
class of indecomposable tori. Details are left to the reader.

Lemma B.0.2. Assume that the derived subgroup Gder of G is simply connected.
Any irreducible finite-dimensional (g, K)-module is, up to twisting by a character
in C⊗ZX

∗(G)Γ, the restriction of an irreducible algebraic representation of G(C).

Proof. Let V be an irreducible finite-dimensional (g, K)-module. More precisely,
we have morphisms π : g → End(V ) and ρ : K → GL(V ) satisfying the usual
conditions. The semisimple Lie algebra [g, g] acts via π on V , and comparing
the classifications of representations of [g, g] and of Gder (or using the fact that
Gder(C) is simply connected and that any holomorphic representation of Gder(C)
is algebraic) we see that it integrates to an algebraic representation of Gder(C),
that we still denote π.

Let AG be the largest split central torus in G, and denote A = AG(R)0.
Similarly via π and Schur’s lemma we get a scalar action of the vector group G

on V , again denoted by π.
Next we check that we can glue the actions of A, Gder(C) and K to get an

action of the subgroup A ·Gder(C) ·K of G(C). First we observe that A is central
in G(C) and Gder(C) is normal in G(C). Any element of A ·Gder(C) ·K can be
written agk with a ∈ A, g ∈ Gder(C) and k ∈ K, and the triple (a, g, k) is unique
up to the equivalence relation (a, g, k) ∼ (a, gx, x−1k) for all x ∈ Gder(C) ∩ K.
Now Gder(C) ∩K is a maximal compact subgroup in Gder(R) which is connected
because Gder is simply connected [BT72, Corollaire 4.7], and so Gder(C) ∩ K is
also connected, which implies that π (defined by integration on Gder(C)) and ρ

agree on Gder(C) ∩K. It follows that the map

A ·Gder(C) ·K −→ GL(V )

agk 7−→ π(a)π(g)ρ(k)

is well defined. Using the relation π(Ad(k)(X)) = Ad(ρ(k))(π(X)) for k ∈ K and
X ∈ g it is easy to check that we get an action of A · Gder(C) · K on V , both
extending ρ and integrating π|[g,g]⊕LieA.

Letting D = G/Gder we have a short exact sequence

1→ Gder(C)→ G(C) p−→ D(C)→ 1.

The inclusion p(A · K) ⊂ p(G(R)) is an equality: A · K contains the center of
G(R) and so p(A ·K) is an open subgroup of D(R), and K meets every connected
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component of G(R). Therefore we have A ·Gder(C) ·K = Gder(C) ·G(R). If T is
a maximal torus of G then p(T(R)) is an open subgroup of D(R). If moreover T

contains a maximal split torus of G (i.e. if T is a maximal torus in the centralizer of
a maximal split torus of G) then T(R) meets every connected component of G(R)
[BT65, Théorème 14.4] and so we have p(T(R)) = p(G(R)), i.e. Gder(C) ·G(R) =
Gder(C)T(R). Let B be a Borel subgroup of GC containing TC, let u ⊂ g be
the (algebraic) Lie algebra of its unipotent radical and let u− be the Lie algebra
of the unipotent radical of the opposite Borel subgroup of GC with respect to
TC, so that we have g = u− ⊕ t ⊕ u where t = LieTC = C ⊗R LieT(R). Let
V u = {v ∈ V | ∀X ∈ g, π(X)v = 0} be the subspace of maximal vectors in V , so
that V is generated as a representation of u− by V u, i.e. π(U(u−))V u = V where
U(−) denotes the universal enveloping algebra. Denoting Tder = Gder ∩ T, the
subgroup Tder(C) ·T(R) of T(C) preserves V u and the action of Tder(C) on V u is
algebraic. There exists a line L ⊂ V u preserved by the commutative group T(R),
on which it acts by a continuous character χ. If X1, . . . , Xn are eigenvectors for
the roots α1, . . . , αn of TC acting on u− then for t ∈ T(R) and v ∈ L the action
of t on π(X1) . . . π(Xn)v is multiplication by χ(t)α1(t) . . . αn(t). The subspace
π(U(u−))L is an irreducible sub-[g, g]-representation of V , i.e. an irreducible sub-
Gder(C)-representation. Therefore π(U(u−))L is an irreducible sub-Gder(C)·T(R)-
representation of V , and so it is equal to V (this also implies the equality V u = L).
By the first point of Lemma B.0.1 there exists a character ν ∈ C ⊗Z X

∗(T)Γ of
T(R) such that χν is the restriction of an algebraic character of T(C). Since the
restriction of χ to Tder(R) is already algebraic, by the second point of Lemma B.0.1
there exists λ ∈ X∗(Tder) such that the restriction of ν to Tder equals (1 + σ)λ.
We have a short exact sequence

0→ X∗(D)→ X∗(T)→ X∗(Tder)→ 0.

Let λ̃ ∈ X∗(T) be any lift of λ. Up to dividing ν by (1 + σ)λ̃, which preserves the
algebraicity of χν, we can assume that ν belongs to

C⊗Z X∗(D)Γ = C⊗Z X
∗(G)Γ.

So up to twisting V by an element of C ⊗Z X
∗(G)Γ we can assume that χ is

the restriction of an algebraic character of T(C). It is now clear that V extends
uniquely to an (irreducible) algebraic representation of G(C).
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C Hecke formalism for boundary strata of minimal
compactifications of Shimura varieties

A technical nuisance when working with minimal compactifications of Shimura
varieties is the fact that the boundary strata are not quite Shimura varieties, but
only quotients by certain finite groups of Shimura varieties. Even in cases where
they are (disjoint union of) Shimura varieties, keeping track of Hecke operators
quickly becomes a notational burden: the analogues of automorphic local systems
on boundary strata, which appear thanks to Pink’s theorem [Pin92a], are defined
using group cohomology of arithmetic groups, so that we are led to consider a mix
of group cohomology and étale cohomology. We find convenient to isolate concerns
as follows:

• introduce a slight generalization of the notion of Shimura datum, associate
“generalized Shimura varieties” to them, define the analogue of automorphic
local systems on them and check that their cohomology groups are naturally
endowed with Hecke operators (commuting with the action of the Galois
group in the ℓ-adic setting),

• show that the boundary components of such generalized Shimura varieties
are themselves generalized Shimura varieties.

Most of our efforts will be spent proving that our generalized automorphic local
systems induce a Hecke formalism in cohomology.

C.1 Generalized Shimura varieties

Definition C.1.1. A generalized Shimura datum is a triple (G,X , h) where G

is a connected reductive group over Q, X is a homogeneous space under G(R)
and h : X → Hom(S,GR) is a finite-to-one G(R)-equivariant map satisfying the
following weakening of [Del79, §2.1.1], for any (equivalently, one) x ∈ X :

1. the adjoint action of h(x) on LieGR is of type (−1, 1), (0, 0), (1,−1).

2. for any simple (over Q) factor H of Gad, either h(x) acts trivially on LieHR

or HR is isotropic and conjugation by h(x)(i) is a Cartan involution of HR.

The first condition implies that for any x ∈ X the image of h(x) by Hom(S,GR)→
Hom(S,Gad,R) is trivial on the split one-dimensional subtorus in S. Let Gher be
the smallest algebraic (over Q) subgroup of G satisfying h(X ) ⊂ Hom(S,Gher,R).
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It is a normal subgroup of G and we have a canonical decomposition Gad =

Gad,lin ×Gher,ad. Letting X1 be a Gher(R)-orbit in X , we see that (Gher,X1) is a
pure Shimura datum in the sense of [Pin90, §2.1].

Following [Pin92a, §3.1] we also make the following assumption.

Assumption C.1.2. The connected center of G/AG stays anisotropic after base
changing along Q ↪→ R.

Remark C.1.3. One could replace Gher by any connected group between Gher

and GherZ(G)0. It is very formal to check that the subsequent definitions (e.g.
Definition C.1.8 and Proposition-Definition C.2.1) do not depend on this choice.

Example C.1.4. Starting from a Shimura datum (Gher,X1, h) (in the sense of
[Pin90, §2.1]) and a connected reductive group Glin over Q we can form a gener-
alized Shimura datum with G = Glin ×SpecQ Gher and X = X1.

This is in fact the only case needed in the main part of the paper.
Let X ′ = G(R)/K∞AG(R)0, a real manifold isomorphic to RN for some in-

teger N . In the following discussion it could be replaced by any “large enough”
contractible space with an action of G(Q), for example any space EG(Q) with a
proper free action of G(Q), giving a model G(Q)\EG(Q) of BG(Q). Consider
the projections, for K a compact open subgroup of G(Af )

G(Q)\(X × X ′ ×G(Af )/K) −→ G(Q)\(X ×G(Af )/K). (C.1.1)

We will see below that the right-hand side is a naturally a quasi-projective complex
variety when K is neat (Deligne-Mumford stack in general) even though in general
the action of G(Q) is not proper. The action of G(Q) on X × X ′ ×G(Af )/K is
proper because it is already propre on X ′×G(Af )/K, and if K is neat this action
is moreover free. The source of (C.1.1) is not a complex manifold (it may have
odd real dimension) in general however, in particular it cannot be algebraized.

The spaces G(Q)\(X ×G(Af )/K) may be described using Shimura varieties.
Let S be the stabilizer of X1 in G(R), an open subgroup of G(R). Denote SQ =

S ∩G(Q). Similarly let C be the centralizer of X1, i.e. the subgroup of elements
of S fixing X1 pointwise, and CQ = C ∩G(Q). We have an isomorphism

SQ\(X1 ×G(Af )/K) ≃ G(Q)\(X ×G(Af )/K)

because G(Q) meets every connected component of G(R). The left-hand side
decomposes as ⊔

[g]∈SQGher(Af )\G(Af )/K

SQ\(X1 × SQGher(Af )gK/K). (C.1.2)
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Denoting P (gK) := gKg−1 ∩Gher(Af ) and

Sh(Gher,X1, P (gK))(C) := Gher(Q)\(X1 ×Gher(Af )/P (gK))

we have surjective maps (right multiplication by g)

Sh(Gher,X1, P (gK))(C) −→ SQ\(X1 × SQGher(Af )gK/K). (C.1.3)

In order to describe them as torsors under finite groups we introduce a slight
generalization of the action of Gher(Af ) on the tower of Shimura varieties for the
Shimura datum (Gher,X1). Note that C is an open subgroup of the centralizer
of Gher,R in G(R), and that SQ/CQ is a group of automorphisms of this Shimura
datum.

Proposition-Definition C.1.5. The group SQGher(Af ) has a right action on
the tower (Sh(Gher,X1, Kher)(C))Kher

of Shimura varieties, where Kher ranges over
neat compact open subgroup of Gher(Af ). For t = sgher ∈ SQGher(Af ) and K ′

her ⊂
tKhert

−1 we have a map

Tt : Sh(Gher,X1, K
′
her)(C) −→ Sh(Gher,X1, Kher)(C)

[x, gK ′
her] 7−→ [s−1 · x, s−1gtKher]

In other words Tt is the composition Tgher ◦ Ts with Ts the isomorphism induced
by the automorphism of the Shimura datum (Gher,X1) induced by s−1. This map
does not depend on the choice of decomposition t = sgher.

Proof. First we note that s−1gt = (s−1gs)gher belongs to Gher(Af ). For k ∈
K ′

her we have gktKher = gt(t−1kt)Kher = gtKher. For γ ∈ SQ ∩ Gher(Af ) =

Gher(Q), replacing (s, gher) by (sγ−1, γgher) we find [γs−1 · x, γs−1gtKher] = [s−1 ·
x, s−1gtKher].

Note that the distinguished subgroup CQ of SQGher(Af ) acts trivially on the
tower. For K ′

her ⊂ tKhert
−1 and K ′′

her ⊂ t′K ′
her(t

′)−1 we have Tt ◦ Tt′ = Tt′t as
morphisms Sh(Gher,X1, K

′′
her)→ Sh(Gher,X1, Kher): this follows formally from the

functoriality of the maps Tg1 with respect to Shimura datum isomorphisms. In
particular we have Ttk = Tt for any k ∈ Kher.

Returning to K a compact open subgroup of G(Af ) and gK ∈ G(Af )/K

denote also Q(gK) = gKg−1 ∩ SQGher(Af ) and C(gK) = gKg−1 ∩ CQ.
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Lemma C.1.6. Let Glin,der := Cent(Gher,G)0der (derived subgroup of neutral com-
ponent of centralizer). Assume that K is neat. Then C(gK) is a torsion-free arith-
metic subgroup of Glin,der(Q) and the multiplication map identifies C(gK)×P (gK)

(with the product topology) with an open subgroup of Q(gK) having finite index.

Proof. We show first that C(gK) is an arithmetic subgroup of Glin,der(Q). For x0 ∈
h(X ) the (G/Glin,der)(R)-orbit of x0 in Hom(S, (G/Glin,der)R) is a Shimura datum
still satisfying Assumption C.1.2 and so the image of C(gK) in (G/Glin,der)(Q)

is trivial, i.e. C(gK) is contained in the arithmetic subgroup Glin,der(Q) ∩ gKg−1

of Glin,der(Q). It is torsion-free because Glin,der(Af ) ∩ gKg−1 is neat. Let Glin,sc

be the simply connected cover of Glin,der, then Glin,sc(R) is connected and so its
image in G(R) is contained in C. It follows that C(gK) contains the image of the
intersection of Glin,sc(Q) with the preimage of gKg−1, so by [BHC62, Corollary
6.11] it contains an arithmetic subgroup of Glin,der(Q).

The intersection CQ∩Gher(Af ) is contained in the center of Gher(Q) and so by
neatness of K and Assumption C.1.2 we have C(gK) ∩ P (gK) = {1}. Note that
SQGher(Af ) is the preimage of SQ/Gher(Q) ⊂ (G/Gher)(Q) under the projection
G(Af ) → (G/Gher)(Af ), and so SQGher(Af ) is a closed subgroup of G(Af ) and
Gher(Af ) is an open subgroup of SQGher(Af ). It follows that P (gK) is an open
subgroup of Q(gK), and so the multiplication map C(gK) × P (gK) → Q(gK),
identifies C(gK) × P (gK) with an open subgroup. We are left to show that this
subgroup has finite index. We have a map

Q(gK)/C(gK)P (gK) −→ Gher(Q)\Gher(Af )/P (gK)

[γgher] 7−→ [gher]

where γ ∈ SQ and gher ∈ Gher(Af ), which is well-defined because C(gK) commutes
with Gher(Af ). The target of this map is finite [God64, Théorème 5] and we are
left to show that its fibers are finite. If γ1gher,1 and γ2gher,2 map to the same
class then up to right multiplication by an element of P (gK) we may assume
gher,2 ∈ Gher(Q)gher,1 for some γher ∈ Gher(Q), and since Gher(Q) is contained in
SQ we may even assume gher,1 = gher,2. Thus it is enough to show that for any
gher ∈ Gher(Af ) the quotient

{γ ∈ SQ | γgher ∈ gKg−1}/C(gK)(Gher(Q) ∩ ghergKg−1g−1
her)

is finite. This quotient is either empty or in bijection with

(SQ ∩ (ghergKg
−1g−1

her))/C(gK)(Gher(Q) ∩ ghergKg−1g−1
her),
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so it is enough to show that

(G(Q) ∩ (ghergKg
−1g−1

her))/C(gK)(Gher(Q) ∩ ghergKg−1g−1
her)

is finite. There exists a central torus T of G such that the multiplication mor-
phism T × Glin,der × Gher → G is a central isogeny. Assumption C.1.2 implies
T(Q) ∩K = {1}, so another application of [BHC62, Corollary 6.11] tells us that
C(gK)(Gher(Q) ∩ ghergKg−1g−1

her) is an arithmetic subgroup of G(Q).

Let R(gK) := Q(gK)/C(gK), which by Lemma C.1.6 is a profinite topological
group. The natural map P (gK)→ R(gK) identifies P (gK) with an open subgroup
of R(gK). The finite quotient R(gK)/P (gK) acts on Sh(Gher,X1, P (gK))(C) via
the maps Tt defined above.

Proposition C.1.7. For a neat compact open subgroup K of G(Af ) and g ∈
G(Af ) the left action of (SQ ∩ gKg−1)/C(gK) on X1 is proper and free. Similarly
the right action of R(gK)/P (gK) on Sh(Gher,X1, P (gK))(C) is free and exhibits
(C.1.3) as a right R(gK)/P (gK)-torsor.

Proof. See [Pin92a, Proposition 3.7.5].

We also see that over the piece corresponding to [g] in the decomposition
(C.1.2), the map (C.1.1) is a fibration with fiber C(gK)\X ′, in fact base changing
(C.1.1) along the finite étale map Sh(Gher,X1, P (gK))→ G(Q)\(X ×G(Af )/K)

given by (C.1.3) and (C.1.2) yields a trivial fibration.
Let F be the reflex field of (Gher,X1). We would like to have a tower of

smooth quasi-projective schemes Sh(G,X , K) over F , where K ranges over neat
compact open subgroups of G(Af ), and a right action of G(Af ) on this tower,
along with identifications (isomorphisms of complex manifolds) Sh(G,X , K)(C) ≃
G(Q)\(X ×G(Af )/K) compatible with transition maps and the action of G(Af ).
It should be possible to redo the whole theory with this more general defini-
tion of Shimura datum, but one can simply reduce to “classical” Shimura vari-
eties as follows. For Kher a neat compact open subgroup of Gher(Af ) denote by
Sh(Gher,X1, Kher) the canonical model, a smooth quasi-projective scheme over
F . The action of SQGher(Af ) on the tower (Sh(Gher,X1, Kher))Kher

introduced in
Proposition-Definition C.1.5 descends to canonical models: by [Pin90, Proposition
11.10] for any s ∈ SQ its inverse induces isomorphisms

Ts : Sh(Gher,X1, Kher)
∼−→ Sh(Gher,X1, s

−1Khers)
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and the arguments of Proposition-Definition C.1.5 adapt to show that we have
well-defined finite étale maps Tt between canonical models. In particular for K a
neat compact open subgroup of G(Af ) and gK ∈ G(Af )/K we have a right action
of R(gK)/P (gK) on Sh(Gher,X1, P (gK)) and this action is free because it is so on
complex points. We obtain [Stacks, Tag 07S7] smooth quasi-projective quotients

U(gK) := Sh(Gher,X1, P (gK))/(R(gK)/P (gK))

and morphisms Tt between them, for t ∈ SQGher(Af ). We have a functor

F (G,X , h,Gher,X1, K) : [SQGher(Af ) ↷ G(Af )/K] −→ Sch

gK 7−→ U(gK)(
gK

t−→ tgK
)
7−→

(
U(gK)

Tt−1−−→ U(tgK)

)
.

Definition C.1.8. Let (G,X , h) be a generalized Shimura datum satisfying as-
sumption C.1.2. For K a neat compact open subgroup of G(Af ) define the (quasi-
projective and smooth) scheme Sh(G,X , K) over the reflex field F as the colimit
of the functor F (G,X , h,Gher,X1, K).

For gK ∈ G(Af )/K and t ∈ Aut[SQGher(Af )↷G(Af )/K](gK) = Q(gK) we have
Tt−1 = id and so choosing representatives yields an isomorphism

Sh(G,X , K) ≃
⊔

[g]∈SQGher(Af )\G(Af )/K

U(gK). (C.1.4)

We denote by
ιg : U(gK) ↪→ Sh(G,X , K)

the canonical embedding. It is very formal to check that choosing a different
Gher(R)-orbit X1 in X yields a canonically isomorphic colimit, which is why X1 is
absent from the notation Sh(G,X , K).

Example C.1.9. Consider the case of a direct product (Example C.1.4) where
G = Glin × Gher and (Gher,X , h) is a Shimura datum. We have S = G(R),
SQGher(Af ) = Glin(Q)×Gher(Af ) and Glin(R)×Z(Gher(R))0 is an open subgroup
of finite index in C. For any neat compact open subgroup K of G(Af ) and any
gK ∈ G(Af )/K we have C(gK) = Glin(Q)∩gKg−1 (thanks to Assumption C.1.2)
and so R(gK) is identified with a neat compact open subgroup of Gher(Af ), and
U(gK) is identified with Sh(Gher,X , R(gK)). In the case where K = Klin ×Kher

the situation is even simpler: we have R(gK) ≃ P (gK) = gherKherg
−1
her and

SQGher(Af )\G(Af )/K ≃ Glin(Q)\Glin(Af )/Klin.
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Remark C.1.10. When we have integral models for the Shimura varieties Sh(Gher,X1, Kher),
say for Kher hyperspecial at p for some prime p, we would like to construct inte-
gral models of the generalized Shimura varieties Sh(G,X , K) as well. For this one
needs to check the analogue of the second part of Proposition C.1.7 for the special
fibers (in characteristic p) of Sh(Gher,X1, P (gK)). In the direct product case (Ex-
ample C.1.9) this reduces to the fact that Sh(Gher,X1, K

′
her) → Sh(Gher,X1, Kher)

is a right Kher/K
′
her-torsor whenever K ′

her is a distinguished open subgroup of the
neat level Kher.

In the rest of this appendix we discuss the case of generalized Shimura varieties
over the reflex field. Under the above hypotheses (hyperspecial level, direct product
case) everything generalizes to integral models, but we leave the details implicit.

For h ∈ G(Af ) and neat compact open subgroupsK andK ′ of G(Af ) satisfying
K ′ ⊂ hKh−1 we have a well-defined morphism Th making the following diagrams
commutative, whenever g, g′ ∈ G(Af ) and t ∈ SQGher(Af ) satisfy g′h ∈ tgK:

U(g′K ′) Sh(G,X , K ′)

U(gK) Sh(G,X , K)

ιg′

Tt Th

ιg

(C.1.5)

For any k ∈ K we have Thk = Th. For any h′ ∈ G(Af ) we have ThTh′ = Th′h.

Lemma C.1.11. Let K ′ be a distinguished open subgroup of a neat compact open
subgroup K of G(Af ). We have an action of the finite group K/K ′ on Sh(G,X , K ′)

via the maps (Th)h∈K/K′ defined above (see (C.1.5)). The finite étale map

T1 : Sh(G,X , K ′) −→ Sh(G,X , K).

is surjective and K/K ′ acts transitively on its geometric fibers. The stabilizer
of a geometric point of the component of Sh(G,X , K ′) corresponding to [g] ∈
SQGher(Af )\G(Af )/K

′ is the image of K ∩ g−1CQg = g−1C(gK)g in K/K ′.

Proof. It is clear that K/K ′ acts transitively on the fibers of the surjective map

SQGher(Af )\G(Af )/K
′ −→ SQGher(Af )\G(Af )/K.

The stabilizer in K/K ′ of [g] ∈ SQGher(Af )\G(Af )/K
′ is the image of K ∩

g−1SQGher(Af )g = g−1Q(gK)g in K/K ′. So we may fix g ∈ G(Af ) and we
are left to check that the finite étale map

U(gK ′)
T1−→ U(gK) (C.1.6)

236



is surjective, that Q(gK)/Q(gK ′) acts transitively on its geometric fibers and that
the stabilizer of any geometric point of U(gK ′) is the image of C(gK). This is
clear because the natural map

Sh(Gher,X1, P (gK
′)) −→ U(gK)

is a right R(gK)/P (gK ′)-torsor thanks to Proposition C.1.7.

C.2 Hecke formalism

Let ℓ be a prime and E a finite extension of Qℓ. When working with integral
models we also assume that ℓ is invertible over the base. Let K be a neat compact
open subgroup of G(Af ) and g ∈ G(Af ). For any open subgroup H of P (gK)

which is distinguished in R(gK) we have a finite étale map

T1 : Sh(Gher,X1, H) −→ U(gK)

and an action of R(gK)/H on the source which identifies U(gK) with the quotient.
These maps and actions are compatible with change of H. This gives us, as a
special case of [Pin92a, (1.10)], a morphism from the étale topos of U(gK) to the
topos SetsR(gK) of (discrete) sets with continuous action of R(gK). More precisely,

• the pullback functor FR(gK) maps a set A with continuous action of R(gK)

to the colimit over H (as above) of the sheaf on U(gK) associated to the
R(gK)/H-equivariant constant sheaf on Sh(Gher,X1, H) corresponding to
AH ,

• the pushforward functor maps an étale sheaf G on U(gK) to

colimH G
(
Sh(Gher,X1, H)

T1−→ U(gK)
)
.

Ekedahl [Eke90] defined an OE-linear triangulated category D+(R(gK),OE) as-
sociated to the topos SetsR(gK), the constant ring object OE in this topos and the
maximal ideal mE of OE. We only recall that this is a certain quotient of a certain
subcategory of the derived category of (OE)•-modules, where (OE)• is the ring ob-
ject (OE/mi

E)i≥0 in the topos SetsNR(gK). As in [Taïa] we denote by D+(R(gK), E)

the triangulated E-linear category obtained from D+(R(gK),OE) by inverting ℓ.
Similarly we consider the triangulated E-linear category D+(Q(gK), E), and we
have a triangulated functor RΓ(C(gK),−) : D+(Q(gK), E)→ D+(R(gK), E).
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Now let V be a bounded object in the derived category of the abelian category
of continuous representations of G(Qℓ) over finite-dimensional E-vector spaces.
For any neat compact open subgroup K of G(Af ) and any t ∈ SQGher(Af ) we
have a composite isomorphism s(Q(K), t)

T ∗
t FR(K)RΓ(C(K), V ) ≃ FR(tK)Ad(t−1)

∗
RΓ(C(K), V )

≃ FR(tK)RΓ(C(tK),Ad(t−1)∗V )

≃ FR(tK)RΓ(C(tK), V ). (C.2.1)

Here

• We abusively still denote by V its image in D+(Q(K), E) (see [Taïa, Corol-
lary 2.5]),

• the first isomorphism follows from the definition of F and the fact that
the maps Tt induce a morphism between towers of Shimura varieties above
Tt : U(tK) → U(K), intertwining the actions of R(tK) and R(K) via the
isomorphism Ad(t−1) : R(tK) ≃ R(K) induced by Ad(t−1) : Q(tK) ≃ Q(K),

• the second isomorphism is completely formal using C(tK) = tC(K)t−1,

• the third isomorphism is the action of t on V .

Proposition-Definition C.2.1. Let K be a neat compact open subgroup of G(Af ).
There exists an object AFK(V ) of D+(Sh(G,X , K), E) together with isomor-
phisms, for all gK ∈ G(Af )/K,

ι∗gAFK(V ) ≃ FR(gK)RΓ(C(gK), V )

such that for any t ∈ SQGher(Af ) the following diagram is commutative.

T ∗
t ι

∗
gAFK(V ) T ∗

t FR(gK)RΓ(C(gK), V )

ι∗tgAFK(V ) FR(tgK)RΓ(C(tgK), V )

∼

∼ s(Q(gK),t)∼

∼

This characterizes AFK(V ).

Proof. Uniqueness follows from (C.1.4). It follows from Lemma C.2.4 below (we
are in the case where the inclusions between levels are equalities) that the formation
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of s(Q(K), t) is compatible with composition, i.e. for t1, t2 ∈ SQGher(Af ) the
composition

T ∗
t2
T ∗
t1
FR(K)RΓ(C(K), V )

T ∗
t2
s(Q(K),t1)

−−−−−−−−→T ∗
t2
FR(t1K)RΓ(C(t1K), V )

s(Q(t1K),t2)−−−−−−−→FR(t2t1K)RΓ(C(t2t1K), V )

is equal to s(Q(K), t2t1) (implicitly using T ∗
t2
T ∗
t1
≃ T ∗

t2t1
). We can use this to show

the analogue of (4.3.1): for any q ∈ Q(K) we have Ttq = Tt, R(tqK) = R(tK),
C(tqK) = C(tK) and s(Q(K), tq) = s(Q(K), t) (the cocycle relation reduces it to
the case where t = 1, which is formal). This invariance property and the cocycle
relation imply existence.

Our next goal is to prove a finiteness property of AFK(V ) in Proposition C.2.3
below. Denote πlin : G → G/Gher and D(gK) = πlin(gKg

−1) ∩ (G/Gher)(Q), a
neat arithmetic subgroup of (G/Gher)(Q) (the morphism G(Af )→ (G/Gher)(Af )

induced by πlin is open because Gher is connected).

Lemma C.2.2. We keep the assumption that K is neat. The natural morphism
Q(gK) → D(gK) × R(gK) is injective and identifies Q(gK) with an open finite
index subgroup.

Proof. The kernel of this morphism is C(gK)∩Gher(Q), which is trivial thanks to
Assumption C.1.2. By Lemma C.1.6 it is enough to show that C(gK) has finite
index in D(gK). Thanks to this lemma we know that C(gK) is an arithmetic
subgroup of Glin,der(Q), and the natural map Glin,der×Z(G/Gher)

0 → G/Gher is a
central isogeny. Thanks to Assumption C.1.2 we have Z(G/Gher)

0(Q) ∩K = {1}
and yet another application of [BHC62, Corollary 6.11] shows that the image of
C(gK) in (G/Gher)(Q) is an arithmetic subgroup.

Proposition C.2.3. Assume that K is neat and that V is a finite complex of con-
tinuous finite-dimensional representations of K. Then the object RΓ(C(gK), V )

of D+(R(gK), E) is isomorphic to the image39 of a finite complex of finite free
OE-modules with continuous action of R(gK).

Proof. There exists a finite complex Λ of finite free OE-modules with continuous
action of K and an isomorphism V ≃ E ⊗OE Λ, and by definition RΓ(C(gK), V )

39See [Taïa, Corollary 2.5]

239



is represented by RΓ(C(gK),−) applied to the image of Λ in D+(SN
Q(gK), (OE)•).

The functor Γ(C(gK),−) from (OE)•-modules in SetsNQ(gK) to (OE)•-modules in
SetsNR(gK) is isomorphic to Γ(D(gK), ind

D(gK)×R(gK)
Q(gK) (−)). It follows from Lemma

C.2.2 that the induction functor ind
D(gK)×R(gK)
Q(gK) (−) is right adjoint to the restric-

tion functor, which is obviously exact, and so this induction functor preserves
injective objects. We deduce an isomorphism of functors from D+(Q(gK), E) to
D+(R(gK), E)

RΓ(C(gK),−) ≃ RΓ(D(gK), ind
D(gK)×R(gK)
Q(gK) (−)).

By [BS73, p. 11.1.c] there exists a finite resolution P • of Z, considered as a
Z[D(gK)]-module with trivial action of D(gK), by finite free Z[D(gK)]-modules.
By the same argument as in [Taïa, Lemma 4.1] we have an isomorphism of func-
tors from D+(D(gK)×R(gK), E) to D+(R(gK), E)) between RΓ(D(gK),−) and
Tot•

(
HomZ[D(gK)](P

•,−)
)
, where Tot• denotes taking the total complex of a dou-

ble complex. Finally the complex (considered as an object of Ekedahl’s category
D+(R(gK),OE))

Tot•HomZ[D(gK)](P
•, ind

D(gK)×R(gK)
Q(gK) Λ)

is clearly the image of a finite complex of finite free OE-modules with continuous
action of R(gK).

We shall need a slight generalization of (C.2.1): if K and K ′ are neat compact
open subgroups of G(Af ) and t ∈ SQGher(Af ) satisfies K ′ ⊂ tKt−1 we have a
natural isomorphism (defined as a composition like (C.2.1))

T ∗
t FR(K)RΓ(C(K), V )

s(Q(K),t,Q(K′))−−−−−−−−−→ FR(K′)RΓ(C(tK), V ). (C.2.2)

On the right-hand side the object RΓ(C(tK), V ) of D+(R(tK), E) is implicitly
restricted along R(K ′) ↪→ R(tK) to obtain an object of D+(R(K ′), E).

Lemma C.2.4. Assume K ′ ⊂ t1Kt
−1
1 and K ′′ ⊂ t2K

′t−1
2 . The following diagrams

are commutative

T ∗
t2
T ∗
t1
FR(K)RΓ(C(K), V ) T ∗

t2
FR(K′)RΓ(C(t1K), V ) T ∗

t2
FR(K′)RΓ(C(K ′), V )

T ∗
t2t1
FR(K)RΓ(C(K), V ) FR(K′′)RΓ(C(t2K′),V )

FR(K′′)RΓ(C(t2t1K), V ) FR(K′′)RΓ(C(K ′′), V )

∼

∼
T ∗
t2
s(Q(K),t1,Q(K′))

res

∼ s(Q(K′),t2,Q(K′′))

s(Q(K),t2t1,Q(K′′)) res

res
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T ∗
t2
T ∗
t1
FR(K)RΓ(C(K), V ) T ∗

t2
FR(K′)RΓ(C(t1K), V ) T ∗

t2
FR(K′)RΓ(C(K ′), V )

T ∗
t2t1
FR(K)RΓ(C(K), V ) FR(K′′)RΓ(C(t2K′),V )

FR(K′′)RΓ(C(t2t1K), V ) FR(K′′)RΓ(C(K ′′), V )

∼

∼
T ∗
t2
s(Q(K),t1,Q(K′))

cores

∼ s(Q(K′),t2,Q(K′′))

s(Q(K),t2t1,Q(K′′))

res

cores

Proof. To prove the lemma it is useful to introduce yet another slight generalization
of (C.2.1): if K, K̃ and K ′ are neat compact open subgroups of G(Af ) and
t ∈ SQGher(Af ) satisfy K ′ ⊂ tKt−1 and K ⊂ K̃ we have a natural isomorphism

T ∗
t FR(K) res

R(K̃)
R(K)RΓ(C(K̃), V )

s(Q(K̃),Q(K),t,Q(K′))−−−−−−−−−−−−−→ FR(K′) res
R(tK̃)
R(K′) RΓ(C(tK̃), V )

defined as the composition (being explicit with restriction functors)

T ∗
t FR(K) res

R(K̃)
R(K)RΓ(C(K̃), V ) ≃ FR(K′) res

R(tK)
R(K′) Ad(t

−1)∗ res
R(K̃)
R(K)RΓ(C(K), V )

≃ FR(tK) res
R(tK)
R(K′) res

R(tK̃)
R(tK) Ad(t

−1)∗RΓ(C(K̃), V )

≃ FR(tK) res
R(tK̃)
R(K′) RΓ(C(tK̃),Ad(t−1)∗V )

≃ FR(tgK) res
R(tK̃)
R(K′) RΓ(C(tK̃), V )

where (again) the first isomorphism comes from the isomorphism of functors
T ∗
t FR(K) ≃ res

R( ˜tK)
R(K′) Ad(t

−1)∗, the middle isomorphisms are very formal and the
last isomorphism is the action of t on V . First we claim that these isomorphisms
are compatible with composition, in other words they satisfy a cocyle relation: for
neat compact open subgroups K̃, K, K ′ and K ′′ of G(Af ) and t1, t2 ∈ SQGher(Af )

satisfying K ⊂ K̃, K ′ ⊂ t1Kt
−1
1 and K ′′ ⊂ t2K

′t−1
2 the composition

T ∗
t2
T ∗
t1
FR(K) res

R(K̃)
R(K)RΓ(C(K̃), V )

T ∗
t2
s(Q(K̃),Q(K),t1,Q(K′))

−−−−−−−−−−−−−−−→T ∗
t2
FR(K′) res

R(t1K̃)
R(K′) RΓ(C(t1K̃), V )

s(Q(t1K̃),Q(K′),t2,Q(K′′))−−−−−−−−−−−−−−−→FR(K′′) res
R(t2t1K̃)
R(K′′) RΓ(C(t2t1K̃), V )

is equal to s(Q(K̃), Q(K), t2t1, Q(K
′′)) (implicitly using T ∗

t2
T ∗
t1
≃ T ∗

t2t1
). We do not

give details for the rather tedious proof, which simply goes through each step in
the definition of s(Q(K̃), Q(K), t, Q(K ′)).
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To prove commutativity of the first diagram we rewrite the composition of the
two arrows in the top right corner as the composition (here we leave restrictions
implicit)

T ∗
t2
FR(K′)RΓ(C(t1K), V )

s(Q(t1K),Q(K′),t2,Q(K′′))−−−−−−−−−−−−−−−→ FR(K′′)RΓ(C(t2t1K), V )
res−→ FR(K′′)RΓ(C(K ′′), V )

which again follows from general functoriality arguments for which we do not give
details. This reduces commutativity of the first diagram to the cocycle relation
for s(−,−,−,−) above.

We proceed similarly for the second diagram: the top right corner sits in a
commutative diagram

T ∗
t2
FR(K′)RΓ(C(t1K), V ) T ∗

t2
FR(K′)RΓ(C(K ′), V )

FR(K′′)RΓ(C(t2t1K), V ) FR(K′′)RΓ(C(t2K′),V )

s(Q(t1K),Q(K′),t2,Q(K′′))

cores

∼ s(Q(K′),t2,Q(K′′))

cores

(again, we omit the details) and this reduces commutativity of the second diagram
to the cocycle relation for s(−,−,−,−).

Proposition-Definition C.2.5. Let h ∈ G(Af ) and let K and K ′ be neat compact
open subgroups of G(Af ) satisfying K ′ ⊂ hKh−1. There is a unique morphism

T ∗
hAFK(V )

ru(h,K,K′)−−−−−−→ AFK′
(V )

such that for any g, g′ ∈ G(Af ) and t ∈ SQGher(Af ) satisfying g′h ∈ tgK we have
a commutative diagram

T ∗
t ι

∗
gAFK(V ) ι∗g′T

∗
hAFK(V ) ι∗g′AF

K′
(V )

T ∗
t FR(gK)RΓ(C(gK), V ) FR(g′K′)RΓ(C(tgK), V ) FR(g′K′)RΓ(C(g′K ′), V )

∼

∼

ι∗
g′ (ru(h,K,K

′))

∼

∼
s(Q(gK),t)

res

(C.2.3)
where the top left horizontal isomorphism comes from (C.1.5).

We also have a unique morphism

AFK′
(V )

cu(K,h,K′)−−−−−−→ T ∗
hAFK(V )
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characterized by commutative diagrams

T ∗
t ι

∗
gAFK(V ) ι∗g′T

∗
hAFK(V ) ι∗g′AF

K′
(V )

T ∗
t FR(gK)RΓ(C(gK), V ) FR(g′K′)RΓ(C(tgK), V ) FR(g′K′)RΓ(C(g′K ′), V )

∼

∼

ι∗
g′ (cu(K,h,K

′))

∼

∼ cores

(C.2.4)

Proof. Uniqueness again follows from (C.1.4), existence follows from Lemma C.2.4
(in the case where one of the two inclusions between levels is an equality).

Proposition C.2.6. For K ′ ⊂ h1Kh
−1
1 and K ′′ ⊂ h2K

′h−1
2 the following diagram

is commutative

T ∗
h2
T ∗
h1
AFK(V ) T ∗

h2
AFK′

(V )

T ∗
h2h1
AFK(V ) AFK′′

(V )

T ∗
h2
ru(h1,K,K′)

∼ ru(h2,K′,K′′)

ru(h2h1,K,K′′)

and similarly for the maps cu with reversed directions of arrows:

cu(K,h2h1, K
′′) = T ∗

h2
cu(K,h1, K

′) ◦ cu(K ′, h2, K
′′).

Proof. Of course this is proved by restricting to an arbitrary U(g′′K ′′)
ιg′′
↪−→ Sh(G,X , K ′′).

We do not even need Lemma C.2.4 now, as we may choose g′ = g′′h2 and g = g′h1

to form U(g′K ′)
ιg′
↪−→ Sh(G,X , K ′) and U(gK)

ιg
↪−→ Sh(G,X , K).

We deduce formally ru(hk,K,K ′) = ru(h,K,K ′) and cu(K, kh,K ′) = cu(K,h,K ′)

for k ∈ K.

Definition C.2.7. Let h1, h2 ∈ G(Af ), K1, K2 and K ′ neat compact open sub-
groups of G(Af ) such that K ′ ⊂ hiKih

−1
i for any i ∈ {1, 2}. We define a corre-

spondence

au(K2, h2, h1, K1, K
′) : T ∗

h1
AFK1(V ) −→ T ∗

h2
AFK2(V )

supported on

Sh(G,X , K1)
Th1←−− Sh(G,X , K ′)

Th2−−→ Sh(G,X , K2)

as the composition

T ∗
h1
AFK1(V )

ru(h1,K1,K′)−−−−−−−→ AFK′
(V )

cu(K2,h2,K′)−−−−−−−→ T ∗
h2
AFK2(V ).
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Proposition C.2.8. In the setting of Definition C.2.7 we have

au(K2, h2k2, h1k1, K1, K
′) = au(K2, h2, h1, K1, K

′)

for any ki ∈ Ki and

au(K2, xh2, xh1, K1, xK
′x−1) = corr-(Tx)∗au(K2, h2, h1, K1, K

′)

for any x ∈ G(Af ) (note that Tx : Sh(G,X , xK ′x−1) → Sh(G,X , K ′) is an iso-
morphism).

Proof. This follows from Proposition C.2.6 and the simple facts:

• ru(k1, K1, K1) = id for k1 ∈ K1,

• cu(K2, k2, K2) = id for k2 ∈ K2,

• ru(x,K ′, xK ′x−1) and cu(K ′, x, xK ′x−1) are isomorphisms which are inverse
of each other.

The second part of Proposition C.2.8 explains why we may take h1 = 1 without
loss of generality.

We have the following analogue of Proposition 4.3.8.

Proposition C.2.9. The correspondences au(K2, 1, h,K1, K
′) induce a Hecke for-

malism in cohomology, i.e. the maps

(au(K2, 1, h,K1, K
′))?

where ? ∈ {!, ∗}, satisfy the axioms in Definition 4.3.1.

This section C.2 is devoted to the proof of this proposition. The first axiom in
Definition 4.3.1 follows from Proposition C.2.8. The second axiom is trivial.

The proof of the third axiom proceeds as in the proof of Proposition 4.3.8,
with a slight complication. Assuming K ′′ ⊂ K ′ ⊂ hiKih

−1
i , we compute using

Proposition C.2.6

au(K2, h2, h1, K1, K
′′) = cu(K2, h2, K

′′) ◦ ru(h1, K1, K
′′)

= T ∗
1 cu(K2, h2, K

′) ◦ cu(K ′, 1, K ′′) ◦ ru(1, K ′, K ′′) ◦ T ∗
1 ru(h1, K1, K

′)
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where T1 : Sh(G,X , K ′′)→ Sh(G,X , K ′). The composition

cu(K ′, 1, K ′′) ◦ ru(1, K ′, K ′′) : T ∗
1AFK

′
(V ) −→ T ∗

1AFK
′
(V )

is equal to multiplication by the locally constant function δ(K ′, K ′′) : Sh(G,X , K ′′)→
Z>0 such that δ(K ′, K ′′) ◦ ιgK′′ = |C(gK ′)/C(gK ′′)| for any gK ′′ ∈ G(Af )/K

′′,
because the composition of morphisms of functors

res
R(gK′)
R(gK′′)RΓ(C(gK

′),−) res−→ RΓ(C(gK ′′), res
Q(gK′)
Q(gK′′)−)

cores−−→ res
R(gK′)
R(gK′′)RΓ(C(gK

′),−)

is equal to multiplication by |C(gK ′)/C(gK ′′)| (this follows from [Taïa, Lemma
3.1]). Thus we have

au(K2, h2, h1, K1, K
′′) = δ(K ′, K ′′)corr-(T1)

∗au(K2, h2, h1, K1, K
′).

The map T1 : U(gK ′′)→ U(gK ′) is finite étale of constant degree

|P (gK ′)/P (gK ′′)| × |R(gK ′)/P (gK ′)|
|R(gK ′′)/P (gK ′′)|

=
|Q(gK ′)/Q(gK ′′)|
|C(gK ′)/C(gK ′′)|

.

For [g′] ∈ SQGher(Af )\G(Af )/K
′ we have∑

[g]∈SQGher(Af )\G(Af )/K′′ 7→[g′]

|Q(gK ′)/Q(gK ′′)| = K ′/K ′′

and together with a variant of Lemma A.3.1 this allows us to conclude

corr-(T1)∗au(K2, h2, h1, K1, K
′′) = |K ′/K ′′|au(K2, h2, h1, K1, K

′).

We are left to check the last axiom in Definition 4.3.1. We want to compute the
composition au(K3, h3, h

′
2, K2, K

′′) ◦ au(K2, h2, h1, K1, K
′), which in the following

diagram is supported on (Th1 ◦ pr1, Th3 ◦ pr2).

Sh(G,X , K ′) ×
Sh(G,X ,K2)

Sh(G,X , K ′′)

Sh(G,X , K ′) Sh(G,X , K ′′)

Sh(G,X , K1) Sh(G,X , K2) Sh(G,X , K3)

pr1

pr2

Th1

Th2

Th′2

Th3
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As in the classical case we consider the colimit of the functor

FK2,K′,h2,K′′,h′2
: [K ′′ ↷ h′2K2h

−1
2 /K ′] −→ Sch

hK ′ 7−→ Sh(G,X , K ′′ ∩ hK ′h−1)(
hK ′ x∈K′′
−−−→ xhK ′

)
7−→

(
Sh(G,X , K ′′ ∩ hK ′h−1)

Tx−1−−−→ Sh(G,X , K ′′ ∩ xhK ′h−1)

)
which again may simply be expressed as a disjoint union over K ′′\h′2K2h

−1
2 /K ′

because this functor maps automorphisms to identity morphisms. For an object
hK ′ of [K ′′ ↷ h′2K2h

−1
2 /K ′] we have a map

fhK′ := Th×T1 : Sh(G,X , K ′′∩hK ′h−1) −→ Sh(G,X , K ′) ×
Sh(G,X ,K2)

Sh(G,X , K ′′)

and these maps induce a well-defined map

f : colimFK2,K′,h2,K′′,h′2
−→ Sh(G,X , K ′) ×

Sh(G,X ,K2)
Sh(G,X , K ′′). (C.2.5)

Thanks to Proposition C.2.8 there is a unique correspondence

v(K3, h3, K
′′, h′2, K2, h2, K

′, h1, K1)

supported on (Th1 ◦pr1◦f, Th3 ◦pr2◦f) from AFK1(V ) to AFK3(V ), which is equal
to au(K3, h3, hh1, K1, K

′′ ∩ hK ′h−1) on Sh(G,X , K ′′ ∩ hK ′h−1) for any hK ′. The
last axiom of Definition 4.3.1 follows from the next lemma (again using Section
A.3).

Lemma C.2.10. The composition of correspondences

au(K3, h3, h
′
2, K2, K

′′) ◦ au(K2, h2, h1, K1, K
′)

is equal to
(corr-f∗)v(K3, h3, K

′′, h′2, K2, h2, K
′, h1, K1).

We devote the rest of Section C.2 to the proof of this lemma. We will proceed
in three steps. This first step is a rather formal reduction to a similar but simpler
statement involving fewer objects. In the second step we exhibit representatives
(explicit morphisms between explicit complexes) for our two morphisms (originally
in the localization at ℓ of Ekedahl ℓ-adic categories). In the third step we check that
these representatives are equal (as morphisms of complexes, not just in localized
categories) by checking that they agree on all stalks.
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C.2.1 Proof of Lemma C.2.10: step 1

The composition of correspondences decomposes as

pr∗1T
∗
h1
AFK1(V )

pr∗1(ru(h1,K1,K′))
−−−−−−−−−−−−→ pr∗1AFK

′
(V )

pr∗1(cu(K2,h2,K′))
−−−−−−−−−−−−→ pr∗1T

∗
h2
AFK2(V )

∼−−−−−−−−−−−−→ pr∗2T
∗
h′2
AFK2(V )

pr∗2(ru(h
′
2,K2,K′′))

−−−−−−−−−−−−→ pr∗2AFK
′′
(V )

pr∗2(cu(K3,h3,K′′))
−−−−−−−−−−−−→ pr∗2T

∗
h3
AFK3(V ).

The pushforward (corr-f∗)v(K3, h3, K
′′, h′2, K2, h2, K

′, h1, K1) is the sum over
[h] ∈ K ′′\h′2K2h

−1
2 /K ′ of

pr∗1T
∗
h1
AFK1(V )

adj−→ (fhK′)∗f
∗
hK′pr∗1T

∗
h1
AFK1(V )

∼−→ (fhK′)∗T
∗
hh1
AFK1(V )

(fhK′ )∗(ru(hh1,K1,K′′∩hK′h−1))−−−−−−−−−−−−−−−−−−−→ (fhK′)∗AFK
′′∩hK′h−1

(V )

(fhK′ )∗(cu(K3,h3,K′′∩hK′h−1))−−−−−−−−−−−−−−−−−−→ (fhK′)∗T
∗
h3
AFK3(V )

∼−→ (fhK′)∗f
∗
hK′pr∗2T

∗
h3
AFK3(V )

tr−→ pr∗2T
∗
h3
AFK3(V )

Using the identities (Proposition C.2.6)

ru(hh1, K1, K
′′ ∩ hK ′h−1) = ru(h,K ′, K ′′ ∩ hK ′h−1) ◦ T ∗

h (ru(h1, K1, K
′))

cu(K3, h3, K
′′ ∩ hK ′h−1) = T ∗

h3
(cu(K3, h3, K

′′)) ◦ cu(K ′′, 1, K ′′ ∩ hK ′h−1)

we decompose (corr-f∗)v(K3, h3, K
′′, h′2, K2, h2, K

′, h1, K1) as the sum over [h] of

pr∗1T
∗
h1
AFK1(V )

pr∗1(ru(h1,K1,K′))
−−−−−−−−−−→ pr∗1AFK

′
(V )

adj−→ (fhK′)∗f
∗
hK′pr∗1AFK

′
(V )

∼−→ (fhK′)∗T
∗
hAFK

′
(V )

(fhK′ )∗(ru(h,K′,K′′∩hK′h−1))−−−−−−−−−−−−−−−−−−→ (fhK′)∗AFK
′′∩hK′h−1

(V )

(fhK′ )∗(cu(K′′,1,K′′∩hK′h−1))−−−−−−−−−−−−−−−−−−→ (fhK′)∗T
∗
1AFK

′′
(V )

∼−→ (fhK′)∗f
∗
hK′pr∗2AFK

′′
(V )

tr−→ pr∗2AFK
′′
(V )

pr∗2(cu(K3,h3,K′′))
−−−−−−−−−−→ pr∗2T

∗
h3
AFK3(V ).

Now the first and last maps are the same so we are left to check that the corre-
spondence

pr∗1AFK
′
(V )

pr∗1(cu(K2,h2,K′))
−−−−−−−−−−→ pr∗1T

∗
h2
AFK2(V ) ≃ pr∗2T

∗
h′2
AFK2(V )

pr∗2(ru(h
′
2,K2,K′′))

−−−−−−−−−−−→ pr∗2AFK
′′
(V )

(C.2.6)
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supported on (pr1, pr2) is equal to the pushforward along f of the correspondence

w(K ′′, K2, K
′) := ⊞

[h]∈K′′\h′2K2h2/K′
au(K ′′, 1, h,K ′, K ′′ ∩ hK ′h−1). (C.2.7)

We may also reduce to the case where h2 = h′2 = 1 by replacing K ′ and K ′′ by
conjugate subgroups of G(Af ).

C.2.2 Proof of Lemma C.2.10: step 2

It suffices to prove that for any g2 ∈ G(Af ) our two morphisms ((C.2.6) and the
pushforward of (C.2.7), for h2 = h′2 = 1) coincide over the preimage of the com-
ponent ιg2(U(g2K2)) of Sh(G,X , K2). We fix g2 for the rest of this section. Recall
that V is (represented by) a bounded complex of algebraic representations of GE,
which we consider as continuous representations of G(Qℓ) over finite-dimensional
vector spaces over E. We fix a subcomplex Λ consisting of OE-lattices stable
under the action of g2K2g

−1
2 . To such a complex we may associate a complex of

(OE)•-modules in the topos SN
Q(g2K2)

, and we fix a quasi-isomorphic bounded below
complex I• of injective (OE)•-modules in SN

Q(g2K2)
.

We will need an integral version of the morphisms s(−,−,−,−) defined in
the proof of Lemma C.2.4. Assume that L ⊂ L̃ are open subgroups of g2K2g

−1
2 ,

t ∈ Q(g2K2) and L′ an open subgroup of tLt−1. Now t induces an isomorphism
Ad(t−1)∗ resQ(L̃) Λ ≃ resQ(tL̃) Λ and similarly for I•, and so we have an isomorphism
of complexes of (OE)•-modules defined as in the proof of Lemma C.2.4:

T ∗
t FR(L)(I•)C(L̃) sg2K2

(Q(L̃),Q(L),t,Q(L′))
−−−−−−−−−−−−−−−→ FR(L′)(I•)C(tL̃) (C.2.8)

Note that (I•)C(L̃) is naturally a complex of (OE)•-modules in SN
R(L̃)

and is consid-

ered in SN
R(L) by restriction, and similarly for (I•)C(tL̃). We have a cocycle relation

(same proof as for Lemma C.2.4): for t′ ∈ Q(g2K2) and L′′ ⊂ t′L′(t′)−1 we have

sg2K2(Q(tL̃), Q(L
′), t′, Q(L′′))◦T ∗

t′sg2K2(Q(L̃), Q(L), t, Q(L
′)) = sg2K2(Q(L̃), Q(L), t

′t, Q(L′′)).

By the same argument as in Proposition-Definition C.2.1 replacing t by another
element of tQ(L) leaves sg2K2(Q(L̃), Q(L), t, Q(L

′)) unchanged. Now if L is an
open subgroup of K2, the full subgroupoid of [SQGher(Af ) ↷ G(Af )/L] (used in
Definition C.1.8) whose objects are gL for g ∈ g2K2 is equivalent to [Q(g2K2) ↷
g2K2/L], and the preimage of ιg2(U(g2K2)) (in other words, the fiber product

248



of ιg2 : U(g2K2) ↪→ Sh(G,X , K2) and T1 : Sh(G,X , L) → Sh(G,X , K2)) in
Sh(G,X , L) may be identified with

colim
gL∈[Q(g2K2)↷g2K2/L]

U(gL).

Similarly to Proposition-Definition C.2.1 we have a well-defined complex AFLg2K2
I•

of (OE)•-modules on this colimit40 together with isomorphisms

ι∗gAFLg2K2
I• ≃ FR(gL)(I•)C(gL).

For any h ∈ K2 and L′ an open subgroup of hLh−1 we have well-defined morphisms
of complexes of (OE)•-modules on Sh(G,X , L′)×Sh(G,X ,K2) U(g2K2)

T ∗
hAFLg2K2

(I•)
rug2K2

(h,L,L′)
−−−−−−−−→ AFL′

g2K2
(I•)

and
AFL′

g2K2
(I•)

cug2K2
(L,h,L′)

−−−−−−−−→ T ∗
hAFLg2K2

(I•)

fitting in commutative diagrams (now of complexes of (OE)•-modules) similar to
(C.2.3) and (C.2.4) with I• replacing V , (−)H replacing RΓ(H,−) and the obvious
inclusion (resp. the norm map) replacing res (resp. cores). The proof is the same as
for Proposition-Definition C.2.5, and the same proof as that of Proposition C.2.6
shows that rug2K2 and cug2K2 satisfy cocycle relations.

The integral analogue of the morphism (C.2.6) is the morphism Ag2K2 of com-
plexes of (OE)•-modules defined as the composition

pr∗1AFK
′

g2K2
(I•) pr∗2AFK

′′

g2K2
(I•)

pr∗1T
∗
1AF

K2
g2K2

(I•) pr∗2T
∗
1AF

K2
g2K2

(I•)

Ag2K2

pr∗1(cug2K2
(K2,1,K′))

∼

pr∗2(rug2K2
(1,K2,K′′)) (C.2.9)

More precisely for any g′, g′′ ∈ g2K2, denoting

U(g′K ′) ×
U(g2K2)

U(g′′K ′′)
ιg′,g′′ :=ιg′×ιg′′
↪−−−−−−−−→ Sh(G,X , K ′) ×

Sh(G,X ,K2)
Sh(G,X , K ′′)

40More accurately, in SN where S is the étale topos of this colimit.
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we have a commutative diagram of complexes of (OE)•-modules

ι∗g′,g′′pr
∗
1AFK

′

g2K2
(I•) ι∗g′,g′′pr

∗
2AFK

′′

g2K2
(I•)

pr∗1FR(g′K′)(I•)C(g′K′) pr∗2FR(g′′K′′)(I•)C(g′′K′′)

pr∗1FR(g′K′)(I•)C(g2K2) pr∗2FR(g′′K′′)(I•)C(g2K2)

pr∗1T
∗
1FR(g2K2)(I•)C(g2K2) pr∗2T

∗
1FR(g2K2)(I•)C(g2K2)

ι∗
g′,g′′ (Ag2K2

)

∼ ∼

pr∗1FR(g′K′)(N)

Ag2K2,g
′,g′′

∼

∼ pr∗1(sg2K2
(Q(g2K2),Q(g2K2),1,Q(g′K′))) ∼ pr∗2(sg2K2

(Q(g2K2),Q(g2K2),1,Q(g′′K′′)))

(C.2.10)
where N denotes the norm map for C(g′K ′) ⊂ C(g2K2) and Ag2K2,g′,g′′ is defined
here by commutativity (this notation will be convenient later). By design the
morphism Ag2K2 is compatible with (C.2.6): the following diagram in

D+

(
Sh(G,X , K ′) ×

Sh(G,X ,K2)
Sh(G,X , K ′′), E

)
is commutative, denoting by ig2K2 the base change along the open immersion
(with closed image) ιg2 : U(g2K2) ↪→ Sh(G,X , K2) of Sh(G,X , K ′) ×

Sh(G,X ,K2)

Sh(G,X , K ′′)→ Sh(G,X , K2).

i∗g2K2
pr∗1AFK

′
(V ) i∗g2K2

pr∗2AFK
′′
(V )

pr∗1AFK
′

g2K2
(I•) pr∗2AFK

′′

g2K2
(I•)

∼

i∗g2K2
(C.2.6)

∼

Ag2K2

We proceed similarly for our second morphism (corr-f∗)w(K
′′, K2, K

′) (defined
in (C.2.7)). We have an analogue F ′

K2,K′,K′′ of the functor FK2,K′,1,K′′,1 used to
define f (see C.2.5), mapping hK ′ ∈ [K ′′ ↷ K2/K

′] to

colim
gK(h)∈[Q(g2K2)↷g2K2/K(h)]

U(gK(h))

where we have abbreviated K(h) := K ′′ ∩ hK ′h−1, and a morphism

colimF ′
K2,K′,K′′

fg2K2−−−→ colim
g′K′∈[Q(g2K2)↷g2K2/K′]

U(g′K ′) ×
U(g2K2)

colim
g′′K′′∈[Q(g2K2)↷g2K2/K′′]

U(g′′K ′′)
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induced by the maps T1 × T1 : U(gK(h)) → U(ghK ′) ×U(g2K2) U(gK
′′). Note

that fg2K2 is just the restriction of f to the preimage of ιg2(U(g2K2)). We have a
morphism of complexes of (OE)•-modules

f ∗
g2K2

pr∗1AFK
′

g2K2
I• ≃ ⊞

[h]∈K′′\K2/K′
T ∗
hAFK

′

g2K2
I•

(rug2K2
(h,K′,K(h)))[h]−−−−−−−−−−−−−→ ⊞

[h]∈K′′\K2/K′
AFK(h)

g2K2
I•

which is well-defined thanks to the integral analogue of Proposition C.2.6. Simi-
larly we have a well-defined morphism

⊞
[h]∈K′′\K2/K′

AFK(h)
g2K2

I•
(cug2K2

(K′′,1,K(h)))[h]−−−−−−−−−−−−−→ ⊞
[h]∈K′′\K2/K′

T ∗
1AFK

′′

g2K2
I• ≃ f ∗pr∗2AFK

′′

g2K2
I•.

Define a morphism Bg2K2 of (OE)•-modules as the composition

pr∗1AFK
′

g2K2
I• pr∗2AFK

′′

g2K2
I•

(fg2K2)∗f
∗
g2K2

pr∗1AFK
′

g2K2
I• (fg2K2)∗f

∗
g2K2

pr∗2AFK
′′

g2K2
I•

(fg2K2)∗

(
⊞

[hK′]∈K′′\K2/K′
AFK(h)

g2K2
I•
)

Bg2K2

adj

(fg2K2
)∗((rug2K2

(h,K′,K(h)))[hK′])

tr

(fg2K2
)∗((cug2K2

(K′′,1,K(h)))[hK′])

(C.2.11)
Again by design we have a commutative diagram in

D+

(
Sh(G,X , K ′) ×

Sh(G,X ,K2)
Sh(G,X , K ′′), E

)
:

i∗g2K2
pr∗1AFK

′
(V ) i∗g2K2

pr∗2AFK
′′
(V )

pr∗1AFK
′

g2K2
I• pr∗2AFK

′′

g2K2
I•

∼

i∗g2K2
((corr-f∗)w(K′′,K2,K′))

∼

Bg2K2

In order to compute Bg2K2 more explicitly we need some preparation. First we
observe that colimFK2,K′,1,K′′,1 (the source of f), being a colimit (disjoint union)
of colimits (also disjoint unions), may be expressed as a single colimit, over the
groupoid

[K ′′ × SQGher(Af ) ↷ K2/K
′ ×G(Af )]
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for the (left) action (x, s) · (hK ′, g) = (xhK ′, sgx−1), of the functor

(hK ′, g) 7−→ U(gK(h))(
(hK ′, g)

(x,s)−−→ (xhK ′, sgx−1)
)
7−→

(
U(gK(h))

Ts−1−−−→ U(sgx−1K(xh))

)
.

We denote
ιhK′,g : U(gK(h)) ↪→ colimFK2,K′,1,K′′,1.

Restricting over our fixed component ιg2(U(g2K2)) of Sh(G,X , K2), we restrict to
the full subgroupoid of objects mapping to [g2] ∈ SQGher(Af )\G(Af )/K2, which
is easily checked to be equivalent to

[K ′′ ×Q(g2K2) ↷ K2/K
′ × g2K2].

For g′, g′′ ∈ g2K2 we consider the full subgroupoid Gg′,g′′ of (hK ′, g) satisfying
gh ∈ Q(g2K2)g

′K ′ and g ∈ Q(g2K2)g
′′K ′′, say gh ∈ t′g′K ′ and g ∈ t′′g′′K ′′. We

have a Cartesian diagram

colim
(hK′,g)∈Gg′,g′′

U(gK(h)) colimFK2,K′,1,K′′,1

U(g′K ′) ×
U(g2K2)

U(g′′K ′′) Sh(G,X , K ′) ×
Sh(G,X ,K2)

Sh(G,X , K ′′)

fg′,g′′
f

ιg′,g′′

(C.2.12)

where the top open immersion is induced by the maps ιhK′,g and fg′,g′′ is induced
by the maps

U(g′K ′)
Tt′←− U(gK(h))

Tt′′−−→ U(g′′K ′′).

252



Now we have a commutative diagram

ι∗g′,g′′pr
∗
1AFK

′

g2K2
(I•) ι∗g′,g′′pr

∗
2AFK

′′

g2K2
(I•)

pr∗1FR(g′K′)(I•)C(g′K′) pr∗2FR(g′′K′′)(I•)C(g′′K′′)

(fg′,g′′)∗f
∗
g′,g′′pr

∗
1FR(g′K′)(I•)C(g′K′) (fg′,g′′)∗f

∗
g′,g′′pr

∗
2FR(g′′K′′)(I•)C(g′′K′′)

(fg′,g′′)∗

(
⊞

[hK′,g]
T ∗
t′FR(g′K′)(I•)C(g′K′)

)
(fg′,g′′)∗

(
⊞

[hK′,g]
T ∗
t′′FR(g′′K′′)(I•)C(g′′K′′)

)

(fg′,g′′)∗

(
⊞

[hK′,g]
FR(gK(h))(I•)C(ghK′h−1)

)
(fg′,g′′)∗

(
⊞

[hK′,g]
FR(gK(h))(I•)C(gK′′)

)

(fg′,g′′)∗

(
⊞

[hK′,g]
FR(gK(h))(I•)C(gK(h))

)

ι∗
g′,g′′ (Bg2K2

)

∼ ∼

adj

Bg2K2,g
′,g′′

∼

tr

∼

(s(Q(g′K′),Q(g′K′),t′,Q(gK(h))))hK′,g∼ (s(Q(g′′K′′),Q(g′′K′′),t′′,Q(gK(h))))hK′,g∼

(NC(gK′′)/C(gK(h)))[hK′,g]

(C.2.13)
where as above Bg2K2,g′,g′′ is defined for later use by requiring that the top square
be commutative.

C.2.3 Proof of Lemma C.2.10: step 3

Now we will check that the morphisms of complexes Ag2K2 and Bg2K2 defined in
(C.2.9) and (C.2.11) are equal by comparing them on stalks, using their more
concrete descriptions (C.2.10) and (C.2.13). We may fix a geometric point p of
U(g2K2), and only consider lifts of the point ιg2 ◦ p to the various spaces above
Sh(G,X , K2). We fix a compatible family p = (pL)L where the family runs over
open subgroups L of R(g2K2) and pL is a lift of p via T1 : Sh(Gher,X1, L) →
U(g2K2). Note that the set of such compatible families is a torsor under R(g2K2).
For any such family p we have an isomorphism of functors jp : p∗FR(g2K2) ≃ id,
and more generally p∗LFL ≃ id for any open subgroup L of R(g2K2), abusively also
denoted by jp.

Looking at the diagrams (C.2.10) and (C.2.13) we see that it would be useful
to compute the morphisms (C.2.8) on stalks. Unwinding the definitions we find
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that for open subgroups L ⊂ L̃ of g2K2g
−1
2 , t ∈ Q(g2K2) and L′ an open subgroup

of tLt−1 we have a commutative diagram

p∗R(L′)T
∗
t FR(L)(I•)C(L̃) p∗R(L′)FR(L′)(I•)C(tL̃)

(I•)C(L̃) (I•)C(tL̃)

∼

p∗
R(L′)(sg2K2

(Q(L̃),Q(L),t,Q(L′)))

jTt(p)∼ jp∼

t
∼

(C.2.14)
Note that, unlike the map s(. . . ), the family Tt(p) of geometric points depends on
the choice of t in tQ(L), thus so does jTt(p). The fact that we are using two different
families of points to compute stalks may seem problematic now, but ultimately we
will be able to take t ∈ C(g2K2), implying Tt(p) = p.

In order to describe the various lifts of ιg2p we also fix g0 ∈ g2K2, so that for
any open subgroup L of K2 we have a geometric point ιg0 ◦ pR(g0L) of Sh(G,X , L)
above ιg2p. Denote Γ = g−1

0 C(g0K2)g0 = K2 ∩ g−1
0 CQg0. Let S = Γ\K2 considered

as a set with right action of K2. Denote s0 = Γ ∈ S. Thanks to Lemma C.1.11 we
have an identification of the base change to ιg2p of the diagram

colim
hK′∈[K′′↷K2/K′]

Sh(G,X , K(h))

Sh(G,X , K ′) Sh(G,X , K ′) ×
Sh(G,X ,K2)

Sh(G,X , K ′′) Sh(G,X , K ′′)

Sh(G,X , K2)

(Th)hK′ (T1)hK′
f

T1 T1

with
colim

hK′∈[K′′↷K2/K′]
S/K(h)

S/K ′ S/K ′ × S/K ′′ S/K ′′

∗

(Th)hK′ (T1)hK′
fp

T1 T1

(C.2.15)
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More precisely for K ∈ {K ′, K ′′, K(h)} and k ∈ K2 the element s0 ·kK of S/K cor-
responds to the geometric point Tkιg0pR(g0L) of Sh(G,X , K) where L is any distin-
guished open subgroup ofK2 contained inK and Tk : Sh(G,X , L)→ Sh(G,X , K).
Just like the colimit at the top of the previous diagram, the colimit of S/K(h) at
the top of this diagram may be written as a disjoint union over [h] ∈ K ′′\K2/K

′

if one chooses representatives. Let us compute the morphism Ag2K2 defined in
(C.2.9) on stalks at the geometric point corresponding to (s0 · x′K ′, s0 · x′′K ′′)

for some x′, x′′ ∈ K2 (i.e. an arbitrary point above p). Denote g′ = g0x
′ and

g′′ = g0x
′′. For L a distinguished open subgroup of K2 contained in K ′ ∩K ′′ we

have a commutative diagram

U(g0L) Sh(G,X , L)

U(g′K ′) Sh(G,X , K ′)

ιg0

T1 Tx′

ιg′

and similarly for K ′′, x′′, g′′. We consider the stalk of (C.2.10) at the geometric
point pg′,g′′ := pR(g′K′) × pR(g′′K′′) and using (C.2.14) we obtain a commutative
diagram

p∗g′,g′′pr
∗
1FR(g′K′)(I•)C(g′K′) p∗g′,g′′pr

∗
2FR(g′′K′′)(I•)C(g′′K′′)

p∗R(g′K′)FR(g′K′)(I•)C(g′K′) p∗R(g′′K′′)FR(g′′K′′)(I•)C(g′′K′′)

(I•)C(g′K′) (I•)C(g2K2) (I•)C(g′′K′′)

p∗
g′,g′′ (Ag2K2,g

′,g′′ )

∼ ∼

∼ jp ∼ jp

NC(g2K2)/C(g′K′)

(C.2.16)
The case of Bg2K2,g′,g′′ (diagrams (C.2.11) and (C.2.13)) is more complicated.

We have an isomorphism of functors

p∗g′,g′′(fg′,g′′)∗ ≃
⊕
p̃

p̃∗ (C.2.17)

where the sum is over geometric points p̃ of colim(hK′,g)∈Gg′,g′′ U(gK(h)) satisfying
fg′,g′′ ◦ p̃ = pg′,g′′ . We compute on stalks the first two maps in the definition of
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Bg2K2,g′,g′′ in (C.2.13) using the following commutative diagram

p∗g′,g′′pr
∗
1FR(g′K′)(I•)C(g′K′) p∗R(g′K′)FR(g′K′) (I•)C(g′K′)

p∗g′,g′′(fg′,g′′)∗f
∗
g′,g′′pr

∗
1FR(g′K′)(I•)C(g′K′)

⊕̃
p

p∗g′,g′′pr
∗
1FR(g′K′)(I•)C(g′K′)

⊕̃
p

(I•)C(g′K′)

p∗g′,g′′(fg′,g′′)∗

(
⊞

[hK′,g]
T ∗
t′FR(g′K′)(I•)C(g′K′)

) ⊕̃
p

p̃∗T ∗
t′(p̃)FR(g′K′)(I•)C(g′K′)

⊕̃
p

p∗R(g′K′)FR(g′K′)(I•)C(g′K′)

∼

adj

∼
jp

diag

∼

∼ ∼

∼ ∼

∼ (jp)p̃

(C.2.18)
where we choose for each p̃ a pair (h(p̃)K ′, g(p̃)) such that p̃ maps to the com-
ponent of colim(hK′,g)∈Gg′,g′′ U(gK(h)) corresponding to (h(p̃)K ′, g(p̃)), the coset
t′(p̃)Q(g′K ′) ∈ Q(g2K2)/Q(g

′K ′) is determined as usual by g(p̃)h(p̃) ∈ t′(p̃)g′K ′,
and we abusively still denote by p̃ this geometric point of U(g(p̃)K(h(p̃))) (i.e.
the inclusion of the latter in the colimit is kept implicit). Note that we have
Tt′(p̃) ◦ p̃ = pR(g′K′) by definition. Commutativity of the top right part is the
usual computation of the unit id→ (fg′,g′′)∗f

∗
g′,g′′ on stalks. Commutativity of the

bottom left part is formal using the definition of fg′,g′′ .
We now face two obstacles. First, in order to compute on stalks the next map

(s(Q(g′K ′), Q(g′K ′), t, Q(gK(h))))hK′,g occurring in the definition of Bg2K2,g′,g′′ in
(C.2.13) we want to use (C.2.14). This requires expressing each p̃ as Tq′ ◦ pR(q′g(p̃))

for some q′ ∈ Q(g2K2) and using jTq′ (p) and jTt′Tq′ (p). We also need to do the
same for the right side of the diagram (C.2.13). This would merely complicate
computations. More importantly, the index set of lifts p̃ of the geometric point
pg′,g′′ is defined only implicitly. We need a more explicit description to compare
with (C.2.16). Since the diagram (C.2.12) is Cartesian the set of lifts p̃ of pg′,g′′
is in bijection with the set of lifts of ιg′,g′′pg′,g′′ along f , which may be described
explicitly using the diagram (C.2.15). This is the purpose of the following lemma,
which fortunately will also make our first obstacle disappear.

Lemma C.2.11. 1. Consider the (left) action of K ′′ × K ′ × Γ on K2 × K2

defined by
(k′′, k′, γ) · (h, z) = (k′′h(k′)−1, γz(k′′)−1).
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We have a well-defined bijection

i : (K ′′ ×K ′ × Γ)\(K2 ×K2) −→
⊔

[h]∈K′′\K2/K′

S/K(h)

[h, z] 7−→ [hK ′, s0 · zK(h)]

and we have fpi([h, z]) = (s0 · zhK ′, s0 · zK ′′).

2. For x′, x′′ ∈ K2 we have a bijection

C(g0x
′′K ′′)\C(g0K2)/C(g0x

′K ′) −→ (fpi)
−1(s0 · x′K ′, s0 · x′′K ′′) (C.2.19)

[α] 7−→ [(g0x
′′)−1αg0x

′, x′′].

Proof. 1. We leave this elementary verification to the reader.

2. An element of the fiber is a class [h, z] satisfying g0z ∈ C(g0K2)g0x
′′K ′′ and

g0zh ∈ C(g0K2)g0x
′K ′. Up to translating by an element of K ′′ ×K ′ × Γ we

may assume both g0z = g0x
′′ and g0zh = αg0x

′ for some α ∈ C(g0K2). So
we have a surjective map C(g0K2) → (fpi)

−1(s0 · x′K ′, s0 · x′′K ′′), and an
uneventful computation shows that it induces a bijective map (C.2.19).

The second point in the lemma allows us the parametrize (with (C.2.15)) the
direct sum on the right-hand side of (C.2.17) by [α] ∈ C(g′′K ′′)\C(g0K2)/C(g

′K ′).
More precisely for α ∈ C(g2K2) the corresponding geometric point p̃ of colim(hK′,g)∈Gg′,g′′ U(gK(h))

is pR(g(α)K(h(α))) (via the canonical clopen immersion of U(g(α)K(h(α))) in the col-
imit) where g(α) = g′′ and h(α) = (g0x

′′)−1αg0x
′. Indeed for L small enough we

have ιg(α)p̃ = Tx′′ ιg0 pR(g0L) and a commutative diagram

U(g0L) Sh(G,X , L)

U(g(α)K(h(α))) Sh(G,X , K(h(α))).

ιg0

T1 Tx′′

ιg(α)

So in the diagram (C.2.18) we may index by a set of such representatives α instead
of {p̃}, and replace (h(p̃), g(p̃), t′(p̃)) by (h(α), g′′, α). We note that the restriction
of fg′,g′′ to the component U(g′′K(h)) is

Tα × T1 : U(g′′K(h)) −→ U(g′K ′) ×
U(g2K2)

U(g′′K ′′)

257



and that we simply have Tα = T1 because α ∈ CQ. Continuing the diagram
(C.2.18) to compute the left side of (C.2.13) on stalks using (C.2.14), and pro-
ceeding similarly for the right side of (C.2.13), we finally obtain a commutative
diagram

p∗g′,g′′pr
∗
1FR(g′K′)(I•)C(g′K′) p∗g′,g′′pr

∗
2FR(g′′K′′)(I•)C(g′′K′′)

p∗R(g′K′)FR(g′K′)(I•)C(g′K′) p∗R(g′′K′′)FR(g′′K′′)(I•)C(g′′K′′)

(I•)C(g′K′) (I•)C(g′′K′′)

⊕
[α]

(I•)C(g′K′) colim
α

(I•)C(g(α)K(h(α)))
⊕
[α]

(I•)C(g′′K′′)

p∗
g′,g′′ (Bg2K2,g

′,g′′ )

∼ ∼

∼ jp ∼ jp

diag

(α)α (Nα)α

Σ

(C.2.20)
where Nα is the norm map for C(g(α)K(h(α))) ⊂ C(g′′K ′′) and the colimit is over
the groupoid [C(g′′K ′′) ↷ C(g2K2)/C(g

′K ′)].
To conclude we are left to compare the diagrams (C.2.16) and (C.2.20). The

following lemma implies that the bottom paths in these diagrams are in fact equal,
by decomposing C(g2K2)/C(g

′K ′) into C(g′′K ′′)-orbits.

Lemma C.2.12. For α ∈ C(g2K2), denoting h = (g′′)−1αg′ we have a bijection

C(g′′K ′′)/C(g′′K(h)) −→ C(g′′K ′′)\C(g′′K ′′)αC(g′K ′)/C(g′K ′)

[δ] 7−→ δα

Proof. This follows from the equality C(g′′K(h)) = C(g′′K ′′) ∩ αC(g′K ′)α−1.

C.3 Direct product case

Assume G = Glin×Gher where Glin(R) acts trivially on X . In particular we have
SQGher(Af ) = Glin(Q)×Gher(Af ). For neat K we have C(gK) = Glin(Q)∩gKg−1

and Q(gK) = (Glin(Q) ×Gher(Af )) ∩ gKg−1. If K is neat then C(gK) is a neat
arithmetic subgroup of Glin(Q), and if K factors as Klin × Kher then we have
Q(gK) = C(gK)× P (gK) and we can compute

RΓ(C(gK),−) : D+(Q(gK), E) −→ D+(P (gK), E)
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as Tot•
(
HomZ[C(gK)](F

•,−)
)

using a resolution F • of the Z[C(gK)]-module Z
consisting of finite free Z[C(gK)]-modules (see Proposition C.2.3). For such K we
also have a bijection

Glin(Q)\Glin(Af )/Klin
∼−→ SQGher(Af )\G(Af )/K.

If K ′ = K ′
lin × K ′

her is an open (also factorizable) subgroup of K then we may
restrict the resolution F • above from C(gK) to C(gK ′) to compute RΓ(C(gK ′),−)
as well. By double complex arguments the restriction and corestriction maps may
be computed using F •: we have commutative diagrams of functors

RΓ(C(gK),−) RΓ(C(gK ′),−)

Tot•(HomZ[C(gK)](F
•),−) Tot•(HomZ[C(gK′)](F

•),−)

res

∼ ∼

where the bottom morphism of functors is given by obvious inclusions, and

RΓ(C(gK ′),−) RΓ(C(gK),−)

Tot•(HomZ[C(gK′)](F
•),−) Tot•(HomZ[C(gK)](F

•),−)

cores

∼ ∼

where the bottom morphism of functors is induced by the norm maps

HomZ(F
i,M)C(gK′)

NC(gK)/C(gK′)−−−−−−−−→ HomZ(F
i,M)C(gK).

Let us temporarily denote by S any topos. We have an “external tensor prod-
uct” bifunctor

⊠ : Perf(OE)×D+(S,OE) −→ D+(S,OE)
(M•, N•) 7−→ Tot•(M• ⊗OE N

•)

where Totn(M•⊗OEN
•) =

⊕
a+b=nM

a⊗OEN
b, with differentials (−1)bdaM⊗idNb+

idMa ⊗ dbN , inducing a bifunctor

⊠ : Db(E)×D+(S,E) −→ D+(S,E),

using the identification Perf(OE)[ℓ−1] ≃ Db(E). Now Db(E) is abelian, equivalent
to its full subcategory of complexes with vanishing differentials.
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We come back to the setting above: K = Klin × Kher is a neat (factorizable)
compact open subgroup of G(Af ). Let Λlin be an OE[C(gK)]-modules which is
finite free as OE-module. For Λher ∈ D+(P (gK),OE) we define Λlin ⊗OE Λher ∈
D+(Q(gK),OE) in the obvious way. The computation of group cohomology for
C(gK) recalled above yields

RΓ(C(gK),Λlin ⊗OE Λher) ≃ RΓ(C(gK),Λlin)⊠ Λher

compatible with restriction and corestriction (commutative diagrams left to the
reader). Similarly we can replace Λlin by an E[C(gK)]-module having finite di-
mension over E and admitting C(gK)-stable OE-lattice and Λher by any object of
D+(P (gK), E). It follows that for K1, K2 and K ′ neat factorizable compact open
subgroups of G(Af ) satisfying K ′ ⊂ K1 ∩K2 we can compute the correspondence
au(K2, 1, 1, K1, K

′) (Definition C.2.7) as a kind of tensor product using the fol-
lowing commutative diagram, where g ∈ G(Af ) is arbitrary and with morphisms
s(. . . ) defined in (C.2.2)

T ∗
1FR(gK1)RΓ(C(gK1), Vlin ⊗ Vher) RΓ(C(gK1), Vlin)⊠ T ∗

1FP (gK1)Vher

FR(gK′)RΓ(C(gK1), Vlin ⊗ Vher)

FR(gK′)RΓ(C(gK ′), Vlin ⊗ Vher)

FR(gK′)RΓ(C(gK2), Vlin ⊗ Vher)

T ∗
1FR(gK1)RΓ(C(gK1), Vlin ⊗ Vher) RΓ(C(gK2), Vlin)⊠ T ∗

1FP (gK2)Vher

∼

∼s(Q(gK1),1,Q(gK′))

(cores ◦ res)⊠u(K2,1,K1,K′)

FR(gK′)(res)

FR(gK′)(cores)

∼

∼s(Q(gK2),1,Q(gK′))

where the correspondence u(K2, 1, K1, K
′) is as in Definition 4.3.5. It follows that

for ? ∈ {∗, !} we have a commutative diagram in D+(B,E):

π?AFK1(Vlin ⊗ Vher) RΓ(Glin, Vlin, K1)⊠ π?FK1,herVher

π?AFK2(Vlin ⊗ Vher) RΓ(Glin, Vlin, K2)⊠ π?FK2,herVher.

∼

au(K2,1,K1,K′)? [K2,lin,1,K1,lin,K
′
lin]⊠u(K2,her,1,K1,her,K

′
her)

∼

The reduction of the general case (correspondences au(K2, g,K1, K
′) with g =

glingher ∈ G(Af ) arbitrary) is quite formal and we omit the details.

260



To conclude with explicit formulas in the direct product case it is useful to
be more explicit with the ℓ-adic formalism that we use. As in [Eke90, §6] we de-
note by c be the category of constructible sheaves of OE/mE-vector spaces in B̃et,
and we denote by Db

c(B,OE) the associated (§3 loc. cit.) triangulated category,
and by Db

c(B,E) the triangulated category obtained by inverting ℓ in the OE-
modules of morphisms. The external tensor product maps Perf(OE)×Db

c(B,OE)
to Db

c(B,OE), as one checks using “stupid truncations” of M ∈ Perf(OE) to re-
duce to the case where M is concentrated in one degree. Recall from [Eke90,
Theorem 3.6.v] that Db

c(B,E) admits a t-structure whose heart may be identified
with the E-linear abelian category A(c, E) of c − OE-modules in B̃et

N
with ℓ in-

verted in morphisms41. We denote by H i
t the corresponding homological functors

Db
c(B,E) → A(c, E)42. In the Grothendieck group of Hecke(G(Af ),A(c, E)) we

have an equality
e?(G,X , B) = e(Glin)⊠ e?(Gher,X1, B)

where

e?(G,X , B) =
∑
i≥0

(−1)i
[(
H i
t(π?AFK(Vlin ⊗ Vher))

)
K
, (au(K2, g,K1, K

′)?)K2,g,K1,K′

]
e?(Gher,X1, B) =

∑
i≥0

(−1)i
[(
H i
t(π?FKher(Vher))

)
Kher

, (u(K2,her, gher, K1,her, K
′
her)?)K2,her,gher,K1,her,K

′
her

]
e(Glin) =

∑
i≥0

(−1)i
[
(H i(Glin, Vlin, Klin))Klin

, ([K2,lin, glin, K1,lin, K
′
lin])K2,lin,glin,K1,lin,K

′
lin

]
,

the latter in the Grothendieck group of

Hecke(Glin(Af ), finite-dimensional E-vector spaces)

i.e. admissible representations of Glin(Af ) over E.

C.4 Minimal compactifications

We will see how generalized Shimura varieties occur naturally as boundary strata
in minimal compactifications of (usual, or even generalized) Shimura varieties.

41In the case where B = Spec k, if we choose a separable closure of k then we get an identifi-
cation of this category with the category of finite-dimensional continuous representations of the
absolute Galois group of k over E.

42More concretely the functors Hi
t may be identified with the restriction of the usual functor

Hi on D−(B̃et

N
, (OE)•) composed with the quotient functor from (OE)•-modules in B̃et

N
to

the quotient by the Serre subcategory of essentially zero systems. It is easy to check that the
restriction of this quotient functor to c − OE sheaves (in the sense of [Eke90, before Theorem
3.6]) is fully faithful.
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C.4.1 Real connected case

First we recall from [Ash+10, §III] the description of boundary components. Let
G be a connected reductive group over R, assumed to be adjoint and simple, and
let D be a G(R)0-orbit in Hom(S,G). We assume as usual that G is isotropic,
and that for any (equivalently, one) h ∈ D we have

• the restriction of h via GL1,R ↪→ S is trivial,

• letting SC act on LieGC via h and the adjoint representation, only the trivial
character and the characters z 7→ (z/z)±1 occur in the diagonalization of this
action,

• the involution Adh(i) of G is a Cartan involution.

The map h ∈ D 7→ h(i) is injective and so we may see D as parametrizing Cartan
involutions of G (equivalently, maximal compact subgroups of G(R) or G(R)0).
For h ∈ D denote by Kh the centralizer of h in G. In particular Kh = Kh(R)
is a maximal compact subgroup of G(R)0. For any h ∈ D we have an associated
morphism µh : GL1,C → GC, determining a parabolic subgroup of GC. This yields
(see e.g. [Ash+10, Theorem III.2.1]) a natural G(R)0-equivariant open embedding
of D in the complex points of a Grassmannian Ď, mapping h ∈ D to the parabolic
subgroup Q of GC whose Lie algebra is the sum of the nonpositive eigenspaces
for the adjoint action of µh. Following [Ash+10, §III.3] the closure D of D in
Ď may be described as the disjoint union of D and of lower-dimensional simple
hermitian symmetric domains. Choose h0 ∈ D, choose a maximal torus of Kh0 ,
and choose (following Harish-Chandra) a maximal set of strongly orthogonal non-
compact roots (see [Ash+10, §III.2.3]). This yields a morphism SLr2,R → G with
finite kernel, compatible with Cartan involutions, mapping the diagonal maximal
split torus of SLr2,R to a maximal split torus of G which is Adh0(i)-stable. Taking
the G(R)0-orbit, we obtain a homogeneous space Σ under G(R)0 and a G(R)0-
equivariant map Σ → D such that the fiber of h is a Kh-orbit of morphisms
f : SLr2,R → G as above (intertwining the standard Cartan involution on SLr2,R
with Adh(i)). Following [Pin90, §4.3] let Hr be the subgroup of S×GLr2,R defined
by

Hr(T ) = {(z, g1, . . . , gr) ∈ S(T )×GL2(T )
r | zz = det g1 = · · · = det gr} (C.4.1)

262



for any R-scheme T . Denote

hstd : S −→ GL2,R

z = a+ ib 7−→
(
a b
−b a

)
.

It follows from [Ash+10, Theorem III.2.4] that for any f ∈ Σ above h ∈ D we
have a unique morphism φf : Hr −→ G satisfying

• the restriction of φf to SLr2,R ⊂ Hr is f ,

• for any z ∈ S(R) we have φf (z, hstd(z), . . . , hstd(z)) = h(z).

More precisely [Ash+10, Theorem III.2.4] gives a morphism S1 × SLr2,R → G sat-
isfying these two conditions, where S1 is the one-dimensional anisotropic subtorus
of S, and it extends uniquely to Hr by requiring it to be trivial on the diagonally
embedded GL1,R ↪→ Hr. The map f 7→ φf is clearly G(R)0-equivariant. Recall
that a parabolic subgroup of G is called admissible if it is equal to G or maximal
among proper parabolic subgroups. Let S be a subset of {1, . . . , r} of cardinality
b. For a set X denote

rS : X2 → Xr, rS(x, y)i =

{
x if i ∈ S
y if i ̸∈ S.

For S ⊂ {1, . . . , r} having cardinality b we have an admissible parabolic subgroup
Pf,S of G associated to the cocharacter

GL1,R −→ G (C.4.2)

t 7−→ φf
(
1, rS(diag(t, t

−1), I2)
)
,

i.e. the Lie algebra of Pf,S is the sum of the nonnegative eigenspaces for the adjoint
action of this cocharacter. We have Pf,S = G if and only if b = 0.

Remark C.4.1. For h ∈ D, for any admissible parabolic subgroup of G there exists
f ∈ Σ above h and 0 ≤ b ≤ r such that we have P = Pf,S for S = {1, . . . , b}:
this follows from the fact that the relative root system of G is of type Cr or BCr
[BB66, §I.1.2] and the fact that Kh acts transitively on each G(R)-orbit of parabolic
subgroups of G.

It turns out that, by explicit computation in bounded symmetric domains,
D decomposes as the disjoint union of complex submanifolds FP, one for each
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admissible parabolic subgroup P of G, with FG = D, Stab(FP,G(R)0) = P(R) ∩
G(R)0 and g · FP = FAd(g)(P) for any admissible parabolic P and g ∈ G(R)0.
We briefly recall how to associate FP to an admissible parabolic subgroup P.
First choose h ∈ D, and choose f ∈ Σ above h and S ⊂ {1, . . . , r} such that
we have P = Pf,S. There is a unique Levi factor MP,h of P which is stable
under Adh(i), namely P ∩ Ad(h(i))(P), also equal to the centralizer of (C.4.2).
In [Ash+10, §III.3.1 and Theorem III.3.10] a semi-simple ideal lf,S of LieMP,h

is defined. We have lf,S = LieLf,S for a unique connected semi-simple subgroup
Lf,S of MP,h, and the adjoint quotient Lf,S,ad of Lf,S is a simple factor of MP,h,ad.
Denote Sc := {1, . . . , r} ∖ S. The group Lf,S contains the image of SLS

c

2,R via
φf,S, and commutes with the image of SLS2,R. Thus the subgroup Hf,S of G

generated by Lf,S and the image of φf is reductive, with derived subgroup a
quotient of SLS2,R×Lf,S by a finite central subgroup. We have a factorization of φf
through φf,S : Hr → Hf,S, in particular h factors through hf,S : S→ Hf,S. These
constructions are obviously G(R)0-equivariant, in particular Hf,S(R)0-equivariant.
The Hf,S,ad(R)0-orbit of the image of hf,S in

Hom(S,Hf,S,ad) = Hom(S,PGLS2,R × Lf,S,ad)

clearly satisfies the same conditions asD, and is naturally identified withHS×Df,S

where H is the PGL2(R)0-orbit of hstd (also known as the upper half-plane) and
Df,S is the Lf,S,ad(R)0-orbit of the image of hf,S in Hom(S,Lf,S,ad). The holomor-
phic embedding HS × Df,S ↪→ D extends uniquely to a holomorphic embedding
ιf,S : P1(C)S × ˇDf,S ↪→ Ď, essentially because µh factors through Hf,S,C. The
boundary component associated to (f, S) is defined as Ff,S := ιf,S

(
{∞}S ×Df,S

)
.

With this description it seems to depend on the choice of f and S satisfying
Pf,S = P, but in fact it does not so we denote it by FP (see [Ash+10, Theorem
3.7 and Proposition 3.9], which also shows that P 7→ FP is a bijection between
admissible parabolic subgroups and boundary components and that P(R)∩G(R)0

is the stabilizer of FP in G(R)0). We have h = ιf,S(i, . . . , i, h
′) for some h′ ∈ Df,S

so we have an associated point ιf,S(∞, . . . ,∞, h′) ∈ FP. It will be useful to recall a
more intrinsic description of this point. The maximal split central torus AMP,h

in
MP,h has dimension one, and there is a unique isomorphism uP,h : GL1,R ≃ AMP,h

such that in the adjoint action of GL1,R on LieNP, only positive characters occur.
For any h′ ∈ Df,S we have

ιf,S(∞, . . . ,∞, h′) = lim
t→+∞

uP,h(t) · ιf,S(i, . . . , i, h′).
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Denoting

πP : D −→ D

h 7−→ lim
t→+∞

uP,h(t) · h

we see that for any g ∈ G(R)0 and h ∈ D we have πAd(g)P(g · h) = g · πP(h), in
particular πP is P(R) ∩ G(R)0-equivariant. By [Ash+10, Theorem III.3.10 (2)]
the unipotent radical NP(R) of P(R) acts trivially on FP (so does the connected
centralizer of Lf,S in MP,h(R)). We also deduce πP(D) = FP. The map πP
defined above is the geodesic projection denoted by πF in [Ash+10, §III.3.4], see
p.140 loc. cit. In particular it is holomorphic and its image FP is a submanifold
of Ď, isomorphic to Df,S for any pair (f, S) satisfying Pf,S = P. By P(R)0-
equivariance (or from the description in [Ash+10, §III.4.1]) it is also clear that
the image of the subgroup Lf,S of MP,h in the reductive quotient MP of P does
not depend on the choice of (f, S) mapping to P, and we denote it by MP,her,der.
Also denote by MP,her,ad its adjoint quotient, so that FP is a hermitian symmetric
domain with automorphism group MP,her,ad(R)0 (now independently of a choice
of (f, S)). Pink observed (see [Pin90, Proposition 4.6] and [Pin92a, §3.6]) that the
geodesic projection πP may be interpreted à la Deligne (i.e. with morphisms from
S) and more intrinsically as follows: there is a unique identification of FP with a
MP(R)0-orbit in Hom(S,MP) such that for any h ∈ D and z ∈ S(R) we have

πP(h)(z) = φf,S(z, rS(diag(zz, 1), hstd(z))) (C.4.3)

for any f ∈ Σ and S ⊂ {1, . . . , r} mapping to (h,P). Indeed it is clear that
projecting the right-hand side of (C.4.3) to MP,her,ad recovers ιf,S(∞, . . . ,∞, h′)
where h = ιf,S(i, . . . , i, h

′). Moreover

φh,P : H1 −→ G

(z, g) 7−→ φf,S(z, rS(g, hstd(z)))

is the unique morphism satisfying

1. for all z ∈ S we have φh,P(z, hstd(z)) = h(z),

2. h∞ : z 7→ φh,P(z, diag(zz, 1)) takes values in P,

3. the restriction of h∞ to GL1,R ↪→ S has adjoint action t 7→ t2 on the center
u of nP and by t 7→ t on nP/u (see [Ash+10, §III.4]).
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With this characterization we thus have

πP(h) = φh,P(z, diag(zz, 1)). (C.4.4)

Remark C.4.2. Condition (3) is stated differently in [Pin90, Proposition 4.6] and
[Pin92a, §3.6], but it does not seem to be the correct condition for 0-dimensional
boundary components (in this case u = nP), e.g. for G = PGL2,R and P a Borel
subgroup.

C.4.2 Boundary strata of minimal compactifications

We now turn to the global setting and consider a connected reductive group G

over Q and a generalized Shimura datum h : X → Hom(S,GR). Again we fix a
G(R)-equivariant family of strongly orthogonal non-compact roots, i.e. choose any
x0 ∈ X , a maximal torus of the centralizer Kh(x0) of h(x0) in GR and a maximal
set of strongly orthogonal non-compact roots, and then take the G(R)-orbit. We
obtain a G(R)-equivariant surjective map S → X , and at each point of S we have
a morphism SLr2,R → GR with finite kernel. As in the previous section for any
s ∈ S above x ∈ X there is a unique morphism φs : Hr −→ GR (recall the group
Hr from (C.4.1)) satisfying

• the restriction to SLr2,R ⊂ Hr is as above,

• for any z ∈ S(R) we have φs(z, hstd(z), . . . , hstd(z)) = h(x)(z).

The map s 7→ φs is G(R)-equivariant.

Definition C.4.3. A parabolic subgroup P of G is admissible (with respect to the
generalized Shimura datum (X , h)) if its image in each simple factor (over Q) H

of Gad is either equal to H or is maximal among proper parabolic subgroups of H,
the latter being allowed only if there exists x ∈ X such that h(x) acts non-trivially
on HR (by conjugation).

We have a natural map from X to the complex points of a Grassmannian Grµ:

x ∈ X 7→ h(x) 7→ (µh(x) : GL1,C → GC) 7→ Q

where Q is the parabolic subgroup of GC whose Lie algebra is the sum of the
nonpositive eigenspaces for the adjoint action of GL1,C via µh(x). This embeds
each connected component of X as an open subset of Grµ(C). Define X as the
disjoint union, over all connected components X ′ of X , of the closure of X ′ in
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Grµ(C). Each such X ′ is a product of domains D’s as in the real adjoint case
considered in the previous section. More precisely Gad,R decomposes as

∏
i∈I Gi

where each Gi is a simple adjoint group over R, and there is a subset Iher of I such
that the image of h(x) (for one or any x ∈ X ) in Hom(S,Gi) is trivial if and only
if i ̸∈ Iher, and the map

X −→
∏
i∈Iher

Hom(S,Gi)

identifies each connected component of X with
∏

i∈Iher Di where Di is a simple
hermitian symmetric domain as in the previous case. For P an admissible parabolic
subgroup of GR define XP as the disjoint union over X ′ of the boundary component
X ′

P of X ′ corresponding to P. From the real simple case considered before we know
that XP is stable under P(R) and that NP(R) acts trivially on XP, so XP has a
natural action of MP(R). We also have a natural MP(R)-equivariant embedding
of XP in π0(X ) × Hom(S,MP,R) characterized by Pink’s interpretation (C.4.4)
of the geodesic projection: for any x ∈ X there is a unique φh(x),P : H1 → GR

satisfying the same three conditions, allowing us to define

πP(x) := ([x], φh(x),P(z, diag(zz, 1))) ∈ π0(X )× Hom(S,MP,R),

and we have an identification of XP with πP(X ). The second projection then gives
a MP(R)-equivariant map hP : XP → Hom(S,MP,R).

Proposition C.4.4. Let (G,X , h) be a generalized Shimura datum. Let P be
an admissible parabolic subgroup of G. Then (MP,XP, hP) is also a generalized
Shimura datum.

Compare [Pin90, Lemma 4.8 and Corollary 4.10].

Proof. We can argue for each factor of Gad separately. The factors centralized
by all h(x) for x ∈ X trivially yield factors of MP,ad centralized by all hP(x) for
x ∈ XP. We are reduced to showing that for a simple adjoint group G over Q,
a hermitian symmetric domain D = G(R)0/K and a boundary component FP

corresponding to an admissible parabolic subgroup of GR defined over Q, for each
simple factor H of MP,ad we have either

• for all x ∈ D conjugation by πP(x) acts trivially on HR, or

• for all x ∈ D conjugation by πP(x) on LieHR is of type (0, 0), (1,−1), (−1, 1)
and the involution Ad πP(x)(i) of HR is a Cartan involution.
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This follows from [Ash+10, §III.3.5]: MP,ad has a decomposition MP,ad,lin ×
MP,ad,her where MP,ad,lin,R (corresponding to Gℓ(F ) loc. cit.) is centralized by
all πP(x) and F is isomorphic to the quotient of MP,ad,her(R)0 by a maximal com-
pact subgroup (up to compact factors MP,ad,her,R is the image in MP,ad,R of the
product over all simple factors of GR of the group denoted by Lf,S in the real
simple case).

Let X ∗ be the union of the components XP, for P ranging over all admissible
subgroups of G. We have an action of G(Q) on X ∗, with g ∈ G(Q) mapping
XP to XAd(g)P, in particular the stabilizer of XP is P(Q). We do not recall the
definition of the Satake topology on X ∗, see [Ash+10, §III.6]. For a neat compact
open subgroup K of G(Af ) the minimal (or Satake-Baily-Borel) compactification
Sh(G,X , K)∗(C) of Sh(G,X , K)(C) is defined as

G(Q)\X ∗ ×G(Af )/K

and as the notation suggests may naturally be identified with the complex points
of a projective variety over C. The decomposition (over admissible parabolic sub-
groups) X ∗ =

⊔
PXP corresponds to a stratification (by locally closed analytic

subsets)

Sh(G,X , K)∗(C) =
⊔
[P]

P(Q)\ (XP ×G(Af )/K)

=
⊔
[P]

colim
gK∈[P(Af )↷G(Af )/K]

Sh(MP,XP, π(gKg
−1 ∩P(Af )))

where the disjoint union ranges over G(Q)-conjugacy classes of admissible parabolic
subgroups of G (equivalently, admissible parabolic subgroups containing a fixed
minimal parabolic subgroup of G) and π : P → MP is the canonical projection.
The second equality follows from the fact that NP(Q) acts trivially on XP and is
dense in NP(Af ), so we have well-defined homeomorphisms

MP(Q)\
(
XP ×M(Af )/π(gKg

−1 ∩P(Af ))
)
−→ P(Q)\ (XP ×P(Af )gK/K)

[x,m] 7−→ [x, m̃g]

where m̃ ∈ P(Af ) is any lift of m ∈MP(Af ). The functor implied in the colimit

maps an isomorphism gK
p∈P(Af )−−−−−→ pgK to

Sh(MP,XP, π(gKg
−1 ∩P(Af )))

Tπ(p)−1

−−−−→ Sh(MP,XP, π(pgK(pg)−1 ∩P(Af ))),
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which is the identity morphism when pgK = gK, so each colimit may be (non-
canonically) identified with a disjoint union over P(Af )\G(Af )/K. We denote

iP,gK : Sh(MP,XP, π(gKg
−1 ∩P(Af ))) ↪→ Sh(G,X , K)∗

the locally closed immersion. The stratification described in [Pin90, §6.3] is simply
obtained by spelling out the generalized Shimura varieties as colimits. By §12.3
loc. cit. there is a unique model of Sh(G,X , K)∗ over the reflex field E extending
the canonical model of Sh(G,X , K), each stratum is also defined over E and is
identified with the canonical model of Sh(MP,XP, π(gKg

−1 ∩P(Af ))).

C.4.3 Iterated boundary strata

We recall how boundary strata of boundary strata map to boundary strata. We
will need the following notion.

Proposition-Definition C.4.5. Let (G,X , h) be a generalized Shimura datum,
with corresponding decomposition Gad = Gad,lin × Gad,her. Let P be a parabolic
subgroup of G. Assume that the image of P in Gad,her is Gad,her. We obtain a
generalized Shimura datum (MP,X , h) by first restricting the action of G(R) on
X to P(R) and observing that NP(R) acts trivially and that for any x ∈ X the
morphism h(x) : S→ GR factors through PR.

For K a neat compact open subgroup of G(Af ) we have a unique morphism of
schemes over E

Sh(MP,X , π(K ∩P(Af ))) −→ Sh(G,X , K)

given on complex points by

MP(Q)\ (X ×MP(Af )/π(K ∩P(Af )))
∼←−P(Q)\ (X ×P(Af )/K ∩P(Af ))

→G(Q)\ (X ×G(Af )/K)

This morphism is finite étale.

Proof. The fact that MP(R) acts transitively on X easily follows from the Iwa-
sawa decomposition of G(R), so (MP,X , h) is a generalized Shimura datum. The
remaining statements are clear once we go back to the definition of generalized
Shimura varieties as colimits of Shimura varieties (Definition C.1.8).
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Let (G,X , h) be a generalized Shimura datum and P an admissible parabolic
subgroup of G. The embedding of XP in X ∗ extends to (XP)

∗ ↪→ X ∗ (or even
XP ↪→ X which is a homeomorphism onto a closed subset of X ). We obtain for
any neat compact open subgroup K of G(Af ) and any gK ∈ G(Af )/K a map

Sh(MP,XP, π(gKg
−1 ∩P(Af )))

∗(C)
iP,gK−−−→ Sh(G,X , K)∗(C)

extending (the complexification of) the embedding iP,gK . There is a unique mor-
phism of schemes over E inducing iP,gK , that we still denote by iP,gK . This
morphism is finite because it is a morphism between proper schemes over E whose
fibers at closed points are finite.

Let us describe the restriction of iP,gK to a boundary stratum of the source. For
an admissible parabolic subgroup Q of MP there is a unique admissible parabolic
subgroup P′ of G such that the preimage of Q in P is P∩P′. Let Q′ be the image of
P∩P′ in MP′ . The generalized Shimura datum (MQ, (XP)Q, (hP)Q) may be iden-
tified with the restriction (in the sense of Proposition-Definition C.4.5) of the gen-
eralized Shimura datum (MP′ ,XP′ , hP′) to MQ′ . More precisely the subsets (XP)Q
and XP′ of π0(X )×Hom(S,MP∩P′,R) are equal: this may be checked using (C.4.3).
Denote K(P, gK) = πP(gKg

−1 ∩ P(Af )). For g′K(P, gK) ∈MP(Af )/K(P, gK)

the composition

Sh(MQ, (XP)Q, πQ(g
′K(P, gK)(g′)−1 ∩Q(Af )))

iQ,g′K(P,gK)−−−−−−−→ Sh(MP,XP, K(P, gK))∗

iP,gK−−−→Sh(G,X , K)∗

is equal to the composition

Sh(MQ′ ,XP′ , πP∩P′(g′gK(g′g)−1 ∩ (P ∩P′)(Af )))

→ Sh(MP′ ,XP′ , πP′(g′gK(g′g)−1 ∩P′(Af )))
iP′,g′gK−−−−→ Sh(G,X , K)∗

where the first map is the finite étale map introduced in Proposition-Definition
C.4.5.

We have the following analogue of [Mor10, Proposition 1.1.3]. First choose an
order {P1, . . . ,Pn} on the set of standard maximal proper parabolic subgroups
of G mapping onto Gad,lin satisfying Ui ⊊ Ui+1 for 1 ≤ i < n, where Ui is the
center of the unipotent radical of Pi (see [Ash+10, Theorem III.4.8 (i)]). We
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have a bijection I 7→ PI :=
⋂
i∈I Pi between subsets of {1, . . . , n} and standard

parabolic subgroups of G mapping onto Gad,lin (these are in bijection with standard
parabolic subgroups of Gad,her). For I = {i1 < · · · < ir} a non-empty subset of
{1, . . . , n} we have a bijection between PI(Af )\G(Af )/K and the set of tuples
(S1, . . . , Sr) where S1 is a boundary stratum of Sh(G,X , K)∗ corresponding to Pi1

and for 1 ≤ j < r Sj+1 is a boundary stratum of S∗
j corresponding to the image

Qj+1 of Pi1 ∩ · · · ∩Pij+1
in MPi1∩···∩Pi−1

. Under this bijection the PI(Af )-orbit of
gK ∈ G(Af )/K corresponds to

S1 := Sh(MPi1
,X1, K(Pi1 , gK))

iPi1 ,gK−−−−→ Sh(G,X , K)∗

Sj+1 := Sh(MQj+1
,Xj+1, Kj+1)

iQj+1,Kj−−−−−→ S∗
j

where X1 = XPi1
, Xj+1 = (Xj)Qj

, K1 = K(Pi1 , gK) and Kj+1 = K(Qj+1, Kj).
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