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Abstract

We give an explicit construction of global Galois gerbes constructed more ab-
stractly by Kaletha to define global rigid inner forms. This notion is crucial to for-
mulate Arthur’s multiplicity formula for inner forms of quasi-split reductive groups.
As a corollary, we show that any global rigid inner form is almost everywhere un-
ramified, and we give an algorithm to compute the resulting local rigid inner forms
at all places in a given finite set. This makes global rigid inner forms as explicit as
global pure inner forms, up to computations in local and global class field theory.
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1 Introduction

Let F be a number field, and G a connected reductive group over F . Following seminal
work of Labesse-Langlands [LL79] and Shelstad, Langlands, Kottwitz and Arthur [Art89]
conjectured a multiplicity formula for discrete automorphic representations for G, in
terms of Arthur-Langlands parameters ψ : LF × SL2(C)→ LG. The formulation of this
conjecture on automorphic multiplicities requires a precise version of the local Arthur-
Langlands correspondence for GFv := G×F Fv at all places v of F , describing individual
elements of local packets using the theory of endoscopy. For this it is necessary to endow
each GFv with a rigidifying datum. For places v such that GFv is quasi-split, that is for
all but finitely many places of F , this can take the form of a Whittaker datum wv. If
G is quasi-split, then one can choose a global Whittaker datum w, and it is expected
that taking localizations wv of w yields a coherent family of precise versions of the
local Arthur-Langlands correspondence. This coherence is crucial for the automorphic
multiplicity formula to hold. For example this is the setting used in [Art13] and [Mok15].
Note that even though a choice of global Whittaker datum is necessary to express the
formula for automorphic multiplicities, these multiplicities are canonical, as one can easily
deduce from [Kal13, Theorem 4.3].

In general the connected reductive group G might not be quasi-split, and G is only
an inner form of a unique quasi-split group. Recall (see [Bor79]) that two connected
reductive groups have isomorphic Langlands dual groups if and only if they are inner
forms of each other. Vogan [Vog93] and Kottwitz conjectured a formulation of the local
Langlands correspondence in the case where GFv is a pure inner form of a quasi-split
group. In this case a rigidifying datum is a quadruple (G∗v,Ξv, zv,wv) where G∗v is a con-
nected reductive quasi-split group over Fv, Ξv : (G∗v)Fv → GFv is an isomorphism, and
zv ∈ Z1(Fv, G

∗
v) is such that for any σ ∈ Gal(Fv/Fv) we have Ξ−1

v σ(Ξv) = Ad(zv(σ)).
If globally G is a pure inner form of a quasi-split group, one can choose a similar global
quadruple (G∗,Ξ, z,w), and localizing at all places of F seems to yield a coherent family
of rigidifying data. Away from a finite set S of places of F , the restriction zv of z to a de-
composition group Gal(Fv/Fv) is cohomologically trivial, and writing it as a coboundary
yields an isomorphism Ξ′v : G∗Fv ' GFv well-defined up to conjugation by G(Fv), which
endows GFv with a Whittaker datum (Ξ′v)∗(wv) in a canonical way. Furthermore, up to
enlarging S this can be done integrally, that is over a finite étale extension of O(Fv), so
that Ξ′v is an isomorphism between the canonical models of G∗ and G over O(Fv).

Unfortunately not all connected reductive groups can be realized as pure inner forms
of quasi-split groups, due to the fact that H1(F,G∗) → H1(F,G∗ad) can fail to be sur-
jective. The simplest example is certainly the group of elements having reduced norm
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equal to 1 in a non-split quaternion algebra, an inner form of SL2, considered in [LL79].
To circumvent this problem, Kaletha defined larger Galois cohomology groups in [Kal16]
for the local case and in [Kal] for the global case. More precisely, he constructed central
extensions (Galois gerbes bound by commutative groups in the terminology of [LR87])

1→ Pv → Ev → Gal(Fv/Fv)→ 1

in the local case, v any place of F , and

1→ P → E → Gal(F/F )→ 1

in the global case. Here Pv and P are inverse limits of finite commutative algebraic
groups defined over Fv or F , and we have denoted by Pv → Ev the extension denoted
by u → W in [Kal16], to emphasize the analogy between the local and global cases.
The central extensions are obtained from certain classes ξv ∈ H2(Fv, Pv), ξ ∈ H2(F, P ).
Using these central extensions Kaletha defined, for Z a finite central algebraic subgroup
of G∗, certain sets of 1-cocycles

Z1(Pv → Ev, Z(Fv)→ G∗(Fv)) ⊃ Z1(Fv, G
∗
Fv),

resp. Z1(P → E , Z(F )→ G∗(F )) ⊃ Z1(F,G∗)

which naturally map to Z1(Fv, G
∗
ad,Fv

) (resp. Z1(F,G∗ad)), so that such cocycles give rise
to inner forms of G∗. Kaletha also proposed precise formulations of the local Langlands
conjecture and Arthur multiplicity formula, using rigidifying data (G∗v,Ξv, zv,wv) (resp.
(G∗,Ξ, z,w)) where now zv (resp. z) belongs to this larger group of 1-cocycles. For Z
large enough, for example if Z contains the center of the derived subgroup of G∗, the
map between the resulting cohomology sets

H1(P → E , Z(F )→ G∗(F ))→ H1(F,G∗ad)

is surjective, and so any G can be endowed with such a rigidifying datum (G∗,Ξ, z,w).
From such a global rigidifying datum, one obtains local rigidifying data by localization.
Each localization zv = locv(z) of z is defined by pulling back via a morphism of central
extensions

1 Pv Ev Gal(Fv/Fv) 1

1 P E Gal(F/F ) 1

(1.0.1)

and extending coefficients from G∗(F ) to G∗(Fv).
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In this paper we give an explicit, bottom-up realization of the central extension

1→ P → E → Gal(F/F )→ 1

constructed in [Kal]. Here “bottom-up” means that our construction is naturally an
inverse limit over k ≥ 0 of central extensions

1→ Pk → Ek → Gal(E′k/F )→ 1,

where E′k/F is finite Galois extension, Pk is a finite commutative algebraic group over F
such that Pk(E′k) = Pk(F ), and P = lim←−k≥0

Pk. We also give bottom-up realizations of
localization morphisms (1.0.1) and generalized Tate-Nakayama morphisms for tori ([Kal,
Theorem 3.7.3], which generalizes [Tat66]), as well as compatibilities between them. We
also show (Proposition 5.5.2) that our construction recovers the “canonical class” defined
abstractly in [Kal, §3.5]. Apart from giving alternative proofs of some results in [Kal],
our construction has the benefit that it allows one to compute with global rigid inner
forms “at finite level”, that is using a finite Galois extension of the base field F . In
particular, we deduce that global rigid inner forms are almost everywhere unramified
(Proposition 6.1.1), a fact which is obvious for pure inner forms, but surprisingly not for
rigid inner forms. In the future our construction could be used to prove further properties
of Kaletha’s canonical class.

Our direct construction is also useful for explicit applications using Arthur’s formula
for automorphic multiplicities. Computing spaces of automorphic forms, along with
action of a Hecke algebra, is possible for definite reductive groups thanks to reduction
theory. Unfortunately non-commutative definite reductive groups are not quasi-split.
Once such spaces are computed, one would like to interpret Hecke eigenforms as being
related to (ersatz) motives, and Arthur’s multiplicity formula makes this relation precise
(see [Taïa] for some cases for which rigid inner forms are needed). For this it is necessary
to compute localizations of rigidifying data, more precisely to solve the following problem.

Problem. Given a connected reductive group G over a number field F , find

• a global rigidifying datum D = (G∗,Ξ, z,w),

• a finite set S of places of F containing all archimedean places and all non-archimedean
places v such that GFv is ramified,

• a reductive model of G over the ring OF,S of S-integers in F such that for any
v 6∈ S, the localization Dv of D at v is unramified with respect to the integral model
GOFv of GFv ,
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• for each v ∈ S, an explicit description of the localization Dv of D at v.

Above “unramified” means that locv(z) ∈ B1(Fv, G), and that the resulting isomor-
phism Ξ′v : G∗Fv ' GFv , which is well-defined up to composing with conjugation by an
element of G(Fv), identifies the conjugacy class of wv with a Whittaker datum for GFv
compatible with the integral model GO(Fv), in the sense of [CS80]. At almost all places
this is implied by the fact that wv is compatible with the canonical model of G∗ and the
fact that locv(z) ∈ Z1(F unr

v /Fv, G
∗), but for applications it is desirable to keep S as small

as possible. For v ∈ S, the meaning of “explicit description of Dv” is somewhat vague. In
the case where locv(z) is cohomologically trivial this simply means a Whittaker datum
for GFv . In general it means describing the localization Dv in a purely local fashion, so
that it could be compared to a reference rigidifying datum. We give detailed steps to
solve this problem in section 7, reducing the computation of localizations at places in
S to computations in local and global class field theory. We give an example in section
7.2 in a case where G is a definite inner form of SL2 over F = Q(

√
3) which is split at

all finite places, and for S the set of archimedean places, that is in “level one”. It can
be generalized effortlessly, and without additional computations, to the analogous inner
forms of Sp2n over F , for arbitrary n ≥ 2.

Let us explain why this problem does not appear to be directly solvable using con-
structions in [Kal], which might be surprising when one considers the case of pure inner
forms, as it is straightforward to restrict a 1-cocycle to a decomposition group. For
explicit computations one can only work with finite extensions of F , and finite Galois
modules. Although the localization maps (1.0.1) are canonical, unfortunately they do
not arise from canonical morphism of central extensions of Galois groups by finite Ga-
lois modules, because of the possible non-vanishing of H1(Fv, Pk), where P = lim←−k Pk.
Similarly, the possible non-vanishing of H1(F, Pk) means that inflation morphisms

1 Pk+1 Ek+1 Gal(F/F ) 1

1 Pk Ek Gal(F/F ) 1

(1.0.2)

are not defined canonically, where Ek is the central extension obtained using a 2-cocycle
in the cohomology class of the image of ξ in H2(F, Pk). For applications to generalized
Tate-Nakayama isomorphisms, Kaletha shows that these ambiguities are innocuous using
a clever indirect argument (Lemma 3.7.10 in [Kal]) in cohomology (but only in cohomol-
ogy). Note that in the local case, Kaletha gave an explicit construction of the inflation
maps analogous to (1.0.2): see [Kal16, §4.5].

Our construction is a global analogue. The main difficulty lies in formulating and
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proving the analogue of [Kal16, Lemma 4.4] (which draws on [Lan83, §VI.1]) in the global
case. First we reinterpret [Kal16, Lemma 4.4] using a modification AW2 of the Akizuki-
Witt map on 2-cocycles ([AT09, Ch. XV]) occurring in the construction of Weil groups
attached to class formations. We study this modification systematically in section 3.1, in
particular we observe that it is more flexible while retaining the interpretation in terms
of central extensions. It is not difficult to establish the analogue of [Kal16, Lemma 4.4]
where local fundamental cocycles are replaced by global fundamental cocycles. How-
ever, in Tate-Nakayama isomorphisms these global fundamental cocycles control Galois
cohomology groups such as H1(E/F, T (AE)/T (E)), where T is a torus over F split by
the finite Galois extension E/F , whereas we are interested in cohomology groups such
as H1(E/F, T (E)). These are controlled by Tate cocycles defined by Tate in [Tat66],
essentially as a consequence of the compatibility between local and global fundamental
2-cocycles. Unfortunately these do not seem to have an interpretation using the Akizuki-
Witt map, and this makes the global case more challenging. We give an ad hoc definition
of a certain map AWES2 in Definition 4.2.1, which is compatible with the corestriction
map in Eckmann-Shapiro’s lemma for modules which are twice induced. This definition
is crucial for the main technical result of this article, Theorem 4.4.2, constructing a fam-
ily of Tate cocycles compatible under AWES2, as well as local-global compatibility with
local fundamental cocycles. We give a second proof as preparation for the algorithm
in section 7. Once this is proved, we construct Kaletha’s generalized Tate-Nakayama
morphisms at the level of cocycles in section 5, and prove compatibilities with respect
to inflation and localization. In particular we obtain an explicit version of Kaletha’s
localization maps at finite level and for cocycles. Although these explicit localization
maps are not canonical, as they depend on a number of choices detailed in the paper to
form cocycles, they are compatible with inflation and so yield a localization map between
towers of central extensions (see Proposition 5.4.5).

As mentioned above, a consequence is that global rigid inner forms are unramified
away from a finite set (Proposition 6.1.1), which is not obvious from the definition using
cohomology classes. After the first version of this paper was written, we found a short
proof of this ramification property using only Kaletha’s characterization of the canonical
class in [Kal, §3.5]. This proof is included in section 6, along with an example of a
“non-canonical” class, which does not satisfy this ramification property.

The author thanks Tasho Kaletha for numerous interesting discussions on rigid inner
forms and for his encouragement, as well as two anonymous referees for their comments
and suggestions.

7



2 Notation

Let F be a number field. We denote by A the ring of adèles for F . Let F be an algebraic
closure of F . All algebraic extensions of F considered will be subextensions of F . If E is
an algebraic extension of F , let O(E) be its ring of integers, AE = E ⊗F A, I(E) = A×E
the group of idèles and C(E) = I(E)/E× the group of idèle classes. Let A = AF . Let
V be the set of all places of F . If S ⊂ V and E is an algebraic extension of F , denote
by SE the set of places of E above S. If S is a set of places of F or E containing all
archimedean places, let I(E,S) be the subgroup of I(E) consisting of idèles which are
integral units away from S, and O(E,S) the ring of S-integral elements of E. For S ⊂ V
let FS be the maximal subextension of F/F unramified outside S, and OS = O(FS , S).
For E an algebraic extension of F and u ∈ VE , we will denote by pru the projection
AE → Eu. For v ∈ V we will denote by prv the projection AF → F ⊗F Fv.

As in [Kal] we fix a tower (Ek)k≥0 of increasing finite Galois extensions of F , with
E0 = F and

⋃
k Ek = F . Choose an increasing sequence (Sk)k≥0 of finite subsets of

V such that S0 contains all archimedean places of F , Sk contains all non-archimedean
places of F ramifying in Ek, and I(Ek, Sk) maps onto C(Ek). We also fix a set V̇ ⊂ VF
of representatives for the action of Gal(F/F ), that is V̇ contains a place of F above every
place of F . For E a Galois extension of F and S′ ⊂ V let Ṡ′E be the set of places of E
below V̇ and above S′, so that Ṡ′E is a set of representatives for the action of Gal(E/F )

on S′E . We can assume that V̇ is chosen so that for any finite Galois extension E/F and
σ ∈ Gal(E/F ), there exists v̇ ∈ V̇E such that σ · v̇ = v̇. This follows from Chebotarev’s
density theorem by an inductive process as in [Kal, (3.8)]. For v ∈ V and k ≥ 0 we
will denote by v̇k the unique place in V̇Ek above v. To avoid double subscripts we let
Ek,v̇ = Ek,v̇k . For v ∈ S let Fv = lim−→k

Ek,v̇k , an algebraic closure of Fv, so that we have
a well-defined inclusion Gal(Fv/Fv) ⊂ Gal(F/F ).

Remark 2.0.1. The above hypotheses on (Sk)k≥0 are weaker than Conditions 3.3.1 in
[Kal]. For effective computations (see Section 7) it is useful to have Sk as small as
possible, and so we have only imposed conditions on (Sk)k≥0 that are necessary for con-
structions in the present article.

The condition on the choice of V̇ (corresponding to Condition 3.3.1.4 in [Kal]) will
not be used for the main constructions in this article. However, the extension P → E →
Gal(F/F ) and the morphism ι in Corollary 5.2.4 depend on the choice of (Ek)k≥0 and
V̇ , and so the above condition on V̇ is necessary to obtain objects isomorphic to those in
[Kal]. Note that Condition 3.3.1.4 in [Kal] is first used in [Kal, Lemma 3.3.2, 3], and so
it is also used [Kal, Lemma 3.6.1] to obtain surjectivity of

H1(P → E , Z → G)→ H1(F,G/Z)
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for any connected reductive group G over F and finite central subgroup Z. This is crucial
for applications to automorphic forms (see [Kal, §4.3]).

Condition 3.3.1.3 in [Kal], which we have not imposed, is used to prove that certain
inflation maps are injective (Lemma 3.1.10, Lemma 3.2.7, Proposition 3.7.12).

If A is a commutative group, A∨ = Hom(A,Q/Z). If A is commutative group and
N ≥ 1 is an integer, A[N ] denotes the N -torsion subgroup of A. If A is a finite commu-
tative group, exp(A) is the exponent of A, i.e. the smallest N ≥ 1 such that A[N ] = A.
We will denote the group law of most abelian groups multiplicatively, except notably for
groups of characters or cocharacters of tori. If G is a group and A a G-module, AG ⊂ A
is the subgroup of G-invariants. If in addition G = Gal(E/F ), we will write NE/F for
the norm map, and ANE/F for the subgroup of elements killed by NE/F .

3 Preliminaries

3.1 A modification of the Akizuki-Witt map

Consider G a finite group, N a normal subgroup. If s : G/N → G is a section such
that s(1) = 1 and A is a G-module, with group law written multiplicatively, then for
α ∈ Z2(G,A),

ÃW(α) : (σ, τ) 7→
∏
n∈N

n (α(s(σ), s(τ)))× α(n, s(σ)s(τ))

α(n, s(στ))
(3.1.1)

defines an element of Z2(G/N,AN ), the cohomology class of which only depends on that
of α [AT09, Ch. XIII, §3], so that ÃW descends to a map H2(G,A) → H2(G/N,AN ).
We refer to [AT09, Ch. XIII, §3] for the natural interpretation of ÃW in terms of central
group extensions. Using the 2-cocycle relation for α at (n, s(σ), s(τ)) we can express
(3.1.1) as ∏

n∈N

α(n, s(σ))× α(ns(σ), s(τ))

α(n, s(στ))
=
∏
n∈N

α(n, s(σ))× α(σ̃n, s(τ))

α(n, s(στ))

where σ̃ ∈ G is any lift of σ, not necessarily equal to s(σ). Using the 2-cocycle relation
for α at (σ̃, n, s(τ)) we can also rewrite this as

ÃW(α)(σ, τ) =
∏
n∈N

(
α(n, s(σ))× σ̃ (α(n, s(τ)))

α(n, s(στ))
× α(σ̃, ns(τ))

α(σ̃, n)

)
. (3.1.2)

The following shows that with an appropriate choice of α in its cohomology class,
this expression simplifies.
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Lemma 3.1.1. In any cohomology class in H2(G,A), there is a 2-cocycle α such that
for all n ∈ N and σ ∈ G/N , α(n, s(σ)) = 1.

Proof. It is well-known that any cohomology class contains a 2-cocycle α such that for
all σ ∈ G, α(σ, 1) = 1 = α(1, σ). We choose such an α, and we will construct β : G→ A

such that αd(β) satisfies the required property. Let β(1) = 1, and choose the values of
β on N r {1} and s(G/N r {1}) arbitrarily. For n ∈ N and σ ∈ G/N ,

dβ(n, s(σ)) =
β(n)× n(β(s(σ)))

β(ns(σ))
,

and we are led to define β(ns(σ)) = α(n, s(σ))× β(n)×n (β(s(σ))) for n ∈ N r {1} and
σ ∈ G/N r {1}. Note that this equality also holds when n = 1 or σ = 1.

This motivates to the following modification AW2 of the Akizuki-Witt map ÃW.

Definition 3.1.2. Let Γ be an extension of G, i.e. Γ is a group endowed with a surjective
morphism Γ→ G. Let A be a commutative group, with group law written multiplicatively.
For α : Γ×G→ A, define AW2(α) : Γ×G/N → A by

AW2(α)(σ, τ) =
∏
n∈N

α(σ, nτ̃)

α(σ, n)

where σ ∈ Γ, τ ∈ G/N and τ̃ ∈ G is any lift of τ .

Although this coincides with the original Akizuki-Witt map a priori only for classes
α as in Lemma 3.1.1 (for A a G-module and Γ = G), this definition has the advantage
that it does not require a choice of section s, and will be more convenient for taking
cup-products. Moreover it is defined in a slightly more general setting, since it does not
involve an action of G on A. This property will make “extracting N -th roots” in section 5
almost harmless. The definition has the disadvantage that, even when A is a G-module,
Γ = G and α ∈ Z2(G,A), it is not automatic that AW2(α) factors through G/N ×G/N
or takes values in AN .

For Γ an extension of G and A a commutative group recall [Kal16, §4.3] for i ≥ j ≥ 0

the commutative group Ci,j(Γ, G,A) of functions Γi−j × Gj → A, which is naturally
a subgroup of Ci(Γ, A). If A is a Γ-module, the differential d maps Ci,j(Γ, G,A) to
Ci+1,j(Γ, G,A). Let Zi,j(Γ, G,A) be its kernel.

The following proposition is the first evidence that AW2 behaves nicely under weaker
conditions than the one imposed in Lemma 3.1.1, retaining the interpretation in terms
of central extensions.

Proposition 3.1.3. Let Γ be an extension of G.
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1. For α ∈ Z2,1(Γ, G,A), we have AW2(α) ∈ Z2,1(Γ, G/N,A).

2. If Γ = G then σ 7→
∏
n∈N α(n, σ) descends to a map G/N → A/AN mapping 1 to

1.

3. If Γ = G, the following are equivalent:

(a) AW2(α) factors through G/N ×G/N ,

(b) for all σ ∈ N and τ ∈ G/N , AW2(α)(σ, τ) = 1,

(c) for all σ ∈ G,
∏
n∈N α(n, σ) ∈ AN .

4. If Γ = G and the above conditions are satisfied, then AW2(α) ∈ Z2(G/N,AN )

belongs to the same cohomology class as ÃW(α) and we have a morphism of central
extensions

A�
α
G −→ AN �

AW2(α)
G/N

x� σ 7−→

(∏
n∈N

n(x)α(n, σ)

)
� σ. (3.1.3)

We only sketch the proof, since this proposition is not logically necessary for the rest
of the paper.

Proof. 1. This is an easy computation.

2. Suppose that Γ = G. Using the cocycle relation for α, for every τ, γ ∈ N ,

τ

(∏
n∈N

α(n, γ)

)
=
∏
n∈N

α(τn, γ)α(τ, n)/α(τ, nγ) =
∏
n∈N

α(n, γ)

and so
∏
n∈N α(n, γ) ∈ AN for any γ ∈ N . Now for γ ∈ N and σ ∈ G, using the

cocycle relation again,∏
n∈N

α(n, γσ) =
∏
n∈N

α(nγ, σ)α(n, γ)n (α(γ, σ)) ≡
∏
n∈N

α(n, σ) mod AN .

3. Using the cocycle relation we can write

AW2(α)(σ, τ) =
∏
n∈N

α(σn, τ̃)

σ (α(n, τ̃))
.

The numerator only depends on α mod N , and the equivalence between (a) and
(c) follows easily. The equivalence between (b) and (c) is obtained by taking σ ∈ N .
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4. The fact that AW2(α) is cohomologous to ÃW
2
(α) follows from the expression

(3.1.2) for ÃW and condition (c). This give an isomorphism AN �
AW2(α)

G/N '

AN �
ÃW

2
(α)

G/N . Since we have an explicit map A�
α
G→ AN �

ÃW
2
(α)

G/N by con-

struction in [AT09, Ch. XIII, §3], finding formula (3.1.3) is a simple computation.
Alternatively, one can directly check that (3.1.3) is a morphism.

In order to investigate the effect on AW2(α) of the choice of α in its cohomology
class, let us define a second map AW1 on 1-cochains.

Definition 3.1.4. Let A be a commutative group. For β : G → A, define AW1(β) :

G/N → A by the formula AW1(β)(σ) =
∏
n∈N β(nσ̃)/β(n), where σ̃ ∈ G is any lift of

σ ∈ G/N .

Proposition 3.1.5. Suppose Γ is an extension of G, and A is a Γ-module. For any
β : G→ A, we have d(AW1(β)) = AW2(d(β)) in Z2,1(Γ, G/N,A).

Proof. For σ ∈ Γ and τ ∈ G/N , denoting σ̄ the image of σ in G, we have

d(AW1(β))(σ, τ) =
∏
n∈N

β(nσ̄)

β(n)

σ (β(nτ̃))

σ (β(n))

β(n)

β(nσ̄τ̃)

=
∏
n∈N

β(nσ̄)σ (β(nτ̃))

β(nσ̄τ̃)σ (β(n))

and

AW2 (d(β)) (σ, τ) =
∏
n∈N

β(σ̄)σ (β(nτ̃))

β(σ̄nτ̃)

β(σ̄n)

β(σ̄)σ (β(n))

=
∏
n∈N

σ (β(nτ̃))

β(σ̄nτ̃)

β(σ̄n)

σ (β(n))
.

Lemma 3.1.6. The maps

{β : G→ A |β(1) = 1} → {β : G/N → A |β(1) = 1}

induced by AW1 and

{α : Γ×G→ A |α(σ, 1) = 1 for all σ ∈ Γ} → {α : Γ×G/N → A |α(σ, 1) = 1 for all σ ∈ Γ}

induced by AW2 are both surjective.
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Proof. Let s : G/N → G be a section such that s(1) = 1. Restricting AW1 to the set of
β : G → A such that β|N = 1 and β(ns(σ)) = 1 for σ ∈ G/N r {1} and n ∈ N r {1}
yields a bijective map onto {β : G/N → A |β(1) = 1}.

Similarly, restricting AW2 to the set of α : Γ×G→ A such that

• for all σ ∈ Γ and n ∈ N , α(σ, n) = 1,

• for all σ ∈ Γ, n ∈ N r {1} and τ ∈ G/N r {1}, α(σ, ns(τ)) = 1,

yields a bijective map onto {α : Γ×G/N → A |α(σ, 1) = 1 for all σ ∈ Γ}.

The following corollary is readily deduced from Lemmas 3.1.1 and 3.1.6 and Propo-
sition 3.1.5.

Corollary 3.1.7. Suppose that A is a G-module. Consider c ∈ H2(G,A), and let αN ∈
Z2(G/N,AN ) be in the cohomology class of the image of c under ÃW. Assume that
αN (1, 1) = 1. Then there exists α ∈ c such that α(1, 1) = 1 and AW2(α) = αN .

Note that we have not imposed that α should satisfy the property in Lemma 3.1.1,
and indeed it can happen that no such α maps to αN under AW2. A simple computation
shows that if we fix a section s : G/N → G as above, then for α, α′ ∈ c as in Lemma
3.1.1, AW2(α/α′) ∈ B2(G/N,NN (A)) where

NN (A) = {
∏
n∈N

n(x) |x ∈ A}.

3.2 Explicit Eckmann-Shapiro

Let G be a finite group acting transitively on the left on a set X. Choose x0 ∈ X and let
H be the stabilizer of x0, so that we have an identification of G-sets X ' G/H mapping
x0 to the trivial coset.

Let A be a left H-module. Define

indGH(A) = {f : G→ A | ∀h ∈ H, g ∈ G, f(hg) = h · f(g)}.

It is naturally a left G-module by defining (g1 · f)(g2) = f(g2g1). Evaluation at 1

defines a surjective morphism of H-modules π : indGH(A) → A, which admits a natural
splitting: we can identify A with the sub-H-module of indGH(A) consisting of all functions
whose support is contained in H. Choose R a set of representatives for G/H. Then
indGH(A) =

⊕
r∈R r ·A. For simplicity we assume that 1 ∈ R.

If A happens to be a G-module, then

f 7→ (gH 7→ g · f(g−1)) (3.2.1)

13



defines an isomorphism of G-modules φGH between indGH(A) and Maps(X,A). The sub-H-
module A of indGH(A) corresponds to functions supported on x0 under this isomorphism.

The Eckmann-Shapiro lemma states that for any i ≥ 0, the composite

H i(G, indGH(A))→ H i(H, indGH(A))→ H i(H,A)

is an isomorphism, where the first map is restriction and the second map is induced by
π. See e.g. [Ser94, Ch. I, §2.5]. It is well-known (for example [Tat66, p.713]) that the
inverse is obtained as the composite

H i(H,A)→ H i(H, indGH(A))→ H i(G, indGH(A))

where the first map is induced by the embedding of H-modules A→ indGH(A) mentioned
above and the second map is corestriction. In this paper we will use explicit formulas for
this inverse map, especially in degree 2.

Proposition-Definition 3.2.1. As above, G is a finite group, H is a subgroup of G, R
is a set of representatives for G/H containing 1, and A is a G-module.

1. For i ≥ 0 and c ∈ Ci(H,A), define ESiR(c) ∈ Ci(G, indGH(A)) by

ESiR(c)(r1h1r
−1
2 , r2h2r

−1
3 , . . . , rihir

−1
i+1)(hi+1r

−1
1 ) = hi+1 (c(h1, h2, . . . , hi))

where r1, . . . , ri+1 ∈ R and h1, . . . , hi+1 ∈ H. If A happens to be a G-module, then
using the identification (3.2.1) we can write

φGH
(
ESiR(c)(r1h1r

−1
2 , r2h2r

−1
3 , . . . , rihir

−1
i+1)

)
(r1 · x0) = r1 (c(h1, h2, . . . , hi)) .

(3.2.2)

2. For i ≥ 0 and c ∈ Ci(H,A), d(ESiR(c)) = ESi+1
R (d(c)). Thus ESiR induces a map

H i(H,A)→ H i(G, indGH), which is an isomorphism that we still denote by ESiR.

Proof. The formula for ESiR(c) follows from the explicit formula for corestriction for
homogeneous cochains found in [NSW08, Ch. I, §5.4. p.48] specialized to the case at
hand where c takes values in A ⊂ indGH(A).

4 Construction of Tate cocycles in a tower

Let us recall from [Tat66] the construction of the Tate-Nakayama isomorphism, which
gives a relatively simple description of Galois cohomology groups of tori over F . Consider
E a finite Galois extension of F , and S a not necessarily finite set of places of F containing
all Archimedean places and all non-Archimedean places that ramify in E, and such that
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I(E,S) surjects to C(E). Tate introduced the Gal(E/F )-module Ta(E,S) which consists
of all morphisms from the short exact sequence

Z[SE ]0 → Z[SE ]→ Z

to the short exact sequence

O(E,S)× → I(E,S)→ C(E).

Equivalently,

Ta(E,S) = Hom(Z[SE ], I(E,S)) ×
Hom(Z[SE ],C(E))

C(E) ⊂ Maps(SE , I(E,S)).

Tate constructed, using local and global fundamental classes and compatibility between
them, a Tate class α ∈ H2(E/F,Ta(E,S)). Consider a torus T over F which is split by
E, let Y = X∗(T ) be the associated Gal(E/F )-module of cocharacters. The main result
of [Tat66] is that taking cup-product with α gives isomorphisms in every degree i ∈ Z

Ĥ i(E/F, Y [SE ]0) −→ Ĥ i+2(E/F, T (O(E,S))) (4.0.1a)

Ĥ i(E/F, Y [SE ]) −→ Ĥ i+2(E/F, T (AE , S)) (4.0.1b)

Ĥ i(E/F, Y ) −→ Ĥ i+2(E/F, T (AE)/T (E)) (4.0.1c)

where
T (AE , S) = Y ⊗Z I(E,S) =

∏
w∈SE

T (Ew)×
∏
w 6∈SE

T (OEw).

We shall see that varying S among the sets of places containing a fixed finite set S0

satisfying the above conditions does not result in any difficulty. Varying E (for example
in the tower Ek that is fixed in this paper), however, leads to the surprising phenomenon
that it is not completely obvious that all three isomorphisms (4.0.1) are compatible with
inflation of cohomology classes on the right hand side. See [Kal, Lemma 3.1.4] for a
precise statement and a proof in cohomology.

Our first goal is to construct a compatible family of Tate cocycles

αk ∈ Z2(Ek/F,Maps(VEk , I(Ek)))

for the Galois extensions Ek/F . We will give a precise meaning to technical notion of
“compatibility” in Theorem 4.4.2. For now we simply mention that this compatibility is
a global analogue of [Kal16, Lemma 4.4].

Unwinding the definition, one can see that for a fixed k, a Tate cocycle αk for Ek/F
is obtained as follows.
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1. Choose a representative αk ∈ Z2(Ek/F,C(Ek)) of the fundamental class for Ek/F .

2. For each place v of F , choose a representative αk,v ∈ Z2(Ek,v̇/Fv, E
×
k,v̇) of the

fundamental class for Ek,v̇/Fv. Let α′k ∈ Z2(Ek/F,Maps(VEk , I(Ek))) be such that
for any v ∈ V , the 2-cocycle

Gal(Ek,v̇/Fv)
2 −→I(Ek)

(σ, τ) 7−→α′k(σ, τ)(v̇k)

is cohomologous to αk,v composed with jk,v : E×k,v̇ ↪→ I(Ek). Explicitly, α′k can be
obtained from (αk,v)v∈V using (3.2.2).

3. Choose βk ∈ C1(Ek/F,Maps(VEk , C(Ek))) such that αk/α′k = d(βk), where αk
is seen as taking values in the set of constant maps VEk → C(Ek) and α′k is the
composition of α′k with the natural map Maps(VEk , I(Ek))→ Maps(VEk , C(Ek)).

4. Lift βk to βk ∈ C1(Ek/F,Maps(VEk , I(Ek))) arbitrarily, and define αk = α′k×d(βk).

In this section we will show that each step can be done compatibly with Akizuki-Witt-
like maps. For cocycles αk,v this was done in [Kal16, Lemma 4.4], we will however give
a slightly different construction, using Corollary 3.1.7. The case of αk is very similar.
A key point of the construction will be the definition (see 4.2.1) of an “Akizuki-Witt-
Eckmann-Shapiro” map relating the maps AW for local and global Galois groups, and
formula (3.2.2) (see Lemma 4.2.2).

4.1 Global fundamental cocycles

For any k ≥ 0, the image of the fundamental class in H2(Ek+1/F,C(Ek+1)) under the
Akizuki-Witt map (3.1.1) (for the normal subgroup Gal(Ek+1/Ek), and any choice of
section) is the fundamental class in H2(Ek/F,C(Ek)). This is a direct consequence of
[AT09, Ch. XIII, Theorem 6]. For i ∈ {1, 2} write AWi

k for the maps AWi defined in sec-
tion 3.1, for the normal subgroup Gal(Ek+1/Ek) of Gal(Ek+1/F ). Using Corollary 3.1.7
we see that there exists a family (αk)k≥0 where each αk ∈ Z2(Ek/F,C(Ek)) represents
the fundamental class, and such that for all k ≥ 0 we have αk = AW2

k(αk+1).

Remark 4.1.1. Alternatively, one could construct such a family using a method similar
to [Kal16, §4.4] (and so [Lan83, §VI.1]), that is by choosing sections Gal(Ek+1/Ek) →
WEk , where WEk is the Weil group of Ek, and multiplying them to produce sections
Gal(Ek/F )→WEk/F , yielding fundamental cocycles compatible with AW2

k.
A third way would be to use a compactness argument and Lemma 3.1.1, as in the

proof of Theorem 4.4.2 (using 2-cochains instead of 1-cochains). The details for this last
alternative are left to the reader.
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4.2 Local and adèlic fundamental classes

Fix v ∈ V . For i ∈ {1, 2} write AWi
k,v for the maps AWi defined in section 3.1, for the

normal subgroup Gal(Ek+1,v̇/Ek,v̇) of Gal(Ek+1,v̇/Fv). As in the global case we can use
Corollary 3.1.7 inductively to produce a family (αk,v)k≥0 where αk,v ∈ Z2(Ek,v̇/Fv, E

×
k,v̇)

represents the fundamental class and for all k ≥ 0, we have αk,v = AW2
k,v(αk+1,v).

Alternatively we could simply use [Kal16, Lemma 4.4]: see Remark 4.1.1.
For each k ≥ 1, choose representatives for Gal(Ek/Ek−1)/Gal(Ek,v̇/Ek−1,v̇), and

choose lifts of these representatives in Gal(F/Ek−1) to obtain a finite setRk,v ⊂ Gal(F/Ek−1).
We can and do assume that 1 ∈ Rk,v. For convenience we also define R0,v = {1} ⊂
Gal(F/F ). For any k ≥ 0, R′k,v := R0,vR1,v . . . Rk,v ⊂ Gal(F/F ) projects to a set of rep-
resentatives for Gal(Ek/F )/Gal(Ek,v̇/Fv). For v ∈ V and k ≥ 0 let ζk,v : {v}Ek →
{v}Ek+1

be the section such that for all r ∈ R′k,v, ζk,v(r · v̇k) = r · v̇k+1. Define
jk,v : E×k,v̇ ↪→ I(Ek) by (jk,v(x))v̇k = x and (jk,v(x))w = 1 for w 6= v̇k. We have
natural inclusions E×k,v̇ ⊂ E

×
k+1,v̇ and for x ∈ E×k,v̇ we have

jk,v(x) =
∏

r∈Rk+1,v

r (jk+1,v(x)) . (4.2.1)

Following Proposition 3.2.1 define, for all k ≥ 0, α′k ∈ Z2(Ek/F,Maps(VEk , I(Ek)))

by
α′k(r1σr

−1
2 , r2τr

−1
3 )(r1 · v̇k) = r1 (jk,v(αk,v(σ, τ))) (4.2.2)

for v ∈ V , σ, τ ∈ Gal(Ek,v̇/Fv) and r1, r2, r3 ∈ R′k,v. That is, α′k is obtained by aggregat-
ing

φ
Gal(Ek/F )
Gal(Ek,v̇/Fv)(ES2

R′k,v
(jk,v(αk,v))) ∈ Z2(Ek/F,Maps({v}Ek , I(Ek)))

for v ∈ V .

Definition 4.2.1. Suppose that A is a commutative group. For k ≥ 0 and α : Gal(F/F )×
Gal(Ek+1/F )→ Maps(VEk+1

, A), define

AWES2
k(α) : Gal(F/F )×Gal(Ek/F )→ Maps(VEk , A)

by

AWES2
k(α)(σ, τ)(σkτ · w) :=

∏
n∈Gal(Ek+1/Ek)

α(σ, nτ̃)(σk+1nτ̃ · ζk,v(w))

α(σ, n)(σk+1n · ζk,v(τ · w))
.

In this formula σ ∈ Gal(F/F ) has image σk+1 in Gal(Ek+1/F ) and σk in Gal(Ek/F ),
τ ∈ Gal(Ek/F ) and τ̃ ∈ Gal(Ek+1/F ) is any lift of τ , v ∈ V and w ∈ {v}Ek .

Note that AWES2
k depends on the choice of representatives R′k,v only via ζk,v.
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Lemma 4.2.2. For all k ≥ 0 we have AWES2
k(α
′
k+1) = α′k.

Note that a priori the left hand side is only a map Gal(Ek+1/F ) × Gal(Ek/F ) →
Maps(VEk , I(Ek+1)). The lemma implies that is is inflated from a map Gal(Ek/F )2 →
Maps(VEk , I(Ek)).

Proof. Fix σ ∈ Gal(Ek+1/F ), τ ∈ Gal(Ek/F ) and γ ∈ R′k,v. In Gal(Ek/F ) write
τγ = r2g2 where r2 ∈ R′k,v and g2 ∈ Gal(Ek,v̇/Fv). Let τ̃ ∈ Gal(Ek+1/F ) be any
lift of τ and let g̃2 ∈ Gal(Ek+1,v̇/Fv) be any lift of g2. Note that

{nτ̃ |n ∈ Gal(Ek+1/Ek)} ={r2unv g̃2γ
−1 |u ∈ Rk+1,v, nv ∈ Gal(Ek+1,v̇/Ek,v̇)},

Gal(Ek+1/Ek) ={r2unvr
−1
2 |u ∈ Rk+1,v, nv ∈ Gal(Ek+1,v̇/Ek,v̇)}.

In Gal(Ek/F ) write σkr2 = r1g1 where r1 ∈ R′k,v and g1 ∈ Gal(Ek,v̇/Fv). Choose g̃1 ∈
Gal(Ek+1,v̇/Fv) lifting g1. For every u ∈ Rk+1,v we can decompose σr2u ∈ Gal(Ek+1/F )

as follows: σr2u = r1u
′g̃1xv where u′ ∈ Rk+1,v and xv ∈ Gal(Ek+1,v̇/Ek,v̇) depend on u.

Moreover u 7→ u′ realizes a bijection from Rk+1,v to itself: r−1
1 σr2g̃

−1
1 ∈ Gal(Ek+1/Ek)

induces a permutation of the set of places of Ek+1 lying above v̇k.

AWES2
k(α
′
k+1)(σ, τ)(σkτγ · v̇k) =

∏
n∈Gal(Ek+1/Ek)

α′k+1(σ, nτ̃)(σnτ̃γ · v̇k+1)

α′k+1(σ, n)(σnr2 · v̇k+1)

=
∏
u,nv

α′k+1(r1u
′g̃1xv(r2u)−1, r2unv g̃2γ

−1)(r1u
′ · v̇k+1)

α′k+1(r1u′g̃1xv(r2u)−1, r2unvr
−1
2 )(r1u′ · v̇k+1)

using the above bijections. Now apply definition (4.2.2) of α′k+1 to the numerator (resp.
denominator), with (r1, r2, r3) replaced by (r1u

′, r2u, γ) (resp. (r1u
′, r2u, r2)):

AWES2
k(α
′
k+1)(σ, τ)(σkτγ · v̇k) =

∏
u

r1u
′

(∏
nv

jk+1,v (αk+1,v(g̃1xv, nv g̃2))

jk+1,v (αk+1,v(g̃1xv, nv))

)
=
∏
u

r1u
′ (jk+1,v (αk,v(g1, g2)))

=r1 (jk,v(αk,v(g1, g2)))

=α′k(r1g1r
−1
2 , r2g2γ

−1)(r1 · v̇k)

=α′k(σ, τ)(στγ · v̇k).

The second equality follows from αk,v = AW2
k,v(αk+1,v). The third equality is a conse-

quence of (4.2.1). The third equality follows from the definition (4.2.2) of α′k, and the
last equality from the definition of r1, r2, g1, g2.
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Remark 4.2.3. One could define AWES2 axiomatically, as we did for AW2 in Section
3.1, for general quadruples (G,N,H,RG/N , RN ) where G is a finite group, N a normal
subgroup of G, H a subgroup of G, RG/N ⊂ G a set of representatives for G/HN =

(G/N)/(HN/N) such that 1 ∈ RG/N , and RN ⊂ N a set of representatives for N/(N∩H)

such that 1 ∈ RN . One could also state the generalization of Lemma 4.2.2 in this context,
with an identical proof. Note that it would apply to 2-cocycles α′ taking values in a twice
induced module, that is Z[G/H] ⊗Z indGH(A) for some H-module A. Indeed Definition
4.2.1 is essentially used with A = (Ek⊗F Fv)× =

∏
w|v E

×
w , which is already induced with

respect to the subgroup Gal(Ek,v̇/Fv) of Gal(Ek/F ). We will not need this generality,
however.

4.3 Properties of AWES2
k

To establish the analogue of Proposition 3.1.5, we introduce variants of AWES2
k in degrees

0 and 1.

Definition 4.3.1. Fix k ≥ 0.

1. Suppose that A is a commutative group. For β : Gal(Ek+1/F )→ Maps(VEk+1
, A),

define AWES1
k(β) : Gal(Ek/F )→ Maps(VEk , A) by

AWES1
k(β)(σ)(σ · w) =

∏
n∈Gal(Ek+1/Ek)

β(nσ̃)(nσ̃ · ζk,v(w))

β(n)(n · ζk,v(σ · w))

for σ ∈ Gal(Ek/F ) and w ∈ {v}Ek . In this formula σ̃ ∈ Gal(Ek+1/F ) is any lift
of σ.

2. Suppose that A is a Gal(Ek+1/Ek)-module. For β ∈ Maps(VEk+1
, A) define AWES0

k(β) ∈
Maps(VEk , A

Gal(Ek+1/Ek)) by

AWES0
k(β)(w) = NEk+1/Ek(β(ζk,v(w)))

for w ∈ {v}Ek .

Lemma 4.3.2. Fix k ≥ 0.

1. Suppose that A is a Gal(F/F )-module. For β : Gal(Ek+1/F ) → Maps(VEk+1
, A),

we have the equality of maps Gal(F/F )×Gal(Ek/F )→ Maps(VEk , A)

AWES2
k(d(β)) = d(AWES1

k(β)).
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2. Suppose that A is a Gal(Ek+1/F )-module. For β ∈ Maps(VEk+1
, A), we have the

equality of maps Gal(Ek+1/F )→ Maps(VEk , A)

AWES1
k(d(β)) = d(AWES0

k(β)).

The right hand side is a map Gal(Ek/F )→ Maps(VEk , NEk+1/Ek(A)).

Proof. 1. Let v ∈ S, w ∈ {w}k, σ ∈ Gal(Ek+1/F ) and τ ∈ Gal(Ek/F ). Let σ be the
image of σ in Gal(Ek/F ), and fix τ̃ ∈ Gal(Ek+1/F ) lifting τ . We have

d(AWES1
k(β))(σ, τ)(στ · w) =

AWES1
k(β)(σ)(στ · w)σ(AWES1

k(β)(τ))(στ · w)

AWES1
k(β)(στ)(στ · w)

=
∏

n∈Gal(Ek+1/Ek)

β(nσ)(nσ · ζk,v(τ · w))

β(n)(n · ζk,v(στ · w))

× σ
(
β(nτ̃)(nτ̃ · ζk,v(w))

β(n)(n · ζk,v(τ · w))

)
×

β(n)(n · ζk,v(στ · w))

β(nστ̃)(nστ̃ · ζk,v(w))

=
∏

n∈Gal(Ek+1/Ek)

σ (β(nτ̃)(nτ̃ · ζk,v(w)))

β(nστ̃)(nστ̃ · ζk,v(w))

×
β(nσ)(nσ · ζk,v(τ · w))

σ (β(n)(n · ζk,v(τ · w)))

=
∏

n∈Gal(Ek+1/Ek)

σ (β(nτ̃)(nτ̃ · ζk,v(w)))

β(σnτ̃)(σnτ̃ · ζk,v(w))

×
β(σn)(σn · ζk,v(τ · w))

σ (β(n)(n · ζk,v(τ · w)))

=
∏

n∈Gal(Ek+1/Ek)

dβ(σ, nτ̃)(σnτ̃ · ζk,v(w))

β(σ)(σnτ̃ · ζk,v(w))

×
β(σ)(σn · ζk,v(τ · w)))

dβ(σ, n)(σn · ζk,v(τ · w))

=
∏

n∈Gal(Ek+1/Ek)

dβ(σ, nτ̃)(σnτ̃ · ζk,v(w))

dβ(σ, n)(σn · ζk,v(τ · w))

= AWES2
k(dβ)(σ, τ)(στ · w).

We have used the fact that for any u ∈ {v}Ek+1
,

card {n ∈ Gal(Ek+1/Ek) |nτ̃ · ζk,v(w) = u} = card {n ∈ Gal(Ek+1/Ek) |n · ζk,v(τ · w)) = u}

that implies∏
n∈Gal(Ek+1/Ek)

β(σ)(σnτ̃ · ζk,v(w)) =
∏

n∈Gal(Ek+1/Ek)

β(σ)(σn · ζk,v(τ · w))).
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2. Let v ∈ S and w ∈ {v}Ek . Let σ ∈ Gal(Ek/F ) and fix σ̃ ∈ Gal(Ek+1/F ) lifting σ.

d(AWES0
k(β))(σ)(σ · w) =

σ(AWES0
k(β))(σ · w)

AWES0
k(β)(σ · w)

=
∏

n∈Gal(Ek+1/Ek)

σ̃n(β(ζk,v(w)))

n(β(ζk,v(σ · w)))

=
∏

n∈Gal(Ek+1/Ek)

nσ̃(β(ζk,v(w)))

n(β(ζk,v(σ · w)))

=
∏

n∈Gal(Ek+1/Ek)

dβ(nσ̃)(nσ̃ · ζk,v(w))× β(nσ̃ · ζk,v(w))

dβ(n)(n · ζk,v(σ · w))× β(n · ζk,v(σ · w))

=
∏

n∈Gal(Ek+1/Ek)

dβ(nσ̃)(nσ̃ · ζk,v(w))

dβ(n)(n · ζk,v(σ · w))

= AWES1
k(dβ)(σ)(σ · w).

Again we have used the fact that for any u ∈ {v}Ek+1
,

card {n ∈ Gal(Ek+1/Ek) |nσ̃ · ζk,v(w) = u} = card {n ∈ Gal(Ek+1/Ek) |n · ζk,v(σ · w)) = u}

that implies ∏
n∈Gal(Ek+1/Ek)

β(nσ̃ · ζk,v(w)) =
∏

n∈Gal(Ek+1/Ek)

β(n · ζk,v(σ · w))).

Corollary 4.3.3. Fix k ≥ 0, and suppose that A is a Gal(Ek+1/F )-module.

1. Let β : Gal(Ek+1/F )→ Maps(VEk+1
, A) be such that AWES2

k(d(β)) factors through
Gal(Ek/F )2. Then AWES1

k(β) takes values in Maps
(
VEk , A

Gal(Ek+1/Ek)
)
.

2. If β ∈ Z1
(
Gal(Ek+1/F ),Maps(VEk+1

, A)
)
then

AWES1
k(β) ∈ Z1

(
Gal(Ek/F ),Maps

(
VEk , A

Gal(Ek+1/Ek)
))

.

Proof. 1. Recall that a priori AWES1
k(β) : Gal(Ek/F ) → Maps(VEk , A). By the

previous lemma, for all w ∈ VEk , σ ∈ Gal(Ek+1/F ) and τ ∈ Gal(Ek/F ), the
quotient

AWES1
k(β)(σ)(στ · w)× σ

(
AWES1

k(β)(τ)(τ · w)
)

AWES1
k(β)(στ)(στ · w)

depends on σ only via its image σ ∈ Gal(Ek/F ). Taking σ ∈ Gal(Ek+1/Ek) shows
that AWES1

k(β)(τ)(τ · w) is invariant under Gal(Ek+1/Ek).
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2. This follows directly from the first point and a second application of the previous
lemma.

We now establish the analogue of Lemma 3.1.6 for AWES1
k and AWES2

k.

Lemma 4.3.4. Let k ≥ 0. Suppose that A is a commutative group.

1. The map

{
β : Gal(Ek+1/F )→ Maps(VEk+1

, A)
∣∣β(1) = 1

}
→ {β : Gal(Ek/F )→ Maps(VEk , A) |β(1) = 1}

induced by AWES1
k is surjective.

2. Let K ⊂ F be a Galois extension of F containing Ek+1. The map

{
α : Gal(K/F )×Gal(Ek+1/F )→ Maps(VEk+1

, A)
∣∣∀σ ∈ Gal(K/F ), α(σ, 1) = 1

}
→ {α : Gal(K/F )×Gal(Ek/F )→ Maps(VEk , A) | ∀σ ∈ Gal(K/F ), α(σ, 1) = 1}

induced by AWES2
k is surjective.

Proof. As in the proof of Lemma 3.1.6, in each case we exhibit a subset of the source
such that restricting to this subset yields a bijection. Choose a section s : Gal(Ek/F )→
Gal(Ek+1/F ) such that s(1) = 1.

1. Restrict to the set of β : Gal(Ek+1/F ) → Maps(VEk+1
, A) such that for n ∈

Gal(Ek+1/Ek), σ ∈ Gal(Ek/F ), v ∈ V and u ∈ {v}Ek+1
, β(ns(σ))(ns(σ) · u) = 1

unless n = 1, σ 6= 1 and u belongs to the image of ζk,v : {v}Ek → {v}Ek+1
.

2. Restrict to the set of α : Gal(K/F ) × Gal(Ek+1/F ) → Maps(VEk+1
, A) such that

for σ ∈ Gal(K/F ), n ∈ Gal(Ek+1/Ek), τ ∈ Gal(Ek/F ), v ∈ V and u ∈ {v}Ek+1
,

α(σ, ns(τ))(σns(τ) · u) = 1 unless n = 1, τ 6= 1 and u belongs to the image of
ζk,v : {v}Ek → {v}Ek+1

.

4.4 Tate cocycles

Recall that for every k ≥ 0 the kernel C(Ek)
1 of the surjective norm map ‖·‖k : C(Ek)→

R>0 is compact, and that these norm maps commute with the norm maps for the Galois
action NEk+1/Ek : C(Ek+1) → C(Ek), that is ‖x‖k+1 = ‖NEk+1/Ek(x)‖k for all x ∈
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C(Ek+1). In this section we will see the fundamental cocycles αk ∈ Z2(Ek/F,C(Ek))

defined in Section 4.1 as taking values in Maps(VEk , C(Ek)), by seeing elements of C(Ek)

as constant functions VEk → C(Ek).

Lemma 4.4.1. There exists a family
(
β

(0)
k

)
k≥0

, where β(0)
k : Gal(Ek/F )→ Maps(VEk , C(Ek)),

such that:

1. For any k ≥ 0 we have αk/α′k = d
(
β

(0)
k

)
, where α′k := α′k mod E×k .

2. For any k ≥ 0 we have

AWES1
k

(
β

(0)
k+1

)
∈ Maps(Gal(Ek/F ),Maps(VEk , C(Ek))).

3. For any k ≥ 0 we have
∥∥∥AWES1

k

(
β

(0)
k+1

)∥∥∥
k

=
∥∥∥β(0)

k

∥∥∥
k
, as functions Gal(Ek/F ) ×

VEk → R>0.

Proof. For a given k, the existence of β(0)
k satisfying the first condition is a consequence

of compatibility between local and global fundamental classes (see [Tat66]). Note that if
β

(0)
k+1 is such that αk+1/α

′
k+1 = d

(
β

(0)
k+1

)
, then by Lemma 4.3.2

d
(

AWES1
k

(
β

(0)
k+1

))
= AWES2

k

(
d
(
β

(0)
k+1

))
= AWES2

k(αk+1)/AWES2
k(α
′
k+1) = αk/α

′
k

(4.4.1)
factors through Gal(Ek/F )2, and by Corollary 4.3.3 AWES1

k

(
β

(0)
k+1

)
takes values in

Maps(VEk , C(Ek)). So the second condition in the lemma is a consequence of the first
one.

Let us start with a family
(
β

(0)
k

)
k≥0

satisfying the first condition, and show that we

can inductively multiply β(0)
k , k ≥ 1, by a 1-coboundary so that the third condition is

also satisfied. By (4.4.1) we know that

AWES1
k

(
β

(0)
k+1

)
/β

(0)
k ∈ Z1(Gal(Ek/F ),Maps(VEk , C(Ek)))

and by vanishing of H1(Gal(Ek/F ),Maps(VEk , C(Ek))) there exists bk : VEk → C(Ek)

such that AWES1
k

(
β

(0)
k+1

)
/β

(0)
k = d(bk). Choose b̃k : VEk+1

→ C(Ek+1) such that for

any w ∈ {v}Ek ,
∥∥∥b̃k(ζk,v(w))

∥∥∥
k+1

= ‖bk(τ · v̇k)‖k. Equivalently,
∥∥∥AWES0

k(b̃k)
∥∥∥
k

= ‖bk‖k.

Substituting β(0)
k+1/d(b̃k) for β(0)

k+1, the third condition becomes satisfied.

Theorem 4.4.2. There exists a family (βk)k≥0 with βk ∈ C1(Ek/F,Maps(VEk , I(Ek, Sk)))

such that
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1. For any k ≥ 0 we have αk/α′k = d
(
βk
)
, where βk ∈ C1(Ek/F,Maps(VEk , C(Ek)))

is the projection of βk.

2. For any k ≥ 0 we have AWES1
k(βk+1) = βk.

Therefore, the family (αk)k≥0 defined by αk = α′k × d(βk) is a family of Tate cocycles,
compatible in the sense that AWES2

k(αk+1) = αk for all k ≥ 0.

Proof. Let
(
β

(0)
k

)
k≥0

be a family as in the previous Lemma. The space

Xk :=
{
βk : Gal(Ek/F )→ Maps(VEk , C(Ek))

∣∣∣ ‖βk‖k = ‖β(0)
k ‖k and αk/α′k = d

(
βk
)}

is compact for the topology induced by the product topology on

Maps(Gal(Ek/F ),Maps(VEk , C(Ek))) =
∏

Gal(Ek/F )×VEk

C(Ek).

Moreover β(0)
k ∈ Xk. The inverse system

(
(Xk)k≥0,

(
AWES1

k : Xk+1 → Xk

)
k≥0

)
consists

of non-empty compact topological spaces and continuous maps between them, therefore
lim←−k≥0

Xk 6= ∅. Choose
(
βk
)
k
∈ lim←−Xk. Such a family satisfies the two conditions in the

proposition, but note that βk takes values in C(Ek).
Let us inductively choose lifts βk of βk such that AWES1

k(βk+1) = βk. Note that this
imposes βk(1) = 1 for all k. Choose any β0 lifting β0 such that β0(1) = 1. Suppose
that βk is given. If β is any lift of βk+1 such that β(1) = 1, then βk/AWES1

k(β) is a
mapping Gal(Ek/F ) → Maps(VEk ,O(Ek+1, Sk+1)). By Lemma 4.3.4, there exists ν :

Gal(Ek+1/F ) → Maps(VEk+1
,O(Ek+1, Sk+1)) such that ν(1) = 1 and βk/AWES1

k(β) =

AWES1
k(ν), and we let βk+1 = β × ν.

Remark 4.4.3. This result solves two problems at once:

1. Constructing a family of Tate cocycles (αk)k≥0 compatible with respect to AWES2
k,

which will be useful to compare (generalized) Tate-Nakayama isomorphisms in the
tower (Ek)k≥0, by taking cup-products (Lemma 5.2.1 and Proposition 5.2.3).

2. Constructing a family (βk)k≥0 compatible with respect to AWES1
k and realizing local-

global compatibility, which will be useful to compare local and global (generalized)
Tate-Nakayama isomorphisms (Lemmas 5.4.1 and 5.4.4 and Propositions 5.4.3 and
5.4.5).

The proof suggests that it is not possible to solve the first problem separately from the
second. One can show that if families (αk,v)k≥0,v∈V , (Rk,v)k≥0,v∈V and (αk)k≥0 as above
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are fixed, then (βk)k≥0 is determined up to

B1

(
Gal(F/F ), lim←−

k≥0

C(Ek)
0

)

where C(Ek)
0 is the connected component of 1 in C(Ek), i.e. the closure of (R⊗QEk)

×,0

in C(Ek), where (R⊗Q Ek)
×,0 is the connected component of 1 in (R⊗Q Ek)

×.

Note that while αk,v, αk and Rk,v can simply be chosen sequentially as k grows, the
existence of a family (βk)k≥0 in Theorem 4.4.2 follows from a compactness argument.
Let us give an alternative, constructive but more intricate argument for the existence of
(βk)k≥0. For simplicity we assume that for any k ≥ 0, Ek+1 contains the narrow Hilbert
class field of Ek, i.e. NEk+1/Ek(C(Ek+1)) is contained in the image of (R ⊗Q Ek)

×,0 ×

Ô(Ek)
×

in C(Ek). This can be achieved by discarding some of the Ek’s. Choose β(0)
1

such that d
(
β

(0)
1

)
= α1/α′1. Note that β(1)

0 := AWES1
0(β

(0)
1 ) = 1. For good measure let

β
(1)
0 = 1 and α0 = 1. We now proceed to inductively construct β(0)

k+1, β
(1)
k and εk−1 for

k ≥ 1, satisfying the following properties.

1. β(0)
k+1 : Gal(Ek+1/F ) → Maps(VEk+1

, C(Ek+1)) is such that α′k+1 × d
(
β

(0)
k+1

)
=

αk+1.

2. β(1)
k : Gal(Ek/F ) → Maps(VEk , I(Ek, Sk)) is a lift of AWES1

k

(
β

(0)
k+1

)
such that

β
(1)
k (1) = 1.

3. εk ∈ Maps(VEk , Ô(Ek)
×

) is such that AWES1
k−1(β

(1)
k ) = β

(1)
k−1d(εk−1).

Let k ≥ 0, assume that β(0)
k+1 and β

(1)
k are constructed. First choose any β

(0)
k+2 :

Gal(Ek+2/F ) → Maps(VEk+2
, C(Ek+2)) such that α′k+2 × d

(
β

(0)
k+2

)
= αk+2. As we

saw in the proof of Lemma 4.4.1, there exists zk+1 ∈ Maps(VEk+1
, C(Ek+1)) such that

AWES1
k+1(β

(0)
k+2) = β

(0)
k+1 × d(zi+1). Applying AWES1

k, we get

AWES1
k ◦AWES1

k+1

(
β

(0)
k+2

)
= AWES1

k

(
β

(0)
k+1

)
× d

(
AWES0

k (zk+1)
)

and we would like to let εk ∈ Maps(VEk , (R⊗QEk)
×,0×Ô(Ek)

×
) be a lift of AWES0

k (zk+1),
which exists thanks to the hypothesis that Ek+1 contains the narrow Hilbert class field

of Ek. This is not quite right, since we want εk ∈ Maps(VEk , Ô(Ek)
×

). By surjectivity
of

AWES0
k ◦AWES0

k+1 : Maps(VEk+2
, (R⊗Q Ek+2)×,0)→ Maps(VEk , (R⊗Q Ek)

×,0)
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we see that up to dividing β(0)
k+2 by an element of B1(Gal(Ek+2/F ),Maps(VEk+2

, (R ⊗Q

Ek+2)×,0)), we can find εk ∈ Maps(VEk , Ô(Ek)
×

). Now let β(2)
k = β

(1)
k ×d(εk), and as we

saw in the proof of Theorem 4.4.2, there exists β(1)
k+1 : Gal(Ek+1/F )→ Maps(VEk+1

, I(Ek+1, Sk+1))

a lift of AWES1
k+1

(
β

(0)
k+2

)
such that β(1)

k+1(1) = 1 and AWES1
k(β

(1)
k+1) = β

(2)
k . This con-

cludes the construction of
(
β

(0)
k+2, β

(1)
k+1, εk

)
.

Define inductively β(i+1)
k = AWES1

k

(
β

(i)
k+1

)
for i ≥ 0. Then for all i > k ≥ 0, we

have
β

(i+2−k)
k = β

(i+1−k)
k × d

(
AWES0

k ◦ · · · ◦AWES0
i−1(εi)

)
and since AWES0

k◦· · ·◦AWES0
i−1(εi) ∈ Maps

(
VEk , NEi/Ek

(
Ô(Ei)

×
))

, by the existence

theorem in local class field theory and Krasner’s lemma the sequences (β
(i)
k )i>0 converge

and we can define βk = limi→+∞ β
(i)
k .

5 Generalized Tate-Nakayama morphisms

In this section we will construct N -th roots of the cochains (αk,v)v∈V , α′k, βk and αk for
all N ≥ 1 and k ≥ 0. This is necessary to establish the global analogue of [Kal16, §4.5],
i.e. to make explicit the morphism ιV̇ of [Kal, Theorem 3.7.3] for the tower (Ek)k≥0, and
to study the localization map [Kal, (3.19)].

5.1 Choice of N-th roots

Proposition 5.1.1. For any v ∈ V , there exists a family
(
N
√
αk,v

)
N≥1,k≥0

where N
√
αk,v :

Gal(Ek,v̇/Fv)
2 → Fv

× such that

1. for all k ≥ 0, 1
√
αk,v = αk,v,

2. for all k ≥ 0 and N,N ′ ≥ 1 such that N divides N ′, N′
√
αk,v

N ′/N = N
√
αk,v,

3. for all k ≥ 0 and N ≥ 1, AW2
k,v( N
√
αk+1,v) = N

√
αk,v.

Proof. Using Bézout identities, we see that it is enough to construct families
(
`m
√
αk,v

)
m≥0,k≥0

for all primes `. So fix a prime number `. For a fixed k ≥ 0, there exists a family(
`m
√
αk,v

)
m≥0

satisfying the first two conditions in the proposition, and such that for all
m ≥ 0 and σ ∈ Gal(Ek,v̇/Fv), `m

√
αk,v(σ, 1) = 1. If we choose two such families for k and

k + 1, the last condition might not be satisfied, i.e. for some m ≥ 1 the obstruction

AW2
k,v( `m

√
αk+1,v)

`m
√
αk,v

: Gal(Ek+1,v̇/Fv)×Gal(Ek,v̇/Fv)→ µ`m
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could be non-trivial. Note that the target is contained in µ`m because AW2
k,v(αk+1,v) =

αk,v. Recall that Z`(1) is defined as lim←−m≥0
µ`m . By the second condition these obstruc-

tions, as m varies, glue to give a mapping

Gal(Ek+1,v̇/Fv)×Gal(Ek,v̇/Fv)→ Z`(1)

which maps any element of Gal(Ek+1,v̇/Fv)×{1} to 1. Applying Lemma 3.1.6 with A =

Z`(1), we obtain that ( `m
√
αk+1,v)m≥0 can be chosen so that AW2

k,v( `m
√
αk+1,v) = `m

√
αk,v

for all m ≥ 0.

Fix such a family for each v ∈ V . Recall from Section 4.2 the embedding jk,v : E×k,v̇ ↪→
I(Ek). We now want to extend to jk,v : Fv

×
↪→ I(F ). For x ∈ Fv

×, there exists i ≥ 0

such that x ∈ E×k+i,v̇. Define

jk,v(x) =
∏

r∈Rk+1,v ...Rk+i,v

r(jk+i,v(x))

which does not depend on the choice of a big enough i. These extended embeddings jk,v
also satisfy a compatibility formula similar to (4.2.1): for any x ∈ Fv

× we have

jk,v(x) =
∏

r∈Rk+1,v

r (jk+1,v(x)) . (5.1.1)

For N ≥ 1 define N
√
α′k : Gal(Ek/F )2 → Maps(VEk , I(F )) by

N

√
α′k(r1σr

−1
2 , r2τr

−1
3 )(r1 · v̇k) = r1

(
jk,v( N

√
αk,v(σ, τ))

)
for r1, r2, r3 ∈ R′k,v and σ, τ ∈ Gal(Ek,v̇/Fv). Obviously 1

√
α′k = α′k and whenever N

divides N ′, N′
√
α′k

N ′/N
= N
√
α′k. By the same proof as Lemma 4.2.2, thanks to (5.1.1),

we have
AWES2

k

(
N

√
α′k+1

)
= N

√
α′k.

Note that for any k ≥ 0 and v ∈ V , there exists i ≥ 0 such that N
√
αk,v takes values in

E×k+i,v̇ and so for any w ∈ {v}Ek , N
√
α′k(−,−)(w) takes values in A×Ek+i .

We now want to construct N -th roots N
√
αk of the Tate classes αk constructed in

Section 4.4. For this it is necessary to take N -th roots of idèles, which may not be
idèles. For S′ a finite subset of V , let I(F, S′) ⊂

∏
v∈V

(
F ⊗F Fv

)× be the set of families
(xv)v such that for any v 6∈ S′, there exists a finite Galois extension K/F unramified
above v such that xv ∈ (OK ⊗OF OFv)

× =
∏
w|vO

×
Kw

. Let I(F ) = lim−→S′
I(F, S′). Recall

(Theorem 4.4.2) that αk : Gal(Ek/F )2 → Maps(VEk , I(Ek)) has the following properties:

• for all σ, τ ∈ Gal(Ek/F ) and w1, w2 ∈ VEk , αk(σ, τ)(w1)/αk(σ, τ)(w2) ∈ E×k ,
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• for all σ, τ ∈ Gal(Ek/F ), v ∈ V and w ∈ {v}Ek , αk(σ, τ)(w) ∈ I(Ek) is a unit away
from Sk,Ek ∪ {v}Ek .

It is crucial for N
√
αk to enjoy similar properties.

Proposition 5.1.2. There exists a family
(
N
√
αk
)
N≥1,k≥0

where N
√
αk : Gal(Ek/F )2 →

I(F ) such that

1. for all k ≥ 0, 1
√
αk = αk,

2. for all k ≥ 0 and N,N ′ ≥ 1 such that N divides N ′, N′
√
αk

N ′/N = N
√
αk,

3. for all k ≥ 0 and N ≥ 1, AWES2
k( N
√
αk+1) = N

√
αk,

4. for all k ≥ 0, N ≥ 1, σ, τ ∈ Gal(Ek/F ) and w1, w2 ∈ VEk , N
√
αk(σ, τ)(w1)/ N

√
αk(σ, τ)(w2) ∈

F
×,

5. for all k ≥ 0, N ≥ 1, σ, τ ∈ Gal(Ek/F ), v ∈ V and w ∈ {v}Ek , N
√
αk(σ, τ)(w) ∈

I(F, Sk ∪ {v} ∪N).

Proof. It will be convenient to fix an archimedean place u of F , so that in particular
u̇k ∈ Sk,Ek for all k ≥ 0. As in the proof of Proposition 5.1.1 it is enough to restrict to
powers of a fixed prime `.

First we show how to construct a family
(
`m
√
αk
)
m≥0

for a fixed k ≥ 0. For m ≥
0 and σ, τ ∈ Gal(Ek/F ) choose roots `m

√
αk(σ, τ)(στ · u̇k) ∈ I(F, Sk ∪ `) such that

`m+1√αk(σ, τ)(στ ·u̇k)` = `m
√
αk(σ, τ)(στ ·u̇k). We can further impose that `m

√
αk(σ, 1)(σ ·

u̇k) = 1 for all σ ∈ Gal(Ek/F ). Then choose, for σ, τ ∈ Gal(Ek/F ), v ∈ V and
w ∈ {v}Ek r {στ · u̇k}, `m-th roots of αk(σ, τ)(w)/αk(σ, τ)(στ · u̇k) in (FSk∪{v}∪`)

×,
and define `m

√
αk(σ, τ)(w) as the products of these `m-th roots with `m

√
αk(σ, τ)(στ · u̇k).

This can be done compatibly as m varies. Again we can impose `m
√
αk(σ, 1)(w) = 1

for all σ ∈ Gal(Ek/F ). We obtain a family
(
`m
√
αk
)
m≥0

satisfying all conditions in the
proposition except for the third one.

The fact that these choices can be made compatibly as k varies, i.e. in such a way
that the third condition is also satisfied, can be proved as in Proposition 5.1.1, using the
fact that AWES2

k(αk+1) = αk and Lemma 4.3.4 instead of Lemma 3.1.6.

Fix a family
(
N
√
αk
)
N≥1,k≥0

as in the proposition. We want to compare N
√
α′k

and N
√
αk. Recall (Theorem 4.4.2) that αk = α′kd(βk), where βk : Gal(Ek/F ) →

Maps(VEk , I(Ek, Sk)).

Proposition 5.1.3. There exists a family
(
N
√
βk
)
N≥1,k≥0

where N
√
βk : Gal(Ek/F ) →

Maps (VEk , I(F, Sk ∪N)) such that
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1. for all k ≥ 0, 1
√
βk = βk,

2. for all k ≥ 0 and N,N ′ ≥ 1 such that N divides N ′, N′
√
βk

N ′/N
= N
√
βk,

3. for all k ≥ 0 and N ≥ 1, AWES1
k(

N
√
βk+1) = N

√
βk.

Proof. Only the third condition is non-trivial, and the proof proceeds as in Propositions
5.1.1 and 5.1.2.

Fix a family
(
N
√
βk
)
N≥1,k≥0

as in the proposition. Note that d
(
N
√
βk
)

: Gal(FSk∪N/F )×
Gal(Ek/F )→ Maps (VEk , I(F, Sk ∪N)).

Definition 5.1.4. For k ≥ 0 and N ≥ 1, let

δk(N) =
N
√
αk

N
√
α′k d

(
N
√
βk
) : Gal(FSk∪N/F )×Gal(Ek/F )→ Maps (VEk , I(F )[N ])

where I(F )[N ] is the subgroup of N -torsion elements in I(F ).

By construction, we have:

• For all k ≥ 0, N ≥ 1 and w ∈ VEk , there exists a finite Galois extension K of F
containing Ek such that δk(N)(w) factors through Gal(K/F )×Gal(Ek/F ).

• For all k ≥ 0, N ≥ 1, σ ∈ Gal(FSk∪N/F ), τ ∈ Gal(Ek/F ), v ∈ V and w ∈ {v}Ek ,

δk(N)(σ, τ)(w) ∈ I(F, Sk ∪ {v} ∪N)[N ].

• For all k ≥ 0 and N,N ′ ≥ 1 such that N divides N ′, we have δk(N ′)N
′/N = δk(N).

• For all k ≥ 0 and N ≥ 1, AWES2
k(δk+1(N)) = δk(N).

5.2 Generalized Tate-Nakayama morphism for the global tower

Using the compatible families of cochains constructed in the previous section, we now
want to recast several of Kaletha’s constructions in cohomology, but for actual cochains.
First we describe the extension PV̇ → EV̇ → Gal(F/F ) explicitly as a projective limit
of extensions P (Ek, Ṡ

′
Ek
, N)→ Ek(S′, N)→ Gal(FS′∪N/F ) constructed using N

√
αk, for

varying k, S′, N . This is the global analogue of [Kal16, §4.5]. Then we make explicit
the morphism ιV̇ of [Kal, Theorem 3.7.3] using this projective limit. To avoid repeating
similar calculations we deduce these two constructions from Lemma 5.2.1 below.

Let us recall notation from [Kal, Lemma 3.1.7]. Suppose that S′ ⊂ V . If M is an
abelian group, define !k : M [S′Ek ] → M [S′Ek+1

] by !k(Λ)(ζk,v(w)) = Λ(w) for v ∈ S′ and
w ∈ {v}Ek , and !k(Λ)(u) = 0 if u 6∈ {ζk,v(w) | v ∈ S′, w ∈ {v}Ek}. Here ζk,v is the section
of the natural projection {v}Ek+1

→ {v}Ek defined in Section 4.2.
Recall also the notion of unbalanced cup-product t from [Kal16, §4.3].
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Lemma 5.2.1. Let T be a torus defined over F . Denote Y = X∗(T ). Let k be big enough
so that Ek splits T . Let N ≥ 1 be an integer. Let S′ be a finite subset of V containing
Sk+1. Let Λ ∈ Y [S′Ek ]

NEk/F
0 = Ẑ−1(Gal(Ek/F ), Y [S′Ek ]0). Then we have an equality of

maps Gal(FS′∪N/F )→ T (OS′∪N ):

N
√
αk t

Ek/F
Λ = N

√
αk+1 t

Ek+1/F
!k(Λ).

Note that if Sk ⊂ S′′ ⊂ S′ and the support of Λ is contained in S′′Ek , then the left
hand side is inflated from a map Gal(FS′′∪N/F )→ T (OS′′∪N ).

Proof. For σ ∈ Gal(FS′∪N/F ) we have(
N
√
αk tEk/F Λ

)
(σ) =

∏
τ∈Gal(Ek/F )

N
√
αk(σ, τ)⊗ στ(Λ)

=
∏

τ∈Gal(Ek/F )

∏
w∈S′Ek

N
√
αk(σ, τ)(w)⊗ στ(Λ)(w).

Note that in this last expression, the tensor products land in I(F, S′ ∪N)⊗Z Y , but the
product over S′Ek belongs to O×S′∪N ⊗Z Y = T (OS′∪N ) because

∑
w∈S′Ek

Λ(w) = 0, using

the third condition in Proposition 5.1.2. Compare with the pairing [Kal, (3.24)]. Recall
that N

√
αk = AWES2

k( N
√
αk+1) by construction in Theorem 4.4.2, so that(

N
√
αk t

Ek+1/F
Λ

)
(σ)

=
∏

τ∈Gal(Ek/F )

∏
v∈S′

∏
w∈{v}Ek

∏
n∈Gal(Ek+1/Ek)

α(σ, nτ̃)(σk+1nτ̃ · ζk,v(w))

α(σ, n)(σk+1n · ζk,v(τ · w)
⊗ στ (Λ(w))

where σk+1 is the image of σ in Gal(Ek+1/F ). We recognize
(

N
√
αk+1 t

Ek+1/F
!k(Λ)

)
at

the numerator, by writing the product over τ ∈ Gal(Ek/F ) and n ∈ Gal(Ek+1/Ek) as a
product over τ ′ ∈ Gal(Ek+1/F ) with τ ′ = nτ̃ . We obtain(

N
√
αk+1 t

Ek+1/F
!k(Λ)

)
(σ)/

(
N
√
αk t

Ek/F
Λ

)
(σ) =∏

τ∈Gal(Ek/F )

∏
v∈S′

∏
w∈{v}Ek

∏
n∈Gal(Ek+1/Ek)

N
√
αk+1(σ, n)(σn · ζk,v(τ · w))⊗ στ (Λ(w)) .

To simplify this expression we use the change of variable u = τ · w to get

∏
v∈S′

n∈Gal(Ek+1/Ek)

∏
u∈{v}Ek

N
√
αk+1(σ, n)(σn · ζk,v(u))⊗ σ

 ∑
τ∈Gal(Ek/F )

τ
(
Λ(τ−1 · u)

)
and the sum over τ vanishes since NEk/F (Λ) = 0 by assumption.
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Let k ≥ 0 and N ≥ 1, and let S′ be a finite subset of V containing Sk. Recall
the finite sub-Gal(Ek/F )-module M(Ek, Ṡ

′
Ek
, N) of Maps(Gal(Ek/F )×S′Ek ,

1
NZ/Z) de-

fined in [Kal, §3.3], and the finite commutative algebraic group P (Ek, Ṡ
′
Ek
, N) such that

X∗(P (Ek, Ṡ
′
Ek
, N)) = M(Ek, Ṡ

′
Ek
, N). For any finite commutative algebraic group Z over

F such that exp(Z)|N and the Galois action on A := X∗(Z) factors through Gal(Ek/F ),
we have an identification Ψ(Ek, S

′, N) : Hom(P (Ek, Ṡ
′
Ek
, N), Z) ' A∨[Ṡ′Ek ]

NEk/F
0 (see

[Kal, Lemma 3.3.2]). Recall also the 2-cocycle ξk ∈ Z2(Gal(FS′∪N/F ), P (Ek, Ṡ
′
Ek
, N))

from [Kal, (3.5)], defined using an unbalanced cup-product:

ξk(S
′, N) = d (N

√
αk) t

Ek/F
cuniv(Ek, S

′, N) (5.2.1)

where cuniv(Ek, S
′, N) ∈M(Ek, Ṡ

′
Ek
, N)∨[Ṡ′Ek ]

NEk/F
0 is the image of IdP (Ek,Ṡ

′
Ek
,N) under

Ψ(Ek, S
′, N). Explicitly, for w ∈ S′Ek and f ∈ M(Ek, Ṡ

′
Ek
, N), cuniv(Ek, S

′, N)(w)(f) =

f(1, w). The restriction of d
(
N
√
αk
)
to S′Ek is a 3-cocycle

Gal(FS′∪N/F )×Gal(Ek/F )2 → Maps(S′Ek , I(F, S′ ∪N)[N ])

such that
d
(
N
√
αk
)

(σ1, σ2, σ3)(w1)

d
(
N
√
αk
)

(σ1, σ2, σ3)(w2)
∈ µN (F ) ⊂ I(F, S′ ∪N)[N ].

This property allows to pair d
(
N
√
αk
)

(σ1, σ2, σ3) with an element ofM(Ek, Ṡ
′
Ek
, N)∨[Ṡ′Ek ]0

to get an element of P (Ek, Ṡ
′
Ek
, N), as in [Kal, Fact 3.2.3]. This is the pairing used in

the definition of ξk(S′, N) (5.2.1). The 2-cocycle ξk(S′, N) is universal in the sense that
for any morphism of algebraic groups f : P (Ek, Ṡ

′
Ek
, N)→ Z over F we have

f∗(ξk(S
′, N)) = d (N

√
αk) t

Ek/F
Ψ(Ek, S

′, N)(f). (5.2.2)

Definition 5.2.2. Let k ≥ 0 and N ≥ 1, and let S′ be a finite subset of V containing
Sk. Define Ek(S′, N) as the central extension P (Ek, Ṡ

′
Ek
, N) �

ξk(S′,N)
Gal(FS′∪N/F ).

Recall that set-theoretically this is P (Ek, Ṡ
′
Ek
, N)×Gal(FS′∪N/F ), with group law

(x� σ)(y � τ) = xσ(y)ξk(S
′, N)(σ, τ) � στ.

Suppose Z ↪→ T is an injective morphism of commutative algebraic groups over F
with Z finite, exp(Z)|N and T a torus split by Ek. Denote A = X∗(Z), Y = X∗(T ) and
Y = X∗(T/Z), so that we have a short exact sequence 0 → Y → Y → A∨ → 0. Recall
from [Kal, §3.7] the subgroup Y [S′Ek , Ṡ

′
Ek

] of Y [S′Ek ] consisting of all elements whose
image in A∨[S′Ek ] is supported on Ṡ′Ek . Also let Y [S′Ek , Ṡ

′
Ek

]0 = Y [S′Ek , Ṡ
′
Ek

] ∩ Y [S′Ek ]0
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and Y [S′Ek , Ṡ
′
Ek

]
NEk/F
0 = Y [S′Ek , Ṡ

′
Ek

] ∩ Y [S′Ek ]
NEk/F
0 . As shown in [Kal, Proposition

3.7.8], we have a morphism

ιk(S
′, N) : Y [S′Ek , Ṡ

′
Ek

]
NEk/F
0 −→Z1(P (Ek, Ṡ

′
Ek
, N)→ Ek(S′, N), Z → T (OS′∪N ))

Λ 7−→
(
x� σ 7→ Ψ(Ek, S

′, N)−1([Λ])(x)×
(
N
√
αk t

Ek/F
NΛ

)
(σ)

)

where [Λ] is the image of Λ in A∨[Ṡ′Ek ]
NEk/F
0 . As explained in the proof of [Kal, Propo-

sition 3.7.8], the fact that ιk(S′, N)(Λ) is a 1-cocycle is essentially equivalent to

d (N
√
αk) t

Ek/F
NΛ = d (N

√
αk) t

Ek/F
[Λ]. (5.2.3)

Note that different pairings are used to form cup-products in this equality: [Kal, (3.24)]
on the left, [Kal, (3.3)] on the right. To be rigorous we should point out that [Kal,
Proposition 3.7.8] is stated with additional assumptions on S′, but it is easy to check
that the first point in this proposition does not use these assumptions.

As N and S′ vary, there are natural morphisms between the extensions Ek(S′, N),
compatible with ιk(S′, N). Verifying this is purely formal, so we omit this verification.

The more challenging and interesting compatibility is when k varies. This is the
main goal of this paper, and we can finally harvest the fruit of our labour. Assume
that S′ also contains Sk+1. Recall ([Kal, (3.7)]) the natural injection M(Ek, Ṡ

′
Ek
, N) ↪→

M(Ek+1, Ṡ
′
Ek+1

, N) mapping f to

(σ,w) 7→

{
f(σ,w) if σ−1 · w ∈ V̇Ek+1

,

0 otherwise.

where σ (resp. w) is the image of σ in Gal(Ek/F ) (resp. VEk), and the dual surjective
morphism ρk(S

′, N) : P (Ek+1, Ṡ
′
Ek+1

, N)→ P (Ek, Ṡ
′
Ek
, N).

It is formal to check that for any finite commutative algebraic group Z over F such
that exp(Z)|N and the Galois action on A := X∗(Z) factors through Gal(Ek/F ) and
any finite s′ ⊂ V , the following diagram is commutative.

Hom(P (Ek, Ṡ
′
Ek
, N), Z) A∨[Ṡ′Ek ]

NEk/F
0

Hom(P (Ek+1, Ṡ
′
Ek+1

, N), Z) A∨[Ṡ′Ek+1
]
NEk+1/F

0

Ψ(Ek,S
′,N)

ρk(S′,N)∗ !k

Ψ(Ek+1,S
′,N)

(5.2.4)

Proposition 5.2.3. Let k ≥ 0 and N ≥ 1, and let S′ be a finite subset of V containing
Sk+1.
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1. Composition with ρk(S′, N) maps ξk+1(S′, N) to ξk(S′, N). In particular, we have
a natural surjective morphism of extensions

Ek+1(S′, N) −→ Ek(S′, N)

x� σ 7−→ρk(S′, N)(x) � σ

2. Let Z ↪→ T be an injective morphism of commutative algebraic groups over F with
Z finite and T a torus split by Ek. Assume that exp(Z)|N . Let Y = X∗(T ) and
Y = X∗(T/Z). Then the following diagram commutes

Y [S′Ek , Ṡ
′
Ek

]
NEk/F
0 Z1(P (Ek, Ṡ

′
Ek
, N)→ Ek(S′, N), Z → T (OS′∪N ))

Y [S′Ek+1
, Ṡ′Ek+1

]
NEk+1/F

0 Z1(P (Ek+1, Ṡ
′
Ek+1

, N)→ Ek+1(S′, N), Z → T (OS′∪N ))

ιk(S′,N)

!k

ιk+1(S′,N)

where the right vertical map is the inflation map induced by the morphism of ex-
tensions defined above.

Proof. 1. We use an argument similar to the proof of [Kal, Lemma 3.2.8]. We will
apply Lemma 5.2.1. This way we avoid explicit computations with 3-cocycles
d
(
N
√
αk
)
. Denote Z = P (Ek, Ṡ

′
Ek
, N) and A = X∗(Z). Fix a surjective mor-

phism X → A where X is a free Z[Gal(Ek/F )]-module, and let X be the ker-
nel. Associated to X,X are tori T, T and a short exact sequence 1 → Z →
T → T → 1. Let Y = X∗(T ) = HomZ(X,Z) and Y = X∗(T ) = HomZ(X,Z).
We have a short exact sequence 0 → Y [S′Ek ]0 → Y [S′Ek ]0 → A∨[S′Ek ]0 → 0,
where A = Hom(X∗(Z),Q/Z). The Gal(Ek/F )-modules Y and Y [S′Ek ] are co-
homologically trivial (for Tate cohomology) and we have a short exact sequence
0→ Y [S′Ek ]0 → Y [S′Ek ]→ Y → 0, therefore Y [S′Ek ]0 is also cohomologically trivial.

This implies in particular that there exists Λ ∈ Y [S′Ek ]
NEk/F
0 mapping to the class

of cuniv(Ek, S
′, N) in A∨[S′Ek ]

NEk/F
0 /IEk/F

(
A∨[S′Ek ]0

)
. Since IEk/F

(
Y [S′Ek ]0

)
sur-

jects to IEk/F
(
A∨[S′Ek ]0

)
, we can even assume that the image [Λ] of Λ inA∨[S′Ek ]

NEk/F
0

equals cuniv(Ek, S
′, N). Then Λ ∈ Y [S′Ek , Ṡ

′
Ek

]
NEk/F
0 , and applying Lemma 5.2.1

to NΛ ∈ Y [S′Ek ]
NEk/F
0 and taking the coboundary, we obtain the identity between

2-cocycles taking values in Z

d (N
√
αk) t

Ek/F
NΛ = d

(
N
√
αk+1

)
t

Ek+1/F
!k(NΛ).

Using identity (5.2.3) on both sides, we obtain

ξk(S
′, N) = d

(
N
√
αk+1

)
t

Ek+1/F
[!k(Λ)].
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Moreover [!k(Λ)] =!k([Λ]) =!k(cuniv(Ek, S
′, N)) =!k

(
Ψ(Ek, S

′, N)

(
IdP (Ek,Ṡ

′
Ek
,N)

))
equals Ψ(Ek+1, S

′, N) (ρk(S
′, N)) by commutativity of diagram (5.2.4). Therefore

ξk(S
′, N) =d

(
N
√
αk+1

)
t

Ek+1/F
Ψ(Ek+1, S

′, N)(ρk(S
′, N))

=ρk(S
′, N)∗(ξk+1(S′, N)).

2. Let Λ ∈ Y [S′Ek , Ṡ
′
Ek

]
NEk/F
0 . The inflation of ιk(S′, N)(Λ) is the element of

Z1(P (Ek+1, Ṡ
′
Ek+1

, N)→ Ek+1(S′, N), Z → T (OS′∪N ))

mapping x� σ ∈ Ek+1(S′, N) to

Ψ(Ek, S
′, N)−1([Λ])(ρk(S

′, N)(x))×
(

N
√
αk t

Ek/F
NΛ

)
(σ).

By (5.2.4) we have Ψ(Ek, S
′, N)−1([Λ]) ◦ ρk(S′, N) = Ψ(Ek+1, S

′, N)(!k([Λ])) and
moreover !k([Λ]) = [!k(Λ)]. The conclusion then follows from Lemma 5.2.1 applied
to NΛ.

Thanks to the first part of Proposition 5.2.3 and obvious compatibilities with respect
to enlarging S′ and replacing N by a multiple, we can now define the extension P → E
of Gal(F/F ) as the projective limit of the extensions P (Ek, Ṡ

′
Ek
, N) → Ek(S′, N) over

triples (k,N, S′) such that S′ ⊃ Sk.
Let Z ↪→ T be an injective morphism of commutative algebraic groups over F with

Z finite and T a torus. Let Y = X∗(T ) and Y = X∗(T/Z), and denote

Y [VF , V̇ ]
N/F
0 = lim−→

k,S′
Y [S′Ek , Ṡ

′
Ek

]
NEk/F
0

where the limit is over pairs k, S′ such that Ek splits T and S′ ⊃ Sk.

Corollary 5.2.4. Let Z ↪→ T be an injective morphism of commutative algebraic groups
over F with Z finite and T a torus. Let T = T/Z and let Y = X∗(T ), Y = X∗(T ).
Then the morphisms (ιk(S

′, N))k,S′,N , for k, S
′, N such that Ek splits T , exp(Z)|N and

S′ ⊃ Sk, splice into a morphism

ι : Y [VF , V̇ ]
N/F
0 → Z1(P → E , Z → T (F )). (5.2.5)

In Section 5.5 we will check that the class of the extension P → E coincides with
Kaletha’s “canonical class” from [Kal]. Granting this, it is clear that ι in (5.2.5) lifts the
cohomological isomorphism ιV̇ of [Kal, Theorem 3.7.3].
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5.3 Generalized Tate-Nakayama morphism for the local towers

In this section we fix v ∈ V . We want to study the relation of the map ι defined in
Corollary 5.2.4 with the localization map locv defined in [Kal, §3.6]. This will necessitate
defining locv (for varying k, S′, N) for cochains rather than in cohomology. The first
step is to recall several constructions from [Kal16]. We choose notation similar to the
global case instead of notation used in [Kal16]. For k ≥ 0 and N ≥ 1, we have a central
extension

P (Ek,v̇, N)→ Ek,v(N)→ Gal(Fv/Fv)

where P (Ek,v̇, N) := ResEk,v̇/Fv(µN )/µN . In particular M(Ek,v̇, N) := X∗(P (Ek,v̇, N))

can be identified with Z/NZ[Gal(Ek,v̇/Fv)]0. The central extension

Ek,v(N) := P (Ek,v̇, N) �
ξk,v(N)

Gal(Fv/Fv)

is defined using the 2-cocycle

ξk,v(N) := d
(
N
√
αk,v

)
t

Ek,v̇/Fv
cuniv(Ek,v̇, N)

where cuniv(Ek,v̇, N) ∈ X∗(P (Ek,v̇, N))∨ is killed by NEk,v̇/Fv , and is defined as f 7→ f(1).
Suppose Z ↪→ T is an injective morphism of commutative algebraic groups over Fv

with Z finite, exp(Z)|N and T a torus split by Ek,v̇. Denote Y = X∗(T ) and Y =

X∗(T/Z). We have a morphism

ιk,v(N) : Y
NEk,v̇/Fv −→Z1(P (Ek,v̇, N)→ Ek,v(N), Z → T (Fv))

Λ 7−→
(
x� σ 7→ Ψ(Ek,v̇, N)−1([Λ])(x)×

(
N
√
αk,v t

Ek,v̇/Fv
NΛ

)
(σ)

)
The following lemma and proposition, using a formulation analogous to Lemma 5.2.1

and Proposition 5.2.3, are essentially proved in [Kal16, Lemma 4.5 and Lemma 4.7]. Note
that we have arranged for the 1-cochain denoted αk in [Kal16, Lemma 4.5] to be trivial.
This slightly simplifies formulae. Then Kaletha’s proof becomes a simpler analogue of
that of Lemma 5.2.1, using AW2

k( N
√
αk+1,v) = N

√
αk,v instead of AWES2

k( N
√
αk+1) =

N
√
αk.

Lemma 5.3.1. Let T be a torus defined over Fv. Denote Y = X∗(T ). Let k be big
enough so that Ek,v̇ splits T . Let N ≥ 1 be an integer. Let Λ ∈ Y NEk,v̇/Fv . Then we have
an equality of maps Gal(Fv/Fv)→ T (Fv):

N
√
αk,v t

Ek,v̇/Fv
Λ = N

√
αk+1,v t

Ek+1,v̇/Fv
Λ.
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As in the global case, there are natural morphisms ρk,v(N) : P (Ek+1,v̇, N)→ P (Ek,v̇, N),
denoted p in [Kal16, (3.2)]. There are also natural morphisms as N varies, which we do
not bother to name. As in the global case (5.2.4), for any finite commutative algebraic
group Z over Fv such that exp(Z)|N and the Galois action on A := X∗(Z) factors
through Gal(Ek,v̇/Fv), we have a commutative diagram:

Hom(P (Ek,v̇, N), Z) (A∨)
NEk,v̇/Fv

Hom(P (Ek+1,v̇, N), Z) (A∨)
NEk+1,v̇/Fv

Ψ(Ek,v̇ ,N)

ρk,v(N)∗

Ψ(Ek+1,v̇ ,N)

(5.3.1)

Proposition 5.3.2. Let k ≥ 0 and N ≥ 1.

1. Composition with ρk,v(N) maps ξk+1,v(N) to ξk,v(N). In particular, we have a
natural morphism of extensions

Ek+1,v(N) −→Ek,v(N)

x� σ 7−→ρk,v(N)(x) � σ.

2. Let Z ↪→ T be an injective morphism of commutative algebraic groups over Fv with
Z finite and T a torus split by Ek,v̇. Assume that exp(Z)|N . Let Y = X∗(T ) and
Y = X∗(T/Z). Then the following diagram commutes

Y
NEk,v̇/Fv Z1(P (Ek,v̇, N)→ Ek,v(N), Z → T (Fv))

Y
NEk+1,v̇/Fv Z1(P (Ek+1,v, N)→ Ek+1,v(N), Z → T (Fv))

ιk,v(N)

ιk+1,v(N)

where the right vertical map is inflation for the morphism of extensions defined
above.

Proof. The proof is similar to that of Proposition 5.2.3, in fact slightly easier, so we omit
it.

Let Z ↪→ T be an injective morphism of commutative algebraic groups over Fv with
Z finite and T a torus. Let Y = X∗(T ) and Y = X∗(T/Z). Denote Y N/Fv = Y

NEk,v̇/Fv

for any k such that Ek,v̇ splits T .

Corollary 5.3.3. Let Z ↪→ T be an injective morphism of commutative algebraic groups
over Fv with Z finite and T a torus. Let Y = X∗(T ) and Y = X∗(T/Z). Then the
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morphisms (ιk,v(N))k,N , for k,N such that Ek,v̇ splits T and exp(Z)|N , splice into a
morphism

ιv : Y
N/Fv → Z1(Pv → Ev, Z → T (Fv))

lifting the morphism in cohomology of [Kal16, Theorem 4.8].

5.4 Localization

In this section v ∈ V is fixed. We want to study the relationship between ι (Corollary
5.2.4), ιv (Corollary 5.3.3) and locv ([Kal, §3.6]). We study it for fixed k ≥ 0 first.

Recall ([Kal, (3.11)]) the morphisms lock,v(S
′, N) : P (Ek,v̇, N) → P (Ek, Ṡ

′
Ek
, N). If

v ∈ S′ it is dual to f 7→ (σ 7→ f(σ, v̇)). We define it to be trivial if v 6∈ S′. It is
Gal(Ek,v̇/Fv)-equivariant, and there are obvious commuting diagrams as S′ and N vary.

For M a Gal(Ek/F )-module, recall the morphism lk,v : M [S′Ek ]NEk/F → M
NEk,v̇/Fv

(denoted lkv in [Kal, Lemma 3.7.2]) defined by

lk,v(Λ) =
∑

r∈R′k,v

r−1 (Λ(r · v̇k))

if v ∈ S′, and zero otherwise.

Lemma 5.4.1. Let T be a torus defined over F . Denote Y = X∗(T ). Let k be big enough
so that Ek splits T . Let N ≥ 1 be an integer. Let S′ be a finite subset of V containing
Sk. Let Λ ∈ Y [S′Ek ]

NEk/F
0 .

Let i ≥ 0 be big enough so that N
√
αk,v takes values in E×k+i,v̇. Then we have an

equality of maps Gal(F/F )→ T (F ⊗F Fv):

prv

(
N
√
αk t

Ek/F
Λ

)
= ES1

R′k+i,v

(
N
√
αk,v t

Ek,v̇/Fv
lk,v(Λ)

)
× d

(
prv(

N
√
βk) t

Ek/F
Λ

)
×
(

prv(δk(N)) t
Ek/F

Λ

)
.

In particular, upon restriction to Gal(Fv/Fv) and projection to T (Fv):

prv̇

(
N
√
αk t

Ek/F
Λ

)
=

(
N
√
αk,v t

Ek,v̇/Fv
lk,v(Λ)

)
× d

(
prv̇(

N
√
βk) t

Ek/F
Λ

)
×
(

prv̇(δk(N)) t
Ek/F

Λ

)
.

Note that the first equality implicitly uses the identification

ind
Gal(Ek+i/F )
Gal(Ek+i,v̇/Fv)(E

×
k+i,v̇)

∼−−→ (Ek+i ⊗F Fv)×
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f 7−→
∏

g∈Gal(Ek+i,v̇/Fv))\Gal(Ek+i/F )

g−1(f(g))

to see ES1
R′k+i,v

(
N
√
αk,v t

Ek,v̇/Fv
lk,v(Λ)

)
as a map Gal(Ek+i/F )→ T (Ek+i ⊗F Fv).

Proof. Recall that by definition of δk(N), we have N
√
αk = N

√
α′kd(N

√
βk)δk(N), and we

compute unbalanced cup-products with these three terms separately. In the case of δk(N)

there is nothing to prove, so we first consider d(N
√
βk). By [Kal16, Fact 4.3] we have

d(N
√
βk) t

Ek/F
Λ = d

(
N
√
βk t

Ek/F
Λ

)
and thus upon restriction to Gal(Fv/Fv),

prv̇

(
d(N
√
βk) t

Ek/F
Λ

)
= d

(
prv̇

(
N
√
βk t

Ek/F
Λ

))
.

Let us now consider N
√
α′k. For σ ∈ Gal(Ek/F ) we have

prv

((
N

√
α′k tEk/F Λ

)
(σ)
)

=
∏

γ∈R′k,v

∏
τ∈Gal(Ek/F )

N

√
α′k(σ, τ)(στγ · v̇k)⊗ στ (Λ(γ · v̇k)) .

Write τγ = rτ ′ and σr = r′σ′ where r, r′ ∈ R′k,v and τ ′, σ′ ∈ Gal(Ek,v̇/Fv) are functions
of (σ, γ, τ). For σ and γ fixed the map τ 7→ (r, τ ′) is bijective onto R′k,v ×Gal(Ek,v̇/Fv).
We obtain

prv

((
N

√
α′k tEk/F Λ

)
(σ)
)

=
∏

γ∈R′k,v

∏
r∈R′k,v

∏
τ ′∈Gal(Ek,v̇/Fv)

N

√
α′k(r

′σ′r−1, rτ ′γ−1)(r′ · v̇k)⊗ r′σ′τ ′γ−1 (Λ(γ · v̇k))

where r′σ′ = σr, r′ ∈ R′k,v and σ′ ∈ Gal(Ek,v̇/Fv) being functions of r. Recall that by
definition,

N

√
α′k(r

′σ′r−1, rτ ′γ−1)(r′ · v̇k) = r′
(
jk,v

(
N
√
αk,v(σ

′, τ ′)
))
.

Therefore

prv

((
N

√
α′k t

Ek/F
Λ

)
(σ)

)
=
∏

γ∈R′k,v

∏
r∈R′k,v

∏
τ ′∈Gal(Ek,v̇/Fv)

r′
(
jk,v

(
N
√
αk,v(σ

′, τ ′)
)
⊗ σ′τ ′γ−1 (Λ(γ · v̇k))

)
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=
∏

r∈R′k,v

r′

 ∏
τ ′∈Gal(Ek,v̇/Fv)

jk,v
(
N
√
αk,v(σ

′, τ ′)
)
⊗ σ′τ ′ (lk,v(Λ))

 .

The map r 7→ r′ from R′k,v to itself is bijective, so we can write this as

∏
r′∈R′k,v

r′

 ∏
τ ′∈Gal(Ek,v̇/Fv)

jk,v
(
N
√
αk,v(σ

′, τ ′)
)
⊗ σ′τ ′ (lk,v(Λ))


where σ′ depends on r′ and is the unique element of Gal(Ek,v̇/Fv) such that σ−1r′σ′ ∈
R′k,v. Choose i ≥ 0 such that for any τ ′ ∈ Gal(Ek,v̇/Fv), N

√
αk,v(σ

′, τ ′) ∈ E×k+i,v̇. Using
(5.1.1) we obtain

prv

((
N

√
α′k t

Ek/F
Λ

)
(σ)

)
=

∏
r′∈R′k+i,v

r′

 ∏
τ ′∈Gal(Ek,v̇/Fv)

jk+i,v

(
N
√
αk,v(σ

′, τ ′)
)
⊗ σ′τ ′ (lk,v(Λ))


and it is easy to check that this is equal to ES1

R′k+i,v

(
N
√
αk,v t

Ek/F
lk,v(Λ)

)
(σ).

It is formal to check that for any finite commutative algebraic group Z over F such
that exp(Z)|N and the Galois action on A := X∗(Z) factors through Gal(Ek/F ), and
any finite set of places S′ of F such that S′ ⊃ Sk, the following diagram is commutative.

Hom(P (Ek, Ṡ
′
Ek
, N), Z) A∨[Ṡ′Ek ]

NEk/F
0

Hom(P (Ek,v̇, N), Z) (A∨)
NEk,v̇/Fv

Ψ(Ek,S
′,N)

(lock,v(S′,N))
∗ lk,v

Ψ(Ek,v̇ ,S
′,N)

(5.4.1)

Definition 5.4.2. For k ≥ 0, N ≥ 1 and S′ a finite subset of V containing Sk,
let ηk,v(S′, N) : Gal(Fv/Fv) → P (Ek, Ṡ

′
Ek
, N) be the restriction of prv̇(δk(N)) t

Ek/F

cuniv(Ek, S
′, N) to Gal(Fv/Fv).

Proposition 5.4.3. Let k ≥ 0, N ≥ 1 and S′ a finite subset of V containing Sk.

1. The restriction of the 2-cocycle ξk(S′, N) to Gal(Fv/Fv) equals(
lock,v(S

′, N)
)
∗ (ξk,v(N))× d

(
ηk,v(S

′, N)
)

and so the morphism lock,v(S
′, N) : P (Ek,v̇, N) → P (Ek, Ṡ

′
Ek
, N) can be extended

to a morphism of extensions

lock,v(S
′, N) : Ek,v(N) −→ Ek(S′, N)

x� σ 7−→
lock,v(S

′, N)(x)

ηk,v(S′, N)(σ)
� σ.
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2. Let Z ↪→ T be an injective morphism of commutative algebraic groups over F with
Z finite and T a torus split by Ek. Assume that exp(Z)|N . Let Y = X∗(T ) and
Y = X∗(T/Z). Then for any Λ ∈ Y [S′Ek , Ṡ

′
Ek

]
NEk/F
0 , the following identity holds in

Z1(P (Ek,v̇, N)→ Ek,v(N), Z → T (Fv)):

prv̇
(
ιk(S

′, N)(Λ) ◦ lock,v(S
′, N)

)
= ιk,v(N)(lk,v(Λ))× d

(
prv̇(

N
√
βk) t

Ek/F
NΛ

)
.

(5.4.2)

Proof. The proof is similar to that of Proposition 5.2.3, and we will be more concise.

1. Let Z = P (Ek, Ṡ
′
Ek
, N) and A = X∗(Z). As in the proof of Proposition 5.2.3 we can

find an embedding Z ↪→ T where T is a torus over F , split over Ek and such that
Y := X∗(T ) is a free Z[Gal(Ek/F )]-module. Let Y = X∗(T/Z). There exists Λ ∈
Y [S′Ek , Ṡ

′
Ek

]
NEk/F
0 such that its image [Λ] in A∨[Ṡ′Ek ]

NEk/F
0 equals cuniv(Ek, S

′, N).
Applying Lemma 5.4.1 to NΛ ∈ Y and taking the coboundary, we obtain the
identity between 2-cocycles Gal(Fv/Fv)

2 → T (Fv)

d (N
√
αk) t

Ek/F
NΛ =

(
d
(
N
√
αk,v

)
t

Ek,v̇/Fv
Nlk,v(Λ)

)
× d

(
prv̇(δk(N)) t

Ek/F
NΛ

)
.

Since d
(
N
√
αk
)N

= 1, d
(
N
√
αk,v

)N
= 1 and δk(N)N = 1 all three terms take values

in Z ⊂ T (Fv) and the equality can be written

d (N
√
αk) t

Ek/F
[Λ] =

(
d
(
N
√
αk,v

)
t

Ek,v̇/Fv
lk,v([Λ])

)
× d

(
prv̇(δk(N)) t

Ek/F
[Λ]

)
using the pairing µN ×A∨ → Z. Using the fact that

lk,v(cuniv(Ek,S′,N)) = Ψ(Ek,v̇,S′,N )(lock,v(S
′, N))

thanks to (5.4.1), we obtain the desired equality.

2. This is a direct consequence of Lemma 5.4.1 applied to NΛ, using also the com-
mutative diagram (5.4.1) with [Λ] in the top right corner.

Lemma 5.4.4. Let T be a torus defined over F . Denote Y = X∗(T ). Let k be big enough
so that Ek splits T . Let N ≥ 1 be an integer. Let S′ be a finite subset of V containing
Sk+1. Let Λ ∈ Y [S′Ek ]

NEk/F
0 . Then we have an equality of maps Gal(FS′∪N/F ) →

Y ⊗Z I(F, S′ ∪N)[N ]:

δk(N) t
Ek/F

Λ = δk+1(N) t
Ek+1/F

!k(Λ) (5.4.3)
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and an equality in Y ⊗Z I(F, S′ ∪N):

N
√
βk t

Ek/F
Λ = N

√
βk+1 t

Ek+1/F
!k(Λ). (5.4.4)

Note that in (5.4.4) the left hand side belongs to Y ⊗Z I(F, Sk ∪N).

Proof. For (5.4.3) the proof is identical to that of Lemma 5.2.1. For (5.4.4) the proof is
similar and easier, so we omit it.

The localization maps lk,v are compatible with increasing k, i.e. lk+1,v ◦ !k = lk,v.
This is proved in [Kal, Lemma 3.7.2]. Thus for any embedding Z ↪→ T of commutative
algebraic groups over F with Z finite and T a torus, they splice into

lv : Y [VF , V̇ ]
N/F
0 → Y

N/Fv

where Y = X∗(T/Z).
The localization morphisms lock,v(S

′, N) : P (Ek,v̇, N) → P (Ek, Ṡ
′
Ek
, N) are also

compatible with varying k. We formulate this compatibility, together with (5.2.4), (5.3.1)
and (5.4.1), using a commutative cubic diagram below. For any finite commutative
algebraic group Z over F such that exp(Z)|N and the Galois action on A := X∗(Z)

factors through Gal(Ek/F ), and any finite set of places S′ of F such that S′ ⊃ Sk+1, the
following cubic diagram is commutative.

Hom(P (Ek, Ṡ
′
Ek
, N), Z) A∨[Ṡ′Ek ]

NEk/F
0

Hom(P (Ek,v̇, N), Z) (A∨)
NEk,v̇/Fv

Hom(P (Ek+1, Ṡ
′
Ek+1

, N), Z) A∨[Ṡ′Ek+1
]
NEk+1/F

0

Hom(P (Ek+1,v̇, N), Z) (A∨)
NEk+1,v̇/Fv

Ψ(Ek,S
′,N)

ρk(S′,N)∗
lock,v(S′,N)∗

!k

lk,v

Ψ(Ek,v̇ ,N)

ρk,v(N)∗
Ψ(Ek+1,S

′,N)

lock+1,v(S′,N)∗

lk+1,v

Ψ(Ek+1,v̇ ,N)

(5.4.5)
In fact the commutativity of the left face follows from the commutativity of the other
faces and the fact that the morphisms Ψ are isomorphisms.

Proposition 5.4.5. 1. For any k ≥ 0, N ≥ 1 and S′ a finite subset of V containing
Sk+1 we have ηk,v(S′, N) = ρk(S

′, N)∗ (ηk+1,v(S
′, N)), and a commutative diagram
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of central extensions

Ek+1,v(N) Ek+1(S′, N)

Ek,v(N) Ek(S′, N)

lock+1,v(S′,N)

lock,v(S′,N)

(5.4.6)

Therefore as k, S′, N vary, the morphisms lock,v(S
′, N) yield locv : Ev → E.

2. Let Z ↪→ T be an injective morphism of commutative algebraic groups over F with
Z finite and T a torus. Let Y = X∗(T ) and Y = X∗(T/Z). Let Λ ∈ Y [VF , V̇ ]

N/F
0 .

For k, S′, N such that Ek splits T , N ≥ 1 is divisible by exp(Z), S′ contains Sk and
Λ comes from an element Λk ∈ Y [S′k, Ṡ

′
Ek

]
NEk/F
0 , let κv(Λ) = prv̇(

N
√
βk) t

Ek/F
NΛk ∈

T (Fv). As the notation suggests, it does not depend on the choice of k, S′, N . Then
the following identity holds in Z1(Pv → Ev, Z → T (Fv)):

prv̇ (ι(Λ) ◦ locv) = ιv(lv(Λ))× d (κv(Λ)) . (5.4.7)

Proof. 1. The equality ηk,v(S′, N) = ρk(S
′, N)∗ (ηk+1,v(S

′, N)) follows from (5.4.3) in
Lemma 5.4.4, using the same argument as in the proof of Proposition 5.2.3. Com-
mutativity of diagram (5.4.6) follows from this equality and the equality lock,v(S

′, N)◦
ρk,v(N) = ρk(S

′, N) ◦ lock+1,v(S
′, N), which is equivalent to commutativity of the

left face of (5.4.5) for Z = P (Ek, Ṡ
′
Ek
, N).

2. The fact that κv(Λ) does not depend on the choice of k, S′, N follows from (5.4.4)
in Lemma 5.4.4, and (5.4.7) is (5.4.2) in Proposition 5.4.3.

5.5 Comparison with Kaletha’s canonical class

We follow the convention in [Kal] and define, for a projective system (Qk)k≥0, (Qk+1 →
Qk)k≥0 of commutative algebraic groups over F and R a F -algebra,

(
lim←−kQk

)
(R) =

lim←−kQk(R). In particular

lim−→
E/F finite

(
(lim←−
k

Qk)(E)

)
−→

(
lim←−
k

Qk

)
(F )

is not surjective in general. For Gal(F/F )- or Gal(Fv/Fv)-modules which arise naturally
as projective limits (such as Q(F ), Q(Fv) or Q(A) for Q = lim←−kQk as above), we will
only consider continuous cochains, for the topology on projective limits induced by the
discrete topology on each term.
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As in [Kal] we let P = lim←−k,S′,N P (Ek, Ṡ
′
Ek
, N). Each term P (Ek, Ṡ

′
Ek
, N) is finite,

so that we can also simply consider the profinite Gal(F/F )-module P (F ), which equals
P (Fv) for any v ∈ V .

The 2-cocycles ξk(S′, N) are compatible by Proposition 5.2.3, and so we obtain a
2-cocycle ξ ∈ Z2(F, P ) which corresponds to the extension P → E of Gal(F/F ) intro-
duced at the end of Section 5.2. The goal of this section is to check that ξ represents
the canonical class in H2(Gal(F/F ), P ) defined in [Kal, §3.5], so that our P → E is
isomorphic to Kaletha’s, canonically by [Kal, Proposition 3.4.6].

As in [Kal, §3.3], fix a cofinal sequence (Nk)k≥0 in Z>0 (for the partial order defined
by divisibility) with N0 = 1 and such that for any k ≥ 0, Sk contains all places dividing
Nk (this is possible up to enlarging the finite sets Sk). To simplify notation we write
Pk = P (Ek, Ṡk,Ek , Nk), Mk = M(Ek, Ṡk,Ek , Nk) = X∗(Pk), ρk : Pk+1 � Pk and cuniv,k =

cuniv(Ek, Sk, Nk).
First we need to go back to the construction of a resolution of P by pro-tori in [Kal,

Lemma 3.5.1].

Lemma 5.5.1. There exists a family of resolutions, for k ≥ 0,

1→ Pk → Tk → T k → 1

of Pk by tori Tk, T k defined over F and split by Ek, and morphisms rk : Tk+1 → Tk and
rk : T k+1 → T k, such that

1. For all k ≥ 0, the diagram

Pk+1 Tk+1 T k+1

Pk Tk T k

ρk rk rk (5.5.1)

is commutative and rk, rk are surjective with connected kernels.

2. Letting Yk = X∗(Tk) and Y k = X∗(T k), there exists a family (Λk)k≥0 where Λk ∈
Y k[Sk,Ek , Ṡk,Ek ]

NEk/F
0 maps to cuniv,k ∈M∨k [Ṡk,Ek ]

NEk/F
0 and !k(Λk) = rk(Λk+1) in

Y k[Sk+1,Ek+1
, Ṡk+1,Ek+1

]
NEk+1/F

0 .

Proof. For k ≥ 0 let X ′k = Z[Gal(Ek/F)][Mk], so that there is a canonical surjective map
of Z[Gal(Ek/F )]-modules X ′k →Mk. Let X0 = X ′0, and for k ≥ 0 let Xk+1 = Xk⊕X ′k+1.
We have a natural surjective morphism Xk → Mk, which for k > 0 is obtained as the
sum of Xk−1 → Mk−1 ↪→ Mk and X ′k → Mk. Let Tk be the torus over F such that
X∗(Tk) = Xk, and let Uk = Tk/Pk. Compared to the construction in [Kal, Lemma
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3.5.1], the only difference is that X ′k+1 is free with basis Mk+1 instead of Mk+1 rMk.
Let Yk = X∗(Tk) and Y k = X∗(Uk), so that we have an exact sequence

0→ Yk → Y k →M∨k → 0.

Let X ′k = ker(X ′k → Mk), Y ′k = HomZ(X ′k,Z) and Y
′
k = HomZ(X

′
k,Z) Since X ′k is

a free Z[Gal(Ek/F ]-module, using the same argument as in Proposition 5.2.3 we can
find Υk ∈ Y

′
k[Sk,Ek , Ṡk,Ek ]

NEk/F
0 mapping to cuniv,k. For all k ≥ 0 we can identify

Y k+1 with the group of f ⊕ g ∈ Y k ⊕ Y
′
k+1 such that [f ] = [g] in M∨k . We use these

identifications to construct Λk inductively from Υk. Let Λ0 = Υ0, and for k ≥ 0 let
Λk+1 =!k(Λk)⊕Υk+1 ∈ (Y k⊕Y

′
k+1)[Sk+1,Ek+1

, Ṡk+1,Ek+1
]
NEk+1/F

0 . Thanks to the equality

!k(cuniv,k) = ρk(cuniv,k+1), we have that Λk+1 ∈ Y k+1[Sk+1,Ek+1
, Ṡk+1,Ek+1

]
NEk+1/F

0 .

Let us now recall how Kaletha pins down the canonical class ξ in [Kal, Proposition
3.5.2]. For v ∈ V , let k0,v be the minimal k ≥ 0 such that v ∈ Sk. For k ≥ k0,v

let Pk,v = P (Ek,v̇, Nk). As in the global case (ξk,v)k≥k0,v induce a continuous 2-cocycle
ξv ∈ Z2(Gal(Fv/Fv, Pv) where Pv = lim←−k Pk,v. Note that unlike in the global case,
the cohomology class of ξv is simply characterized by the property that its image in
H2(Gal(Fv/Fv), Pk,v) is that of ξk,v for every k ≥ k0,v. Uniqueness follows from vanishing
of lim−→

1
k
H1(Gal(Fv/Fv), Pk,v).

For v ∈ V denote R′v = (R′k,v)k≥0. Consider a projective system (Qk)k≥0, (Qk+1 →
Qk)k≥0 of commutative algebraic groups over F , and let Q = lim←−kQk. The Eckmann-
Shapiro maps, for k, i, j ≥ 0,

ESj
R′k+i,v

: Cj(Gal(Ek+i,v̇/Fv), Qk(Ek+i,v̇))→ Cj(Gal(Ek+i/F ), Qk(Ek+i ⊗F Fv))

are compatible (for k fixed and varying i, and then also for varying k) and yield a pro-
Eckmann-Shapiro map

ESjR′v
: Cj(Fv, Q(Fv))→ Cj(F,Q(F ⊗F Fv)).

This is explained in [Kal, Appendix B], although notations differ: our set of right coset
representatives R′k,v corresponds to the image of the composition in [Kal, Lemma B.1,
1.], by mapping r ∈ R′k,v to r−1.

Define xk ∈ Z2(Gal(F/F ), Pk(A)) by

xk =
∏
v∈Sk

ES2
R′v

(lock,v(ξk,v)) ∈ Z2(A, Pk).

The family (xk)k≥0 is easily seen to be compatible and so it defines a continus 2-cocycle
x ∈ Z2(Gal(F/F ), P (A)). Kaletha checks that the class of x in H2(Gal(F/F ), P (A))
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does not depend on the choice of sets of representatives Rk,v, nor does it depend on the
choice of ξv in its cohomology class.

Kaletha shows [Kal, Proposition 3.5.2] that there is a unique class cl(ξcan) ∈ H2(Gal(F/F ), P (F ))

such that.

1. For any k ≥ 0, the image of cl(ξcan) in H2(F, Pk) is cl(ξk).

2. The image of cl(ξcan) in H2(A, T → T ) coincides with the image of cl(x).

Adèlic cohomology groups of complexes of tori were defined and studied in [KS99, Ap-
pendix C], see [Kal, §3.5] for the case of projective systems of complexes of tori satisfying
a Mittag-Leffler condition. The class cl(ξcan) does not depend on the choice of a suit-
able pro-resolution T → T of P by pro-tori, but for the following proposition it will be
convenient to use the pro-resolution introduced in Lemma 5.5.1.

Proposition 5.5.2. The 2-cocycle ξ belongs to the canonical class cl(ξcan) ∈ H2(F, P )

defined in [Kal, Definition 3.5.4].

Proof. The first property above is obviously satisfied. The second property is equivalent
to the existence of a compatible family (ak, bk)k≥0 where ak ∈ C1(F, Tk) and bk ∈ T k(AF )

are such that ak = d(bk) in C1(A, T k) and

ξk =
∏
v∈Sk

ES2
R′k+i,v

(lock,v(ξk,v))× d(ak)

in Z2(A, Tk), for i ≥ 0 large enough.
By Lemma 5.4.1 and thanks to the fact that Λk has support in the finite set Sk,Ek ,

for i ≥ 0 big enough we have

Nk

√
α′k t

Ek/F
NkΛk =

∏
v∈Sk

ES1
R′k+i,v

(
Nk
√
αk,v t

Ek,v̇/Fv
Nklk,v(Λk)

)
as maps Gal(Ek/F )→ Tk(AEk+i). Using an argument similar to the proof of Proposition
5.4.3, we deduce

d

(
Nk

√
α′k t

Ek/F
NkΛk

)
=
∏
v∈Sk

ES2
R′k+i,v

(
d

(
Nk
√
αk,v t

Ek,v̇/Fv
Nklk,v(Λk)

))
=
∏
v∈Sk

ES2
R′k+i,v

(lock,v(ξk,v))

in Z2(Gal(F/F ), ker(Tk(AF )→ T k(AF ))). This leads us to define

ak =
Nk
√
αk

Nk
√
α′k

t
Ek/F

NkΛk ∈ C1(Gal(Ek/F ), Tk(AEk+i)).
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Then
ak =

αk
α′k

t
Ek/F

Λk = d(bk)

where bk = βk t
Ek/F

Λk ∈ T (AEk).

The fact that rk(bk+1) = bk for all k ≥ 0 follows directly from (5.4.4) in Lemma 5.4.4.
Using Nk+1

√
αk

Nk+1/Nk = Nk
√
αk and Lemma 5.2.1 we find

Nk
√
αk t

Ek/F
NkΛk = Nk+1

√
αk t

Ek/F
Nk+1Λk = Nk+1

√
αk+1 t

Ek+1/F
Nk+1!k(Λk).

Lemma 5.2.1 also holds with N
√
α? replaced by N

√
α′? because this family also satisfies

AWES2
k(

N

√
α′k+1) = N

√
α′k, and so we similarly find

Nk

√
α′k t

Ek/F
NkΛk = Nk+1

√
α′k+1 t

Ek+1/F
Nk+1!k(Λk).

The fact that rk(ak+1) = ak for all k ≥ 0 follows from these two equalities and rk(Λk+1) =

!k(Λk) (Lemma 5.5.1).

6 On ramification

6.1 A ramification property

We deduce a ramification property for Kaletha’s generalized Galois cocycles from our
explicit construction. Such a property is important to state Arthur’s multiplicity formula
in [Kal, §4.5], namely to guarantee that the global adèlic packets Πϕ are well-defined:
see [Kal, Lemma 4.5.1].

Proposition 6.1.1. Let G be a connected reductive group over F , and Z a finite central
subgroup defined over F . For any z ∈ Z1(P → E , Z → G), there exists a finite subset
S′ of V containing all archimedean places such that for any v ∈ V r S′, prv̇(z ◦ locv)

is unramified, i.e. inflated from an element of Z1(Gal(K(v)/Fv), G(O(K(v)))) for some
finite unramified extension K(v)/Fv.

Proof. Let us first check that for z′ ∈ Z1(P → E , Z → G) in the same class as z, this
ramification property holds for z if and only if it holds for z′ (in general for distinct finite
sets of places). There exists g ∈ G(F ) such that for any w ∈ E , z′(w) = g−1z(w)w(g).
Note that the action of E on G(F ) factors through Gal(F/F ). There exists a finite set
S′′ ⊂ V containing all Archimedean places and a finite Galois extension E/F unramified
away from S′′ such that g ∈ G(O(E,S′′)). Thus if z satisfies the ramification property
for S′, z′ satisfies it for S′ ∪ S′′.
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Thanks to [Kal, Lemma 3.6.2] it is enough to prove the statement in the case where
G is a torus T . We remark that this reduction could force us to enlarge S′. As usual
let Y = X∗(T/Z). Let N = exp(Z). There exists k ≥ 0 such that Ek splits T and
a finite S′ ⊂ V containing all places dividing N and Sk such that z is inflated from a
unique element of Z1(P (Ek, Ṡ

′
Ek
, N) → Ek(S′, N), Z → T (OS′)), which we also denote

by z. By [Kal, Proposition 3.7.8, 3.], up to replacing z with a cohomologous cocycle we
can assume that z = ιk(S

′, N)(Λ) for some Λ ∈ Y [S′Ek , Ṡ
′
Ek

]
NEk/F
0 , up to enlarging S′ so

that Conditions 3.3.1 in [Kal] are satisfied.
For v ∈ V r S′, the morphism lock,v(S

′, N) : Ek,v(N) → Ek(S′, N) is trivial on
P (Ek,v̇, N) and so it factors through Gal(Fv/Fv). Thanks to ramification properties
of δk(N) (see Definition 5.1.4) and by definition of ηk,v(S′, N) (see Definition 5.4.2),
ηk,v(S

′, N) : Gal(Fv/Fv) → P (Ek, Ṡ
′
Ek
, N) factors through Gal(F nr

v /Fv). By construc-
tion in Proposition 5.1.3, N

√
βk takes values in I(F, Sk ∪N). Thus by definition of κv(Λ)

in Proposition 5.4.5, κv(Λ) ∈ T (O(F nr
v )). The equality (5.4.7) in Proposition 5.4.5, which

is inflated from (5.4.2) in Proposition 5.4.3, shows that prv̇(z ◦ locv) is unramified.

Note that it does not seem possible to choose K(v) = Kv for some finite extension
K/F .

6.2 Alternative proof

As announced in the introduction to this paper, we now give an alternative proof of
Proposition 6.1.1, which relies solely on Kaletha’s definition of the canonical class, and
not on constructions in the present paper.

Alternative proof of Proposition 6.1.1. For v ∈ V temporarily let ξv ∈ Z2(Gal(Fv/Fv), Pv)

be any element of Z2(Gal(Fv/Fv), Pv) representing the class defined in [Kal16]. Choose
a tower of resolutions (1→ Pk → Tk → Uk → 1)k≥0 as in [Kal, Lemma 3.5.1], and as be-
fore write T (A) = lim←−k Tk(A) and U(A) = lim←−k Uk(A). Temporarily let ξ be any element
of Z2(Gal(F/F ), P ) representing the canonical class defined in [Kal, §3.5]. Of course
the 2-cocycles constructed in this paper are examples of elements of these cohomology
classes, but we want to emphasize that the present proof does not require constructions
in previous sections.

By definition of the canonical class there exists a ∈ C1(A, T ) and b ∈ U(A) such that

ξ =
∏
v∈V

ES2
R′v

(locv(ξv))× d(a)

in Z2(A, T ) and a = d(b) in C1(A, U). In particular for any v ∈ V we have

resv(ξ) = locv(ξv)× d(av)
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where resv denotes restriction to Gal(Fv/Fv) and av = prv̇(resv(a)). This equality holds
in Z2(Fv, T ), but ξ and locv(ξv) both take values in P . Let bv = prv̇(b), and choose a lift
b̃v of bv in T (Fv). This is possible thanks to the surjectivity of all maps Pk+1 → Pk, by
a simple diagram chasing argument (or more conceptually using vanishing of lim←−

1
k
Pk).

Let a′v = av/d(b̃v). Then a′v ∈ C1(Fv, P ), and we have the equality

resv(ξ) = locv(ξv)× d(a′v)

in Z2(Fv, P ).
Fix k ≥ 0. For v ∈ V denote by ak,v (resp. bk,v, b̃k,v, a′k,v) the image of av (resp. bv, b̃v,

a′v) in C1(Fv, Tk) (resp. Uk(Fv), Tk(Fv), C1(Fv, Pk)). Let us check that there is a finite
set S′ of places of F such that for all v 6∈ S′, a′k,v ∈ C1(Fv, Pk) is unramified. There exists
a finite set S′ ⊃ Sk and a finite Galois extension K of F containing Ek, splitting Tk and
unramified away from S′ such that ak ∈ C1(K/F, Tk(AK)S′) and bk ∈ Uk(AK)S′ where
Tk(AK)S′ is defined as X∗(Tk)⊗Z I(K,S′). So for v 6∈ S′, ak,v ∈ C1(Kv̇/Fv, Tk(O(Kv̇)))

is unramified. The group Pk = ker(Tk → Uk) is killed by Nk, and so there is a unique
morphism Uk → Tk such that the composition Uk → Tk → Uk is the Nk-power map.
Thus for any v 6∈ S′, b̃k,v ∈ Tk(O(Kv̇)

(Nk)) where O(Kv̇)
(Nk) is the finite étale extension

of O(Kv̇) obtained by adjoining all Nk-th roots of elements in O(Kv̇)
×. We conclude

that for v 6∈ S′, a′k,v ∈ C1(Gal(O(Kv̇)
(Nk)/O(Fv)), Pk) and

resv(ξk) = d(a′k,v)

in Z2(Fv, Pk), where ξk is ξ composed with the surjection P → Pk. This easily implies
Proposition 6.1.1.

Note that the fact that for a fixed k, resv(ξk) is the coboundary of an unramified
1-cochain for almost all v ∈ V is straighforward from the definition. What the proof
above shows is that the cochain a′k,v coming from “infinite level”, which is unique up
multiplication by a 1-coboundary, is unramified for almost all v ∈ V .

6.3 A non-canonical class failing the ramification property

Proposition 6.3.1. Assume that N1 = 2 and that S1 is big enough so that P1 is non-
trivial. Then there exists ξbad ∈ Z2(F, P ) which coincides with the canonical class in
lim←−kH

2(F, Pk) and such that for infinitely many places v of F , the 1-cochain av ∈
C1(Fv, P ) such that resv(ξ

bad) = locv(ξv)d(av) is such that its image a1,v ∈ C1(Fv, P1)

is ramified.

Note that av is unique up to a 1-coboundary by [Kal, Proposition 3.4.5], and so the
property “a1,v is unramified” is well-defined at all places v ∈ V r S1.
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Proof. Fix a tower of resolutions (Tk → Uk)k≥0 of Pk by tori as in [Kal, §3.5], and
denote by πk the morphism (Tk+1 → Uk+1) → (Tk → Uk). Recall (discussion before
Proposition 3.5.2 in [Kal] and [Wei94, Theorem 3.5.8]) that for any j ≥ 0 the following
short sequences are exact:

1→ lim←−
k

1Hj(F, Pk)→ Hj+1(F, P )→ lim←−
k

Hj+1(F, Pk)→ 1 (6.3.1)

1→ lim←−
k

1Hj(A, Tk → Uk)→ Hj+1(A, T → U)→ lim←−
k

Hj+1(A, Tk → Uk)→ 1.

For any k ≥ 0 and j ≥ 0 the natural mapHj(F, Pk)→ Hj(F, Tk → Uk) is an isomorphism
because

1→ Pk(F )→ Tk(F )→ Uk(F )→ 1

is exact (whereas Tk(A) → Uk(A) is not surjective in general). By the five lemma this
implies that the first short exact sequence (6.3.1) is isomorphic to

1→ lim←−
k

1Hj(F, Tk → Uk)→ Hj+1(F, T → U)→ lim←−
k

Hj+1(F, Tk → Uk)→ 1.

One could also check that Hj(F, P ) → Hj(F, T → U) is an isomorphism more directly
by manipulating cocycles.

By [Kal, Lemma 3.5.3] the natural morphism

lim←−
k

1H1(F, Pk)→ lim←−
k

1H1(A, Tk → Uk) (6.3.2)

is an isomorphism. So let us first define a non-trivial element of lim←−k
1H1(A, Tk → Uk).

Choose, for any k ≥ 1, a place vk ∈ V r S1 such that Ek/F is split above vk and the
vk’s are distinct. For any k ≥ 1, the tori Tk, Uk, T1 and U1 are split over Fvk , and
the surjective morphism of tori Uk → U1 splits over Fvk since it has connected kernel.
Therefore

H1(Fvk , Pk) = H1(Fvk , Tk → Uk) ' Uk(Fvk)/Tk(Fvk)

maps onto
H1(Fvk , P1) = H1(Fvk , T1 → U1) ' U1(Fvk)/T1(Fvk).

Since we have assumed N1 = 2, over Fvk the multiplicative group P1 is isomorphic to
µr2 for some r > 1. For each k ≥ 1 let ck,vk ∈ Z1(Fvk , Pk) ⊂ Z1(Fvk , Tk → Uk) be such
that its image in H1(Fvk , P1) is ramified. Recall that H1(A, Tk → Uk) decomposes as a
restricted direct product over places in V [KS99, Lemma C.1.B]. Define ck ∈ Z1(A, Tk →
Uk) by

prv(ck) =

{
1 if v 6= vk

ES1
R′v

(ck,vk) if v = vk.
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If c̃k ∈ C1(A, T → U) lifts ck, then d(c̃k) ∈ Z2(A, T → U) has trivial image in Z2(A, Tk →
Uk). The family (ck)k≥1 defines an element of lim←−

1
k
H1(A, Tk → Uk), whose image in

H2(A, T → U) is the class of the convergent product
∏
k≥1 d(c̃k), for any choice of lifts

(c̃k)k≥1. For simplicity we choose a lift c̃k,vk ∈ C1(Fv, T → U) of ck,vk and define c̃k by

prv(c̃k) =

{
1 if v 6= vk

ES1
R′v

(c̃k,vk) if v = vk.

By surjectivity of (6.3.2), there exists a family (bk)k≥1 with bk ∈ Z1(A, Tk → Uk) such
that for every k ≥ 1, the class of ckbk/πk(bk+1) belongs to the image of H1(F, Tk →
Uk) → H1(A, Tk → Uk). This means that there exists ek ∈ C0(A, Tk → Uk) = Tk(A)

such that for every k ≥ 0,

fk := ck
bk

πk(bk+1)
d(ek) ∈ Z1(F, Tk → Uk).

Choose lifts b̃k ∈ C1(A, T → U) of bk, ẽk ∈ C0(A, T → U) = T (A) of ek, and f̃k ∈
C1(F, T → U) of fk. Then

gk := c̃k
b̃k

b̃k+1

d(ẽk)f̃
−1
k ∈ C1(A, T → U)

takes values in the complex

ker
(
T (A)→ Tk(A)

)
−→ ker

(
U(A)→ Uk(A)

)
and so

∏
k≥1 gk is convergent in C1(A, T → U). Let q =

∏
k≥1 d(f̃k) ∈ Z2(F, T → U),

which converges because fk is a cocycle. In Z2(A, T → U) we have a factorization

q = d(b̃1)×

∏
k≥1

d(c̃k)

× d

∏
k≥1

g−1
k

 .

Moreover q defines a class in H2(F, T → U) = H2(F, P ). Choose a(1) ∈ C1(F, T → U)

such that q × d(a(1)) ∈ Z2(F, P ).
Let ξbad = ξ × q × d(a(1)) in Z2(F, P ), where ξ ∈ Z2(F, P ) belongs to the canon-

ical class. For any v ∈ V , by vanishing of lim←−
1
k
H1(Fv, P ) = lim←−

1
k
H1(Fv, T → U) we

know a priori that resv(q) is the trivial class in H2(Fv, P ). The point of the diagonal
construction above is that we can write resv(q) more explicitly as a coboundary. Let
a(2) = b̃1

∏
k≥1 g

−1
k ∈ C

1(A, T → U). Then for any place v, letting a(2)
v = prv̇(resv(a

(2))),

resv(q) =

{
d(a

(2)
v ) if v 6∈ {vk|k ≥ 1},

d(a
(2)
v × c(v)

k ) if v = vk.
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Since ξ belongs to the canonical class, as in the alternative proof in section 6.2 there
exists a(3) ∈ C1(A, T → U) such that for any place v, resv(ξ) = locv(ξv) × d(a

(3)
v ). Let

a = a(1)a(2)a(3) ∈ C1(A, T → U). Then for every place v, letting av = prv̇(resv(a)),

resv(ξbad)/locv(ξv) =

{
d(av) if v 6∈ {vk|k ≥ 1}
d(av × c(v)

k ) if v = vk.

By the same argument as in section 6.2, in this equality we can replace av ∈ C1(Fv, T →
U) by a′v ∈ C1(Fv, P ), and for almost all places v the image a′1,v of a′v in C1(Fv, P1) is un-
ramified. We conclude that for almost all k ≥ 1, resvk(ξbad)/locvk(ξvk) is the coboundary
of an element of C1(Fvk , P ) whose image in C1(Fvk , P1) is ramified.

This example shows that for [Kal, Lemma 4.5.1], it is important to use the canonical
class and not an arbitrary lift in H2(F, P ) of the canonical element of lim←−kH

2(F, Pk).
More precisely, suppose that we form an extension Ebad of Gal(F/F ) by P using a non-
canonical class ξbad as above. Suppose that G is a reductive group that is an inner form
of a quasi-split reductive group G∗ over F . Realize G as a global rigid inner form (Ξ, z)

of G∗ with z ∈ Z1(P → Ebad, Z → G∗) for some finite central subgroup Z of G∗. Let
k ≥ 0 be big enough so that

1. G∗ and G admit reductive models over O(F, Sk), that we fix,

2. G∗ admits a global Whittaker datum w compatible with this model at all v 6∈ Sk
in the sense of [CS80],

3. the restriction of z to P factors through a morphism P (Ek, Ṡ
′
Ek
, Nk)→ Z, and for

any v 6∈ Sk the localization zv ∈ Z1(Fv, G
∗) is cohomologically trivial.

It can happen that the set V bad of finite places v 6∈ Sk such that the conjugacy classes of
hyperspecial maximal compact subgroups G(OFv) and G∗(OFv) are not conjugate under
the trivialization of (Ξv, zv) is infinite. Using Proposition 6.3.1 one can easily give such
examples with G∗ = Sp2n for any n ≥ 1. Suppose for simplicity that G∗ is split and that
for a finite place v of F there are exactly two conjugacy classes of hyperspecial maximal
compact subgroups in G∗(Fv), as is the case for G∗ = Sp2n. Suppose that ϕ is a global
discrete Langlands parameter for G and that for every place v of F , ϕv is relevant for GFv
i.e. that the local L-packet Πϕv is non-empty. Let V bad

ϕ be the set of v ∈ V bad such that
the local parameter ϕv is unramified and endoscopic, i.e. the centralizer of ϕ(Frobv) in Ĝ
is not connected. For every such v, Πϕv has two elements and the base point of this set
for the rigidifying datum (G∗Fv ,Ξv, zv,wv) is not G(OFv)-spherical. If V bad

ϕ is infinite, no
element of the adelic L-packet considered in [Kal, §4.5] is admissible, which is a problem
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to formulate a multiplicity formula for automorphic representations. In Example 6.3.2
below we point out that by [Elk87] there are infinitely many examples of (unconditional
substitutes for) global Langlands parameters ϕ such that ϕv is endoscopic for infinitely
many v. We do not know if there are examples with V bad

ϕ infinite, but Proposition 6.3.1
and Example 6.3.2 certainly justify caution.

Example 6.3.2. Consider first a prime number p and the group SL2(Qp). There are two
conjugacy classes of hyperspecial maximal compact subgroups of SL2(Qp), represented by
K1 = SL2(Zp) and its conjugate K2 under diag(p, 1) ∈ GL2(Qp). Therefore, for any
Satake parameter c = cl(diag(x, 1)), a semisimple conjugacy class in PGL2(C), a priori
there are two associated unramified representations of SL2(Qp), say π1,x, π2,x such that
dimC π

Ki
i,x = 1. Let T = {diag(t, t−1) | t ∈ Q×p }, a maximal torus in SL2(Qp), and χx the

unramified character diag(t, t−1) 7→ xvp(t) of T , where vp is the p-adic valuation such that
vp(p) = 1. Let B be a Borel subgroup of SL2(Qp) containing T . Then Ind

SL2(Qp)
B (χx) is

irreducible and isomorphic to π1,x ' π2,x if x 6∈ {−1, p, p−1}, whereas Ind
SL2(Qp)
B (χ−1) '

π1,−1 ⊕ π2,−1 with π1,−1 6' π2,−1. This is related to the fact that diag(−1, 1) is, up to
conjugation, the only semisimple element of PGL2(C) whose centralizer is not connected
(it has two connected components).

Now let E be an elliptic curve over Q. Let f =
∑

n≥1 anq
n be the associated [BCDT01]

newform. By [Elk87] there are infinitely many primes p such that ap = 0. In terms of
the cuspidal automorphic representation π = ⊗′vπv corresponding to f , this means that
for infinitely many primes p, the Satake parameter of the unramified representation πp

of GL2(Qp) (a semisimple conjugacy class in GL2(C)) has trace zero. Equivalently, its
image in PGL2(C) is cl(diag(−1, 1)). Consider the conjectural associated Langlands
parameter ϕE : LQ → GL2(C) of π, where LQ is the hypothetical Langlands group of Q.
Then its projection ϕE to PGL2(C) is such that for infinitely many unramified primes p,
ϕE(Frobp) is conjugated to diag(−1, 1).

This phenomenon has the following unconditional consequence. Let G̃ be an inner
form of GL2/Q, i.e. the group of invertible elements of a central simple algebra of degree
2 over Q. Assume that E is relevant for G̃, i.e. that for any prime p such that G̃Qp is
not split, πp is a twist of the Steinberg representation or a supercuspidal representation of
GL2(Qp). By the Jacquet-Langlands correspondence [JL70], there is a unique automor-
phic cuspidal representation π′ for G̃ corresponding to π. Let G be the derived subgroup
of G̃, an inner form of SL2/Q. By [LL79] and [Ram00], the restriction of π′ to G(A)

(at the real place, one should consider (g,K)-modules) embeds in the space of cuspidal
automorphic forms for G. This restriction is admissible but has infinite length: for any
prime p > 3 such that GQp is split and E has good supersingular reduction, π′p|G(Qp) has
length 2.
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Interestingly, the algorithm in [Elk87] uses primes which do not split in certain
quadratic extensions of Q, while the counter-example in 6.3.1 is constructed using primes
split in arbitrarily large extensions of the base field.

7 Effective localization

We conclude by explaining how the constructive proof of the existence of a family of “local-
global compatibility” cochains (βk)k≥0 at the end of section 4.4 allows one to explicitly
compute all localizations of a global rigidifying datum, as promised in the introduction
to this article.

7.1 A general procedure

Let G∗ be a quasi-split connected reductive group over F . Fix a global Whittaker datum
w of G∗, i.e. choose a Borel subgroup B∗ of G∗ defined over F , let U be the unipotent
radical of B∗, let χ be a generic unitary character of U(A)/U(F ), and let w be the
G∗(F )-conjugacy class of (B∗, χ). Let T a maximal torus of G∗ defined over F , and E a
finite Galois extension of F splitting T . Let S be a finite set of places of F such that

1. S contains all archimedean places of F and all places of F which ramify in E,
and the (always injective) morphism I(E,S)/O(E,S)× → C(E) is surjective (i.e.
Pic(O(E,S)) = 1).

2. G∗ admits a reductive model G∗ over O(F, S) in the sense of [SGA70b, Exposé
XIX, Définition 2.7] such that the schematic closure T of T in G∗, which is a flat
group scheme over O(F, S) since this ring is Dedekind, is a torus in the sense of
[SGA70a, Exposé IX, Définition 1.3].

3. For any v 6∈ S, the Whittaker datum w is compatible with the G∗(Fv)-conjugacy
class of the hyperspecial maximal compact subgroup G∗(O(Fv)), in the sense of
[CS80].

Let Z be a finite central subgroup of G, N = exp(Z) and T = T/Z. Let Z be the
schematic closure of Z in T (or G), then Z is a group scheme of multiplicative type over
O(F, S). Moreover T := T/Z is a maximal torus of the reductive group scheme G∗/Z
(see [SGA70b, Exposé XXII, Corollaire 4.3.2]). Let ṠE be a set of representatives for the
action of Gal(E/F ) on SE . Finally, choose Λ ∈ Y [SE , ṠE ]

NE/F
0 . If

αE/F ∈ Z2
(
Gal(E/F ),Hom(Z[SE ]0,O(E,S))×

)
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is any Tate cocycle (as in [Tat66]), then taking the cup-product of αE/F with Λ yields

z ∈ Z1(Gal(O(E,S)/O(F, S)), T (O(E,S))) (7.1.1)

i.e. a Čech cocycle for the étale sheaf T and the covering Spec(O(E,S))→ Spec(O(F, S)).
In particular we obtain a reductive group G over O(F, S) by twisting G∗ with the image
z of z in

Z1 (Gal(O(E,S)/O(F, S)), G∗ad(O(E,S))) .

This realizes the generic fiber G of G as an inner twist (Ξ, z) of G∗.

Remark 7.1.1. The fact that any connected reductive group G over F arises in this way
is a consequence of [Kal, Lemmas A.1 and 3.6.1].

More directly, that is without making use of [Kal, Lemma A.1], Steinberg’s theorem
on rational conjugacy classes in quasi-split semisimple simply connected algebraic groups
([Ste65]) implies that if we start with a reductive group G and a maximal torus T of G,
then it can be realized as an inner twist (G∗,Ξ, z) with z taking values in Ξ−1(Tad(F )).

We now use the constructive proof of Theorem 4.4.2 at the end of section 4.4. Let
E1 = E and S1 = S and choose a finite Galois extension E2 of F which is totally complex
and such that for every v ∈ S non-archimedean,

NE2/E

∏
w|v

O(E2,w)×


is contained in the subgroup of N -th powers in

∏
w|vO(Ew)×. Finally, let E3 be any finite

Galois extension of F containing the Hilbert class field of E2. Choose global fundamental
classes α1, α2, α3 such that αk = AW2

k(αk+1) for k ∈ {1, 2} and α3 is normalized, i.e.
α3(1, 1) = 1. Fix finite sets of places S3 ⊃ S2 ⊃ S as in section 2. For each v ∈ S3

fix a place v̇3 ∈ SE3 . Choose local fundamental classes αk,v for v ∈ S and k ∈ {1, 2, 3}.
Choose sets of representatives (Rk,v)1≤k≤3,v∈S as in section 4.2, or rather, choose their
image Rk,v in Gal(E3/F ). These families (Sk)k≤3, (αk)k≤3, (αk,v)k≤3,v∈S , (Rk,v)k≤3,v∈S

can be extended to k ≥ 0 and v ∈ V , as explained in sections 4.1, 4.2 and 4.4. Moreover
{v̇3}v∈S can be lifted and extended to yield V̇ as in section 2.

Now choose β(0)
3 : Gal(E3/F ) → Maps(SE3 , C(E3)) such that d(β

(0)
3 ) = α3/α′3.

Choose β(1)
2 : Gal(E2/F )→ Maps(SE2 , I(E2, S2)) lifting AWES1

2(β
(0)
3 ) such that β(1)

2 (1) =

1 and β(2)
1 := AWES1

1

(
β

(1)
2

)
takes values in Maps(SE1 , I(E,S)). Let α1 = α′1 × d(β

(2)
1 ).

At the end of section 4.4 we constructed a family (βk)k≥0 such that there exists ε′2 ∈
Maps(SE2 , Ô(E2)

×
) satisfying β2|SE2

= β
(1)
2 × d(ε′2), more precisely ε′2 is the restriction
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to SE2 of
lim

n→+∞

∏
2≤i≤n

AWES0
2 ◦ · · · ◦AWES0

i−1(εi).

Therefore β1|SE = AWES1
1(β2) = β

(2)
1 × d(x) where x = AWES0

1(ε′2) is a map

SE → NE2/E

(
Ô(E2)

×
)
.

In particular for every non-archimedean v ∈ S there exists a map yv : SE →
∏
w|vO(Ew)×

such that yNv = prv(x). For v ∈ S archimedean, simply let yv = 1. Recall that N =

exp(Z). Going back to the construction of N ′-th roots in Propositions 5.1.1, 5.1.2 and

5.1.3, we see that for any choice of N -th root N

√
β

(2)
1 : Gal(E/F )→ Maps(SE , I(E,S ∪

N)), we can choose the N -th root N
√
β1 so that for all v ∈ S,

prv

(
N
√
β1

)
|SE = prv

(
N

√
β

(2)
1

)
× d (yv) .

If α1 is chosen to form z in (7.1.1), the generic fiber G of G is endowed with a
global rigidifying datum (G∗,Ξ, z,w) where z = ι(Λ). For v ∈ V , the localization of this
rigidifying datum at v is (G∗Fv ,Ξv, zv,wv) where Ξv = ΞFv and zv = prv̇(z ◦ locv).

Let z′v = ιv(lv(Λ)) and fix a rigid inner twist (G′v,Ξ
′
v) of G∗Fv by z′v, which is well-

defined up to conjugation by G′v(Fv) (see [Kal16, Fact 5.1]). We now compare the rigid
inner twists (GFv ,Ξv) and (G′v,Ξ

′
v) of G∗Fv . Recall (Proposition 5.4.5) that

prv̇(z ◦ locv) = ιv(lv(Λ))× d(κv(Λ))

where κv(Λ) = prv̇
(
N
√
β1

)
t
E/F

NΛ ∈ T (Fv). Therefore we have an isomorphism of rigid

inner twists of G∗Fv
(fv, κv(Λ)) : (GFv ,Ξv, zv)

∼−→ (G′v,Ξ
′
v, z
′
v)

where fv is obtained from Ξ′v ◦ Ad(κv(Λ)) ◦ Ξ−1
v by Galois descent. Thus fv : GFv '

G∗Fv identifies the rigidifying datum (G∗Fv ,Ξv, zv,wv) for GFv with the rigidifying datum
(G∗Fv ,Ξ

′
v, z
′
v,wv) for G′v.

• For v ∈ V r S, lv(Λv) = 0 and we can simply take G′v = G∗Fv and Ξ′v = Id.
In particular GFv is quasi-split and we can simply take as rigidifying datum the
pull-back f∗v (wv) of the Whittaker datum wv. The image κv(Λ) of κv(Λ) in T (Fv)

equals
prv̇(β1) t

E/F
Λ ∈ T (O(Ev̇))

and so Ad(κv(Λ)) is an automorphism of the reductive group scheme G∗O(Ev̇).
Since Ξv is obtained as the generic fiber of an isomorphism G∗O(Ev̇) ' GO(Ev̇), we
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see that fv descends from an isomorphism GO(Ev̇) ' G∗O(Ev̇) and so fv can be
extended to an isomorphism of reductive models GO(Fv) ' G∗O(Fv). This shows
that f∗v (wv) is compatible with the G(Fv)-conjugacy class of hyperspecial maximal
compact subgroups represented by G(O(Fv)). Note that this holds even for v 6∈ S
dividing N .

• For v ∈ S, one can compute the element κv(Λ) up to an element of T (Fv), since

d (yv) t
E/F

NΛ = NE/F

(
yv t

E/F
NΛ

)
∈ T (Fv)

and so d(κv(Λ)) = d(κ′v(Λ)) where

κ′v(Λ) = prv̇

(
N

√
β

(2)
1

)
t
E/F

NΛ

is computable. Thus (fv, κ
′
v(Λ)) is also an isomorphism of rigid inner twists of G∗Fv .

Note that to compute fv it is enough to compute the image of κ′v(Λ) in T (Fv), i.e.

prv̇

(
β

(2)
1

)
t
E/F

Λ ∈ T (Ev̇)

and so in practice it is not necessary to compute an N -th rooth of β(2)
1 .

7.2 A simple example

Let us illustrate this on a simple example, where almost no computation of cocycles is
needed.

7.2.1 Definition of the group G

Let F = Q(s) with s2 = 3. Let D be a quaternion algebra over F such that D is
definite at both real places of F , and split at all non-archimedean places of F . Let
ND ∈ Sym2(D∗) be the reduced norm, and G the reductive group scheme over F defined
by

G(R) = {x ∈ R⊗F D |ND(x) = 1 in R}

for any F -algebra R.

7.2.2 A reductive model of G

The class group of F is trivial, and the narrow class group of F is Z/2Z, corresponding
to the totally complex and everywhere unramified extension E = F (ζ) of F , where
ζ2− sζ + 1 = 0 (ζ is a primitive 12-th root of unity). The class group of E is also trivial.
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Write σ for the non-trivial O(F )-automorphism of O(E). Let S be the set of real places
of F , so that S = {v+, v−} where the image of s in Fv+ = R is positive. We still denote
by v+, v− the unique complex places of E above v+, v−. The group O(E)× is generated
by ζ and ζ − 1, which has infinite order. The group O(F )× is generated by −1 and
2− s = NE/F (ζ − 1), which has infinite order.

Let G∗ = SL2 over O(F ) and let T ⊂ G∗ be the torus defined by

T (R) =

{(
x −y
y x+ sy

) ∣∣∣∣x, y ∈ R, x2 + sxy + y2 = 1

}
for any O(F )-algebra R. Then T splits over O(E). Let Z ' µ2 be the center of G∗ and
T = T/Z. The element (x = s, y = −2) ∈ T (OF ) maps to the unique element of order 2

in T (F ), and so we have a 1-cocyle

z : σ 7→ (x = s, y = −2) ∈ PGL2(O(F )).

Since PGL2 is also the automorphism group of the matrix algebra M2, we obtain an
Azumaya algebra O(D) over O(F ) by twisting M2(O(F )) using z. Explicitly, it has
basis (1, Z, I, ZI) over O(F ), where

Z =

(
0 −1
1 s

)
, I =

(
0 2ζ − s

2ζ − s 0

)
.

We have Z12 = 1 and I2 = −1. Let D = F ⊗O(F ) O(D). Let G be the inner twist of G∗

by z, so that
G(R) =

{
x ∈ R⊗O(F ) O(D)

∣∣ND(x) = 1
}

for any O(F )-algebra R.

7.2.3 The group G as a rigid inner twist

If we identify Y = X∗(T ) with Z, then Y = X∗(T ) is identified with 1
2Z. Let Λ ∈

Y [ṠE ]
NE/F
0 be defined by Λ(v+) = 1/2 and Λ(v−) = −1/2. An easy computation shows

that one can choose the Tate cocycle α1 for E/F such that

α1(σ, σ)(v+)/α1(σ, σ)(v−) = −1

and so z = α1 t
E/F

Λ. Using z = ι(Λ), we obtain a realization of G as a rigid inner twist

(Ξ, z) of G∗.
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7.2.4 Choice(s) of Whittaker data

Let ψ be the unitary character of AQ/Q such that ψ∞(x) = exp(2iπx), so that for
every prime p we have ker(ψp) = Zp. Fortunately the different ideal of F/Q is principal,
generated by 2s, and so for any choice of sign the global Whittaker datum w for G∗(

1 x
0 1

)
∈ U(AF ) 7→ ψ(±TrF/Q(x/(2s))) (7.2.1)

is compatible with the model G∗O(Fv) at every finite place v of F . Therefore the global
rigidifying datum D = (G∗,Ξ, z,w) for G is such that for any finite place v of F , the local-
ization Dv is unramified and compatible with the G(Fv)-conjugacy class of hyperspecial
maximal compact subgroups G(O(Fv)).

7.2.5 Real places

At any real place v of F , we could compute explicit coboundaries expressing local-global
compatibility, but this is not necessary since the parametrization of Arthur-Langlands
packets for the compact Lie groupsG(Fv) ' SU(2) is simply determined by the Whittaker
datum wv and the cohomology class of zv in H1(Pv → E , Z → T ) (see [Kal16, §5.6] and
[Taïa, §3.2]), which only depends on lv(Λ). This simplification is particular to anisotropic
real groups, for which Langlands packets have at most one element.

In order to formulate the local Langlands correspondence at each real place v of F it is
necessary to identify an algebraic closure of the base field Fv, occurring in the definition of
the Weil group WFv , with the coefficient field C. We have natural algebraic closures Ev+
and Ev− of Fv+ and Fv− . Choose τ+ : ζ 7→ exp(2iπ/12) (resp. τ− : ζ 7→ exp(5× 2iπ/12))
identifying Ev+ (resp. Ev−) with C. There is a natural identification θ+ (resp. θ−) of
G∗Fv+

(resp. G∗Fv− ) with the usual split group SL2 over R, compatibly with the canonical

isomorphisms Fv+ = R and Fv− = R. Let
√

3 be the positive square root of 3 in R, so
that τ+(s) =

√
3 and τ−(s) = −

√
3. In particular for any choice of sign in (7.2.1), the

Whittaker data (θ+)∗(wv+) and (θ−)∗(wv−) differ. Associated to w+ is a Borel subgroup
B+ of G∗Fv+ ×Fv+ C containing TFv+ ×Fv+ C (see [Taïa]), corresponding to the generic
discrete series representations of G∗(Fv+). Using τ+ we see B+ as a Borel subgroup of
G∗Ev+

, and since T is defined over F and split over E we see that B+ comes from a well-
defined Borel subgroup of G∗E containing TE , which we still denote by B+. Similarly, we
have a Borel subgroup B− of G∗E containing TE . Up to changing the sign in (7.2.1), we
can assume that B+ is such that the unique root of TE in B+ is α+ : (x, y) 7→ (x+ ζy)2.
Let us determine B− using θ+ and θ−. For this we need to conjugate θ+(TFv+ ) and
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θ−(TFv− ) by an element of SL2(R). The matrix

g =

(
1 −

√
3

0 1

)
∈ SL2(R)

conjugates θ−(TFv− ) into θ+(TFv+ ), mapping θ−(x, y) to θ+(x−
√

3y, y). Since (θ+)∗(w+)

and (θ−)∗(w−) differ, the root α− of TE in B− is not equal to

(τ−)−1 ◦ τ+ ◦ α+ ◦ τ−1
+ ◦ (θ+)−1

C ◦Ad(g) ◦ (θ−)C ◦ τ−,

which equals α+. Therefore α− 6= α+ and B− 6= B+. Note that other choices for τ+, τ−

would lead to other Borel subgroups, and some choices would give equal Borel subgroups.
Let us now consider Arthur-Langlands packets of unitary representations of G(Fv+)

and G(Fv−). We refer to [Taïa, §3.2.2] for the parametrization of “cohomological” Arthur-
Langlands packets for inner forms of symplectic or special orthogonal groups, following
Shelstad, Adams-Johnson and Kaletha. The present case is much simpler. Note also
that since G(Fv+) and G(Fv−) are compact, any non-empty Arthur-Langlands packet
is “cohomological”, i.e. is a packet of Adams-Johnson representations. For v ∈ {v+, v−}
there is only one Arthur-Langlands parameter

WFv × SL2(C)→ LG

which is non-trivial on SL2(C) and yields a non-empty packet, namely the principal
representation

SL2(C)→ Ĝ ' PGL2(C),

with corresponding packet containing the trivial representation with multiplicity one.
Any other Arthur-Langlands parameter yielding a non-empty packet of representations
is tempered and discrete, and so up to conjugation by Ĝ it is of the form

ϕk+ : WFv+
−→ PGL2(C)

z ∈ E×v+ 7−→
(
τ+(z/z̄)k++1 0

0 1

)
j 7−→

(
0 1
1 0

)
for some k+ ∈ Z≥0, and similarly discrete tempered parameters forGFv− are parametrized
by integers k− ≥ 0, using τ−. Above j is any element of WFv+

rE×v+ such that j2 = −1.
Note that we have put ϕk+ in dominant form for the upper-triangular Borel subgroup B
of Ĝ. Using B+ we have an identification between the group T of diagonal matrices in
PGL2(C) and T̂ = X∗(T )⊗Z C×. So we can identify lv+(Λ) = Λ(v+) ∈ X∗(T )NE/F with
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an element of X∗(T ), where T is the preimage of T in Ĝ = SL2(C). The preimage S+
ϕk+

of Sϕk+ = Cent(ϕk+ , Ĝ) in Ĝ has 4 elements and is generated by(
i 0
0 −i

)
∈ T .

The class of lv+(Λ) modulo (1− σ)X∗(T ) defines a character of S+
ϕk+

. There is a unique

element πv+,k+ in the Arthur-Langlands packet attached to (the Ĝ-conjugacy class of)
ϕk+ , that is the unique irreducible representation of G(Fv+) in dimension k+ + 1. The
character 〈·, πv+,k+〉 of S+

ϕk+
is the one defined by lv+(Λ).

Similarly, each discrete series L-packet for GFv− has a unique element πv−,k− , and
a character 〈·, πv−,k−〉 of S+

ϕk−
coming from the character lv−(Λ) = Λ(v−) of T . Note

that since B− and B+ differ and Λ(v−) = −Λ(v+), the characters of T corresponding to
Λ(v+) and Λ(v−) are equal.

7.2.6 Automorphic representations

To lighten notation we let K = G(Ô(F )). We can now formulate precisely the endoscopic
decomposition of the space of G(R⊗QF )-finite functions on G(F )\G(AF )/K, with com-
muting actions of G(R ⊗Q F ) and of the Hecke algebra in level K. Let V+ (resp. V−)
be the irreducible representation of G(Fv+) (resp. G(Fv−)) of dimension k+ + 1 (resp.
k− + 1). Note that V± is obtained by restricting an irreducible algebraic representation
of GEv± . Recall [Gro99] that we can cut out the V+ ⊗ V−-isotypical subspace inside the
space of all automorphic forms for G, and define the space Mk+,k−(K) of automorphic
forms of weight (k+, k−) and level K as the space of G(F )-equivariant functions

G(AF,f )/K → V+ ⊗ V−,

which is a finite-dimensional vector space over C endowed with a semi-simple action of
the commutative Hecke algebra in level K. Moreover it is easy to check that Mk+,k−(K)

has a natural E-structure.
The automorphic multiplicity formula for SL2 and its inner forms was proved in

[LL79], although at the time there was no general definition of transfer factors, let alone
Kaletha’s normalization of transfer factors for inner forms. Formally we can use the main
result of [Taïa], but of course a careful reading of [LL79] and a comparison of transfer
factors with the later definition in [LS87] and [Kal16], [Kal] should give a more direct
proof. In the present case, automorphic representations for G in level K fall into three
categories:

• the trivial representation,
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• representations corresponding to self-dual automorphic cuspidal representations of
PGL3/F which are algebraic regular at both infinite places and unramified at all
finite places,

• representations “automorphically induced” from certain algebraic Hecke characters
for E.

The multiplicity formula is non-trivial only in the third case. Making it explicit allows
one to enumerate representations in the (most interesting) second case.

7.2.7 Global endoscopic parameters

Let χ : C(E) → C× be a continuous unitary character which is trivial on C(F ) =

C(E)Gal(E/F ). In particular, χσ = χ−1. Using χ we can form the parameter

ϕχ : WE/F −→ PGL2(C)

z ∈ C(E) 7−→
(
χ(z) 0

0 1

)
σ̃ 7−→

(
0 1
1 0

)
where σ̃ ∈ WE/F is any lift of σ ∈ Gal(E/F ). The parameters ϕχ and ϕχ−1 are conju-
gated by PGL2(C). We only consider characters χ such that the restriction of ϕχ to the
Weil groups at both real places of F are discrete, i.e. we impose that χv+ = χ|E×v+ and
χv− = χ|E×v− are non-trivial. Therefore there are a+, a− ∈ Z r {0} such that

χv+(z) = τ+(z/z̄)a+ , χv−(z) = τ−(z/z̄)a− .

Moreover we impose that χ is everywhere unramified, i.e. at every finite place w of E,
χw is trivial on O(Ew)×. Since E has class number 1 the map

E×v+ × E
×
v− ×

∏
w finite

O(Ew)× → C(E)

is surjective, and its kernel is O(E)×. Thus for a+, a− ∈ Z r {0} there is at most one
everywhere unramified χ as above, and there exists one if and only if χv+ ×χv− is trivial
on O(E)×, which is generated by ζ and ζ − 1. A simple computation shows that this is
equivalent to

a+ + 5a− = 0 mod 12.

For such a character χ, at a finite place w of E we have:

• If w is fixed by σ (inert case), then there is a uniformizer $w ∈ O(F ), and so χw
is trivial.
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• If w is not fixed by σ (split case), then if $w ∈ O(E) is a uniformizer, we have

χw($w) = χv+($w)−1χv−($w)−1.

This concludes the description of all endoscopic global parameters forG which are discrete
at both real places and unramified at all finite places. They are parametrized by pairs
(a+, a−) ∈ (Zr {0})2 such that a+ + 5a− = 0 mod 12, modulo (a+, a−) ∼ (−a+,−a−).

Let χ be a character as above. Then the centralizer Sϕχ of ϕχ is{(
±1 0
0 1

)}
⊂ T

and so it coincides with the local centralizers at v+, v−. Up to replacing χ by χ−1, we
are in exactly one of the following cases:

• a+ > 0 and a− > 0, i.e. χv+(z) = τ+(z/z̄)k++1 for k+ ≥ 0 and χv−(z) =

τ−(z/z̄)k−+1 for k− ≥ 0. Then 〈·, πv+,k+〉 × 〈·, πv−,k−〉 is the non-trivial charac-
ter of Sϕχ .

• a+ > 0 and a− < 0, i.e. χv+(z) = τ+(z/z̄)k++1 for k+ ≥ 0 and χv−(z) =

τ−(z/z̄)−k−−1 for k− ≥ 0. Then 〈·, πv+〉 × 〈·, πv−〉 is the trivial character of Sϕχ .

By the multiplicity formula, in weight (k+, k−) and level G(Ô(F )), there is at most
one endoscopic automorphic representation, and there is one if and only if

(k+ + 1)− 5(k− + 1) = 0 mod 12. (7.2.2)

In low weight, we have computed Hecke operators for small primes and verified this
condition.

7.2.8 Comments

The class number
card

(
G(F )\G(AF,f )/G(Ô(F ))

)
= 1

as one can check when computing a Hecke operator at any finite place, by strong ap-
proximation. Note that G is not the only reductive model of G, even up to the action of
Gad(F ). By splitting the Azumaya algebra O(D) modulo (2) = (s−1)2, we can compute
an (s−1)-Kneser neighbour of O(D), that is another maximal order O′(D) of D, having
basis over O(F )

1, Z + sI, (1− s)(s+ ZI), (1− s)−1(1 + I + sZI).
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It gives rise to a second modelG′ ofG, which is not isomorphic toG since one can compute
using reduction theory that G(OF ) is a dihedral group of order 24 (generated by Z and
I, with IZI−1 = Z−1), whereas G′(O(F )) is isomorphic to SL2(F3) (an isomorphism is
given by reduction modulo s). One can also check that the class number

card
(
Gad(F )\Gad(AF,f )/Gad(Ô(F ))

)
= 2,

and so G and G′ are up to isomorphism the only two reductive models of G over O(F ).
So we have two distinct notions of “level one” for automorphic representations for G,
and although the relevant Arthur-Langlands parameters are the same in both cases, the
automorphic multiplicities differ. More precisely, any algebraic Hecke character χ for E
as above contributes an automorphic representation for G either in level G(Ô(F )) or in
level G′(Ô(F )).

7.2.9 Higher rank

Alternatively, one could explicitly compute the geometric transfer factors defined in
[LL79] for G and the endoscopic group H isomorphic to the unique anisotropic torus
over F of dimension 1 which is split by E. Although one would lose the interpretation
in terms of characters of centralizers of Langlands parameters, this would probably lead
to a proof that the multiplicity formula for G in level G(Ô(F )) reduces to (7.2.2).

Note however that the approach in the present paper generalizes easily to higher
rank. For example, using the embedding (SL2)n ↪→ Sp2n, it is easy to generalize the
above example to the case where G is the inner form of G∗ = Sp2n over F which is
definite (i.e. G(F ⊗Q R) is compact) and split at all finite places. This does not require
additional computation, and so one can make explicit Arthur’s multiplicity formula (also
known in this case, see [Taïa]) in “level one”. Moreover, using also pure inner forms of
quasi-split special orthogonal groups, namely definite special orthogonal groups obtained
using copies of (x, y) 7→ x2 + sxy + y2 and (in odd dimension) x 7→ x2, it is possible to
carry out the same inductive strategy as in [Taïb], but using definite groups as in [CR15],
which makes explicit computations much simpler. Therefore the above example makes it
possible to explictly compute automorphic cuspidal self-dual representations for general
linear groups over F which are unramified at all finite places and algebraic regular at
both real places.
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