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The local Langlands conjecture

Olivier Täıbi

Abstract. We formulate the local Langlands conjecture for connected reduc-
tive groups over local fields, including the internal parametrization of L-packets

using endoscopy.

1. Introduction

The first goal of these notes is to state the local Langlands conjecture for con-
nected reductive groups G over a local field F , that is the existence of a map LL with
finite fibers associating Langlands parameters to irreducible smooth representations
((g,K)-modules in the case where F is Archimedean) over an algebraically closed
field C of characteristic zero (the field of complex numbers C in the Archimedean
case). To be useful this map should satisfy certain properties, and we list some of
them in Conjecture 6.1, after recalling in Sections 3 and 5 parallel features of the
classification of representations of G(F ) and Langlands parameters. For represen-
tations of G(F ) we put the emphasis on the case of complex coefficients (C = C),
sometimes using notions relying on the topology of C, because of the relatively
simple (partial) classification of representations using parabolically induced repre-
sentations of essentially discrete representations of Levi subgroups. We do point
out however that the map LL should be “algebraic” (in particular, functorial in
C) and formulate the (purely algebraic) semi-simplified Langlands correspondence
(Conjecture 6.2). Unfortunately neither conjecture includes a characterization of
the map LL, and proofs of cases of these conjectures use different characterizations.

We then formulate refined versions of the local Langlands correspondence, de-
scribing the fibers (“L-packets”) of the maps LL using centralizers of Langlands
parameters. In the case where G is quasi-split this is fairly straightforward (Con-
jectures 6.4 and 6.8) and includes Shahidi’s conjecture (Conjecture 6.5). Formu-
lating the refined correspondence in the non-quasi-split case (Conjectures 6.13 and
6.14) is surprisingly difficult in general, and was only relatively recently achieved by
Kaletha, generalizing an idea of Vogan from the case of pure inner forms of quasi-
split groups. This entails employing Galois gerbes instead of Galois groups, thus
generalizing Galois cohomology sets. In this setting where explicit computations
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seem to be unavoidable it is favorable to work with a down-to-earth definition of
such gerbes as extensions of absolute Galois groups by a group of multiplicative
type.

We conclude in Section 7 with a short explanation of the relation between this
definition of gerbes with the more conceptual one. This is motivated by the fact
that the same Galois gerbe, corresponding to the Tannakian category of isocrytals,
appears in the study of Shimura varieties, in the internal structure of certain L-
packets, and geometrically in the construction by Fargues and Scholze [FS] of a
semi-simplified local Langlands correspondence.

We are grateful to Naoki Imai, David Schwein, Alex Youcis and an anonymous
referee for comments on an earlier version of these notes.

2. Notations

Let F be a local field. We denote by || · || the normalized absolute value on F .
In the non-Archimedean case it maps a uniformizer to q−1 where q is the cardinality
of the residue field. If F ≃ R it is the usual absolute value, if F ≃ C it is given
by z 7→ zz. We will denote by F a separable closure of F and Γ = Gal(F/F ). For
a group scheme u of multiplicative type of finite type1 over F we denote X∗(u) =
Hom(uF ,Gm,F ), a finitely generated Z-module with smooth action of Γ. For a

torus T over F we also have X∗(T ) = Hom(Gm,F , TF ) = Hom(X∗(T ),Z).

3. Representations of reductive groups

In this section we focus on the case where F is a non-Archimedean local field
and occasionally indicate the differences for the Archimedean case.

3.1. Setup. Let G be a connected reductive group over F . We refer to
[Bor91] [Spr98] [BT65] and [DGA+11] for fundamental results about reductive
groups. Let C be an algebraically closed field of characteristic zero, for example C
or Qℓ. We consider smooth representations of G(F ) with coefficients in C, i.e. pairs
(V, π) where V is a vector space over C and π : G(F ) → GL(V ) is a morphism of
groups such the map

G× V −→ V

(g, v) 7−→ π(g)v

is continuous for the natural topology on G and the discrete topology on V . If π
is implicit we will also denote g · v for π(g)v. Recall that such a representation is
called admissible if for any compact open subgroup K of G(F ) the subspace

V K = {v ∈ V | ∀k ∈ K, π(k)v = v}

of V has finite dimension. It is a non-trivial but well-known fact that any irreducible
representation is admissible. Denote by Z(G) the center of G. By a suitable gen-
eralization of Schur’s lemma, any irreducible representation has a central character
Z(G)(F ) → C×. For a smooth representation (V, π) of G(F ) its contragredient

(Ṽ , π̃) is the space of K-finite linear forms on V .

1We adopt the convention of [DG70]: group schemes of multiplicative types are not assumed
to be of finite type.
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Remark 3.1. In the case of an Archimedean field F we only consider coeffi-
cients C = C. The analogue of smooth representations are (g,K)-modules where
g = C ⊗R LieG(F ) and K is a maximal compact subgroup of G(F ). For many
notions it is necessary to relate (g,K)-modules to continuous representations of
G(F ) on topological vector spaces. See e.g. [Wal88, §3.4] for the relation between
the two notions in the case of unitary irreducible representations.

3.2. Parabolic induction, the Jacquet functor and supercuspidal rep-
resentations. Let P be a parabolic subgroup of G. Let N be the unipotent rad-
ical of P and M = P/N its reductive quotient. Recall that there exists a section
M → P , unique up to conjugation by N(F ). Let

δP (p) = ||det(Ad(p)|Lie(N))|| :M(F ) −→ qZ

be the modulus character for the action ofM(F ) on N(F ). We choose a square root
√
q of q in C, allowing us to define δ

1/2
P . If C = C we naturally choose

√
q ∈ R>0.

Let (V, σ) be a smooth representation of M(F ), which we can see as a repre-
sentation of P (F ) trivial on N(F ). The normalized parabolically induced represen-
tation iGPσ is the space of locally constant functions f : G(F ) → V such that for

any p ∈ P (F ) and g ∈ G(F ) we have f(pg) = δP (p)
1/2σ(p)f(g), with left action

of G(F ) by (g · f)(x) = f(xg). If σ is admissible (resp. has finite length) then iGPσ

is admissible (resp. has finite length). The introduction of δ
1/2
P in the definition

is motivated by the fact that if C = C and (V, σ) is unitary, i.e. endowed with a
M(F )-invariant Hermitian inner product, then iGPσ has a natural G(F )-invariant
Hermitian inner product. In particular if σ is admissible and unitarizable then iGPσ
is semi-simple.

For (π, V ) a smooth representation of G(F ), denote by VN the space of co-
invariants for the action of N(F ), which is naturally a smooth representation πN of
M(F ). The normalized Jacquet functor applied to (π, V ) is the smooth represen-

tation rGP π = δ
−1/2
P ⊗ πN of M(F ) on the space VN . It also preserves admissibility

and the property of being of finite length.
Recall that an irreducible smooth representation (V, π) of G(F ) is called su-

percuspidal if VN = 0 for any parabolic P = MN ⊊ G. This is equivalent to all
“matrix coefficients”

G(F ) −→ C

g 7−→ ⟨π(g)v, ṽ⟩

for v ∈ V and ṽ ∈ Ṽ , being compactly supported modulo center. Note that if
ωπ : Z(G(F )) → C× is the central character of π then matrix coefficients of π are
ωπ-equivariant.

We recall in the following theorem the notion of supercuspidal support.

Theorem 3.2. Let π be an irreducible representation of G(F ).

(1) There exists a parabolic subgroup P = MN of G and a supercuspidal
irreducible representation σ of M(F ) such that π embeds in iGPσ.

(2) If P ′ = M ′N ′ is a parabolic subgroup of G and σ′ is a supercuspidal
irreducible representation of M ′(F ) then π is isomorphic to a subquotient
of iGP ′σ′ if and only if there exists an element of G(F ) conjugating (M,σ)
and (M ′, σ′).
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Proof. The first part is due to Jacquet: see [Cas, Theorem 5.1.2]. The second
part seems to be due to Harish-Chandra: see Theorem 6.3.11 loc. cit. or [Sil79,
Theorem 4.6.1, §5.3.1 and Theorem 5.4.4.1] for the “if” part. The “only if” part
can be deduced from Bernstein center theory [Ber84a]. See also [BZ77]. □

The G(F )-conjugacy class of (M,σ) in the previous theorem is called the su-
percuspidal support of π.

3.3. Asymptotic properties. For the rest of this section we assume C = C.
Definition 3.3. Let (V, π) be a smooth irreducible representation of G(F ).

Let ωπ : Z(G(F ))→ C× be its central character. If ωπ is unitary then we say that
π is essentially square-integrable if all of its matrix coefficients are square-integrable
modulo center:

∀v ∈ V ∀ṽ ∈ Ṽ
∫
G(F )/Z(G(F ))

|⟨π(g)v, ṽ⟩|2 dg <∞.

In general (without assuming that ωπ is unitary) there is a unique smooth
character χ : G(F )→ R>0 such that the central character of χ⊗π is unitary [Cas,
Lemma 5.2.5], and we say that π is essentially square-integrable if χ⊗ π is.

If π is an essentially square-integrable irreducible smooth representation of
G(F ) and if ωπ is unitary then π is unitarizable.

Essential square-integrability can be checked on the Jacquet module of a rep-
resentation, as recalled in Proposition 3.4 below. For a Levi subgroup M of G we
denote byAM the largest split torus in the centre ofM . Denote a∗M = X∗(AM )⊗ZR.
We have an isomorphism

a∗M −→ Homcont(AM (F ),R>0)(3.1)

χ⊗ s 7−→ (x 7→ ||χ(x)||s).

Proposition 3.4 ([Wal03, Proposition III.1.1]). Let (V, π) be an irreducible
smooth representation of G(F ). Assume that the central character of π is unitary
(we can reduce to this case by twisting). Then (V, π) is essentially square-integrable
if and only if for every parabolic subgroup P = MN of G, the absolute value of
any character of AM (F ) occurring in rGP π is a linear combination with positive
coefficients of the simple roots of AM in N (via the isomorphism (3.1)).

Replacing “positive” by “non-negative” in this characterization we get the no-
tion of tempered representation. This is also equivalent to a growth condition on
coefficients [Wal03, Proposition III.2.2].

We have the following implications, for an irreducible smooth representation of
G(F ) having unitary central character:

supercuspidal⇒ essentially square-integrable⇒ tempered⇒ unitarizable.

For non-commutative G none of these implications is an equivalence. The following
result gives a coarse classification of tempered representations in terms of parabolic
inductions of essentially square-integrable representations.

Proposition 3.5 ([Wal03, Proposition III.4.1]). (1) Let P = MN be a
parabolic subgroup of G and σ an essentially square-integrable irreducible
smooth representation of M(F ) having unitary central character. The
induced representation iGPσ is semi-simple, has finite length and any irre-
ducible subrepresentation is tempered.
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(2) Let (P, σ) and (P ′, σ′) be two pairs as in the previous point. Then iGPσ
and iGP ′σ′ admit isomorphic irreducible subrepresentations if and only if
the pairs (M,σ) and (M ′, σ′) are conjugated by G(F ), and in this case the
two induced representations are isomorphic.

(3) For any tempered irreducible smooth representation π of G(F ) there exists
a pair (P, σ) as in the first point such that π is isomorphic to a subrepre-
sentation of iGPσ.

Remark 3.6. For G = GLn, parabolically induced representations as in Propo-
sition 3.5 are always irreducible [Ber84b, §0.2] and so the proposition completely
classifies tempered representations in terms of essentially square-integrable repre-
sentations of smaller general linear groups. Recall that for general linear groups
essentially square-integrable representations can be explicitly classified in terms of
supercuspidal representations of Levi subgroups [Zel80, Theorem 9.3].

For arbitrary G such induced representations are generically irreducible (see
[Wal03, Proposition IV.2.2] for a precise statement), but decomposing such induced
representations is a subtle problem in general.

The tempered representations are exactly the ones occurring in Harish-Chandra’s
Plancherel formula (see [Wal03], [Sil96]), expressing the values of any locally con-
stant and compactly supported f : G(F ) → C (or more generally, a Schwartz
function) in terms of the action of f in tempered representations (or expressing
f(1) in terms of the traces of f in tempered representations).

Finally the “Langlands classification”, that we recall below, classifies irre-
ducible smooth representations of G(F ) in terms of tempered representations of
Levi subgroups. For a connected reductive group M denote by X∗(M) the abelian
group of morphisms MF → GL1,F , so that X∗(M)Γ is identified with the group

of morphisms M → GL1,F . The restriction morphism X∗(M)Γ → X∗(AM ) is
an isogeny (it is injective with finite cokernel) and so it induces an isomorphism
resMAM

: X∗(M)Γ ⊗Z R ≃ a∗M . We have an isomorphism

X∗(M)Γ ⊗Z R −→ Homcont(M(F ),R>0)(3.2)

χ⊗ s 7−→ (x 7→ |χ(x)|s).

Fix a minimal parabolic subgroup P0 of G and a Levi factor M0 of P0. Let Y ⊂
X∗(AM0) be the subgroup of characters which are trivial on AM0 ∩ Gder. Let
R(AM0

, G) be the set of roots of AM0
in G. The rational Weyl group W0 :=

N(AM0
, G(F ))/M0(F ) acts on AM0

, thus also on a∗M0
. By [DGA+11, Exposé

XXVI Théorème 7.4]2 there is a unique root datum (possibly non-reduced)

(X∗(AM0
), R(AM0

, G), X∗(AM0
), R∨(AM0

, G))

such that the associated Weyl group (seen as a group of automorphisms of AM0) is
W0. Let ∆ ⊂ X∗(AM0

) be the set of simple roots for the order corresponding to P0.
Fix a W0-invariant inner product (·, ·) on a∗M0

(e.g. by averaging an arbitrary inner
product). For M a standard Levi subgroup of G the restriction map X∗(AM0) →
X∗(AM ) induces a surjective map res

AM0

AM
: a∗M0

→ a∗M . We also have a composite

2See also [BT65, Corollaire 5.8], although the proof seems to be incomplete in the non-
reduced case.
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map in the other direction

jMM0
: a∗M

(resMAM
)−1

−−−−−−−→ X∗(M)Γ ⊗Z R
resMM0−−−−→ X∗(M0)

Γ ⊗Z R
res

M0
AM0−−−−−→ a∗M0

and the composition res
AM0

AM
◦jMM0

is ida∗
M
. In fact one can check that jMM0

◦ resAM0

AM

is the orthogonal projection a∗M0
→ jMM0

(a∗M ).

Theorem 3.7 ([Sil78, Theorem 4.1], [BW00, §XI.2], [Dat05, Theorem 3.11]). (1)
Let P be a standard Levi subgroup of G (with respect to P0) and M its
Levi factor containing M0. Let σ be a tempered irreducible smooth rep-
resentation of M(F ) (in particular we assume that its central character
is unitary). Let ν ∈ X∗(M)Γ ⊗Z R be such that for any α ∈ ∆ not
occurring in M we have (resMAM0

ν, α) > 0. Consider ν as a character

of M(F ) via (3.2), and denote by σν the twist of σ by this character.
Then the induced representation iGP (σν) admits a unique irreducible quo-

tient J(P, σ, ν). Let P be a parabolic subgroup of G which is opposite to
P . We have dimC HomG(i

G
P (σν), i

G
P
(σν)) = 1 and any non-zero element in

this line identifies J(P, σ, ν) with the unique irreducible subrepresentation
of iG

P
(σν).

(2) Let π be an irreducible smooth representation of G(F ). There exists a
unique triple (P, σ, ν) as above such that π is isomorphic to J(P, σ, ν).

The analogous theorem for F = R was proved first (see [Lan89, Lemma 3.13,
3.14 and 4.2] or [Wal88, Chapter 5]), and inspired the non-Archimedean version.
The positivity condition appearing in Theorem 3.7 may be formulated using the
absolute root system instead of the relative one, as the following lemma shows.
This will prove useful to translate this positivity condition on the dual side.

Lemma 3.8. Let P =MN be a parabolic subgroup of G with unipotent radical
N and Levi factor M . Assume that M contains M0. Let T be a maximal torus of
MF . The following conditions on ν ∈ X∗(M)Γ ⊗Z R are equivalent:

• for any root α of AM0 in N we have (resMAM0
ν, α∨) > 0,

• for any root β of T in NF we have ⟨resMT ν, β∨⟩ > 0.

Proof. In this proof we denote by ⟨−,−⟩AM0
(resp. ⟨−,−⟩T ) the canonical

pairing X∗(AM0
) × X∗(AM0

) → Z (resp. X∗(T ) × X∗(T ) → Z), and (−,−)AM0

for (−,−). For α ∈ R(AM0 , G) with corresponding coroot α∨ ∈ X∗(AM0) we
have ⟨−, α∨⟩AM0

= 2(α, α)−1
AM0

(−, α)AM0
, so the first condition is equivalent to

⟨resMAM0
ν, α∨⟩AM0

> 0 for all α ∈ R(AM0 , N), and does not depend on the choice

of an invariant inner product (−,−)AM0
. This will allow us to choose a particular

invariant inner product below.
Up to conjugating T byM(F ) (which leaves the second condition invariant) we

may assume that T is a maximal torus of M0,F , in particular AM0,F
is contained in

T . We denote byW the absolute Weyl group N(T,G(F ))/T (F ). Choose a minimal
parabolic subgroup P0 of G containing M0 and contained in P (this amounts to
choosing a minimal parabolic subgroup ofM containingM0), and a Borel subgroup
B ⊂ P0,F of GF containing T (this amounts to choosing a Borel subgroup of M0,F

containing T ). We have [BT65, §6.2] an action of Γ (factoring through a finite
Galois group) on X∗(T ), leaving R(T,GF ) and its subset ∆(T,B) of simple roots
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invariant. This action extends to an action of W ⋊ Γ on X∗(T ). Choose an inner
product (−,−)T on t∗ := X∗(T ) ⊗Z R invariant under this action. Consider the
restriction map resTAM0

: t∗ → a∗M0
and its kernel K. It identifies a∗M0

with the

orthogonal (for (·, ·)T ) ofK in t∗, and as explained in [BT65, §6.10] it induces aW0-
invariant inner product (·, ·)AM0

on a∗M0
. More precisely [BT65, §6.10] establishes

this fact in the case where G is semi-simple, but we briefly explain how to reduce
to this case. Denoting by Z(G)0 the connected center of G, Tder = T ∩Gder,F and
AM0,der = AM0

∩Gder we have commutative diagrams

(3.3)

X∗(G)⊗Z R X∗(Z(G)0)⊗Z R

t∗ X∗(Z(G)0)⊗Z R⊕ t∗der

∼
res

res

∼
res

(3.4)

X∗(G)Γ ⊗Z R a∗G

a∗M0
a∗G ⊕ a∗M0,der

∼
res

res

∼
res

where the right vertical maps are x 7→ (x, 0). The bottom isomorphism of (3.3)
identifies (t∗)W with X∗(Z(G)0) ⊗Z R, in particular the direct sum is orthogonal
for (·, ·)T . The two diagrams (3.3) and (3.4) are part of an obvious commutative
cubic diagram (all additional maps are restriction maps, except for the inclusion
X∗(G)Γ ⊗Z R → X∗(G) ⊗Z R). This shows that the direct sum a∗G ⊕ a∗M0,der

is

orthogonal for (·, ·)AM0
and since [BT65, §6.10] shows that the restriction of this

inner product to a∗M0,der
is W0-invariant we deduce that (·, ·)AM0

is W0-invariant

Let C0 be the largest quotient of M0 which is a split torus, i.e. X∗(C0) =
X∗(M0)

Γ. We now check that the image of

resC0

T : X∗(C0)⊗Z R −→ t∗

is precisely the orthogonal (for (·, ·)T ) of K. Since composing with resTAM0
yields

an isomorphism X∗(C0)⊗Z R ≃ a∗M0
it is enough to check that the image of resC0

T

is orthogonal to K. It follows from [BT65, Corollaire 6.9] (and consideration of
the commutative diagrams (3.3) and (3.4)) that K is generated by the simple roots
β ∈ ∆(T,B) in K, the differences β − β′ where β, β′ ∈ ∆(T,B) are in the same
Galois orbits, and the elements of X∗(G)NΓ=0 (elements killed by averaging over
Gal(E/F ) for some large enough finite Galois subextension E of F/F ). Let us
check on these generators that an arbitrary λ ∈ X∗(C0) is orthogonal to K.

• If β ∈ ∆(T,B) has trivial restriction to AM0 then it belongs to R(T,M0,F )

and so β∨ ∈ X∗(T ) factors through T ∩ (M0,F )der, so ⟨res
C0

T λ, β∨⟩T van-

ishes. We have ⟨−, β∨⟩T = 2(β, β)−1
T (β,−)T because (·, ·)T isW -invariant,

so (resC0

T λ, β)T = 0.
• If β, β′ ∈ ∆(T,B) are in the same orbit under Γ then we have

(β, resC0

T λ)T = (β′, resC0

T λ)T

because resC0

T λ is invariant under Γ and (·, ·)T is Γ-invariant.
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• Finally we have to check that for µ ∈ X∗(G)NΓ=0 the inner product

(resGT µ, res
C0

T λ)T vanishes. This again follows from the Γ-invariance of

(·, ·)T and resC0

T λ using the commutative diagram (3.3) and the fact that
the direct sum in this diagram is orthogonal.

We have proved Im resC0

T = K⊥, which implies for λ ∈ X∗(C0)⊗ZR and β ∈ t∗ the
equality

(resC0

AM0
λ, resTAM0

β)AM0
= (resC0

T λ, β)T .

We apply this to λ = ν and β ∈ R(T,NF ). Because the restriction map resTAM0

induces a surjective map R(T,NF )→ R(AM0
, N) the equivalence between the two

conditions is now clear. □

In these notes we say nothing of the natural question of classifying unitary
representations of connected reductive groups.

3.4. Harish-Chandra characters. Denote by C∞
c (G(F )) the space of lo-

cally constant and compactly supported functions G(F ) → C. Recall that any
such function is bi-invariant under some compact open subgroup of G(F ). Fix a
Haar measure on G(F ). Let (V, π) be an admissible representation of G(F ). Any
f ∈ C∞

c (G(F )) gives a linear map

π(f) : V −→ V

v 7−→
∫
G(F )

f(g)π(g)v dg

and its image is contained in V K for some compact open subgroup K of G(F ).
In particular π(f) has finite range and we may consider Θπ(f) = trπ(f). The
linear form Θπ : C∞

c (G(F ))→ C is called the Harish-Chandra character of π. By a
standard result in representation theory of associative algebras [Bou12, §20.6] the
Harish-Chandra characters Θπ of the irreducible smooth representations of G(F )
(up to isomorphism) are linearly independent, and the Harish-Chandra character of
a smooth representation of finite length determines its Jordan-Hölder constituents
and their multiplicities.

Denote by Grs the regular semi-simple locus in G, an open dense subscheme.
Recall that G(F )∖Grs(F ) has measure zero.

Theorem 3.9 ([HC99, Theorem 16.3]). Assume that F is a non-Archimedean
local field of characteristic zero. Let (V, π) be an irreducible smooth representation
of G(F ). There exists a unique element of L1

loc(G(F )), also denoted Θπ, such that
for any f ∈ C∞

c (G(F )) we have

trπ(f) =

∫
G(F )

Θπ(g)f(g)dg.

Moreover Θπ is represented by a unique locally constant function on Grs(F ).

To our knowledge this result is unfortunately not known in full generality in
positive characteristic, but see [CGH14]. Harish-Chandra characters behave well
with respect to parabolic induction [vD72] and Jacquet functors [Cas77].

See [Wal88, Chapter 8] for the Archimedean case.
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4. Langlands dual groups

We recall the definition of Langlands dual groups. We refer to [Bor79, §I.2]
for details not recalled below. In this section F could be any field, F is a separable
closure of F and we denote Γ = Gal(F/F ).

4.1. Based root data. Let G be a connected reductive group over F . There
exists a finite separable extension E/F such that GE admits a Killing pair (also
called Borel pair) (B, T ) [DGA+11, Exposé XXII Corollaire 2.4 and Proposition
5.5.1]. We may and do assume that E/F is a subextension of F/F . Associated
to (GE , B, T ) we have a based (reduced) root datum (X,R,R∨,∆) where X is the
group of characters of T , R ⊂ X the set of roots of T in GE , R

∨ the set of coroots
(a subset of X∨ = Hom(X,Z), the group of cocharacters of T ) and ∆ ⊂ R the
set of simple roots corresponding to B3. The group G(E) acts (by conjugation)
transitively on the set of Killing pairs in GE (Exposé XXVI Corollaire 5.7 (ii) and
Corollaire 1.8 loc. cit.) and the (scheme-theoretic) stabilizer of (B, T ) is T (Exposé
XXII Cor 5.3.12 and Proposition 5.6.1 loc. cit.), which centralizes T . It follows that
other choices of Killing pair in GE yield based root data canonically isomorphic4

to (X,R,R∨,∆), and so do other choices for E.
We also obtain a continuous action of Γ on this based root datum, that we

now recall. The group Gal(E/F ) acts on the set of closed subgroups of GE : if
G = SpecA for a Hopf algebra A over F and a closed subgroup H corresponds to
an ideal I of A⊗F E, then for σ ∈ Gal(E/F ) we let σ(H) be the closed subgroup
corresponding to σ(I). In particular we have σ(H)(E) = σ(H(E)) as subgroups
of G(E). If K = SpecB is a linear algebraic group over F and λ : H → KE is a
morphism, dual to a morphism of Hopf algebras λ♯ : B⊗F E → (A⊗F E)/I, define
σ(λ) : σ(H)→ KE as dual to

σ ◦ λ♯ ◦ σ−1 : B ⊗F E −→ (A⊗F E)/σ(I).

Now for σ ∈ Gal(E/F ) there is a unique T (E)gσ ∈ T (E)\G(E) such that we
have σ(B, T ) = Ad(g−1

σ )(B, T ), and we get a well-defined isomorphism Ad(gσ) :
σ(T ) ≃ T . We obtain an action of Γ on X = X∗(T ) such that σ ∈ Gal(E/F ) maps
λ : T → GL1,E to σ(λ) ◦ Ad(gσ)

−1. It is straightforward to check that this action
preserves R and ∆ and that the dual action on X∨ preserves R∨. It is routine
to check that if we choose another triple (E′, B′, T ′) instead of (E,B, T ) to obtain

a based root datum (X ′, R′, R
′,∨,∆′) with continuous action of Γ, the canonical

isomorphism between (X,R,R∨,∆) and (X ′, R′, R
′,∨,∆′) is Γ-equivariant. We

denote by brdF the5 resulting functor from the groupoid of connected reductive
groups over F to the groupoid of based root data with continuous action of Γ.

Definition 4.1. Let G be a connected reductive group over F . Define a
groupoid IT (G) as follows.

3Strictly speaking we should also include in the datum the bijection R → R∨ as in [DGA+11,
Exposé XXI], or include the orthogonal of R∨ in X as in [BT65, §2.1].

4An isomorphism between two based root data (X1, R1, R∨
1 ,∆1) and (X2, R2, R∨

2 ,∆2) is an

isomorphism of abelian groups X1 ≃ X2 identifying R1 to R2, R∨
1 to R∨

2 and ∆1 to ∆2, and

compatible with the bijections Ri → R∨
i .

5Defining this functor entails choosing a triple (E,B, T ) for each connected reductive group

G over F , but of course other choices would yield a canonically isomorphic functor.
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• The objects of IT (G) are the inner twists of G, i.e. pairs (G′, ψ) consisting
of a connected reductive group G′ over F and an isomorphism ψ : GF ≃
G′
F
such that for any σ ∈ Γ the automorphism ψ−1σ(ψ) of GF is inner.

• A morphism between two inner twists (G1, ψ1) and (G2, ψ2) of G is an
element g ∈ Gad(F ) such that for any σ ∈ Γ we have

(4.1) ψ−1
2 σ(ψ2) = Ad(g)ψ−1

1 σ(ψ1)Ad(σ(g))−1.

Remark 4.2.

(1) One can check that any inner twist ψ : GF → G′
F

yields a canonical

isomorphism brdF (G) ≃ brdF (G
′).

(2) For an inner twist ψ : GF → G′
F
the map

Γ −→ Gad(F )

σ 7−→ ψ−1σ(ψ)

is a 1-cocycle, i.e. an element of Z1
cont(Γ, Gad) = Z1(F,Gad).

(3) The relations (4.1) imply that the isomorphism

ψ2 Ad(g)ψ−1
1 : G1,F −→ G2,F

is defined over F , i.e. descends to an isomorphism G1 ≃ G2.
(4) For an inner twist (G′, ψ) of G we have an isomorphism

AutIT (G)(G
′, ψ) −→ G′

ad(F )

g 7−→ ψ(g).

Proposition 4.3. Let b be a based root datum with continuous action of Γ.
Let CRGb be the groupoid of pairs (G,α) where G is a connected reductive group
over F and α : b ≃ brdF (G) is an isomorphism of based root data with action of Γ,
with obvious morphisms. (In other words CRGb is the groupoid fiber of b for brdF .)

(1) There exists an object (G∗, α∗) of CRGb such that G∗ is quasi-split. Two
such objects are isomorphic.

(2) Any object (G,α) of CRGb yields equivalences of groupoids

Z1(F,Gad)
∼←− IT (G) ∼−→ CRGb.

This gives in particular a bijection between H1(F,Gad) and the set of
isomorphism classes in CRGb.

Proof. This is a reformulation of [DGA+11, Exposé XXIV Théorème 3.11]
in the case where the base is the spectrum of a field, also using 3.9.1 loc. cit. to
prove uniqueness in the first point. □

To sum up, we can “classify” connected reductive groups over F as follows:

• fix a representative in each isomorphism class of based root datum with
continuous action of Γ,

• for each such representative b, fix a quasi-split connected reductive group
G∗ over F together with an isomorphism brdF (G

∗) ≃ b,
• for each element of H1(F,G∗

ad) choose an inner twist (G,ψ) of G∗ repre-
senting it.
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Up to isomorphism each connected reductive group G over F arises in this way. It
can happen that an isomorphism class of connected reductive groups arises more
than once, because H1(F,Gad) → H1(F,Aut(G)) is not injective in general. Nev-
ertheless for G quasi-split Proposition 4.3 implies that the preimage of the trivial
class in H1(F,Aut(G)) is a singleton.

4.2. Langlands dual groups. Let C be an algebraically closed field of char-
acteristic zero. Let G be a connected reductive group over F and let brdF (G) =
(X,R,R∨,∆) be its associated based root datum endowed with a continuous action

of Γ. Let (Ĝ,B, T , (Xα)α∈∆∨) be the pinned connected reductive group over C with
associated based root datum (X∨, R∨, R,∆∨), i.e. the dual of brdF (G) (ignoring
the action of Γ for now). The choice of a pinning induces a splitting of the extension

1→ Ĝad → Aut(Ĝ)→ Out(Ĝ)→ 1

because the subgroup Aut(Ĝ,B, T , (Xα)α∈∆∨) of Aut(Ĝ) maps bijectively onto

Out(Ĝ) [DGA+11, Exposé XXIV Théorème 1.3]. As explained loc. cit. we also
have an isomorphism

Out(Ĝ) ≃ Aut(X∨, R∨, R,∆∨) ≃ Aut(X,R,R∨,∆)

and so we have an action of Γ on Ĝ (preserving the pinning and factoring through

a finite Galois group). Denote LG = Ĝ ⋊ Γ the Langlands dual group, also called
L-group. It is sometimes useful (or just convenient) to replace Γ by a finite Galois
group or by the Weil group in this semi-direct product.

One can give a more pedantic definition of Langlands dual groups in order
to avoid the inelegant choice of pinning. Namely, define an L-group for G as an

extension LG of Γ by Ĝ, where Ĝ is a split connected reductive group endowed with
an isomorphism of its based root datum with the dual of that of G, such that the

induced morphism Γ→ Out(Ĝ) is as above, and endowed with a Ĝ-conjugacy class
of splittings Γ → LG, called distinguished splittings, such that any (equivalently,

one) of these splittings s preserves a pinning of Ĝ. It is not necessary to specify the

pinning, since for a distinguished splitting s we have that Ĝs(Γ) acts transitively on
the set of such pinnings: see [Kot84, Corollary 1.7]. In the other direction, for a

pinning of Ĝ fixed by a distinguished splitting s, the set of distinguished splittings
fixing this pinning is parametrized by

(4.2) ker
(
Z1(Γ, Z(Ĝ))→ H1(Γ, s, Ĝ)

)
where the notation H1(Γ, s, Ĝ) means the first cohomology set for the action of Γ

on Ĝ via s and conjugation in LG. Note that all distinguished splittings induce

the same action of Γ on Z(Ĝ). By Lemma 1.6 loc. cit. the kernel (4.2) is simply

the group of coboundaries B1(Γ, Z(Ĝ)), and so the distinguished splittings fixing a

given pinning of Ĝ form a single conjugacy class by Z(Ĝ).
By Proposition 4.3 for two connected reductive groups G1 and G2 their Lang-

lands dual groups LG1 and LG2 are isomorphic as extensions of Γ if and only if G1

and G2 are inner forms of each other, and in this case they are even isomorphic as
extensions endowed with conjugacy classes of distinguished splittings.

The construction of the Langlands dual group is not functorial for arbitrary
morphisms between connected reductive groups, however in the following cases
functoriality is straightforward.
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• Let G be a quasi-split connected reductive group and (B, T ) a Borel pair
(defined over F ). Choose a distinguished splitting sG : Γ→ LG preserving

a pinning (B, T , (Xα)α) of Ĝ and a distinguished splitting sT : Γ → LT .

Then the canonical isomorphism T̂ ≃ T extends to an embedding LT ↪→
LG whose composition with sT is sG.

• For G = G1 ×F G2 we can identify LG with LG1 ×Γ
LG2.

• A central isogeny [DGA+11, Exposé XXII Définition 4.2.9] G → H in-
duces a surjective morphism with finite kernel LH → LG. More generally
one can associate to a morphism G→ H with central kernel, normal im-
age and abelian cokernel a morphism LH → LG (reduce to the case of a
central isogeny using the previous point).

• There are weaker forms of functoriality. Let G be a connected reductive
group and T a maximal torus of G defined over F . Choose a Borel sub-
group B of GF containing TF and a splitting s : Γ → LG preserving a

pinning (B, T , (Xα)α) of Ĝ. We have a canonical isomorphism T̂ ≃ T
(coming from the isomorphism between brdC(Ĝ) and brdF (G)

∨), but the
Galois actions differ by a 1-cocycle taking values in the Weyl group. In
general we don’t have a canonical embedding LT ↪→ LG (see [LS87, §2.6]
and [Kala] however), but note that the induced embedding Z(Ĝ) ↪→ T̂ is
Γ-equivariant.

In the next section we recall how the first case generalizes to parabolic sub-
groups in arbitrary connected reductive groups.

4.3. Parabolic subgroups and L-embeddings. A parabolic subgroup P of
LG is a closed subgroup mapping onto Γ and such that P0 := P ∩ Ĝ is a parabolic

subgroup of Ĝ. The set of parabolic subgroups is clearly stable under conjugation

by Ĝ. If P is a parabolic subgroup of LG then P is the normalizer of P0 in LG.

Choose a Killing pair (B, T ) of Ĝ. Recall that a parabolic subgroup of Ĝ

is conjugated to a unique one containing B, and that parabolic subgroups of Ĝ
containing B correspond bijectively to subsets of ∆∨ (or ∆, using the bijection
α 7→ α∨), by associating to P0 the set of α ∈ ∆∨ (seen as characters of T ) such

that −α is a root of T in P0. Embed B in a pinning (B, T , (Xα)α∈∆∨) of Ĝ, and let
s : Γ→ LG be a distinguished section fixing this pinning. Then Bs(Γ) is a (minimal)
parabolic subgroup of LG, and any parabolic subgroup of LG is conjugated under

Ĝ to one containing Bs(Γ). A parabolic subgroup P0 of Ĝ containing B is such that
its normalizer P in LG maps onto Γ (i.e. P is a parabolic subgroup of LG) if and

only if the corresponding subset of ∆∨ is stable under Γ. Therefore Ĝ-conjugacy
classes of parabolic subgroups of LG also correspond bijectively to Γ-stable subsets
of ∆∨.

Using the bijection between ∆ and ∆∨ we obtain a bijection between the set
of Γ-stable G(F )-conjugacy classes of parabolic subgroups of GF and the set of

Ĝ-conjugacy classes of parabolic subgroups of LG. The obvious map from the set
of G(F )-conjugacy classes of parabolic subgroups of G to the set of Γ-stable G(F )-
conjugacy classes of parabolic subgroups of GF is injective, and it is surjective if
and only if G is quasi-split.

Recall from [Bor79, §3.4] that if P is a parabolic subgroup of LG andM0 is
a Levi factor of P0 then the normalizerM ofM0 in P maps onto Γ and P is the
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semi-direct product of its unipotent radical and M. In this situation we say that
M is a Levi factor of P, and a Levi subgroup of LG. See Lemma 3.5 loc. cit. for
another characterization of Levi subgroups.

Let P be a parabolic subgroup of G. Choose a distinguished splitting s :

Γ → LG stabilizing a pinning E = (B, T , (Xα)α∈∆∨) of Ĝ. Let M = P/N be the
reductive quotient of P . Taking Killing pairs inside P in the definition of brdF we
obtain an isomorphism between brdF (M) and (X,RP , R

∨
P ,∆P ) where ∆P is the

set of simple roots α ∈ ∆ such that −α also occurs in P , RP = R ∩ span(∆P ),
∆∨
P = {α∨ |α ∈ ∆P } and R∨

P = R∨ ∩ span(∆∨
P ). Let EM = (BM , TM , (Yα)α) be

a pinning of M̂ and sM : Γ → LM a corresponding distinguished splitting. These
choices determine an embedding of extensions of Γ

ι[P, E , s, EM , sM ] : LM −→ LG

characterized by the following properties.

• It maps (BM , TM ) to (B, T ), and on TM it is the isomorphism TM ≃ T
induced by the above embedding brdF (M) ↪→ brdF (G),

• it maps EM to E , and
• we have ι[P, E , s, EM , sM ] ◦ sM = s.

The image of ι[P, E , s, EM , sm] is clearly a Levi subgroup of LG, and the subgroup
of LG generated by this image and B is the parabolic subgroup of LG containing
B corresponding to P . The formation of ι[P, E , s, EM , sM ] satisfies obvious equiv-

ariance properties with respect to conjugation by M̂ and Ĝ. In particular we have

an embedding ιP : LM → LG well-defined up to conjugation by Ĝ.

Lemma 4.4. Let M be a Levi subgroup of G. Let P and P ′ be parabolic sub-
groups of G admitting M as a Levi factor. Then ιP and ιP ′ are conjugate under

Ĝ.

This statement is contained in [Lan89, Lemma 2.5] but we give a self-contained
proof.

Proof. First we recall a general construction. Fix a pinning E = (B, T , (Xα)α)

in Ĝ and a distinguished splitting s : Γ→ LG fixing it. For a Killing pair (B, T ) in
GF we denote by γ[(B, T ), (B, T )] the isomorphism X∗(T ) ≃ X∗(T ). Considering
Weyl groups inside automorphism groups of tori this also induces an isomorphism

ω[(B, T ), (B, T )] :W (T,GF ) ≃W (T , Ĝ)
and γ[(B, T ), (B, T )] is equivariant for the Weyl group actions via this isomorphism.
We have an action of Γ on W (T,GF ): for σ ∈ Γ let T (F )gσ ∈ T (F )\G(F ) be
the class for which σ(B, T ) = Ad(g−1

σ )(B, T ), then x 7→ Ad(gσ)(σ(x)) induces an
automorphism of W (T,GF ). One can check that the isomorphism ω[(B, T ), (B, T )]
is Γ-equivariant for this action on W (T,GF ) and the action via s on W (T , Ĝ).

Fix E , s, EM and sM as above. Fix a Borel pair (BM , T ) inMF . This determines
two Borel subgroups B and B′ in GF , characterized by the properties B∩MF = BM
and NF ⊂ B and similarly for B′. There is a unique x ∈ W (T,GF ) for which

Ad(x)(B, T ) = (B′, T ). Let n : W (T , Ĝ) → N(T , Ĝ) be the set-theoretic splitting
determined by E [Spr98, §9.3.3]. Denote w = n(ω[(B, T ), (B, T )](x)). We claim
that we have

(4.3) Ad(w) ◦ ι[P ′, E , s, EM , sM ] = ι[P, E , s, EM , sM ].
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To simplify notation in the rest of the proof we abbreviate ι = ι[P, E , s, EM , sM ]
and ι′ = ι[P ′, E , s, EM , sM ].

First we check that ι and Ad(w)−1 ◦ ι′ coincide on TM . We have (B′, T ) =
Ad(x)(B, T ) so if we also denote by Ad(x) the induced automorphism of X∗(T ) we
have Ad(x)γ[(B, T ), (B, T )] = γ[(B′, T ), (B, T )]. We obtain

γ[(B′, T ), (B, T )] = γ[(B, T ), (B, T )] ◦ ω[(B, T ), (B, T )](x).

The isomorphism ι|TM
: TM ≃ T is dual to the isomorphism

γ[(BM , T ), (BM , TM )]−1 ◦ γ[(B, T ), (B, T )] : X∗(T ) ≃ X∗(TM ).

Similarly ι′|TM
: TM ≃ T is dual to the isomorphism

γ[(BM , T ), (BM , TM )]−1 ◦ γ[(B′, T ), (B, T )]
=γ[(BM , T ), (BM , TM )]−1 ◦ γ[(B, T ), (B, T )] ◦ ω[(B, T ), (B, T )](x)

and the equality

ι′|TM
= ω[(B, T ), (B, T )](x)−1 ◦ ι|TM

= Ad(w)−1ι|TM

follows.
To check that the equality (4.3) holds on M̂ it is enough to check that we have

ι(Yα) = Ad(w)ι′(Yα) for any α ∈ ∆(TM ,BM ). We have

ι(Yα) = Xβ and ι′(Yα) = Xβ′

where

β = γ[(B, T ), (B, T )]−1γ[(BM , T ), (BM , TM )](α),

β′ = γ[(B′, T ), (B, T )]−1γ[(BM , T ), (BM , TM )](α)

= w−1(β)

both belong to ∆(T ,B). By [Spr98, Proposition 9.3.5] we have Xβ = Ad(w)(Xβ′).
Finally we need to check Ad(w) ◦ s = s, i.e. that w commutes with s(Γ). For

σ ∈ Γ and y ∈ W (T , Ĝ) we have s(σ)n(y)s(σ)−1 = n(σ(y)) and so it is enough to

check that wT ∈ W (T , Ĝ) is fixed by Γ. For any σ ∈ Γ there exists gσ ∈ M(F )
such that σ(BM , T ) = Ad(g−1

σ )(BM , T ) and this implies σ(B, T ) = Ad(g−1
σ )(B, T )

and σ(B′, T ) = Ad(g−1
σ )(B′, T ) because N and N ′ are both defined over F . A

simple computation shows that we have Ad(gσ)(σ(x)) = x in W (T,GF ), i.e. x is
Γ-invariant. □

The lemma shows that for a Levi subgroup M of G we have an embedding

ιM : LM → LG, well-defined up to conjugation by Ĝ. We call the image of such an
embedding a G-relevant Levi subgroup of LG.

5. Langlands parameters

In this section F is a local field.
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5.1. Weil-Deligne groups. We briefly recall the definition of Weil-Deligne
groups of local fields. We refer the reader to [Tat79] for more details.

If F ≃ C define WF = F×. If F ≃ R define WF as the unique non-split central
extension

1→ F
× →WF → Gal(F/F )→ 1

where Gal(F/F ) acts on F
×
in the natural way. Explicitly, WF = F

× ⊔ jF×
with

j2 = −1.
If F is a non-Archimedean local field, we have a short exact sequence of topo-

logical groups

1→ IF → Gal(F/F )→ Gal(k/k)→ 1

where k is the residue field of F and IF is called the inertia subgroup of Gal(F/F ).

Since k is finite, say of cardinality q, Gal(k/k) is isomorphic to Ẑ and topologically
generated by the Frobenius automorphism x 7→ xq. This automorphism generates a
natural subgroup Z of Gal(k/k), and the Weil group WF is defined as its preimage,
a dense subgroup of Gal(F/F ). Instead of the induced topology, we endow WF

with the topology making IF an open subgroup, with its topology induced from
that of Gal(F/F ).

Recall that the Artin reciprocity map is an isomorphism Wab
F ≃ F×. Compos-

ing with the norm || · || : F× → R>0 we get a continuous morphism still denoted
|| · || : WF → R>0.

For non-Archimedean F , we now recall three possible definitions for the Weil-
Deligne group.

(1) W′
F := Ga ⋊WF , where the additive group Ga is defined over C and the

action of WF on Ga is by w(x) = ||w||x.
(2) WDF := WF × SL2, where the second factor is the algebraic group over

Q.
(3) the (unnamed) locally compact topological group WF × SU(2), where

SU(2) is a maximal compact subgroup of SL2(C).
For Archimedean F it will be convenient to denote WDF = WF .

5.2. Langlands parameters. First assume that F is non-Archimedean.
For the first version of the Weil-Deligne group, a Weil-Deligne Langlands pa-

rameter6 is a pair (ρ,N) such that

• ρ : WF → LG is a continuous representation, i.e. there exists an open

subgroup U of IF which acts trivially on Ĝ and is mapped to 1×U ⊂ Ĝ⋊Γ,
such that the composition with the projection LG→ Γ is the usual map,

• N ∈ Lie Ĝ satisfies ρ(w)Nρ(w)−1 = ||w||N for all w ∈WF (this forces N
to be nilpotent),

• for any w ∈WF (equivalently, for some w ∈WF ∖ IF ) we have that ρ(w)
is semi-simple.

Remark 5.1. For this last condition note that the group LG is not of finite
type over C but there is a finite Galois subextension E/F of F/F such that the

action of ΓE on Ĝ (via any distinguished splitting s) is trivial, and the quotient of
LG by s(ΓE) (which again does not depend on the choice of s) may be identified

with a semi-direct product Ĝ ⋊ Gal(E/F ), which is of finite type. We say that

6This terminology is not standard.
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an element x of LG is semi-simple if its image in LG/s(ΓE) is semi-simple. This
is equivalent to the existence of a distinguished splitting s stabilizing a pinning
E = (B, T , (Xα)α∈∆∨) such that we have x = ts(σ) for some t ∈ T and σ ∈ Γ.
The “if” direction is easy using Jordan decompositions [Bor91, §I.4], the “only if”
direction is well-known (see [Ste68, §7] or [Bor79, Lemma 6.5]).

Weil-Deligne Langlands parameters correspond bijectively to morphismsW′
F →

LG which are algebraic on Ga (given by x 7→ exp(xN)), continuous on the factor
WF and compatible with the projection to Γ (given by ρ). One of the motivations
for using the first version W′

F of the Weil-Deligne group, rather than the other two,
is the ℓ-adic monodromy theorem [Tat79, Theorem 4.2.1]. This roughly says that
for a prime ℓ not equal to the residual characteristic of F and for C = Qℓ7, any
continuous morphism WF → LG for the natural topology on Ĝ compatible with
LG → Γ is given by a pair (ρ,N) satisfying the first two conditions above. Con-
tinuous ℓ-adic Galois representations occur naturally in algebraic geometry (Tate
modules of elliptic curves over F , or more generally in the étale cohomology of vari-
eties defined over F ). Another reason for preferring W′

F is that this version requires
fewer “choices of a square root of q” in the local Langlands correspondence, and is
more obviously compatible with parabolic induction (property (10) in Conjecture
6.1 below).

For the second version WDF , over any algebraically closed field C of character-
istic zero, Langlands parameters are defined as morphisms ϕ : WF ×SL2(C)→ LG
which are compatible with LG→ Γ, continuous and semi-simple on the first factor
and algebraic on the second factor.

For the third version, we need to assume C = C and we consider continuous

(for the natural topology on Ĝ) semi-simple morphisms ϕ : WF × SU(2) → LG
which are compatible with LG→ Γ. By restriction via SU(2) ⊂ SL2(C) we obtain
exactly the same morphisms as in the second version, essentially because SL2(C) is
the complexification of the compact Lie group SU(2).

Recall that we have already chosen a square root of q in C in order to normalize
parabolic induction. We have a natural map from Langlands parameters to Weil-
Deligne Langlands parameters:

(5.1) ϕ 7→
(
ϕ ◦ ιW ,dϕ|SL2

(
0 1
0 0

))
where ιW (w) = (w,diag(||w||1/2, ||w||−1/2)). By a refinement of the Jacobson-
Morozov theorem (see [GR10, Lemma 2.1]) this induces a bijection between sets

of Ĝ-conjugacy classes of parameters.
If F is Archimedean we assume C = C and define Langlands parameters as

semi-simple continuous morphisms ϕ : WF → LG which are compatible with LG→
Γ.

We will denote by Φ(G) the set of Ĝ-conjugacy classes of Langlands parameters
taking values in LG. As explained above all versions of the Weil-Deligne group give

equivalent sets of Ĝ-conjugacy classes. From now on we will only consider Langlands
parameters, i.e. morphisms to LG using the second version WDF .

5.3. Reductions. Assume C = C. We briefly recall from [SZ18] the Lang-
lands classification for parameters.

7One could work with a finite extension of Qℓ instead.
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For an algebraic group H over C recall from [SZ18, §5.1] that any semi-simple
x ∈ H(C) admits a polar decomposition x = x0xh characterized by the following
properties:

• x0xh = xhx0,
• x0 and xh are semi-simple,
• in any representation ρ of H the eigenvalues of ρ(x0) (resp. ρ(xh)) belong
to the unit circle (resp. to R>0).

Uniqueness is clear using a faithful representation. For a morphism f : H1 → H2

between linear algebraic groups over C and a semi-simple x ∈ H1(C) it is also clear
that if x = x0xh is a polar decomposition then f(x) = f(x0)f(xh) is also a polar
decomposition. Since any semi-simple x ∈ H(C) is contained in a diagonalizable
subgroup of H [Bor91, Proposition 8.4] this reduces the proof of existence of polar
decompositions to the case where H is diagonalizable, which is easy. One could
also show existence and uniqueness using the Tannakian formalism.

Now let cl(ϕ) ∈ Φ(G). Applying the polar decomposition8 to ϕ(w) for any
w ∈ WF with positive valuation, we obtain a canonical tuple (P,M, ϕ0, χ) giving
a decomposition

(5.2) ϕ = ϕ0χ

subject to the following conditions.

• The subgroup P of LG is a parabolic subgroup andM is a Levi subgroup
of P. We denote by N the unipotent radical of P.

• ϕ0 is a Langlands parameter taking values inM and bounded on WF .
• χ ∈ Z1(WF , X∗(Z(M)0)⊗Z R>0) where X∗(Z(M)0)⊗Z R>0 is seen as a
subgroup of the torus X∗(Z(M)0)⊗Z C× = Z(M)0.

• The eigenvalues of χ(Frob) if F is non-Archimedean (resp. χ(x) for any
real x > 1 if F is Archimedean) on LieN are all greater than 1.

This corresponds to the Langlands classification (Theorem 3.7) using Lemma 3.8.
This reduction explains why we are mainly interested in bounded parameters ϕ. We
will also call such parameters tempered. A nice property of tempered (or more gen-

erally, essentially tempered, allowing twists by cocycles WF → Z(Ĝ)) parameters is
that the restriction of the map (5.1), associating Weil-Deligne parameters to Lang-
lands parameters, to the set of tempered parameters is injective: see [BMIY24,
Corollary 3.16]. This may also be proved by observing that for a tempered Lang-
lands parameter ϕ with associated Weil-Deligne Langlands parameter (ρ,N) we can
recover ϕ|WF

and the semi-simple element in the sl2-triple corresponding to ϕ|SL2

from the polar decomposition (5.2) of ρ using [Kos59, Corollary 3.5]. In particular
the centralizers in both versions coincide in the tempered case. This is not true in
general, see [BMIY24, Example 3.8].

The following proposition does not assume C = C.
Proposition 5.2 ([Bor79, Proposition 3.6]). Let ϕ : WDF → LG be a Lang-

lands parameter. The Levi subgroups of LG which are minimal among those con-

taining ϕ(WDF ) are all conjugated under the centralizer of ϕ in Ĝ.

This proposition may be seen as a generalization of the isotypical decomposition
of a semi-simple linear group representation. A Langlands parameter ϕ is called

8As in Remark 5.1 we may work in the reductive group LG/s(ΓE), for some large enough
finite Galois extension E/F , instead of LG.
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essentially discrete if this Levi subgroup is LG, i.e. if ϕ is “LG-irreducible”. This

condition is equivalent to Cent(ϕ, Ĝ)/Z(Ĝ)Γ being finite. A Langlands parameter
ϕ is called G-relevant if this Levi subgroup is G-relevant (see Section 4.3).

5.4. Weil restriction. Let E be a finite subextension E of F/F and let
ΓE = Gal(F/E) be the corresponding open subgroup of Γ. Let G0 be a connected
reductive group G0 over E. Let G = ResE/F G0 be the Weil restriction, a con-
nected reductive group over F such that the topological groups G(F ) and G0(E)

are isomorphic. Recall from [Bor79, §5] that we may identify Ĝ endowed with its

action of Γ with the induction from ΓE to Γ of Ĝ0. By Shapiro’s lemma we have a
bijection Φ(G) ≃ Φ(G0).

6. The local Langlands conjecture

6.1. Crude local Langlands correspondence. Denote by Π(G) be the set
of isomorphism classes of irreducible admissible representations of G(F ) over C (in
the Archimedean case, (g,K)-modules).

Conjecture 6.1. There should exist maps LL : Π(G) → Φ(G) for all con-
nected reductive groups G over F , satisfying the following properties. Denote
Πϕ(G) = LL−1(cl(ϕ)).

(1) If G is a torus then LL should be the bijection that Langlands deduced
from class field theory [Bor79, §9].

(2) For any G all fibers of LL should be finite and the image of LL should
contain all essentially discrete parameters.

(3) If G = G1×G2 then, using the identification of LG with LG1×Γ
LG2, for

any irreducible admissible representation π ≃ π1 ⊗ π2 of G(F ) we should
have LL(π) = (LL(π1),LL(π2)).

(4) If θ : G → H is a central isogeny with dual θ̂ : LH → LG then for
π ∈ Π(H) and any constituent π′ of the restriction π|G(F ) (which is semi-

simple of finite length) we should have LL(π′) = θ̂ ◦ LL(π). (If this holds
for all central isogenies then using (3) one can deduce that it holds more
generally for morphisms G → H with central kernel, normal image and
abelian cokernel.)

(5) In the setup of Section 5.4 (Weil restriction) we should have a commuta-
tive diagram

Π(G) Φ(G)

Π(G0) Φ(G0)

∼

LL

∼

LL

where the left vertical map is induced by the isomorphism G(F ) ≃ G0(E)
and the right vertical map is Shapiro’s lemma.

(6) For an irreducible smooth representation π of G(F ) we should have that π
is essentially square-integrable if and only if LL(π) is essentially discrete.

(7) Let M be a Levi subgroup of G. Recall from Lemma 4.4 that we have

an embedding ιM : LM ↪→ LG, well-defined up to Ĝ-conjugacy. If σ is
an irreducible smooth representation of M(F ) which is essentially square-
integrable and has unitary central character then for any constituent π of
iGPσ we should have LL(π) = ιM ◦ LL(σ).
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(8) In the situation of Theorem 3.7 we should have

LL(J(P, σ, ν)) = ιP ◦ LL(σ ⊗ ν).

(9) For Archimedean F the maps LL should be compatible with infinitesimal
characters in the following sense. Assume F ≃ R (we may reduce to this
case if F ≃ C by (5) above) and choose an isomorphism F ≃ C, so that
we use the same field C for the coefficients, to construct the Weil group
of F and to define g = C⊗F LieG. Let π be an irreducible (g,K)-module.
The restriction of LL(π) to C× is conjugated to a morphism of the form
z 7→ zλzµ where λ, µ ∈ X∗(T )⊗Z C satisfy λ− µ ∈ X∗(T ) and zλzµ is a
suggestive notation for (zz)(λ+µ)/2(z/|z|)λ−µ. The infinitesimal character
of π should be identified to λ by the Harish-Chandra isomorphism.

(10) Assume that F is non-Archimedean. If P = MN is a parabolic subgroup
of G and σ is an irreducible smooth representation of M(F ), then for any
irreducible subquotient π of iGPσ we should have LL(π)◦ ιW = ιM ◦LL(σ)◦
ιW . Equivalently, the same but just for supercuspidal σ.

The list of properties in Conjecture 6.1 is not exhaustive, in particular we did
not discuss the relation with L-functions, ϵ-factors and γ-factors. This list is cer-
tainly not enough to characterize the map LL, and if we omit (10) it may be possible
to prove the conjecture in the non-Archimedean case using rather formal arguments
(essentially by comparing, for simple and simply connected G, the cardinality of the
set of essentially square-integrable irreducible representations of G(F ) with that of
the set of essentially discrete parameters), but this would not give a lot of insight.
So it is desirable to have constructions and characterizations of the map LL rather
than just a proof of Conjecture 6.1. We refer the interested reader to [Har] for a
survey of the possible characterizations.

We also warn the reader that there are actually two versions of the conjecture,
corresponding to the two possible normalizations of the Artin reciprocity map in
local class field theory. According to [KS, §4] these should be related by a certain
automorphism of LG, which according to [Kal13], [AV16] and [Pra19] is itself
related to taking contragredient representations. Thus another way to state the
relation between the two normalizations is to say that we should obtain one from
the other by composing with the involution π 7→ π̃.

Cases for which the conjecture is known (with a “natural” construction or
characterization) include the Archimedean case [Lan89], general linear groups over
non-Archimedean fields [LRS93] [Hen00] [HT01] [Sch13], GSp4 over finite ex-
tensions of Qp [GT11], inner forms of special linear groups over finite extensions
of Qp [HS12], and quasi-split classical groups over finite extensions of Qp [Art13]
[Mok15]. More cases will be discussed later.

The rest of this section is devoted to remarks on the properties in the conjecture.
6.1.1. Compatibility with the case of tori. The functoriality assumptions (3)

and (4) imply the following compatibilities with the case of tori.

• The map LL should be compatible with central characters in the following
sense. Let Z be the maximal central torus in G so that we have a surjective
morphism LG → LZ. Then all elements of Πϕ(G) should have central
character determined by composing ϕ with this surjection and applying
LL−1.
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• Langlands defined (see [Bor79, §10.2]) a morphism

H1
cont(WF , Z(Ĝ))→ Homcont(G(F ),C×).

For a continuous 1-cocycle c : WF → Z(Ĝ) with corresponding character
χ : G(F )→ C× we should have LL(π ⊗ χ) = cLL(π).

6.1.2. Reduction to the discrete case. Using Proposition 3.5, the Langlands
classification (Theorem 3.7, Lemma 3.8) and the “Langlands classification for pa-
rameters” (see Section 5.3), properties (7) and (8) imply that π is tempered if and
only if LL(π) is tempered. In fact we see that these parallel results for smooth rep-
resentations of reductive groups and Langlands parameters reduce the construction
of LL to the essentially square-integrable case, and with property (2) we see that
the image of LL should be the set of G-relevant Langlands parameters.

6.1.3. The unramified case. From properties (1), (7) and (8) it follows that if
G is unramified and K is a hyperspecial compact open subgroup of G(F ) then on
K-unramified irreducible representations of G(F ) (i.e. representations having non-
zero K-invariants) the map LL is given by the Satake isomorphism. More precisely
in this case the minimal Levi subgroup M0 is an unramified torus and unramified
representations of G(F ) are parametrized by orbits under the rational Weyl group
of continuous characters χ :M0(F )→ C×. The unramified representation π corre-
sponding to the orbit of χ is the unique unramified constituent of iGBχ, for any Borel
subgroup B of G containing M0. We have LL(π) = ιM0

◦ LL(χ), in other words
LL(π) is the parameter associated to π by the Satake isomorphism. In the tem-
pered case, that is when χ is unitary, this follows immediately from property (7).
The general case is more subtle, and can be deduced from the Gindikin-Karpelevich
formula [Cas80, Theorem 3.1] (see [CS80, p. 219] for the values of the constants
in the case of an unramified group)9.

6.1.4. The semisimplified correspondence and algebraicity. For non-Archimedean
F property (10) says that the map LLss : π 7→ LL(π) ◦ ιW is compatible with the
notion of supercuspidal support (Theorem 3.2). This suggests the following conjec-
ture.

Conjecture 6.2. Assume that F is non-Archimedean. Let C be any alge-
braically closed field of characteristic zero and choose a square root

√
q ∈ C. There

should exist for each connected reductive group G over F a map LLss from the set
of isomorphism classes of smooth irreducible representations of G(F ) over C to the

set of Ĝ-conjugacy classes of continous semi-simple morphisms WF → LG which
are compatible with LG → Γ, satisfying the obvious analogue of (1), (3), (4) in
Conjecture 6.1, as well as the following analogue of property (10) in Conjecture
6.1.

If P = MN is a parabolic subgroup of G and σ is an irreducible smooth rep-
resentation of M(F ) then for any irreducible subquotient π of iGPσ we should have
LLss(π) = ιM ◦ LLss(σ).

Moreover these maps LLss should be functorial in (C,
√
q)10.

9To be honest the arguments in [Cas80] assume that χ is regular but similar arguments work

using only partial regularity.
10One could certainly avoid the choice of a square root of q by modifying Langlands dual

groups. We do not attempt to explain this here, see [BG14, §5.3] and [Ima24, §2.2].
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For C = Qℓ, where ℓ does not equal the residue characteristic of F , Genestier-
Lafforgue [GL] (in positive characteristic) and Fargues-Scholze [FS] have con-
structed maps LLss satisfying all properties in Conjecture 6.2 except for functo-
riality with respect to the coefficient field, which seems to remain open.

Conjecture 6.1 implies the case C = C of Conjecture 6.2, again excluding
functoriality in (C,

√
q). Assuming Conjecture 6.1 one can also show that the

map LL ◦ιW determines the map LL, by considering first the case of tempered
representations and using the decomposition (5.2) and the fact that an sl2 triple

(here, in the connected centralizer of ϕ0 in Ĝ) is determined by its semi-simple
element up to conjugation. In the case of general linear groups the construction
of the map LL was reduced to the supercuspidal case by Zelevinsky [Zel80]. In
general however Conjecture 6.2 does not immediately imply Conjecture 6.1. What
is missing is the fact that for any essentially square-integrable irreducible smooth
representation π of G(F ), the semi-simplified parameter LLss(π) comes from an
essentially discrete Langlands parameter (which as above is automatically unique

up to conjugation by the centralizer of LLss(π) in Ĝ). In this direction Gan, Harris,
Sawin and Beuzart-Plessis have recently shown [GHSBP24, Theorem 1.2] that the
Genestier-Lafforgue semi-simplified Langlands parameter of an essentially square-
integrable representation, say with central character having finite order, comes from
a (again, unique) tempered Langlands parameter.

Note that properties (6), (7) and (8) in Conjecture 6.1 make essential use of
the topology on the coefficient field C. The notion of essentially discrete Langlands
parameter is purely algebraic (it does not rely on the topology of the coefficient
field) so there ought to be a purely algebraic characterization of essentially square-
integrable representations. We check the validity of this intuition in the following
proposition.

Proposition 6.3. Let F be a non-Archimedean local field. Assume Conjecture
6.1. Let π be an irreducible smooth representation of G(F ). Assume that its central
character ωπ has finite order (we may reduce to this case by twisting by a continuous
character G(F ) → C×). Then π is essentially square-integrable if and only if for
any parabolic subgroup P =MN of G and for any character χ of AM (F ) occurring
in rGP π there exists an integer N ≥ 1 such that χN is equal to

∏
α ||α||nα for some

integers nα > 0, where the product ranges over the simple roots of AM in LieN .

Proof. The “if” implication is obvious using Proposition 3.4, so we are left
to prove the “only if” implication. Let P = MN and χ be as in the proposition.
There exists an irreducible quotient σ of the representation rGP π of M(F ) whose
central character ωσ satisfies ωσ|AM (F ) = χ, and by Frobenius reciprocity we have

an embedding π ↪→ iGPσ. Let ϕM = LL(σ) and ϕ = LL(π). By property (10) in

Conjecture 6.1 we have ιM ◦ϕM ◦ιW = ϕ◦ιW (up to conjugacy by Ĝ). By properties
(1), (3) and (4) in Conjecture 6.1 the character χ corresponds by local class field
theory to the composition

WDF
ϕM−−→ LM → LAM

which may be seen as a continuous morphism WF → ÂM because the torus AM is
split. Note that pre-composing with ιW does not change this morphism. Because
we already know Proposition 3.4 it is enough to prove that some integral power
of χ is of the form

∏
α ||α||nα for some integers nα. By assumption some integral
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power of χ is trivial on AG(F ). The simple roots of AM on N give an isogeny
AM/AG → Gnm for some integer n ≥ 0, so it is enough to prove that some integral
power of χ takes values in qZ.

There exists an open subgroup U of the inertia subgroup IF ⊂ WF such that

the action of U on Ĝ is trivial and ϕ is trivial on U . Up to taking a smaller subgroup
we may assume that U is normalized by WF (this follows from a simple Galois-
theoretic argument). There exists an integer N ≥ 1 such that for any w ∈ WF

the action of wN by conjugation on WF /U is trivial (this can be proved in two
steps, first for IF /U and then for a lift of a generator of WF /IF ). It will be

convenient to see the Langlands dual group LG as Ĝ ⋊ Gal(E/F ) for some finite
Galois extension E/F (see Remark 5.1). Thus for any w ∈WF we have that ϕ(w)N

centralizes ϕ(WDF ). Up to replacing N by |Gal(E/F )| × |Cent(ϕ, Ĝ)/Z(Ĝ)Γ| we
obtain ϕ(w)N ∈ Z(Ĝ)Γ for all w ∈WF . The natural map Z(Ĝ)Γ → ÂG has finite
kernel. Because we have assumed that ωπ has finite order, up to replacing N by
a non-zero multiple we even have ϕ(w)N = 1 for all w ∈ WF . Up to replacing
N by 2N , this implies that for any finite-dimensional algebraic representation r :
LG→ GL(V ) and for any w ∈WF , any eigenvalue λ ∈ C× of r(ϕ(ιW (w))) satisfies
λN ∈ qZ. Taking for r a closed embedding LG ↪→ SL(V ), we obtain the claim
because any irreducible representation of LM , and in particular any character of

ÂM , occurs in the restriction of V ⊗a for some integer a ≥ 0. □

6.1.5. Cuspidality and parameters. Assume that F is non-Archimedean. Prop-
erty (10) implies that for any irreducible smooth representation π of G(F ), if LL(π)
is essentially discrete and trivial on SL2 then π is supercuspidal. Contrary to the
case of GLn, in general the converse is not true, i.e. there exists supercuspidal rep-
resentations π whose Langlands parameter LL(π) is not trivial on SL2. A related
matter is that the classification of essentially square-integrable representations in
terms of supercuspidal representations (of Levi subgroups) is much more compli-
cated in general than in the case of GLn. See [MT02] and [Xu17] for the case
of classical groups. As we will briefly review in Section 6.6, Kaletha’s construction
in [Kalc] of supercuspidal L-packets (under some assumptions on G) isolates the
supercuspidal representations which correspond (or should correspond, depending
on which definition of a local Langlands correspondence one chooses) to essentially
discrete parameters trivial on SL2.

6.2. Refined local Langlands for quasi-split groups. In some applica-
tions having just the map LL is too crude, e.g. to formulate the global multiplicity
formula for the automorphic spectrum of a connected reductive group over a global
field, and so we would like to understand the fibers Πϕ(G).

In this section we assume C = C and that G is quasi-split. For a Langlands

parameter ϕ : WDF → LG denote Sϕ = Cent(ϕ, Ĝ) (a reductive subgroup of Ĝ),

and define Sϕ = Sϕ/Z(Ĝ)
Γ. Recall that a parameter ϕ is essentially discrete if and

only if Sϕ is finite. It can happen that π0(Sϕ) is non-abelian (even in the principal
series case, that is if ϕ factors through ιT : LT ↪→ LG where T is part of a Borel pair
(B, T ) defined over F !). For F = R however, it is always abelian, in fact there is a

maximal torus T of Ĝ such that Sϕ ∩ T meets every connected component of Sϕ.
For a finite group A denote by Irr(A) the set of isomorphism classes of irreducible
representations of A over C.
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Conjecture 6.4. For each Langlands parameter ϕ there should exist an em-
bedding Πϕ(G)→ Irr(π0(Sϕ)). For non-Archimedean F this should be a bijection.

Of course we do not simply seek the existence of embeddings Πϕ(G)→ Irr(π0(Sϕ)),
we recall how to characterize them in Conjecture 6.8 below.

Langlands’s classification again reduces the construction of embeddings Πϕ(G)→
Irr(π0(Sϕ)) to the tempered case. So we assume from now on that ϕ is tempered.
These embeddings are not canonical in general: they depend on the choice of a
Whittaker datum (up to conjugation by G(F )).

We briefly recall the notions of Whittaker datum and generic representation
for a quasi-split connected reductive group G. Choose a Borel subgroup B with
unipotent radical U . For a Galois orbit O on the set of simple roots, the group

UO =
(∏

α∈O Uα(F )
)GalF

is isomorphic to the additive group of a finite separable
extension FO of F . We have a natural surjective morphism from U(F ) to

∏
O UO.

Choosing a non-trivial morphism UO → C× for each orbit O yields a morphism
θ : U(F ) → C×, called a generic character. A Whittaker datum w for G is such
a pair (U, θ). The adjoint group Gad(F ) acts transitively on the set of such pairs.
If F has characteristic zero there are only finitely many G(F )-conjugacy classes
of Whittaker data. If F is non-Archimedean an irreducible smooth representation
(π, V ) of G(F ) is called w-generic if there is a non-zero linear functional λ : V → C
such that λ(π(u)v) = θ(u)λ(v) for all u ∈ U(F ) and v ∈ V . For Archimedean F
the notion is more subtle because it requires a topology on the representation.

Conjecture 6.5 (Shahidi). There should be a unique w-generic representation
in each Πϕ(G). The conjectural embedding ιw : Πϕ(G) → Irr(π0(Sϕ)) (which de-
pends on w) should map this w-generic representation to the trivial representation
of Sϕ.

In order to characterize the embeddings ιw we have to introduce endoscopic
data. Let s ∈ Sϕ be a semi-simple element. From the pair (s, ϕ) one can construct
the following objects. For π ∈ Πϕ(G) denote ⟨s, π⟩w = tr(ιw(π))(s). On the one
hand we have

Θw
ϕ,s =

∑
π∈Πϕ(G)

⟨s, π⟩wΘπ.

This is a virtual character on G(F ). In the case s = 1 we introduce the special
notation

SΘϕ = Θw
ϕ,1.

The reason for not recording w in the notation in this case will be explained below.
On the other hand we consider the complex connected reductive subgroupH0 =

Cent(s, Ĝ)0 of Ĝ. It contains ϕ(1× SL2) and is normalized by ϕ(WF ). Thus H =
H0 · ϕ(WF ) is a subgroup of LG, which is an extension 1→ H0 → H →WF → 1.
The resulting morphismWF → Out(H0) factors through the Galois group of a finite
extension of F . By Proposition 4.3 there exists a quasi-split connected reductive

group H over F together with an inner class of isomorphisms η : H0 ≃ Ĥ such

that the above morphism WF → Out(H0) and the morphism WF → Out(Ĥ)

used to define LH = Ĥ ⋊ WF correspond to each other via η, and for any two
such groups H1 and H2 we have an isomorphism H1 ≃ H2, well-defined up to
H1,ad(F ). It may unfortunately happen that the two extensions H and LH of WF

are not isomorphic. We shall ignore this difficulty, as its resolution is not terribly
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exciting (see [KS99, Lemma 2.2.A]). So let’s assume there exists an isomorphism
of extensions Lη : H → LH. Then e = (H, s, Lη) is called an extended endoscopic
triple11. By construction we have a unique Langlands parameter ϕH : WDF → LH
such that we have Lη ◦ ϕH = ϕ. We have the virtual character SΘϕH

on H(F ).
The two virtual characters Θw

ϕ,s and SΘϕH
are expected to be related by a cer-

tain kernel function. This function, called the Langlands-Shelstad transfer factor,
is itself non-conjectural and explicit. It is a function

∆[w, e] : H(F )G−sr ×G(F )sr → C
whose construction depends on the Whittaker datum and the extended endoscopic
triple. We will not recall the definition of ∆[w, e] (which is rather technical, see
[LS87] [KS99] [KS]), but let us recall what its support is (a correspondence be-
tween strongly regular semisimple conjugacy classes in G(F ) and G-strongly regu-
lar semisimple stable conjugacy classes in H(F )), and recall a meaningful variance
property.

Definition 6.6. Recall that an element of G(F ) is called strongly regular if
its centralizer is a torus. Two semisimple strongly regular elements δ, δ′ in G(F )
are called stably conjugate if there exists g ∈ G(F ) such that gδg−1 = δ′.

Using maximal tori and identifications of Weyl groups one can define [KS99,
Theorem 3.3.A] a canonical map m from semisimple conjugacy classes in H(F )
to semisimple conjugacy classes in G(F ). A conjugacy class in H(F ) is called G-
strongly regular if its image under m is strongly regular. We denote by H(F )G−sr

the set of G-strongly regular elements of H(F ). The map m enjoys the following
properties.

(1) The map m is Γ-equivariant.
(2) If γ ∈ H(F ) is semisimple G-strongly regular with associated H(F )-

conjugacy class [γ]F then m([γ]F )∩G(F ) is a non-empty12 finite union of
G(F )-conjugacy classes. In this situation we say that (the stable conju-
gacy class of) γ and (the conjugacy class) of δ ∈ m([γ]F ) ∩ G(F ) match.
Given a strongly regular stable conjugacy class for G, there are finitely
many stable conjugacy classes for H in its preimage by m.

(3) For any matching pair (γ, δ) ∈ H(F )G−sr × G(F )sr, denoting TH =
Cent(γ,H) and T = Cent(δ, g) (maximal tori of H and G), there is a
canonical isomorphism TH ≃ T identifying γ and δ.

The fact that m is defined at the level of conjugacy classes over F rather than F is
one justification for introducing the notion of stable conjugacy.

Let δ be a strongly regular element of G(F ), and denote T = Cent(δ,G). The
set of G(F )-conjugacy classes [δ′] which are stably conjugate to δ is parametrized
by ker

(
H1(F, T )→ H1(F,G)

)
, by mapping δ′ to inv(δ, δ′) := (σ 7→ σ(g)−1g) where

as above gδg−1 = δ′. Because of this description of stable conjugacy it is desirable
to better understand these Galois cohomology sets. Recall from [Tat66] that the
Tate-Nakayama isomorphism for tori over F identifies H1(F, T ) with

(6.1) Ĥ−1(E/F,X∗(T )) = X∗(T )
NE/F=0/IE/FX∗(T )

11This terminology relates to the notion of “endoscopic triple” of [Kot84, §7], “extended”
meaning that we have chosen an extension Lη of η. Experts should note that we restrict to the

case where s is invariant under Γ, as we may in the local setting.
12For non-emptiness the fact that G is quasi-split is essential.
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where E/F is any finite Galois subextension of F/F splitting T , NE/F is the
norm map, and for a Z[Gal(E/F )]-module Y we denote by IE/FY the submodule∑
σ∈Gal(E/F )(σ− 1)Y . Note that the right-hand side of (6.1) can also be described

as the torsion subgroup of the coinvariants X∗(T )Γ. Kottwitz interpreted this
isomorphism in terms of Langlands dual groups and generalized it to connected

reductive groups in [Kot86]. Recall that T̂ is a torus over C endowed with an

isomorphismX∗(T̂ ) ≃ X∗(T ). Using the exactness of the functor mapping a finitely
generated abelian group A to the diagonalizable group scheme Z with character

group A (considered as a sheaf on the étale site of C, say) we see that X∗(T̂ )Γ is

identified with X∗(T̂Γ). It follows that the Tate-Nakayama isomorphism may be
written as

(6.2) αT : H1(F, T ) ≃ Irr
(
π0(T̂

Γ)
)
.

It is formal to check that this identification is functorial in T . As for the Artin
reciprocity map it would be just as natural to consider the same isomorphism
composed with x 7→ x−1.

Theorem 6.7 ([Kot86, Theorem 1.2] [Thǎ11, Theorem 2.1]). There is a
unique extension of the above family of isomorphisms to a family of maps of pointed
sets

αG : H1(F,G)→ Irr
(
π0(Z(Ĝ)

Γ)
)

for connected reductive G, “functorial” in the following sense. For any morphism
H → G which is either the embedding of a maximal torus in a connected reduc-
tive group G or a central isogeny between connected reductive groups we have a
commutative diagram

H1(F,H) H1(F,G)

Irr
(
π0(Z(Ĥ)Γ)

)
Irr

(
π0(Z(Ĝ)

Γ)
)αH αG

where the bottom horizontal map is the one induced by the Γ-equivariant map

Z(Ĝ)→ Z(Ĥ) recalled (in both cases) at the end of Section 4.2.
For two connected reductive groups G1 and G2 we have αG1×G2

= αG1
× αG2

.

In [Kot86] this is proved in the case where F has characteristic zero but
the same proof works for all local fields, using Bruhat and Tits’ generalization
of Kneser’s theorem [BT87] (see [Thǎ11]). Kneser’s theorem is the special case
where G is semi-simple and simply connected over a p-adic field, in which case

we have Z(Ĝ) = 1 and so the theorem says that H1(F,G) is trivial. If F is non-
Archimedean then each αG is a bijection, in particular H1(F,G) has a commutative
group structure. In the Archimedean case the kernel and image of αG are described
loc. cit. We will also denote αG(c)(s) = ⟨c, s⟩.

We resume the above notation: (H, s, Lη) is an extended endoscopic triple,
(γ, δ) ∈ H(F )G−sr × G(F )sr is a matching pair, TH = Cent(γ,H) and T =
Cent(δ,G) and we have a canonical isomorphism TH ≃ T . By Theorem 6.7 the

kernel of H1(F, T )→ H1(F,G) is identified with the group of characters of π0(T̂
Γ)

which are trivial on Z(Ĝ)Γ. The element Lη(s) ∈ Z(Ĥ)Γ defines an element sγ,δ of



26 OLIVIER TAÏBI

T̂Γ
H ≃ T̂Γ. We can finally state the variance property of transfer factors: we have

(6.3) ∆[w, e](γ, δ′) = ∆[w, e](γ, δ)⟨inv(δ, δ′), sγ,δ⟩−1.

As for the Artin reciprocity map and the pairing (6.2) there are several natural
normalizations for the transfer factors [KS, §4], and for half of these normalizations
the exponent −1 on the right-hand side should be removed. The relation (6.3) is
far from characterizing ∆[w, e] because it does not compare the values at unrelated
matching pairs.

Conjecture 6.8. Let G be a quasi-split connected reductive group over F . Let
ϕ : WDF → LG be a tempered Langlands parameter.

(1) The map SΘϕ : Grs(F )→ C should be invariant under stable conjugacy13.
(2) For any semi-simple s ∈ Sϕ and any strongly regular semisimple G(F )-

conjugacy class [δ] we should have

(6.4) Θw
ϕ,s(δ) =

∑
γ∈H(F )/st

∆[w, e](γ, δ)SΘϕH
(γ)

where ((H, s, Lη), ϕH) is an extended endoscopic triple and Langlands pa-
rameter ϕH : WDF → LH corresponding to (ϕ, s), and st denotes stable
conjugacy.

Remark 6.9. (1) The equation (6.4) uniquely determines ιw provided it
exists, due to the linear independence of characters. In particular, one
can deduce how ιw should depend on w. Namely, to each pair w and
w′ one can associate unconditionally a character (w,w′) of Sϕ and then
ιw′(π) = ιw(π) ⊗ (w,w′). See [Kal13, §3] for details. In particular,
dim(ιw(π)) is independent of the choice of w, and hence SΘϕ is also
independent.

(2) While Conjecture 6.1 readily reduces to the essentially discrete case using
Harish-Chandra’s work, the putative analogous reductions for Conjectures
6.4 and 6.8 appear to be more subtle, involving the study of intertwining
operators. See [KS88] for character formulas in the case of principal series
representations.

(3) Implicit in the conjecture is the fact that the choice of a semisimple s
in its connected component in π0(Sϕ) is irrelevant. One can reduce to
the case where s is “generic” (implying that ϕH is essentially discrete) by
parabolic induction (which behaves well with respect to SΘ).

(4) This conjecture reduces the characterization of the local Langlands corre-
spondence to a characterization of the stable distributions SΘϕ. This
is simpler than characterizing individual characters Θπ (stable conju-
gacy classes are essentially parametrized by “characteristic polynomials”
whereas for conjugacy classes further arithmetic invariants are needed),
and in cases where a formula for SΘϕ is known it indeed has a simpler
shape. Moreover in a global setting when we try to compare trace formu-
las for different groups in general we can only compare stable conjugacy
classes, and so we need to reduce to stable distributions.

13For convenience we only defined stable conjugacy in the strongly regular case, so strictly

speaking one should say that the restriction of SΘϕ to the strongly regular locus should be stable.

Note that the complement of the strongly regular locus still has measure zero.
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6.3. Refined Langlands correspondence for non-quasi-split groups.
Recall from Proposition 4.3 that two connected reductive groups that are inner
forms of each other have isomorphic Langlands dual groups, and thus the “same”
Langlands parameters. Vogan’s idea is to consider the L-packets Πϕ(G), for a given
ϕ and G varying in an inner class, as one big L-packet Πϕ. It is natural to take
the quasi-split group given in Proposition 4.3 as “base point” in the inner class be-
cause we already have a satisfying conjecture in this case, and for reasons explained
below. So we fix a quasi-split group G∗. Recall that isomorphism classes of inner
twists of G∗ are parametrized by H1(F,G∗

ad). We may consider the groupoid of
triples (G,ψ, π) where (G,ψ) is an inner twist of G∗ and π is an irreducible smooth
representation of G(F ), with the obvious notion of isomorphism. The problem with
this definition is that for an inner twist (G,ψ) of G∗ its automorphism group in
IT (G∗) is Gad(F ), which acts non-trivially on the set of isomorphism classes of
irreducible smooth representations of G(F ). For example, for G = SL2,R the ele-
ment diag(−1, 1) of Gad(R) = PGL2(R) swaps holomorphic and anti-holomorphic
discrete series representations of SL2(R) of a given weight. This motivates the
introduction of pure inner twists: augment the datum (G,ψ) with a 1-cocycle
z : Γ→ G∗(F ) lifting

Γ −→ Gad(F )

σ 7−→ ψ−1σ(ψ).

This effectively solves the above problem but creates a new one because the map
H1(F,G∗) → H1(F,G∗

ad) is not surjective in general. For F = R Adams, Bar-
basch and Vogan [ABV92] found an ad-hoc generalization of Z1(R, G∗), called
strong real forms, that surjects onto H1(R, G∗

ad). Kottwitz suggested using his
theory of isocrystals with additional structure [Kot85] [Kot97] in the case of non-
Archimedean fields of characteristic zero as a generalization of H1(F,G∗). This
suggestion was implemented completely by Kaletha and will be recalled below, but
unfortunately it does not capture all inner forms of a given quasi-split group in gen-
eral. Kaletha later introduced another generalization of inner forms, called rigid
inner forms, for any local field F of characteristic zero and which captures all inner
forms. Specializing to F = R recovers strong real forms. It turns out that all of
these generalizations can be understood as replacing the Galois group Γ (or the
étale site of SpecF ) by an appropriate Galois gerbe. We summarize the three the-
ories (pure, isocrystal and rigid) for a local field F of characteristic zero below and
refer to [Dil23] for Dillery’s generalization to functions fields, which uses Čech co-
homology instead of Galois cohomology and also provides a more conceptual point
of view using actual gerbes.

We thus assume for the rest of this section that F has characteristic zero. In
characteristic zero and for a commutative band, following [LR87] the aforemen-
tioned Galois gerbes may prosaically be defined as group extensions

1→ u(F )→ E → Γ→ 1

where u is a commutative group scheme over F and the action by conjugation of Γ
on u(F ) coincides with the usual one. In practice u is a projective limit of groups
(ui)i≥0 of multiplicative type and finite type over F with surjective morphisms

between them, and the extension E is built from a class in H2
cont(Γ, u(F )) where

u(F ) is endowed with the topology induced by the discrete topology on each ui(F ).
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Note that we have set-theoretic sections Γ→ E , endowing E with a natural topology.
Define H1

alg(E , G) ⊂ H1
cont(E , G(F )) as the subset of classes of 1-cocycles E → G(F )

whose restriction to u(F ) is given by an algebraic morphism from uF to GF . Define
H1

bas(E , G) ⊂ H1
alg(E , G) as the set of classes of cocycles for which the algebraic

morphism uF → GF takes values in the center Z(G)(F ). By the cocycle condition
it descends in this case to a morphism u → Z(G) defined over F . Note that such
a morphism is induced from a morphism ui → Z(G) for some index i because the
center of G has finite type over F . We will also consider, for Z a subgroup scheme
of Z(G), the subset H1(u → E , Z → G) of H1

bas(E , G) consisting of classes of
cocycles whose associated map u→ Z(G) factors through Z. Denote by Z1

alg(E , G),
Z1
bas(E , G) etc. the corresponding sets of 1-cocycles E → G(F ).

We consider three cases in parallel.

(1) If we take u = 1 we obtain the trivial extension Epur = Γ, recovering the
usual Galois cohomology group H1(F,G).

(2) Consider the pro-torus u over F with character group

X∗(u) =

{
Q if F is non-Archimedean,
1
2Z if F ≃ R.

(We exclude the case F ≃ C here because it is essentially trivial.) We
have

H2
cont(Γ, u(F )) ≃

{
Ẑ⊗Z Q if F is non-Archimedean,

Z/2Z if F ≃ R.

Let E iso be the extension of Γ by u(F ) corresponding to the class of 1.
(3) Consider the pro-finite algebraic group u over F with character group

X∗(u) the set of locally constant functions f : Γ → Q/Z satisfying∑
σ∈Γ f(σ) = 0 if F is Archimedean. We have

H2
cont(Γ, u(F )) ≃

{
Ẑ if F is non-Archimedean,

Z/2Z if F ≃ R.

(As above we exclude the case F ≃ C.) Let Erig be the extension of Γ by
u(F ) corresponding to the class −1.

Definition 6.10. A pure (resp. isocrystal, resp. rigid) inner twist of G is a
triple (G′, ψ, z) where (G′, ψ) is an inner twist of G and z ∈ Z1

bas(E?, G) lifts

Γ −→ Gad(F )

σ 7−→ ψ−1σ(ψ)

where ? = pur (resp. iso, resp. rig).

In all three cases the automorphism group of (G′, ψ, z) is isomorphic to G′(F ).
Isocrystal inner twists are more commonly known as extended pure inner twists
(since [Kal14]).

We have the following generalizations of the Tate-Nakayama isomorphisms.

Theorem 6.11. We have natural maps

κG : H1
bas(E iso, G)→ X∗(Z(Ĝ)Γ)
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extending the maps αG of Theorem 6.7, i.e. sitting in commutative diagrams

H1(F,G) Irr(π0(Z(Ĝ)
Γ))

H1
bas(E iso, G) X∗(Z(Ĝ)Γ)

αG

κG

and functorial in G similarly to Theorem 6.7 (in the case of an inclusion of a
maximal torus T ⊂ G we have to restrict to elements of H1

bas(E iso, T ) for which the
induced map u→ T factors through Z(G)).

The map κG is bijective if F is non-Archimedean.

Proof. See [Kot, Proposition 13.1 and Proposition 13.4] and [Kal18, §3.1].
□

For a connected reductive group G over F and a finite central subgroup scheme

Z denote G = G/Z. We have a dual isogeny Ĝ → Ĝ; denote by Z(Ĝ)+ be the

preimage of Z(Ĝ)Γ in Z(Ĝ).

Theorem 6.12 ([Kal16, Corollary 5.4]). We have natural maps

H1(u→ Erig, Z → G)→ X∗(Z(Ĝ)+)

extending the maps αG and functorial in Z → G as in Theorem 6.7.
These maps are bijective in the non-Archimedean case.

We also have natural maps H1(u→ E?, Z → G)→ H1(F,G/Z), and the above
generalizations of the Tate-Nakayama morphism are also compatible with αG/Z .

One can deduce that the maps H1
bas(E iso, G)→ H1(F,G/Z(G)0) and

H1(u→ Erig, Z(Gder)→ G)→ H1(F,Gad)

are both surjective. In particular all inner forms can be realized as rigid inner twists,
or as isocrystal inner twists if the center of G is connected. In general not all inner
forms can be realized as isocrystal inner twists, e.g. when G is split semisimple but
not adjoint.

There is [Kal18, §3.3] a natural map of extensions Erig → E iso, inducing
H1

bas(E iso, G) → H1
bas(Erig, G) for any group G. The relation with Theorems 6.11

and 6.12 is not so obvious, see Proposition 3.3 loc. cit.
To simplify the notation for z ∈ Z1

bas(E , G) we denote by (Gz, ψz) the associated
inner twist of G.

Conjecture 6.13. Let G∗ be a quasi-split connected reductive group over F .
Let w be a Whittaker datum for G∗. Let ϕ : WDF → LG∗ be a tempered Langlands
parameter. Let ? ∈ {pur, iso, rig}. Define Π?

ϕ as the set of isomorphism classes of

pairs (z, π) where z ∈ Z1
bas(E?, G∗) and π ∈ Πϕ(G

∗
z). Define

(1) Zpur = 1, Spurϕ = π0(Sϕ) and Zpur = π0(Z(Ĝ)
Γ),

(2) Z iso = Z(G)0, S isoϕ = Sϕ/(Sϕ ∩ Ĝder)
0 and Z iso = Z(Ĝ)Γ,

(3) Zrig is any finite subgroup scheme of Z(G), Srigϕ = π0(S
+
ϕ ) where S+

ϕ is

the preimage of Sϕ in Ĝ and Zrig = π0(Z(Ĝ)
+).
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There should exist a bijection ιw making the following diagram commutative.

Π?
ϕ Irr(S?ϕ)

H1(u→ E?, Z? → G∗) X∗(Z?)

ιw
∼

Here the left vertical map is induced by the forgetful map (z, π) 7→ z, the right
vertical map is induced by the obvious map Z? → S?ϕ and the bottom horizontal

map is given by Theorem 6.7 (resp. 6.11, resp. 6.12).

The relation with Conjecture 6.1 is that for any z ∈ Z1(u→ E?, Z? → G∗) we
should have Πϕ(G

∗
z) = {π | (z, π) ∈ Π?

ϕ}.
As for Conjectures 6.4 and 6.8, the map ιw in Conjecture 6.13 should be char-

acterized by endoscopic character relations. In order to state these relations we
need normalized transfer factors, which are the values of a function defined on the
set of matching pairs of strongly regular elements. The definition of this function
up to multiplication by a constant has been known for some time [LS87], but re-
moving “up to a constant” (this is the meaning of “normalized”) is a relatively
recent achievement for non-quasi-split groups. Their definition was suggested by
Kottwitz and established by Kaletha in the case of pure inner forms [Kal11, §2.2]
and extended to the isocrystal and rigid case by Kaletha [Kal14] [Kal16].

Let (G,ψ, z) be a pure/isocrystal/rigid inner twist of G∗ and ϕ : WDF → LG
a tempered Langlands parameter. Consider a semi-simple s ∈ Sϕ if ? ∈ {pur, iso}
or s ∈ S+

ϕ if ? = rig. As in Section 6.2 we obtain an extended endoscopic triple14

e = (H, s, Lη) and a tempered Langlands parameter ϕH : WDF → LH. Consider
matching strongly regular γ ∈ H(F ) and δ ∈ G(F ). Using Steinberg’s theorem
[Ste65, Theorem I.7] [BS68, §8.6] we see that for any strongly regular δ ∈ G(F )
there exists δ∗ ∈ G∗(F ) stably conjugate to δ, i.e. for which there exists g ∈ G∗(F )
satisfying ψ(g−1δ∗g) = δ. Clearly δ∗ is also strongly regular; denote its centralizer
in G∗ by T ∗. For w ∈ E? we have gzww(g)

−1 ∈ T ∗(F ) essentially because δ∗ and δ
are fixed by w. We denote by inv[ψ, z](δ∗, δ) ∈ H1(u → E?, Z? → T ∗) the class of
the cocycle w 7→ gzww(g)

−1. It does not depend on the choice of g. Similarly to

the quasi-split case we can associate sγ,δ∗ ∈ T̂ ∗Γ (resp. T̂ ∗Γ, resp. T̂ ∗
+

) to s and
the matching pair (γ, δ∗), and pair it with inv(δ∗, δ) using Theorem 6.7 (resp. 6.11,
resp. 6.12). In analogy with (6.3) define

∆[w, e, ψ, z](γ, δ) = ∆[w, e](γ, δ∗)⟨inv(δ∗, δ), sγ,δ∗⟩−1.

It turns out that this is well-defined, i.e. the right-hand side does not depend on
the choice of δ∗, and this defines a normalization of transfer factors for (H, s, Lη).
Again there are several natural normalizations and in half of these normalizations
the exponent −1 should be removed.

We can now formulate the generalization of Conjecture 6.8. As in Section 6.2
we abbreviate ⟨s, π⟩w,z = tr ιw(z, π)(s) and define

Θw,z
ϕ,s = e(Gz)

∑
π∈Πϕ(Gz)

⟨s, π⟩w,zΘπ

where e(Gz) is the sign defined by Kottwitz [Kot83].

14A refined one in the rigid case, i.e. s belongs to the cover Ĝ of Ĝ.
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Conjecture 6.14. In the setting of Conjecture 6.13, for any z ∈ Z1(u →
E?, Z? → G∗), any strongly regular Gz(F )-conjugacy class [δ] and any semi-simple
s ∈ Sϕ (resp. Sϕ, resp. S

+
ϕ ) we should have

Θw,z
ϕ,s (δ) =

∑
γ∈H(F )/st

∆[w, e, ψ, z](γ, δ)SΘϕH
(γ).

By linear independence of characters the conjecture implies that packets ΠϕH
(H)

for all endoscopic groups of G∗ — all quasi-split groups — should determine the
refined Langlands correspondence for all pure/isocrystal/rigid inner forms of G∗.

If we fix an inner twist G,ψ of G∗ then it may be realized as a rigid inner
twist in more than one way: one can multiply z ∈ Z1(u → Erig, Z → G∗) by any
class c in Z1(u → Erig, Z → Z) = Z1

alg(Erig, Z). By [Kal18, §6] Conjecture 6.14
for z implies the same conjecture for cz. In particular the same implication holds
for pure inner twists. Presumably the analogous implication should be valid in the
isocrystal case.

6.4. Reduction to the isocrystal case. Let G∗ be a quasi-split connected
reductive group over a p-adic field F . As explained above all inner forms of G∗ can
be reached using the rigid theory, and one might be tempted to simply forget the
pure and isocrystal versions. They are simpler however, and the relative complexity
of the rigid version is exacerbated in the global setting. Another reason to favor the
isocrystal version is that it seems more naturally related to geometric incarnations
of the correspondence, as in [FS]. It is thus useful to relate the isocrystal and
rigid versions (the relation between the pure and isocrystal versions being rather
obvious).

Let ziso ∈ Z1
bas(E iso, G∗) and let zrig ∈ Z1

bas(Erig, G∗) be its pullback via Erig →
E iso. For ? ∈ {iso, rig} the class of z? defines a character χ? of Z?. As explained in
[Kal18, §4], for a tempered Langlands parameter ϕ the irreducible representations
of S?ϕ with restriction to Z? given by χ? is the same for ? ∈ {iso, rig}, and the
endoscopic character relations are also the same. In §5 loc. cit. Kaletha constructs

an embedding G∗ → G̃∗ with normal image and abelian cokernel such that the

center of G̃∗ is connected and such that Conjectures 6.13 and 6.14 for G∗ and

G̃∗ are equivalent, under a natural assumption (see §5.2 loc. cit.). Since these

conjectures for G̃∗ can be reduced to the isocrystal case, it would be enough to
prove Conjectures 6.13 and 6.14 for all quasi-split groups in the isocrystal setting (as
well as the aforementioned assumption) to deduce them for all quasi-split groups in
the rigid setting, yielding “the” refined Langlands correspondence for all connected
reductive groups.

6.5. Relation with the crude version. By [Kal16, Lemma 5.7] Conjecture
6.13 recovers the relevance condition on parameters discussed in 6.1.2.

One can formulate a more precise version of property (4) in Conjecture 6.1. Let
f : G∗

1 → G∗
2 be a central isogeny between quasi-split connected reductive groups

over F , inducing a dual map f̂ : LG2 → LG1. Let ϕ2 : WDF → LG2 be a tempered

Langlands parameter and denote ϕ1 = f̂ ◦ ϕ2. Let ? ∈ {pur, rig, iso}. We use the

same notation as in Conjecture 6.13, choosing finite central subgroups Zrig
i in the

rigid case. Up to enlarging these groups we may assume that Zrig
1 contains the

kernel of f and that its image is Zrig
2 . Let z1 ∈ Z1(u → E?, Z? → G∗

1) and let z2
be its image in Z1(u → E?, Z? → G∗

2). Denote G1 = G∗
1,z1 and G2 = G∗

2,z2 . In all
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three cases f̂ induces a morphism S?ϕ2
→ S?ϕ1

. Let w be a Whittaker datum for G∗
1

and G∗
2.

Conjecture 6.15. For any π2 ∈ Πϕ2
(G2) we should have

π2|G1(F ) ≃
⊕

π1∈Πϕ1
(G1)

m(π1, π2)π1

where m(π1, π2) is the multiplicity of ιw(z2, π2) in the restriction of ιw(z1, π1) to
S?ϕ2

.

For simplicity we have formulated the conjecture for central isogenies, but as
in point (4) of Conjecture 6.1 this conjecture implies a more general version for
morphisms G∗

1 → G∗
2 with central kernel, normal image and abelian cokernel. See

[Sol20] and [BM25] for cases in which this conjecture is known.

6.6. A non-exhaustive list of known cases. In the case of real groups
Conjectures 6.13 and 6.14 were proved by Shelstad in many papers, see [She08a],
[She10], [She08b] and [Kal16, §5.6].

Hiraga and Saito [HS12] proved Conjectures 6.13 and 6.1415 for inner forms of
SLn over non-Archimedean local fields of characteristic zero.

Arthur [Art13] proved Conjectures 6.4 and 6.8 for quasi-split special orthog-
onal16 and symplectic groups over non-Archimedean fields of characteristic zero
using, among other tools, the stabilization of the twisted trace formula [MW16a]
[MW16b]. In this case the stable characters SΘ are characterized by twisted en-
doscopy for the group GLN with its automorphism θ : g 7→ tg−1 and the correspon-
dence for general linear groups. Note that endoscopic groups of special orthogonal
or symplectic groups are products of similar groups and general linear groups. Mok
[Mok15] followed the same strategy to prove the conjectures for quasi-split unitary
groups over non-Archimedean local fields of characteristic zero. For completeness
we recall that to our knowledge the main results of [Art13] and [Mok15] still
depend on unpublished results. These cases were then extended to certain inner
forms:

• using the stabilization of the trace formula: to non-quasi-split unitary
groups [KMSW], to non-quasi-split special orthogonal and unitary groups
[MR18], to non-quasi-split odd special orthogonal groups [Ish24], and

• using theta correspondences: to non-quasi-split unitary groups [CZ21].

Gan-Takeda [GT11] and Chan-Gan [CG15] proved Conjectures 6.13 and 6.14
for the groups GSp4 over non-Archimedean local fields of characteristic zero, using
theta correspondences and the stabilization of the trace formula.

The method of close fields of Deligne and Kazhdan allowed several authors to
extend the existence of a map LL for certain types of groups over non-Archimedean
fields from the characteristic zero case to the positive characteristic case:

• [Gan15] for GSp4 (assuming that the characteristic is not 2),
• [GV17] for split symplectic and special orthogonal groups (with a restric-
tion on the characteristic),

• [ABPS16] for inner forms of SLn.

15This was before [Kal16] so one should compare the normalizations of transfer factors.
16In the even orthogonal case Arthur proved these conjectures “up to outer automorphism”.



THE LOCAL LANGLANDS CONJECTURE 33

This method gives internal structure of L-packets but does not seem to yield endo-
scopic character relations.

In the non-Archimedean cases mentioned above the characterizations of the lo-
cal Langlands correspondence are rather indirect (using functoriality, global meth-
ods etc). Of course it is desirable to have a more direct construction, like in the
case of real groups [Lan89]. The existence of (many) supercuspidal representations
implies that such a direct construction has to be much more complicated than in
the real case. Thanks to the work of many mathematicians (Moy and Prasad,
Morris, Adler, Yu, Kim, Fintzen, Hakim and Murnaghan) we now have a “direct”
classification of supercuspidal representations, i.e. one using representation theory
rather than Langlands parameters, at least for tamely ramified connected reduc-
tive groups such that the residual characteristic p does not divide the order of the
absolute Weyl group. We refer the reader to [Kal23, §1.2] for more details and ref-
erences. Using this classification and building on work of Adler, DeBacker, Reeder
and Spice, Kaletha constructed [Kal19] [Kalc], under the above assumption on
(G, p) and for supercuspidal (i.e. essentially discrete and trivial on SL2) Langlands
parameters ϕ, L-packets Πϕ and natural parametrizations as in the rigid case of
Conjecture 6.13. Under additional assumptions (p large enough and F of charac-
teristic zero) Fintzen, Kaletha and Spice [FKS23, Theorem 4.4.4], improving on
previous work of Adler, DeBacker, Kaletha and Spice, proved stability and the en-
doscopic character relations of the rigid case of Conjecture 6.14 for s in a certain
subgroup of S+

ϕ . For the so-called regular supercuspidal parameters this subgroup

is S+
ϕ , i.e. Conjecture 6.14 holds.
There is much work to be done in this direction to handle, in order of in-

creasing generality: all supercuspidal parameters, all essentially discrete parame-
ters, all tempered parameters. Recently Aubert and Xu [AX] constructed a map
LL for the split group G2 over a finite extension of Qp for p ̸∈ {2, 3}, together
with a parametrization of L-packets (Conjecture 6.4). Their work uses Kaletha’s
parametrization for supercuspidal representations and Hecke algebra techniques for
the non-supercuspidal ones. Gan and Savin [GS23] also constructed a map LL for
the split group G2 over a finite extension of Qp using theta correspondences with
“classical” groups, and gave a parametrization of L-packets for p ̸= 3.

7. Gerbes, Tannakian formalism and isocrystals

We briefly mention the more conceptual point of view on gerbes and Tannakian
categories, and explain how it relates the above definition of H1

alg(E iso, G) with the

set B(G) of isocrystals with G-structure [Kot85] [Kot97]. The latter point of view
was motivated by the study of Shimura varieties over finite fields and historically
came first.

7.1. Gerbes and Tannakian formalism. We first recall the equivalence
between certain gerbes and Tannakian categories [SR72, Théorème 3] as corrected
by [Del90]. We consider fpqc stacks over F . Recall that a gerbe is a stack in
groupoids admitting (fpqc) local sections and such that any two objects are (fpqc)
locally isomorphic. So as to not give a false sense of generality, let us mention right
away that we will ultimately not need covers more complicated than SpecF →
SpecF . For a stack in groupoids C (we leave the functor p from C to the category
of schemes over F implicit) and a scheme S over F we denote by C(S) the fiber
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of S, i.e. the groupoid with objects those objects x of C satisfying p(x) = S and
morphisms those morphisms of C over idS . This notation is meant to suggest
thinking of C as a sheaf in groupoids (which is another possible definition of stacks
in groupoids if one is inclined to using higher categories, namely the (2, 1)-category
of groupoids). For a morphism of schemes f : U → V and an object x of C(V ) we

will denote by f∗x
β(f,x)−−−−→ x a strongly cartesian morphism in C above f . We will

leave the coherence isomorphisms of functors id∗ ≃ id and f∗g∗ ≃ (gf)∗ implicit,
using equalities to lighten the notation. A gerbe C is said to have affine band if for

any scheme S over F and any two objects x, y of C(S) the sheaf Isom(x, y) : (T
f−→

S) 7→ IsomC(T )(f
∗x, f∗y) is representable by an affine scheme over S. If this holds

for one non-empty S and one pair (x, y) then C has affine band [Del90, p. 131]. If
a gerbe has affine band we simply say that it is affine.

The prime example of a gerbe is the stack BG of right G-torsors associated
to some group scheme G over F : for any scheme S over F the fibre BG(S) is the
groupoid of GS-torsors on S. General gerbes may be thought as twisted versions
of this example, not admitting a distinguished global section (for BG, the trivial
G-torsor).

A representation R of a gerbe C is a morphism from C to the stack of quasi-
coherent sheaves (over varying schemes over F ). A representation may also be
intuitively understood as a quasi-coherent sheaf on C. For a scheme S over F and
an object x of C(S) the quasi-coherent sheaf R(x) over S is automatically flat, and
if it has finite rank n for some pair (S, x) then R(y) has the same rank for any
object y of C [Del90, §3.5]. In that case we may see R as a morphism from C to the
stack of vector bundles of rank n (equivalently, GLn-torsors). Finite-dimensional
representations of C form a category Rep(C), that can be endowed with a tensor
product (taking tensor products of vector bundles). In fact Rep(C) is a tensor
category over F (in the sense of [Del90, §2.1]). Because C has local sections the
tensor category Rep(C) is even Tannakian, i.e. it admits a fiber functor [Del90,
§1.9] over some non-empty scheme over F . For example for a group scheme G over
F the gerbe BG has associated Tannakian category Rep(BG), which is equivalent
to the category Rep(G) of finite-dimensional representations of G.

To any tensor category T over F we can associate the fibered category (over
schemes over F ) of fiber functors of T , denoted by Fib(T ). If T is Tannakian then
Fib(T ) is an affine gerbe and the natural tensor functor T → Rep(Fib(T )) is an
equivalence. Conversely for a gerbe C we also have a natural morphism of stacks
C → Fib(Rep(C)) which is an equivalence if and only if C is affine.

For an affine gerbe C and a linear algebraic group G over F we can consider
morphisms of stacks from C to the gerbe BG of G-torsors, generalizing the notion
of representation of C. Such a morphism may also be interpreted as a G-torsor on C
(see [Dil23, §2.4]). By the correspondence recalled above such a morphism amounts
to a morphism of tensor categories Rep(G) → Rep(C). The set17 of isomorphism
classes of morphisms C → BG will be denoted by H1(C, G).

We now show how to pass from an abstract gerbe (as considered in this sec-
tion) to a Galois gerbe in the sense of Section 6.3. We now assume that F has
characteristic zero and specialize to the case of an affine gerbe C whose band u is

17This might not be a set in general, but it turns out to be a set at least if the band of C is a
commutative group scheme (over F ) that is a countable projective limit of finite type commutative
group schemes: see [Dil23, Corollary 2.57 and Lemma 2.63].
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commutative, so that u is an affine commutative group scheme over F . It is isomor-
phic to a projective limit, over a directed poset I, of commutative group schemes of
finite type (ui)i∈I . We assume further that I may be chosen to be countable. We
make this assumption because it implies that any projective limit over I of non-
empty sets with surjective transition maps is itself not empty. We may identify
C with a projective limit of gerbes Ci bound by ui (equivalently, we may identify
the Tannakian category Rep(C) with a union of tensor subcategories admitting a
tensor generator). Recall from [SR72, Chapitre III Théorème 3.1.3.3] or [Del90,
Corollaire 6.20] that Ci admits a section over a finite extension of F . It follows
that C admits a section over F , say x. By our assumption on I the fiber C(SpecF )
has only one isomorphism class (i.e. every uF -torsor is trivial). This implies that

the group AutC(x) is an extension E of Γ by AutC(SpecF )(x) = u(F ). Moreover for

any x ∈ C(SpecF ) the two pullbacks p∗1x and p∗2x in C(SpecF⊗2
) are isomorphic

[Dil23, Lemma 2.63]. Choose such an isomorphism φ : p∗1x ≃ p∗2x. For σ ∈ Γ

pulling back φ via the morphism (σ ⊗ id)♯ : SpecF → SpecF
⊗2

dual to

σ ⊗ id : F ⊗F F −→ F

x⊗ y 7−→ σ(x)y

yields an isomorphism (σ♯)∗x ≃ x. We obtain φσ := ((σ⊗ id)♯)∗φ ◦ β(σ♯, x)−1 in E
above (σ♯)−1. Thus φ determines a (set-theoretic) splitting Γ→ AutC(x), σ 7→ φσ.
Taking the “coboundary” dφ = (p∗13φ)

−1 ◦ (p∗23φ) ◦ (p∗12φ) yields an automorphism

of the pullback of x via the first projection SpecF
⊗3 → SpecF , i.e. an element of

u(F
⊗3

), and one can check that it is a Čech 2-cocycle [Dil23, Fact 2.31]. Conversely
from any such 2-cocycle one can construct a gerbe bound by u [Dil23, Proposition
2.36], and two gerbes bound by u are isomorphic if and only if their associated
class in Ȟ2(F/F, u) are equal. Yet another projective limit argument shows that
we have a natural isomorphism Ȟ2(F/F, u) ≃ H2

cont(Γ, u(F )). Thus the two notions
of gerbes coincide.

We now compare the cohomology sets valued in a linear algebraic group G
over F , under the same assumptions. For a morphism of stacks R : C → BG,
R factors through Ci for some i ∈ I (equivalently, Rep(G) has a tensor generator
[DM82, Proposition 2.20 (b)] and so the tensor functor Rep(G)→ Rep(C) factors
through a sub-tensor category of Rep(C) generated by a single object). Choosing
a trivialization t : R(x) ≃ q∗T where q : SpecF → SpecF and T is the trivial
G-torsor on SpecF we obtain a morphism

c(R, t)|u : uF −→ GF

γ ∈ u(S f−→ SpecF ) 7−→ f∗t ◦R(γ) ◦ (f∗t)−1.

Some other choice of trivialization would give the same morphism conjugated by
some element of G(F ). Furthermore we have an isomorphism

G(F )⋊ Γ −→ AutBG(q
∗T )

g ⋊ σ 7−→ g ◦ β(σ♯, q∗T )−1
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using (σ♯)∗q∗T = q∗T , and so restricting R to E gives us a morphism

c(R, t) : E −→ G(F )⋊ Γ

w 7−→ tR(w)t−1β(σ♯, q∗T )⋊ σ

where σ is the image of w in Γ, i.e. w lies above the automorphism (σ♯)−1 of SpecF .
We may also see c(R, t) as a 1-cocycle E → G(F ). The restriction of c(R, t) to u(F )
is the morphism induced by c(R, t)|u, in particular it is algebraic. Note that this
also implies that if c(R, t)|u factors through the center of GF then c(R, t)|u is
defined over F . The following proposition could certainly be deduced from [Dil23,
Propositions 2.50 and 2.54], translating between Čech and Galois cocycles. For the
convenience of the reader we give a self-contained proof.

Proposition 7.1. The map (R, t) 7→ c(R, t) gives a bijection between isomor-
phism classes18 of pairs (R, t) consisting of a morphism of stacks R : C → BG and
a trivialization t of R(x), and Z1

alg(E , G(F )). It induces a bijection H1(C, G) →
H1

alg(E , G(F )) (forgetting the trivialization t).

Proof. It is easy to deduce from the definition that isomorphic pairs yield
the same cocycle, so we have a well-defined map. In order to prove that this map
is a bijection the key construction consists of associating to c ∈ Z1

alg(E , G(F ))
a morphism νc : Isom(p∗1x, p

∗
2x) → G

F
⊗2 (of fpqc sheaves over SpecF

⊗2
, both

representable by affine schemes). Choose φ ∈ Isom(p∗1x, p
∗
2x)(SpecF

⊗2
). Since

Isom(p∗1x, p
∗
2x) is a torsor under Aut(p∗1x) = u

F
⊗2 and we already have c|u : uF →

GF (a morphism of group schemes, determined by the restriction of c to u(F )) it

is enough to define νc(φ) ∈ G(F
⊗2

). There exists a quotient u ↠ v such that v is
of finite type over F and the restriction of c to u factors through v. There exists a
finite Galois subextension E/F of F/F such that

• the 2-cocycle Γ → u(F ) associated to the 1-cochain σ 7→ φσ, when pro-
jected to v(F ), takes values in v(E) and factors through Γ2 ↠ Gal(E/F )2,

• the map σ 7→ c(φσ) is inflated from a map Gal(E/F )→ G(E).

Then (c(φσ))σ∈Gal(E/F ) can be seen as an element of G(E ⊗F E), and there is a
unique νc(φ) ∈ G(E⊗F E) such that for any σ ∈ Gal(E/F ) we have (σ⊗id)νc(φ) =
c(φσ). We then define, for f : S → SpecF

⊗2
and γ ∈ u(S p1◦f−−−→ SpecF ),

νc(f
∗φ ◦ γ) := f∗νc(φ) · c|u(γ) ∈ G(S).

A simple computation (left to the reader) using the fact that c is a cocycle shows
that νc does not depend on the choice of φ. If c arises from (R, t) then νc is equal
to the morphism induced by (R, t) in the obvious way:

((σ ⊗ id)♯)∗
(
p∗2t ◦R(φ) ◦ (p∗1t)−1

)
= t ◦R(φσ ◦ β(σ♯, x)) ◦ ((σ♯)∗t)−1

= t ◦R(φσ) ◦ t−1 ◦ β(σ♯, q∗T )
= c(φσ)

= (σ ⊗ id)νc(φ).

We check the following two properties of νc, that will in particular allow us to check
that νc maps descent data to descent data.

18An isomorphism between two pairs (R1, t1) and (R2, t2) is a morphism of functors f :
R1 → R2 satisfying t2 ◦ f(x) = t1.
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(1) Seeing δ := (p∗13φ)
−1◦p∗23φ◦p∗12φ as an element of u(SpecF

⊗3 p1−→ SpecF )

we have in G(F
⊗3

)

(7.1) p∗23νc(φ) · p∗12νc(φ) = p∗13νc(φ) · c|u(δ).

(2) For any morphism of schemes f : S → SpecF
⊗2

and any section α ∈
(p∗2u)(f) = u(S

p2◦f−−−→ SpecF ) we have in G(S)

(7.2) Ad(f∗νc(φ))
(
c|u((f∗φ)−1 ◦ α ◦ f∗φ)

)
= c|u(α).

The first property is an equality in G(F
⊗3

) = lim−→E
G(E⊗3) where the colimit ranges

over finite Galois subextensions E of F/F , so it is enough to check equality after

pullbacks along morphisms of the form (στ ⊗ σ ⊗ id)♯ : SpecF → SpecF
⊗3

for
σ, τ ∈ Γ. The relation then becomes (details left to the reader)

c(φσ) · σ (c(φτ ))
?
= c(φστ ) · στ

(
c(φ−1

στ φσφτ )
)

and this equality follows from the assumption that c is a cocycle. The second
property is an equality between two morphisms of sheaves p∗2u→ G

F
⊗2 , and since

they factor through p∗2ui for some i it is again enough to check equality in the case

where f is (σ ⊗ id)♯ : SpecF → SpecF
⊗2

. In this case we simply have α ∈ u(F )
and f∗φ = φσ ◦ β(σ♯, x), so the relation becomes

(Ad c(φσ))σ(c(φ
−1
σ αφσ))

?
= c(α)

and again this follows from the cocycle relation for c.
Now given c ∈ Z1

alg(E , G(F )) we want to define a preimage (R, t) of c. We
begin by defining R on objects. Let y in C lying over an F -scheme S. There exists
an fpqc cover S′ → SF and an isomorphism ψ : a∗y ≃ b∗x where a : S′ → S and

b : S′ → SpecF . Via this isomorphism we may see the canonical descent datum for
a∗y along a as a section ϵ := π∗

2ψ ◦ (π∗
1ψ)

−1 of Isom(p∗1x, p
∗
2x) on b2 : S′ ×S S′ →

SpecF
⊗2

, where πi : S
′ ×S S′ → S′ are the projections. We now check that νc(ϵ)

is also a descent datum (in BG, for b∗q∗T along a). Writing ϵ = b∗2φ ◦ γ where
γ ∈ Aut(b∗2p

∗
1x) = u(p1 ◦ b2) we compute

π∗
23νc(ϵ) · π∗

12νc(ϵ) = π∗
23b

∗
2νc(φ) · π∗

23c|u(γ) · π∗
12b

∗
2νc(φ) · π∗

12c|u(γ)
(7.2)
= π∗

23b
∗
2νc(φ) · π∗

12b
∗
2νc(φ) · c|u

(
(π∗

12b
∗
2φ)

−1 ◦ π∗
23γ ◦ π∗

12b
∗
2φ ◦ π∗

12γ
)

= b∗3 (p
∗
23νc(φ) · p∗12νc(φ)) · c|u

(
(b∗3p

∗
12φ)

−1 ◦ π∗
23γ ◦ π∗

12ϵ
)

(7.1)
= b∗3p

∗
13νc(φ) · c|u

(
b∗3δ ◦ (b∗3p∗12φ)−1 ◦ π∗

23γ ◦ π∗
12ϵ

)
= b∗3p

∗
13νc(φ) · c|u

(
(b∗3p

∗
13φ)

−1 ◦ b∗3p∗23φ ◦ π∗
23γ ◦ π∗

12ϵ
)

= b∗3p
∗
13νc(φ) · c|u

(
(b∗3p

∗
13φ)

−1 ◦ π∗
23ϵ ◦ π∗

12ϵ
)

= π∗
13b

∗
2νc(φ) · c|u

(
(π∗

13b
∗
2φ)

−1 ◦ π∗
13ϵ

)
= π∗

13b
∗
2νc(φ) · c|u (π∗

13γ)

= π∗
13νc(ϵ).

We obtain an object R(y) of BG(S) (and an isomorphism a∗R(y) ≃ b∗q∗T ). Let
us check that it does not depend on the choice of S′ and ψ.
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• If we use ψ′ = γ ◦ ψ instead of ψ, where γ ∈ Aut(b∗x) = u(S′ b−→ SpecF )
then denoting ϵ′ = π∗

2ψ
′ ◦ (π∗

1ψ
′)−1 and ω = c|u(γ) ∈ G(S′) we have

νc(ϵ
′) = c|u(π∗

2γ) · νc(ϵ) · c|u(π∗
1γ)

−1 = π∗
2ω · νc(ϵ) · (π∗

1ω)
−1

thanks to the fact that νc is compatible with the (p∗1u, p
∗
2u)-bitorsor struc-

ture on Isom(p∗1x, p
∗
2x) via c (for p∗1u by definition of νc and for p∗2u by

(7.2)). Thus ω defines an isomorphism between the descent data νc(ϵ)
and νc(ϵ

′).

• If we compose the cover S′ b−→ S with a cover S′′ d−→ S and use d∗ψ :
(ad)∗y ≃ (bd)∗x to form ϵ′ = ρ∗2ψ

′ ◦ (ρ∗1ψ′)−1 where ρi : S
′′ ×S S′′ → S′′

denote the canonical projections, then denoting d2 = (d, d) : S′′ ×S S′′ →
S′ ×S S′ we have ϵ′ = d∗2ϵ, and we obtain an isomorphism between the
objects of BG(S) associated to the descent data νc(ϵ) and νc(ϵ

′) = d∗2νc(ϵ).

In the case where S = SpecF and y = x we may take S′ = S and ψ = id, and we
obtain a (distinguished) isomorphism between t : R(x) ≃ q∗T .

Next for a morphism d : U → S we define an isomorphism R(d∗y) ≃ d∗R(y). To
this end we use the cover U ′ := U ×S S′ a′−→ U and the isomorphism ψ′ := (d′)∗ψ :

(a′)∗d∗y ≃ (b′)∗x, where U ′ d′−→ S′ and b′ = b ◦ d′, to form ϵ′ := ρ∗2ψ
′ ◦ (ρ∗1ψ′)−1

where ρi : U
′ ×U U ′ → U ′ are the canonical projections. Then ϵ′ is the pullback

of ϵ along U ′ ×U U ′ → S′ ×S S′ and we deduce by fpqc descent an isomorphism
R(d∗y) ≃ d∗R(y).

To complete the definition of (R, t) it remains to associate an isomorphism
R(f) : R(y1) ≃ R(y2) to an isomorphism f : y1 ≃ y2 in C(S). Choose isomorphisms
ψi : a

∗yi ≃ b∗x and let g be the element of Aut(b∗x) making the following diagram
(where all arrows are isomorphisms) commutative.

a∗y1 b∗x

a∗y2 b∗x

ψ1

a∗f g

ψ2

We have

ϵ2 := π∗
2ψ2 ◦ (π∗

1ψ2)
−1 = π∗

2g ◦
(
π∗
2ψ1 ◦ (π∗

1ψ1)
−1

)
◦ (π∗

1g)
−1 = π∗

2g ◦ ϵ1 ◦ (π∗
1g)

−1

and so c|u(g) ∈ G(S′) defines an isomorphism between the descent data νc(ϵ1) and
νc(ϵ2), inducing an isomorphism R(f) : R(y1) ≃ R(y2). We leave it to the reader
to check that R(f) does not depend on the choice of ψ1 and ψ2 and that R (on
morphisms) is compatible with composition.

This concludes the construction of a preimage (R, t) of c. For uniqueness we
simply stare at each step of the construction and observe that (up to unique iso-
morphism) we don’t have any other choice to define (R, t). □

In the positive characteristic case we do not have a good analogue of the ex-
tension u(F ) → E → Γ, which is why Dillery uses the abstract notion of gerbe
in [Dil23]. One could presumably work with just twisted Čech cocycles [Dil23,
Definition 2.53], but doing so would obscure all constructions.
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7.2. Isocrystals. For F a non-Archimedean local field of characteristic zero
the gerbe corresponding to E iso was historically first introduced via its correspond-
ing Tannakian category, the category of isocrystals. We briefly recall this notion.
Let L be the completion of the maximal unramified extension of F . Denote by σ the
Frobenius automorphism of L. An isocrystal is a finite-dimensional vector space V
over L endowed with a σ-linear bijection Φ : V → V . They form a tensor category
IsocF for the obvious notion of tensor product. (Among other axioms, we indeed
have EndIsocF (1) = Lσ = F .) We have an obvious fiber functor for IsocF over L,
namely (V,Φ) 7→ V , and so IsocF is Tannakian. By the Dieudonné-Manin classifi-
cation theorem the tensor category IsocF has a nice structure: it is semi-simple and
its simple objects are parametrized by Q. We briefly recall this classification and
refer the reader to [SR72, Chapitre VI §3.3] for more details and references. Fix a
uniformizer ϖ of F . For r/s ∈ Q for coprime r, s ∈ Z with s > 0 we may construct
the corresponding simple object of IsocF as follows. Let S(r/s) be Ls and define
a σ-linear automorphism of S(r/s) as σ (on coordinates) post-composed with the
linear automorphism of Ls with matrix

0 1 0 . . . 0
0 0 1

. . .

0 0 . . . 0 1
ϖr 0 . . . 0 0

 .

This defines a simple object S(r/s) in IsocF . The isomorphism class of S(r/s) does
not depend on the choice of uniformizer ϖ, and any simple object is isomorphic to
S(q) for a uniquely determined q ∈ Q. Denote by Fs the unramified extension of
degree s of F in L. The F -algebra EndIsocF (S(r/s)) embeds in the matrix algebra
Ms(L), in fact it embeds in Ms(Fs) and it is a central simple algebra over F which
is a division ring and is split by Fs. Its invariant in H

2(F,Gm) ≃ Q/Z is simply the
image of r/s. Any isocrystal (V,Φ) decomposes canonically as

⊕
r/s∈Q Vr/s where

Vr/s = L⊗Fs V
ϖ−rΦs

is the isotypic component isomorphic to a finite sum of copies of S(r/s). The
rational numbers q for which Vq ̸= 0 are called the slopes of (V, f) and the above
decomposition is called the slope decomposition. An isocrystal (V,Φ) is said to be
pure of slope q ∈ Q if Vq′ = 0 for all q′ ̸= q. The tensor product of two isocrystals
which are pure of slopes q1 and q2 is also pure, of slope q1+q2. The tensor category
IsocF is the union of its tensor subcategories IsocF,s consisting of all isocrystals
(V, f) whose slopes q all satisfy qs ∈ Z. The Tannakian category IsocF,s admits a
fiber functor over Fs, namely

ωs : (V,Φ) 7−→
⊕
r∈Z

V ϖ
−rΦs

.

If s divides s′ then we have an obvious identification between Fs′ ⊗Fs ωs and ωs′ .
We obtain a fiber functor ω for IsocF over the maximal unramified extension of F .
Thanks to the description of EndIsocF (S(r/s)) recalled above we can compute the
band us of (the gerbe of fiber functors of) IsocF,s as the (commutative!) multiplica-
tive group Gm over F . For an Fs-algebra A and x ∈ A×, x acts on the slope r/s

part A⊗Fs
V ϖ

−rΦs

by multiplication by xr. For s dividing s′ the natural morphism



40 OLIVIER TAÏBI

us′ → us can be checked to be x 7→ xs
′/s, and so the band u of (the gerbe of fiber

functors of) IsocF is the split protorus with character group Q. The class of the
gerbe in

H2(F, u) ≃ H2
cont(Γ, u(F )) ≃ lim←−

s

H2(F, us) ≃ lim←−
s

Q/Z ≃ Ẑ⊗Z Q

(the second isomorphism because each H1(F, us) vanishes and so lim←−
1

s
H1(F, us)

also vanishes) can be computed from the above description of endomorphisms of
simple isocrystals and is simply equal to 1.

For a connected linear algebraic group G over F we can identify the set of
isomorphism classes of tensor functors Rep(G) → IsocF with B(G) := G(L)/ ∼
where g1 ∼ g2 if and only if there exists x ∈ G(L) for which g2 = xg1σ(x)

−1

(σ-conjugacy). This is because H1(L,GL) is trivial [Lan52] [Ste65, Theorem 1.9]
and so there is up to isomorphism only one fiber functor for Rep(G) over L, namely
ωG,L : (V, ρ) 7→ L ⊗F V . It follows that any tensor functor Rep(G) → IsocF is
isomorphic to one of the form (V, ρ) 7→ (L ⊗F V,ΦV,ρ). It is clear that setting
ΦV,ρ = σ ⊗ idV gives a tensor functor, and any other tensor functor differs from
this one by an automorphism of the fiber functor ωG,L, i.e. by an element of G(L).
A similar argument shows that two elements of G(L) induce isomorphic tensor
functors if and only if they are σ-conjugated. This point of view on “isocrystals
with additional structure” is historically the first one [Kot85] and was motivated
by the study of Shimura varieties and Rapoport-Zink spaces.

We now briefly discuss the set B(G) ≃ H1
alg(E iso, G) in the case where G is a

connected reductive group over F . We refer the reader to [Kot97] for more details.
The basic subset B(G)bas ≃ H1

bas(E iso, G) is completely described by the map κG
of Theorem 6.11. Kottwitz constructed [Kot90, Lemma 6.1] maps

κG : B(G)→ X∗(Z(Ĝ)Γ)

which as the notation suggests extend the maps of Theorem 6.11. (In fact the
definition in the general and basic case are not different: Kottwitz first defined
isomorphisms κT for all tori T and then extended the map to arbitrary connected
reductive groups by reducing to the case where the derived subgroup is simply
connected using z-extensions.) We also have obvious maps of pointed sets

νG : B(G)→
(
Hom(uF , GF )/G(F )− conj

)Γ
,

called the Newton map. By definition B(G)bas is the preimage under νG of the
subset Hom(u, Z(G)) of the target. The pair (νG, κG) is injective on B(G) [Kot97,
§4.13]. For a more precise description of non-basic classes see [Kot97, Theorem
5.4].
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