Some comments: Sp, SOo and SOe represents the representations in L_24 (respectively Symplectic, Orthogonal of odd dimension, Orthogonal of even dimension). They are vectors of [p,m] where p is the relevant vector of nonnegative weights and m the number of rep. with this set of weights (always 1, except for p=[23/2]). wmot(pi) is the motivic weight of pi, given as [p,m] altos(pi) is 1 if pi is symplectic, 0 if pi is orthogonal Pialg is again the set of all pi, but of the form [p, all weights, dimension, motivic weight, 1 or 0, name, m] dmax(p,w) is the maximal d such that, for a pi of weights p, pi[d] has all its weights integer and <= w/2 (w here is an even integer) makePidisc(w) is the vector of all pi[d] with d <= max(weights(pi),w) and d = max(weights(pi),w) mod (2) tot=makePidisc(24) res is our list of 199 parameters final is the result ----------results--------- Oo[11] 1 [12] [1]+S[17/2][2] 2 [10, 10] [1]+S[21/2][2] 2 [12, 12] S[11/2][2]+Oo[11] 3 [12, 8, 8] S[15/2][2]+Oo[11] 3 [12, 10, 10] S[19/2][2]+Oo[11] 3 [12, 12, 12] Oo[12, 8, 4] 3 [13, 10, 7] [1]+S[11/2][4] 4 [8, 8, 8, 8] [1]+S[15/2][4] 4 [10, 10, 10, 10] [1]+S[19/2, 7/2][2] 4 [11, 11, 7, 7] [1]+S[21/2, 5/2][2] 4 [12, 12, 6, 6] [1]+S[21/2, 9/2][2] 4 [12, 12, 8, 8] [1]+S[21/2, 13/2][2] 4 [12, 12, 10, 10] [1]+S[19/2][4] 4 [12, 12, 12, 12] [1]+S[17/2][2]+S[21/2][2] 4 [12, 12, 12, 12] [1]+Oe[12, 9, 5, 2] 4 [13, 11, 8, 6] [1]+Oe[12, 10, 7, 1] 4 [13, 12, 10, 5] [1]+S[23/2, 7/2][2] 4 [13, 13, 7, 7] S[11/2][2]+S[15/2][2]+Oo[11] 5 [12, 10, 10, 10, 10] S[19/2, 7/2][2]+Oo[11] 5 [12, 12, 12, 8, 8] S[11/2][2]+S[19/2][2]+Oo[11] 5 [12, 12, 12, 10, 10] S[17/2][4]+Oo[11] 5 [12, 12, 12, 12, 12] S[15/2][2]+S[19/2][2]+Oo[11] 5 [12, 12, 12, 12, 12] S[19/2][2]+Oo[12, 8, 4] 5 [13, 12, 12, 12, 9] [1]+S[11/2][4]+S[17/2][2] 6 [10, 10, 10, 10, 10, 10] [1]+S[11/2][4]+S[21/2][2] 6 [12, 12, 10, 10, 10, 10] [1]+S[17/2][2]+S[21/2, 5/2][2] 6 [12, 12, 12, 12, 8, 8] [1]+S[17/2][2]+S[21/2, 9/2][2] 6 [12, 12, 12, 12, 10, 10] [1]+S[17/2][6] 6 [12, 12, 12, 12, 12, 12] [1]+S[15/2][4]+S[21/2][2] 6 [12, 12, 12, 12, 12, 12] [1]+S[17/2][2]+S[21/2, 13/2][2] 6 [12, 12, 12, 12, 12, 12] [1]+S[17/2][2]+Oe[12, 10, 7, 1] 6 [13, 12, 12, 12, 12, 7] [1]+S[17/2][2]+S[23/2, 7/2][2] 6 [13, 13, 12, 12, 9, 9] S[11/2][6]+Oo[11] 7 [12, 10, 10, 10, 10, 10, 10] S[11/2][2]+S[19/2, 7/2][2]+Oo[11] 7 [12, 12, 12, 10, 10, 10, 10] S[15/2][2]+S[19/2, 7/2][2]+Oo[11] 7 [12, 12, 12, 12, 12, 10, 10] S[15/2][6]+Oo[11] 7 [12, 12, 12, 12, 12, 12, 12] S[11/2][2]+S[17/2][4]+Oo[11] 7 [12, 12, 12, 12, 12, 12, 12] S[11/2][2]+S[15/2][2]+S[19/2][2]+Oo[11] 7 [12, 12, 12, 12, 12, 12, 12] S[21/2, 5/2][2]+Oo[12, 8, 4] 7 [13, 13, 13, 12, 9, 9, 9] [1]+S[11/2][8] 8 [10, 10, 10, 10, 10, 10, 10, 10] [1]+S[15/2][8] 8 [12, 12, 12, 12, 12, 12, 12, 12] [1]+S[11/2][4]+S[19/2][4] 8 [12, 12, 12, 12, 12, 12, 12, 12] [1]+S[19/2, 7/2][4] 8 [12, 12, 12, 12, 10, 10, 10, 10] [1]+S[11/2][4]+S[17/2][2]+S[21/2][2] 8 [12, 12, 12, 12, 12, 12, 12, 12] [1]+S[11/2][4]+S[21/2, 5/2][2] 8 [12, 12, 10, 10, 10, 10, 10, 10] [1]+S[15/2][4]+S[21/2, 5/2][2] 8 [12, 12, 12, 12, 12, 12, 10, 10] [1]+S[15/2][4]+S[21/2, 9/2][2] 8 [12, 12, 12, 12, 12, 12, 12, 12] [1]+S[15/2][4]+S[23/2, 7/2][2] 8 [13, 13, 12, 12, 12, 12, 11, 11] [1]+S[21/2, 5/2][4] 8 [13, 13, 13, 13, 9, 9, 9, 9] [1]+S[21/2, 9/2][4] 8 [13, 13, 13, 13, 11, 11, 11, 11] [1]+S[21/2, 13/2][4] 8 [13, 13, 13, 13, 13, 13, 13, 13] S[11/2][6]+S[19/2][2]+Oo[11] 9 [12, 12, 12, 12, 12, 12, 12, 12, 12] S[11/2][2]+S[15/2][2]+S[19/2, 7/2][2]+Oo[11] 9 [12, 12, 12, 12, 12, 12, 12, 12, 12] [1]+S[11/2][8]+S[21/2][2] 10 [12, 12, 12, 12, 12, 12, 12, 12, 12, 12] [1]+S[11/2][4]+S[17/2][2]+S[21/2, 5/2][2] 10 [12, 12, 12, 12, 12, 12, 12, 12, 12, 12] S[11/2][10]+Oo[11] 11 [12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12] [1]+S[19/2, 7/2][6] 12 [13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13] ---- tex tables \begin{table}[htp] \renewcommand{\arraystretch}{1.5} {\scriptsize \hspace{-.6cm} \begin{tabular}{c|c|c} $\psi$ & $g$ & $\underline{k}$ \cr \hline ${\rm S}(11/2)[2]\oplus {\rm O}_o(11)$ & $3$ & $(12, 8, 8)$ \cr ${\rm S}(15/2)[2]\oplus {\rm O}_o(11)$ & $3$ & $(12, 10, 10)$ \cr ${\rm O}_o(12, 8, 4)$ & $3$ & $(13, 10, 7)$ \cr \hline $[1]\oplus {\rm S}(19/2, 7/2)[2]$ & $4$ & $(11, 11, 7, 7)$ \cr $[1]\oplus {\rm S}(21/2, 5/2)[2]$ & $4$ & $(12, 12, 6, 6)$ \cr $[1]\oplus {\rm S}(21/2, 9/2)[2]$ & $4$ & $(12, 12, 8, 8)$ \cr $[1]\oplus {\rm S}(21/2, 13/2)[2]$ & $4$ & $(12, 12, 10, 10)$ \cr $[1]\oplus {\rm O}_e(12, 9, 5, 2)$ & $4$ & $(13, 11, 8, 6)$ \cr $[1]\oplus {\rm O}_e(12, 10, 7, 1)$ & $4$ & $(13, 12, 10, 5)$ \cr $[1]\oplus {\rm S}(23/2, 7/2)[2]$ & $4$ & $(13, 13, 7, 7)$ \cr \hline ${\rm S}(11/2)[2]\oplus {\rm S}(15/2)[2]\oplus {\rm O}_o(11)$ & $5$ & $(12, 10, 10, 10, 10)$ \cr ${\rm S}(19/2, 7/2)[2]\oplus {\rm O}_o(11)$ & $5$ & $(12, 12, 12, 8, 8)$ \cr ${\rm S}(11/2)[2]\oplus {\rm S}(19/2)[2]\oplus {\rm O}_o(11)$ & $5$ & $(12, 12, 12, 10, 10)$ \cr ${\rm S}(19/2)[2]\oplus {\rm O}_o(12, 8, 4)$ & $5$ & $(13, 12, 12, 12, 9)$ \cr \hline $[1]\oplus {\rm S}(11/2)[4]\oplus {\rm S}(21/2)[2]$ & $6$ & $(12, 12, 10, 10, 10, 10)$ \cr $[1]\oplus {\rm S}(17/2)[2]\oplus {\rm S}(21/2, 5/2)[2]$ & $6$ & $(12, 12, 12, 12, 8, 8)$ \cr $[1]\oplus {\rm S}(17/2)[2]\oplus {\rm S}(21/2, 9/2)[2]$ & $6$ & $(12, 12, 12, 12, 10, 10)$ \cr $[1]\oplus {\rm S}(17/2)[2]\oplus {\rm O}_e(12, 10, 7, 1)$ & $6$ & $(13, 12, 12, 12, 12, 7)$ \cr $[1]\oplus {\rm S}(17/2)[2]\oplus {\rm S}(23/2, 7/2)[2]$ & $6$ & $(13, 13, 12, 12, 9, 9)$ \cr \hline ${\rm S}(11/2)[6]\oplus {\rm O}_o(11)$ & $7$ & $(12, 10, 10, 10, 10, 10, 10)$ \cr ${\rm S}(11/2)[2]\oplus {\rm S}(19/2, 7/2)[2]\oplus {\rm O}_o(11)$ & $7$ & $(12, 12, 12, 10, 10, 10, 10)$ \cr ${\rm S}(15/2)[2]\oplus {\rm S}(19/2, 7/2)[2]\oplus {\rm O}_o(11)$ & $7$ & $(12, 12, 12, 12, 12, 10, 10)$ \cr ${\rm S}(21/2, 5/2)[2]\oplus {\rm O}_o(12, 8, 4)$ & $7$ & $(13, 13, 13, 12, 9, 9, 9)$ \cr \hline $[1]\oplus {\rm S}(19/2, 7/2)[4]$ & $8$ & $(12, 12, 12, 12, 10, 10, 10, 10)$ \cr $[1]\oplus {\rm S}(11/2)[4]\oplus {\rm S}(21/2, 5/2)[2]$ & $8$ & $(12, 12, 10, 10, 10, 10, 10, 10)$ \cr $[1]\oplus {\rm S}(15/2)[4]\oplus {\rm S}(21/2, 5/2)[2]$ & $8$ & $(12, 12, 12, 12, 12, 12, 10, 10)$ \cr $[1]\oplus {\rm S}(15/2)[4]\oplus {\rm S}(23/2, 7/2)[2]$ & $8$ & $(13, 13, 12, 12, 12, 12, 11, 11)$ \cr $[1]\oplus {\rm S}(21/2, 5/2)[4]$ & $8$ & $(13, 13, 13, 13, 9, 9, 9, 9)$ \cr $[1]\oplus {\rm S}(21/2, 9/2)[4]$ & $8$ & $(13, 13, 13, 13, 11, 11, 11, 11)$ \cr \end{tabular} \ps }\ps {\small \caption{Standard parameters $\psi$ of non scalar-valued cuspidal Siegel modular eigenforms of weight $\underline{k}=(k_1,\dots,k_g)$ and genus $g$ with $k_1 \leq 13$ and $k_g>g$.} } \label{tableleq13nonscal} \end{table} \begin{table}[htp] \renewcommand{\arraystretch}{1.5} {\scriptsize \hspace{-.6cm} \begin{tabular}{c|c|c} $\psi$ & $g$ & $k$ \cr \hline ${\rm O}_o(11)$ & $1$ & $12$ \cr \hline $[1]\oplus {\rm S}(17/2)[2]$ & $2$ & $10$ \cr $[1]\oplus {\rm S}(21/2)[2]$ & $2$ & $12$ \cr \hline ${\rm S}(19/2)[2]\oplus {\rm O}_o(11)$ & $3$ & $12$ \cr \hline $[1]\oplus {\rm S}(11/2)[4]$ & $4$ & $8$ \cr $[1]\oplus {\rm S}(15/2)[4]$ & $4$ & $10$ \cr $[1]\oplus {\rm S}(19/2)[4]$ & $4$ & $12$ \cr $[1]\oplus {\rm S}(17/2)[2]\oplus {\rm S}(21/2)[2]$ & $4$ & $12$ \cr \hline ${\rm S}(17/2)[4]\oplus {\rm O}_o(11)$ & $5$ & $12$ \cr ${\rm S}(15/2)[2]\oplus {\rm S}(19/2)[2]\oplus {\rm O}_o(11)$ & $5$ & $12$ \cr \hline $[1]\oplus {\rm S}(11/2)[4]\oplus {\rm S}(17/2)[2]$ & $6$ & $10$ \cr $[1]\oplus {\rm S}(17/2)[6]$ & $6$ & $12$ \cr $[1]\oplus {\rm S}(15/2)[4]\oplus {\rm S}(21/2)[2]$ & $6$ & $12$ \cr $[1]\oplus {\rm S}(17/2)[2]\oplus {\rm S}(21/2, 13/2)[2]$ & $6$ & $12$ \cr \hline ${\rm S}(15/2)[6]\oplus {\rm O}_o(11)$ & $7$ & $12$ \cr ${\rm S}(11/2)[2]\oplus {\rm S}(17/2)[4]\oplus {\rm O}_o(11)$ & $7$ & $12$ \cr ${\rm S}(11/2)[2]\oplus {\rm S}(15/2)[2]\oplus {\rm S}(19/2)[2]\oplus {\rm O}_o(11)$ & $7$ & $12$ \cr \hline $[1]\oplus {\rm S}(11/2)[8]$ & $8$ & $10$ \cr $[1]\oplus {\rm S}(15/2)[8]$ & $8$ & $12$ \cr $[1]\oplus {\rm S}(11/2)[4]\oplus {\rm S}(19/2)[4]$ & $8$ & $12$ \cr $[1]\oplus {\rm S}(11/2)[4]\oplus {\rm S}(17/2)[2]\oplus {\rm S}(21/2)[2]$ & $8$ & $12$ \cr $[1]\oplus {\rm S}(15/2)[4]\oplus {\rm S}(21/2, 9/2)[2]$ & $8$ & $12$ \cr $[1]\oplus {\rm S}(21/2, 13/2)[4]$ & $8$ & $13$ \cr \hline ${\rm S}(11/2)[6]\oplus {\rm S}(19/2)[2]\oplus {\rm O}_o(11)$ & $9$ & $12$ \cr ${\rm S}(11/2)[2]\oplus {\rm S}(15/2)[2]\oplus {\rm S}(19/2, 7/2)[2]\oplus {\rm O}_o(11)$ & $9$ & $12$ \cr \hline $[1]\oplus {\rm S}(11/2)[8]\oplus {\rm S}(21/2)[2]$ & $10$ & $12$ \cr $[1]\oplus {\rm S}(11/2)[4]\oplus {\rm S}(17/2)[2]\oplus {\rm S}(21/2, 5/2)[2]$ & $10$ & $12$ \cr \hline ${\rm S}(11/2)[10]\oplus {\rm O}_o(11)$ & $11$ & $12$ \cr \hline ${\rm S}(11/2)[12]$ & $12$ & $12$\cr $[1]\oplus {\rm S}(19/2, 7/2)[6]$ & $12$ & $13$ \cr \hline $[1]\oplus [7] \oplus {\rm S}(17/2)[8] \oplus [9]$ & $16$ & $13$ \cr \hline $[25] \oplus {\rm S}(11/2)[12]$ & $24$ & $13$\cr \end{tabular} \ps } \ps\ps {\small \caption{Standard parameters $\psi$ of scalar-valued cuspidal Siegel modular eigenforms of weight $k\leq 13$ and arbitrary genus $g$.} } \label{tableleq13scal} \end{table} ------