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1. Introduction

In these notes, all representations of groups are over the field C of complex
numbers. Let p be a prime number, D a quaternion algebra over Qp. The topological
group D× is compact (even profinite) modulo its center Q×

p .

Theorem 1.1 (Jacquet-Langlands). For any continuous irreducible finite-dimensional
representation σ of D×, there is a unique essentially square-integrable irreducible
smooth representation π of GL2(Qp) such that for any g ∈ D× ∖ Q×

p we have
trσ(g) = −Θπ(g

′), where g′ ∈ GL2(Qp) has the same trace and determinant as
g and Θπ is the Harish-Chandra character of π. Moreover any π corresponds to a
unique σ.

We will explain later what “essentially square-integrable” means. Let us simply
mention that all these representations of GL2(Qp) have infinite dimension. In fact we
will classify representations of GL2(Qp) as follows: principal series (quite explicit),
“special” (also quite explicit, and essentially square-integrable), and supercuspidal
(also essentially square-integrable). We will define the Harish-Chandra character Θπ

even later, it plays the role of the trace function of π, but since we are considering
infinite-dimensional representations, defining the trace is not obvious.

We will see that supercuspidal representations are the most well-behaved repre-
sentations of GL2(Qp), i.e. that they behave much like representations of a compact
group. Among irreducible smooth representations of GL2(Q), they are however the
least explicit and most mysterious ones. One can see the Jacquet-Langlands corre-
spondence as a classification of all supercuspidal representations π of GL2(Qp) by
seemingly simpler finite-dimensional representations of D×.

However, this is not the true motivation for this theorem. The theorem should be
seen as a consequence of the Langlands correspondence for GL2(Qp) and D

×. The
following theorem is the most difficult part of this correspondence (we will prove
the easier part concerning reducible Galois representations, in the first part of this
course).

Theorem 1.2 (Jacquet-Langlands, Gelfand-Graev, Tunnell, Kutzko). There is a
“natural” bijection between isomorphism classes of irreducible representations of
D× of dimension > 1 (resp. irreducible supercuspidal representations of GL2(Qp))
and having central character Q×

p → C× of finite order, and isomorphism classes
of continuous irreducible 2-dimensional representations of the absolute Galois group
Gal(Qp/Qp).

Finite-dimensional continuous representations of Gal(Qp/Qp) over C factor through
Gal(F/Qp) for some finite Galois extension F/Q, so the Galois representations occur-
ring above are also relatively concrete objects. In fact for p > 2 it is not too difficult
to explicitly classify all such Galois representations (essentially because the restric-
tion to the wild ramification subgroup, which is a p-group, cannot be irreducible).
Characterizing the correspondences (i.e. giving “natural” a precise meaning) is not
straightforward: one has to introduce invariants on both sides (L-functions and ϵ
factors), so the Langlands correspondence is not as obviously natural as the Jacquet-
Langlands correspondence.

There is an analogous Langlands correspondence for representations of D×. Al-
though it is probably possible to deduce the Jacquet-Langlands correspondence from
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the Langlands correspondences for both GL2(Qp) and D
× after proving the latter,

this is not the path that we will follow. The Jacquet-Langlands correspondence gen-
eralizes to smooth irreducible representations of GLn(F ) (F a local non-Archimedean
field) and n-dimensional “Galois representations”. One of the two known strategies
to prove the local Langlands correspondence for GLn(F ) for F/Q ([HT01], later
simplified in [Sch13]; see [Hen00] for a different proof) is global (“Ihara-Langlands-
Kottwitz method”, which is also the main method to find ℓ-adic representations
of the absolute Galois group of a number field attached to an automorphic rep-
resentation in the étale cohomology of a Shimura variety) and uses the Jacquet-
Langlands correspondence as an input. An essential global ingredient that occurs
in the proof of the Jacquet-Langlands correspondence ([JL70], [DKV84]) and in
the Ihara-Langlands-Kottwitz method is the Arthur-Selberg trace formula. Follow-
ing [JL70] and [DKV84], the goal of this course is to prove the Jacquet-Langlands
correspondence for GL2(Qp) using the simple trace formula.

More generally, one can (try to) formulate local and global Langlands corre-
spondences for arbitrary connected reductive groups G over local or global fields
(conjectural in general). On the Galois side, these involve “Galois representations”
taking values in the Langlands dual group LG (for split G, this is a complex re-
ductive group whose Dynkin diagram is dual to that of G, see [Bor79] for a proper
definition).

Assuming these conjectures, whenever we have two connected reductive groups
G and H and a morphism LH → LG, we have a relation between representations
(automorphic in the global setting) of H and G. In many cases, this relation (“Lang-
lands functoriality”, although by no means functorial in the categorical sense!) can
be formulated without referring to Galois representations, and in some cases it can
even be proved. Some cases of Langlands functoriality can be proved using (some
version of) the Arthur-Selberg trace formula. Such results are needed to construct
Galois representations corresponding to automorphic representations.

Rough plan of the course:

(1) Basic representation theory of GL2(Qp) and “classification” of representa-
tions,

(2) A bit of harmonic analysis for GL2(Qp),

(3) Trace formulas,

(4) Application to the Jacquet-Langlands correspondence.

2. Smooth representations of GL2(Qp)

We begin the study of smooth representations of the locally profinite topo-
logical group G = GL2(Qp). Many tools work just as well for general reductive
groups, adding the (non-trivial) combinatorics of Weyl groups etc. References: [Cas],
[Ren10].

2.1. Decompositions. Let K0 = GL2(Zp). Note that this is exactly the set of
g ∈ G such that g(Z2

p) = Z2
p. Recall that a lattice in Q2

p is a finitely generated sub-

Zp-module of rank 2 (a finite sub-Zp-module of Q2
p is torsion-free so if it is finitely
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generated then it is free of finite rank). It is very easy to check that a family of
vectors in Q2

p is linearly independent over Qp if and only if it is linearly independent

over Zp. Because G acts transitively on the set of bases in Q2
p, it also acts transitively

on the set of lattices in Q2
p. We obtain an identification of G/K0 with the set of

lattices in Q2
p. Note that the quotient topology on G/K0 is the discrete topology

because K0 is open in G.

Lemma 2.1. Let K be a compact subgroup of G. There exists g ∈ G such that
K ⊂ gK0g

−1.

Proof. The group G acts transitively on the set of lattices in Q2
p (defined as sub-

Zp-modules of finite type and maximal rank, that is rank 2). The statement is
equivalent to the existence of a lattice L ⊂ Q2

p such that for any k ∈ K, k(L) = L.
Because K is compact, the image of det : K → Q×

p is compact, and so for any
k ∈ K such that k(L) ⊂ L we actually have k(L) = L. So we have to show that
there is a lattice L stable under K. Let L0 be any lattice, for example Z2

p. There is

an open subgroup K ′ ⊂ K such that L0 is stable under L0 (if L0 = Z2
p we can take

K ′ = K ∩K0). Let L =
∑

g∈K/K′ g(L0). It works! □

Denote by N be the subgroup{(
1 x
0 1

)∣∣∣∣x ∈ Qp

}
of GL2(Qp). Denote by T the subgroup of diagonal matrices in G, and B = TN ≃
T ⋉N the Borel subgroup of upper triangular matrices.

Lemma 2.2. We have the Iwasawa decomposition G = BK0.

Proof. We use the same interpretation of G/K0 as in the previous lemma, namely as
the set of lattices in Z2

p: the coset gK0 is identified to the lattice in Q2
p admitting the

columns of g as a basis. The lemma is equivalent to the claim that for any lattice
L ⊂ Q2

p, there is a basis (e1, e2) of L such that the second coordinate of e1 is zero.

Denote by (f1, f2) the standard basis of Q2
p. Pick a basis e1 of L∩Qpf1. Pick a basis

e2 of the lattice L/(L ∩ Qpf1) in Q2
p/Qpf1 ≃ Qpf2. Let e2 ∈ L be any preimage of

e2. It works! □

Note that the multiplication map B ×K0 → G is not injective, since B ∩K0 is
an open (in particular non-trivial) subgroup of B.

Theorem 2.3. We have the Cartan decomposition

G =
⊔
a,b∈Z
a≥b

K0diag(p
a, pb)K0.

Proof. The group G acts transitively on G/K0, so we have an identification

G\(G/K0 ×G/K0) ≃ K0\G/K0,

and so we interpret K0\G/K0 as the set of orbits of G acting on the set of pairs of
lattices in Q2

p. With this identification in mind the theorem is easily deduced from
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the following statement: for any lattices L1 = g1(Z2
p) and L2 = g2(Z2

p) in Q2
p, there is

a unique pair of integers a ≥ b such that there exists a basis (e, f) of L1 (the columns
of g1k1 for k1 ∈ K0) such that (pae, pbf) is a basis of L2 (the columns of g2k2 for
some k2 ∈ K0). The “relative position” of L1 and L2 is given by the double coset
K0g

−1
1 g2K0. This statement on lattices is a particular case of the structure theorem

of finitely generated modules over principal ideal domains (applied to L2/p
N+1L1

where N ∈ Z is large enough so that pNL1 ⊂ L2). □

Let w =

(
0 −1
1 0

)
∈ G.

Lemma 2.4. We have the Bruhat decomposition G = B ⊔BwN , where the natural
map B ×N → BwN is an isomorphism of algebraic varieties.

Proof. We have(
a b
0 c

)(
0 −1
1 0

)(
1 d
0 1

)
=

(
b −a
c 0

)(
1 d
0 1

)
=

(
b bd− a
c cd

)
and solving the equation is easy. □

It will sometimes be more convenient to translate the Bruhat decomposition on
the right by w−1 so that the “big open cell”, which is the complement of a single

coset in B\G, contains 1 ∈ G. Let N be the subgroup

(
1 0
Qp 1

)
of G, so that

N = wNw−1. Then we have G = BN ⊔Bw−1.
These three decompositions generalize to general linear groups of arbitrary di-

mension (only the Bruhat decomposition requires a more clever proof), and even to
connected reductive groups over Qp, but the choice of K0 is delicate if the group
is not reductive over Zp and in general there is more than one conjugacy class of
maximal compact subgroups.

2.2. Smooth representations of G.

Definition 2.5. A smooth representation of G is a complex vector space V together
with a group representation π : G→ GL(V ) such that for any v ∈ V , the stabilizer of
v in G is an open subgroup. Denote Rep(G) the category of smooth representations
of G.

A smooth representation (V, π) is admissible if for any open subgroup K of G,
the space V K of K-invariants has finite dimension.

The contragredient (Ṽ , π̃) of a smooth representation (V, π) of G is the space of
linear forms ṽ : V → C invariant under some open subgroup of G (which typically
depends on ṽ), i.e. the space of smooth vectors in the dual representation in the

algebraic sense. We denote the pairing between ṽ ∈ Ṽ and v ∈ V by ⟨v, ṽ⟩.
The same definitions can be made for any closed subgroup H of G, and we

similarly denote by Rep(H) the category of smooth representations of H.

By definition, we have ⟨π(g)v, π̃(g)ṽ⟩ = ⟨v, ṽ⟩ for any v ∈ V , ṽ ∈ Ṽ and g ∈ G.
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A typical smooth representation of G has infinite dimension. As the example

g 7→
(
1 log | det(g)|
0 1

)
shows, even finite-dimensional representations of G may fail

to be semisimple. Later we shall see less obvious examples.
We do however have Schur’s lemma for irreducible smooth representations of G.

Lemma 2.6. Let (V, π) be an irreducible smooth representation of G, and let ϕ ∈
HomG(V, V ) be an endomorphism. Then ϕ is multiplication by a scalar.

Proof. We claim first that the complex vector space HomG(V, V ) has countable
dimension. Let v ∈ V ∖ {0}, and let K be a compact open subgroup of G such
that v ∈ V K . Then V =

∑
g∈G/K Cπ(g)v. The Cartan decomposition implies that

G/K is countable, so that V has countable dimension, and any G-equivariant map
V → V is determined by the image of V so EndG(V ) also has countable dimension.

Now we claim that there exists λ ∈ C such that φ−λIdV ̸∈ GL(V ). Otherwise we
would obtain a morphism of algebras C(X) → EndG(V ), which would be injective
since the source is a field, and since C(X) does not have countable dimension over C
(e.g. the vectors ((X−λ)−1)λ∈C are linearly independent) this gives a contradiction.

So for some λ ∈ C we have ker(ϕ−λ) ̸= 0 or im(ϕ−λ) ̸= V , and ker(ϕ−λ) and
im(ϕ − λ) are subrepresentations of G. By irreducibility of V , in the first case we
have ker(ϕ− λ) = V and in the second case we have im(ϕ− λ) = 0. □

There is an easier proof under the assumption that V is admissible. Later we
will show that in fact any irreducible smooth representation of G is admissible.

Let Z = {diag(x, x)|x ∈ Q×
p } be the center of G.

Corollary 2.7. If (V, π) is an irreducible smooth representation of G then there
exists a unique smooth character ωπ : Z → C× such that for any z ∈ Z we have
π(z) = ωπ(z)IdV .

Let (V, π) be a smooth representation ofG. LetK be any compact open subgroup
of G. Recall that any compact open subgroup of G has an open subgroup which is
contained and distinguished in K. For τ an irreducible representation of K factoring
through K/K ′ for some distinguished open subgroup K ′ of K (note that K/K ′ is a
finite group and so τ has finite dimension), denote Vτ = HomK(τ, V )⊗Cτ . Using just
representation theory of finite groups we see that we have a canonical isomorphism⊕

τ Vτ ≃ V of representations of K, where the sum is over isomorphism classes
of irreducible representations τ of K factoring through K/K ′ as above. (Exercise:
any continuous irreducible finite-dimensional representation of a profinite topological
group factors through a quotient by a distinguished open subgroup. We will not need
this fact, in fact we will not need the Peter-Weyl theorem or any result concerning
continuous representations of profinite groups.)

For an open distinguished subgroup K ′ of K, the finite group K/K ′ has only
finitely many isomorphism classes of irreducible representations. We deduce that

as a representation of K, Ṽ is canonically identified with
⊕

τ HomC(Vτ ,C). The
following lemma then follows easily (exercise).

Lemma 2.8. Let (V, π) be a smooth representation of G. Let K be a compact open
subgroup of G. The following are equivalent
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(1) For any irreducible representation τ of K factoring through K/K ′ for some
distinguished open subgroup of K we have dimC HomK(τ, V ) < ∞ (equiva-
lently, Vτ has finite dimension).

(2) V is admissible,

(3) Ṽ is admissible,

(4) the natural (always injective) map V → ˜̃
V is surjective.

We fix (until further notice) a left Haar measure on G. Recall that it is unique
up to multiplication by R>0. Recall the Riesz-Markov-Kakutani representation the-
orem: for a locally compact Hausdorff topological space X, Radon measures cor-
respond bijectively to positive linear functionals on Cc(X), the space of continuous
compactly supported functions on X. With this formulation of measure theory, in
the case of a locally profinite topological space such as G, one can construct the
Haar measure concretely as follows (see [Bou63, Chapitre 7, §1.6] for details in a
more general setting):

• Choose vol(K0) ∈ R>0 arbitrarily 1

• For any open subgroup K ⊂ K0, define vol(K) = |K0/K|−1 vol(K0).

• For any f ∈ C∞
c (G), the space of smooth (this means locally constant)

compactly supported functions on G, choose K as above such that f is right
K-invariant, and let

∫
G
f = vol(K)

∑
gK∈G/K f(g). Exercise: this does not

depend on the choice of K!

• Extend
∫
G
to Cc(G) by continuity (approximate any continuous compactly

supported function by smooth ones).

This concrete definition can also be used to check that G is unimodular, i.e. this left
Haar measure is also right-invariant 2. Later we will give an explicit “differential”
definition of the Haar measure on G, and this will show that G is unimodular.

One can define Haar measures on the closed (also locally profinite) subgroups
B, T , N in the same way. The groups T and N are commutative and so also
unimodular, but B is not unimodular.

Exercise 2.9. Let dt and dn be Haar measures on T and N .

(1) There exists a unique left Haar measure db on B such that for any f ∈ Cc(B)
we have ∫

B

f(b)db =

∫
T×N

f(tn)dtdn.

1choosing it inQ>0 allows one to extend many results to fields of coefficients having characteristic
zero but with no naturally embedding in C.

2Exercise: prove it. Hint: using the Cartan decomposition we are reduced to comput-
ing the modulus character at diag(pa, pb), which can be done by considering the subgroup

Ki =

(
1 + piZp piZp
piZp 1 + piZp

)
of K0 for large enough i.
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(2) For t = diag(t1, t2) ∈ T and f ∈ Cc(N) we have

(2.1)

∫
N

f(t−1nt)dn = |t1/t2|
∫
N

f(n)dn

where |x| = p−vp(x).

(3) For any f ∈ Cc(B) and a ∈ B we have∫
B

f(ba)db = δB(a)

∫
B

f(b)db

where δB

(
x u
0 y

)
= |x/y|. This implies that δB(b)db is a right Haar measure

on B.

By default Haar measures will be left Haar measures in these notes.
Let H(G) be the space of smooth (this means locally constant in this setting)

compactly supported functions f : G→ C. Denote H(G) = C∞
c (G). This notation

emphasizes the fact that we think of it as a Hecke algebra: H(G) is a convolution
algebra, for the convolution product defined by the formula

(f ∗ f ′)(x) =

∫
G

f(y)f ′(y−1x)dy =

∫
G

f(xy)f ′(y−1)dy.

Checking that this product is associative is left as an exercise. This algebra is not
commutative and has no unit (that would be a Dirac distribution . . . ), but it has
lots of idempotents: for any compact open subgroup K of G, eK := vol(K)−11K
is an idempotent. Similarly, it is easy to define an idempotent eK,τ for any finite-
dimensional irreducible representation τ of K/K ′ where K ′ is an open distinguished
subgroup of K, but we shall not need this. Note that for any idempotent e ∈ H(G)
we have a unital subalgebra eH(G)e of H(G). We denote H(G,K) = eKH(G)eK ,
which is identified with the space of functions K\G/K → C having finite support.

If (V, π) is a smooth representation then H(G) acts on V by the formula

π(f)v :=

∫
G

f(g)π(g)v dg

Note that there is no analysis and very little measure theory involved in this action:
choose a compact open subgroup K of G such that v ∈ V K and f is right K-
invariant, then we have π(f)v =

∑
g∈G/K vol(K)f(g)π(g)v where only finitely many

terms are non-zero since f has compact support. In fact this could be taken as the
definition, and one can check directly that this expression does not depend on the
choice of K. For any compact open subgroup K of G we have eKV = V K (this is
clear using the discussion above on the structure of V as a representation of K).

Conversely, if V is an H(G)-module such that
∑

K eKV = V , one can endow
V with a smooth action of G: for v ∈ V K and g ∈ G let π(g)v = vol(K)−11gKv
(exercise: this does not depend on K and defines a group action). Thus smooth
representations of G are equivalent to smooth H(G)-modules.
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Lemma 2.10. Let K be a compact open subgroup of G. The functor V ⇝ V K =
π(eK)V , from smooth representations of G to representations of H(G,K), induces
a bijection between irreducible smooth representations V of G such that V K ̸= 0 and
simple H(G,K)-modules.

Proof. (1) First we check that if (V, π) is an irreducible smooth representation
of G then V K is a simple H(G,K)-module. Let M ⊂ V K be a non-zero sub-
H(G,K)-module. By irreducibility we have V =

∑
g∈G π(g)M = H(G)M

and so we have

V K = (H(G)M)K = eKH(G)M = eKH(G)eKM = H(G,K)M =M.

(2) LetM be aH(G,K)-module, consider theH(G)-module F0(M) = H(G)⊗H(G,K)

M . From the smoothness of H(G) as a representation of G (on either side)
we deduce that F0(M) is also a smooth representation of G. In general this
smooth representation of G is too big (i.e. it happens that for some simple
H(G,K)-modules M , F0(M) is not irreducible). Consider the linear map
ϕM : F0(M) → M , f ⊗ m 7→ eKfeKm, which restricts to a morphism of
H(G,K)-modules F0(M)K →M which is surjective because 1⊗m maps to
m. Let W (M) = {v ∈ F0(M)|eKH(G)v = 0}, that is the largest sub-H(G)-
module W of F0(M) such that we have eKW = 0. We have W (M) ⊂ kerϕM
and eKW (M) = 0, and because F0(M) is a semisimple representation of
K the natural map F0(M)K → (F0(M)/W (M))K is an isomorphism. So
we have a functor F : M ⇝ F0(M)/W (M) from the category of H(G,K)-
module to Rep(G) and a natural transformation ϕ? : F (?)K →?. The map
ϕM : F (M)K →M is clearly surjective, and it is also injective:

(H(G)⊗H(G,K) M)K = (eKH(G))⊗H(G,K) M = eKH(G)eK ⊗H(G,K) M ≃M.

(3) Now assume that M is a simple H(G,K)-module. We claim that F (M)
is an irreducible representation of G. With notation as above, let V1 be a
subrepresentation of F0(M) such that W (M) ⊊ V1. By definition of W (M)
we have V K

1 ̸= 0 so that ϕM(V K
1 ) ̸= 0. Since M is simple this implies

ϕM(V K
1 ) =M , and so V1 contains H(G)(1⊗M) = F0(M).

(4) The outstanding claim that we have to check is that for V an irreducible
smooth representation of G such that V K ̸= 0, we have a (natural) isomor-
phism F (V K) ≃ V . There is a natural morphism H(G) ⊗H(G,K) V

K → V ,
which is surjective since V K ̸= 0 and V is irreducible. It clearly factors
through F (V K), and since we have shown that F (V K) is irreducible we get
that the natural morphism F (V K)→ V is an isomorphism.

□

This lemma suggests that we restrict our study to admissible representations,
so that we can study only finite-dimensional objects. Unfortunately, beyond a few
cases (small index in K0) it is difficult to describe H(G,K) in a useful manner, so
this point of view is rather limited. We will come back to H(G,K) in special cases
later.
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2.3. Parabolic induction and the Jacquet functor. The easiest way to con-
struct representations of G is to induce representations from smaller subgroups. For
these to be “not too big” it is natural to induce from the cocompact (by the Iwa-
sawa decomposition) subgroup B. We will be even more specific and induce only
representations of B which are trivial on its distinguished subgroup N . Non-trivial
characters of N are also very interesting, but this is another subject (Whittaker
functionals).

Definition 2.11. Let (W,µ) be a smooth representation of T , that we see as a
representation of B via the projection B → B/N ≃ T . Let IndGBW (or IndGB µ) be
the space of smooth functions f : G→ W satisfying

f(bg) = δB(b)
1/2µ(b)f(g)

for all b ∈ B and g ∈ G. It is endowed with a smooth action of G defined by

(x · f)(g) = f(gx)

for x, g ∈ G.
If W has dimension one then µ = µ1 ⊗ µ2 is a smooth character of T , that is

µ(diag(x1, x2)) = µ1(x1)µ2(x2) where µi : Q×
p → C× is a smooth character. Note

that IndGB µ admits µ1µ2 as a central character, using the obvious identification
Q×
p ≃ Z. Note also that for a smooth character χ : Q×

p → C× we have a natural

isomorphism IndGB(χµ1 ⊗ χµ2) ≃ IndGB(µ1 ⊗ µ2)⊗ (χ ◦ det).
Lemma 2.12. Let µ be a smooth character of T . The representation IndGB µ of G
is admissible.

Proof. Let K be a compact open subgroup of G. We may assume that K ⊂ K0.
Since G = BK0 and K0/K is finite, the set B\G/K is also finite, showing that
dimC(Ind

G
B µ)

K < +∞. □

ForW ̸= 0 one can see that IndGBW has infinite dimension by producing functions
as follows. Pick x ∈ G and v ∈ W ∖ {0}. There exists a compact open subgroup
K of G such that w is fixed by xKx−1 ∩ B. Then there is a unique f ∈ IndGBW
supported on BxK such that f(xk) = 1 for k ∈ K.

The character δ
1/2
B : diag(x1, x2) 7→ |x1/x2|1/2 was introduced so that IndGB pre-

serves unitarity. Let us briefly explain this (our goal is Corollary 2.15 below). If µ is
unitary character, in which case we may assumeW = C, for f ∈ IndGB µ the function

|f |2 : G → C belongs to C∞(G,B, δB) = IndGB δ
1/2
B , the space of smooth functions

G → C such that f(bg) = δB(b)f(g) for all b ∈ B and g ∈ G. We will construct a
G-invariant “integration map” C∞(G,B, δB) → C. In fact this is a special case of
Example A.5 (which deals more generally with continuous functions, not just locally
constant functions), but we can be more concrete and give an alternative argument,
proving a formula that will turn out to be useful on several occasions. We have a
map

ψ : C∞
c (G) −→ C∞(G,B, δB)

f 7−→
(
g 7→

∫
B

f(bg)db

)
.
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One can show that it is surjective 3. We want to define an “integration map”
C∞(G,B, δB)→ Cmapping ψ(f) to

∫
G
f(g)dg, so we have to check that

∫
G
f(g)dg =

0 if ψ(f) = 0. This follows from the following integration formula for the Iwasawa
decomposition, which has the benefit of giving a simple explicit formula for the
sought-after linear form on C∞(G,B, δB).

Lemma 2.13. Choose Haar measures on the unimodular groups G, T , N and K0

so that volG(K0) = volB(B ∩K0) volK0(K0). Let f be either an integrable function
G→ C or a measurable function G→ R≥0. Then we have∫

G

f(g) dg =

∫
T×N×K0

f(tnk) dt dn dk =

∫
N×T×K0

f(ntk)δ−1
B (t) dn dt dk.

Proof. It is enough to prove the formulas for f ∈ Cc(G), by density of Cc(G) in
L1(G) for the first case, and monotone convergence for the second case. Also note
that via the homeomorphism T ×N ≃ B, (t, n) 7→ tn, the product of Haar measures
on T and N is a left Haar measure on B. So the second equality has nothing to do
with G or K0 and is a consequence of the definition of the modulus character for
B since dn dt is a right Haar measure on B = NT . So it is enough to prove the
formula

∫
G
f(g) dg =

∫
B×K0

f(bk) db dk where a left Haar measure on B is used.
Consider the map

ϕ : Cc(B ×K0) −→ Cc(G)

F 7−→
(
bk 7→

∫
B∩K0

F (bh, k−1h) dh

)
where we have written an arbitrary element of G as bk for b ∈ B and k ∈ K0 using
the Iwasawa decomposition. It is surjective because B ∩ K0 is compact, in fact it
has a natural section onto the subspace of Cc(B × K0) consisting of the functions
F factoring through (b, k) 7→ bk−1. Moreover F 7→

∫
G
ϕ(F )(g) dg is left B × K0-

invariant because the Haar measure on G is invariant under left multiplication by
B and right multiplication by K0, so it coincides with F 7→

∫
B×K0

F (b, k) db dk up
to a scalar. The scalar is computed by taking f to be the characteristic function of
K0. □

Corollary 2.14. The linear map

C∞(G,B, δB) −→ C

f 7−→
∫
K0

f(k)dk

is G-invariant (for the action by right translation on the source and the trivial action
on the target).

Proof. Any f ∈ C∞(G,B, δB) can be written as g 7→
∫
B
α(bg)db for some α ∈

C∞
c (G), so ∫

K0

f(k) dk =

∫
K0

∫
B

α(bk) db dk =

∫
G

α(g) dg

3Exercise: check this, either by adapting the above argument exhibiting non-zero functions in
IndGB µ, or using right translates of the Bruhat decomposition.
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and (g · f)(x) =
∫
B
α(bxg)db, so the assertion follows from the fact that the Haar

measure on G is right G-invariant. □

Corollary 2.15. If µ is a unitary character then IndGB µ has a natural G-invariant
Hermitian inner product, defined by ∥f∥2 =

∫
K0
|f(k)|2 dk.

Corollary 2.14 also shows that
∫
K0

gives an intertwining operator IndGB δ
1/2
B → C

where the target is endowed with the trivial representation of G. It is easy to see
that this linear form is non-zero: as explained above the source contains a positive
function.

Definition 2.16. The Steinberg representation St of G is the subrepresentation of

IndGB δ
1/2
B consisting of all functions f satisfying

∫
K0
f(k) dk = 0.

Later we will prove that the Steinberg representation is irreducible. Dually
(this duality will not be explained in these notes . . . ), we have an embedding C→
IndGB δ

−1/2
B (constant functions) and we will see later that St is also realized as the

cokernel of this map.

Definition 2.17. Let (V, π) be a smooth representation of N . Let V (N) =
∑

n∈N(π(n)−
1)V . Let VN = V/V (N), the space of coinvariants under N , i.e. the largest quotient
of V on which N acts trivially. This defines a functor Rep(N) → Vec. Restrict-
ing to smooth representations of B, using that N is distinguished in B we obtain a
functor Rep(B) → Rep(T ) (exercise: check that for V a smooth representation of
B, the representation VN of T is smooth).

Define the (normalized) Jacquet functor ResB : Rep(B)→ Rep(T ) by ResB V =

δ
−1/2
B ⊗ VN . Composing with the forgetful functor Rep(G) → Rep(B), we obtain a
functor Rep(G)→ Rep(T ) that we abusively also denote by ResB.

If (V, π) is smooth representation of G we say that it is supercuspidal if ResB V =
0 (equivalently if VN = 0).

Note that any compact open subgroup of N ≃ Qp is of the form{(
1 x
0 1

)∣∣∣∣x ∈ pnZp}
for some n ∈ Z. In particular N is the union of its compact open subgroups. For
Nc such a subgroup and (V, π) a smooth representation of N we let V (Nc) be the
space of v ∈ V such that

∫
Nc
π(n)vdn = 0. Note that for Nc ⊂ N ′

c compact open

subgroups of N we have V (Nc) ⊂ V (N ′
c). This notation is justified by the following

lemma.

Lemma 2.18. (1) For any smooth representation of N , V (N) =
⋃
Nc
V (Nc)

where the union is over all compact open subgroups Nc of N .

(2) The functor ResB : Rep(N)→ Vec is exact, i.e. for any short exact sequence
0→ V1 → V2 → V3 → 0 in Rep(N), the sequence 0→ ResB V1 → ResB V2 →
ResB V3 → 0 is also exact.

Proof. (1) For n1, . . . , nk ∈ N choose Nc containing all ni’s, then it is clear that

for any v1, . . . , vk ∈ V we have
∫
Nc
π(n)

∑k
i=1(π(ni)− 1)vidn = 0.
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Conversely suppose that v′ ∈ V (Nc). Let N ′
c ⊂ Nc be an open subgroup

fixing v′. We have

0 =

∫
Nc

π(n)v′dn = vol(N ′
c)

∑
n∈Nc/N ′

c

π(n)v′ ≡ vol(Nc)v
′ mod V (N)

and we deduce v′ ∈ V (N).

(2) The only non-formal part of this statement is the injectivity of ResB V1 →
ResB V2, but this follows easily from the previous point.

□

The following theorem (Frobenius reciprocity) is easy to prove but fundamental.

Theorem 2.19. The Jacquet functor ResB : Rep(G) → Rep(T ) is left adjoint to
IndGB : Rep(T ) → Rep(G). More explicitly, for any smooth representation (π, V )
(resp. (σ,W )) of G (resp. T ) we have an identification

HomG(V, Ind
G
BW ) ≃ HomT (ResB V,W )

α 7→ (v 7→ α(v)(1))(
v 7→ (x 7→ β(π(x)v))

)
←[ β

that is functorial in both V and W .

Proof. The proof is completely formal. First check that for α : V → IndGBW the
map v 7→ α(v)(1) vanishes on V (N). Then check that for α : V → IndGBW (resp.

β : ResB V → W ) the map v → α(v)(1) (resp. v 7→ (x 7→ β(π(x)v))) is T -equivariant
(resp. G-equivariant). Finally check that the two compositions are equal to the
identity. Details are left as an exercise. □

Corollary 2.20. Let (V, π) be an irreducible smooth representation of G. Assume
that ResB V ̸= 0 (equivalently, VN ̸= 0). Then V embeds in a representation induced
from a character of T .

Proof. First we show that the representation ResB V of T is finitely generated.
Choose v ∈ V ∖ {0} and let K be a compact open subgroup of G fixing v. There
exists a finite R ⊂ G such that G = BRK. By irreducibility we have

V =

{∑
i∈I

λiπ(biriki)v

∣∣∣∣∣ I finite, bi ∈ B, ri ∈ R and k ∈ K

}

and we see that {π(r)v|r ∈ R} generates ResB V .
Now assume that ResB V ̸= 0. We claim that ResB V admits an irreducible

quotient. We may assume that ResB V is not irreducible. We have shown that
the representation ResB V of T may be generated by a finite set F . Applying
Zorn’s lemma to the set of subrepresentations of ResB V which do not contain F ,
we find an irreducible quotient of ResB T . By Schur’s lemma a smooth irreducible
representation of T is one-dimensional (on which T acts by a character, of course),
and we conclude by applying the previous theorem. □
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In particular any irreducible smooth non-supercuspidal representation is admis-
sible.

The Bruhat decomposition is useful to study the restriction of IndGB µ to N .

Lemma 2.21. Let µ be a smooth character of T . The morphism of C-vector spaces

IndGB µ −→ C∞(Qp,C)⊕ C

f 7−→
(
x 7→ f

(
w

(
1 x
0 1

))
, f(1)

)
is injective and its image is the space of pairs (F, v) such that there exists a compact
subset C of Qp containing 0 such that for any x ∈ Qp ∖ C we have

F (x) = [δ
1/2
B µ](diag(x−1, x)) v.

Proof. Injectivity is clear. To characterize the image, note that for k >> 0 we have

f

((
1 0
y 1

))
= f(1) for any y ∈ pkZp, and if y ̸= 0 we have

(
1 0
y 1

)
=

(
y−1 1
0 y

)
w

(
1 y−1

0 1

)
and take x = y−1. Details are left to the reader. □

2.4. The geometric lemma. Let V be a complex line on which T acts by a smooth
character µ = µ1⊗µ2. We now computeW = ResB IndGB V . LetW1 be the subspace
of functions supported on BwN , i.e. functions f such that f(1) = 0. We have an
identification

W1 −→ C∞
c (N, V )

f 7−→ f |N

By Lemma 2.21 we have a short exact sequence of smooth representations of B

0→ W1 → IndGB V → W2 → 0

withW2 = δ
1/2
B ⊗V . SinceN acts trivially onW2 we haveW2(N) = 0 and ResBW2 =

V . Now W1(N) is the kernel of φ : W1 → V , f 7→
∫
N
f(wn)dn. This morphism is

easily seen to be surjective, and for f ∈ W1 and b ∈ B, writing b = ut with t ∈ T
and u ∈ N we have

φ(b · f) =
∫
N

f(wnb)dn

=

∫
N

f(wtw−1wt−1nut)dn

= δwB(t)
1/2µw(t)

∫
N

f(wt−1nt)dn

= δB(t)
−1/2µw(t)δB(t)φ(f)

= δB(t)
1/2µw(t)φ(f)
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where µw(t) := µ(wtw−1) and using Equation (2.1). So ResBW1 has dimension one
and T acts by µw = µ2 ⊗ µ1 on it. So we have a short exact sequence

0→ µw → ResB IndGB µ→ µ→ 0.

The existence of this short exact sequence is the “geometric lemma” for G. See
[BZ77] for the case of a general reductive group over a non-Archimedean local field.

We can be more precise and completely determine ResB IndGB µ (Proposition 2.22
below). Since T is commutative, if µw ̸= µ (i.e. if µ1 ̸= µ2) this short exact sequence
splits: choose t ∈ T such that µ(t) ̸= µw(t) and consider ker(t− µ(t)|ResB IndGB V ).

We now consider the case µw = µ, and show that in this case the short exact
sequence does not split. The sequence splits if and only if there exists f ∈ IndGB V

such that f(1) ̸= 0 and for any b ∈ B, b·f−δ1/2B (b)µ(b)f ∈ (IndGB V )(N) = W1(N) =
kerφ. We can take b = t ∈ T , then

(t · f)
(
w

(
1 x
0 1

))
− δ1/2B (t)µ(t)f

(
w

(
1 x
0 1

))
= δwB(t)

1/2µw(t)F (xt−1
1 t2)− δ1/2B (t)µ(t)F (x)

It is clear that b · f − δ1/2B (b)µ(b)f ∈ W1, so for k >> 0 we have

φ(f) =

∫
p−kZp

δwB(t)
1/2µw(t)F (xt−1

1 t2)− δ1/2B (t)µ(t)F (x) |dx|

= δB(t)
1/2

(
µw(t)

∫
p−kt−1

1 t2Zp

F (x) |dx| − µ(t)
∫
p−kZp

F (x) |dx|

)
where |dx| denotes the Haar measure on Qp giving Zp volume 1 (notation to be
clarified later in the course). Under our assumption that µw = µ, we see that this
vanishes for any t ∈ T if and only if for k >> 0 we have vanishing of

∫
p−kZ×

p
F (x) |dx|.

Using Lemma 2.21 this equals∫
p−kZ×

p

|x|−1µ1(x)
−1µ2(x)f(1) |dx| =

(
1− 1

p

)
f(1)

since µ1 = µ2.
Let us state what we have just proved.

Proposition 2.22. Let µ be a smooth character of T . If µ ̸= µw then ResB IndGB µ ≃
µ⊕ µw. If µw = µ then we have a short exact sequence

0→ µ→ ResB IndGB µ→ µ→ 0

which does not split.

Corollary 2.23. Let µ = µ1 ⊗ µ2 be a smooth character of T . If µ1/µ2 is unitary,
that is if |µ1(p)/µ2(p)| = 1, then IndGB µ is irreducible.

Proof. Up to twisting by an unramified character we can assume that µ1 and µ2

are unitary. Then IndGB µ admits a G-invariant Hermitian inner product, and in
particular it is semi-simple, so it is irreducible if and only if the vector space
HomG(Ind

G
B µ, Ind

G
B µ) has dimension one. By Theorem 2.19 this space is isomorphic

to HomT (C(µ),ResB IndGB µ) and we can conclude with the above computation of
ResB IndGB µ. □
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2.5. Reducibility of parabolically induced representations in the non-unitary
case: intertwining operators. It remains to study reducibility of IndGB µ in the
case where µ1/µ2 is not unitary, in particular µw ̸= µ. Frobenius reciprocity tells us
that the representation IndGB µ is indecomposable, so if it is not irreducible Corollary
2.50 tells us that it has a unique irreducible representation and a unique irreducible
quotient.

Note that by Theorem 2.19 and the computation of ResB IndGB µ (Proposition
2.22) we have

dimC HomG(Ind
G
B µ, Ind

G
B µ

w) = 1

whether µw is equal to µ or not. We will construct a basis of this space, i.e. a
non-zero intertwining operator, more explicitly. Start with f ∈ IndGB µ. To produce
a function which transform under left action of B by µw, in particular left invariant
under N , it is natural to consider the integral

(2.2) g 7−→
∫
N

f(wng)dn.

Indeed if we assume that it converges absolutely then for any t ∈ T we have∫
N

f(wntg)dn =

∫
N

f(wtw−1wt−1ntg)dn(2.3)

=

∫
N

µw(t)δwB(t)
1/2f(wt−1ntg)dn

= µw(t)δ
1/2
B (t)

∫
N

f(wn′g)dn′

where we let n′ = t−1nt and used Formula (2.1).

Lemma 2.24. If |µ1(p)/µ2(p)| < 1, the integral (2.2) converges absolutely.

Proof. Write n =

(
1 y
0 1

)
with y ∈ Qp. We have wnw−1 =

(
1 0
−y 1

)
. We want to

show that we have ∫
Qp

∣∣∣∣f ((1 0
y 1

)
wg

)∣∣∣∣ |dy| < +∞

and since the integrand is obviously a smooth function it is enough to show that we
have

(2.4)

∫
Qp∖p−kZp

∣∣∣∣f ((1 0
y 1

)
wg

)∣∣∣∣ |dy| < +∞

for some integer k. As in Lemma 2.21 we write, for y ∈ Q×
p ,(

1 0
y 1

)
=

(
y−1 1
0 y

)
w

(
1 y−1

0 1

)
.

For k0 large enough f is constant on w

(
1 pk0Zp
0 1

)
wg, equal to f(w2g) = f(−g).

We note for future use that we may even take the same k0 for any g in a given
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compact subset of G. Decomposing Qp ∖ p1−k0Zp as
⊔
k≥k0 p

−kZ×
p , we obtain that

(2.4) is equivalent to the convergence of∑
k≥k0

∫
p−kZ×

p

∣∣µ1(y)
−1µ2(y)|y|−1f(−g)

∣∣ |dy| = |f(−g)|∑
k≥k0

|µ1(p)/µ2(p)|k
∫
Z×
p

|z−1dz|

= (1− 1/p)|f(−g)|
∑
k≥k0

|µ1(p)/µ2(p)|k.

where we have used the change of variables y = p−kz and the fact that |µ1| = |µ2| = 1
on the compact group Z×

p . □

Removing absolute values in the integral in the proof of the lemma, we also see
that if |µ1(p)/µ2(p)| < 1, for k0 large enough (depending on f and a compact subset
of G in which g lies) we have

(2.5)

∫
N

f(wng)dn =

∫
p1−k0Zp

f

((
1 0
y 1

)
wg

)
|dy|

+
(µ1/µ2)(p)

k0

1− (µ1/µ2)(p)
f(−g)

∫
Z×
p

µ1(y)
−1µ2(y) |dy|.

Moreover by orthogonality of smooth characters of Z×
p we have

(2.6)

∫
Z×
p

µ1(y)
−1µ2(y) |dy| =

{
(1− 1/p) if (µ1/µ2)|Z×

p
= 1

0 otherwise.

These formulas, which are purely algebraic (the integrals now involve only smooth
functions on compact spaces), motivate the following definition which “removes
denominators” and makes no assumption on µ.

Definition 2.25. Let µ = µ1 ⊗ µ2 be a smooth character of T . For f ∈ IndGB µ
define Jµ(f) : G→ C by

Jµ(f)(g) =(1− (µ1/µ2)(p))

∫
p1−k0Zp

f

((
1 0
y 1

)
wg

)
|dy|

+ (1− 1/p)f(−g)(µ1/µ2)(p)
k0

if (µ1/µ2)|Z×
p
= 1, and

Jµ(f)(g) =

∫
p1−k0Zp

f

((
1 0
y 1

)
wg

)
|dy|

otherwise, where in both cases k0 ∈ Z is large enough so that f is constant on

w

(
1 pk0Zp
0 1

)
wg (Exercise: check that the above definition does not depend on the

choice of k0).

Lemma 2.26. Let µ = µ1 ⊗ µ2 be a smooth character of T . For any f ∈ IndGB µ
the function Jµ(f) belongs to IndGB µ

w. The linear map Jµ : IndGB µ → IndGB µ
w is

G-equivariant (in other words, it is an intertwining operator).
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Proof. As noted in the previous proof for a given f ∈ IndGB we may choose a uniform
k0 in the formula defining Jµ(f) for g in a given compact subset of G, and so it is
clear that Jµ(f) is also smooth. If |(µ1/µ2)(p)| < 1 then by (2.5), (2.6) and (2.3) we
have Jµ(f) ∈ IndGB µ

w. It could be possible to prove this for |(µ1/µ2)(p)| ≥ 1 using
an unpleasant computation, but it is more elegant to use analytic (in fact, algebraic)
continuation.

Because of the decomposition G = BK0 we can identify IndGB µ with the space
of functions f : K0 → C such that f(bx) = µ(b)f(x) for any b ∈ B∩K0 and x ∈ K0.
Note that this space can be defined purely in terms of µ|T0 , but that the action of G
really depends on µ (and is rather complicated to write explicitly). We now replace
the coefficient field C by A := C[X±1

1 , X±1
2 ], and consider the character

µX : T −→ A×

t = diag(t1, t2) 7−→ µ1(t1)X
vp(t1)
1 µ2(t2)X

vp(t2)
2

and the space IndGB A(µX) of smooth A-valued functions which transform under

B on the left by δ
1/2
B µX . Let fX ∈ IndGB A(µX) be the unique function such that

fX |K0 = f |K0 (a smooth interpolation of f). Define JµX (fX) : G→ A as in Definition
2.25, so that Jµ(f) is its specialization at X1 = X2 = 1, i.e. the composition with
the morphism of C-algebras A→ C mapping X1 and X2 to 1. Consider, for g ∈ G
and b ∈ B, the element P := JµX (fX)(bg)− µX(b)δB(b)1/2JµX (fX)(g) of A. The set
S of (x1, x2) ∈ C× such that |(µ1/µ2)(p)x1/x2| < 1 is Zariski-dense in (C×)2, for
example because for any x1 ∈ C× there are infinitely many x2 ∈ C× such that this
condition is satisfied. For any (x1, x2) ∈ S we have P (x1, x2) = 0, so P = 0 and
P (1, 1) = 0. □

Proposition 2.27. (1) In the case µ|T0 = 1, let fµ ∈ IndGB µ be the unique
function such that f |K0 = 1. Then Jµ(fµ) = (1− p−1(µ1/µ2)(p))fµw .

(2) In any case the intertwining operator Jµ : IndGB µ→ IndGB µ
w is non-zero.

Proof. (1) For g ∈ K0 the formula in Definition 2.25 holds for k0 = 0 or k0 = 1,
and we easily deduce the formula.

(2) If µ1µ
−1
2 |Z×

p
= 1 the up to twisting µ1 and µ2 by the same smooth character

of Q×
p we may assume that µ|T0 = 1, and if moreover (µ1/µ2)(p) ̸= p, we are

done by the previous point.

Otherwise take f supported onB

(
1 0
Zp 1

)
and constant non-zero on

(
1 0
Zp 1

)
.

Evaluate at g = w−1, then the above formula holds with k0 = 1 and the sec-
ond term vanishes while the first one does not (one can also go back to the
original integral and observe that the integrand is compactly supported).

□

Lemma 2.28. Let µ be a smooth character of T . Assume that we have µ ̸= µw.
The representation IndGB µ is reducible (i.e. has length 2 by Corollary 2.50) if and
only if Jµw ◦ Jµ = 0.
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Proof. Assume first that IndGB µ has length two, then it is not semisimple since we
have computed EndG(Ind

G
B µ) = C, and so it has a unique irreducible quotient Qµ,

and a unique irreducible subrepresentation Sµ. By the geometric lemma and exact-
ness of the functor ResB, (ResB Qµ,ResB Sµ) ∈ {(µ, µw), (µw, µ)}. If ResB Qµ = µ
then Qµ embeds in IndGB µ (see Corollary 2.20), but this implies Qµ ≃ Sµ, which is a
contradiction since they have distinct Jacquet modules. So we have ResB Qµ ≃ µw

and Qµ embeds in IndGB µ
w, and because ResB IndGB µ

w ≃ µ⊕µw we see that IndGB µ
w

is not irreducible either, so it also has length 2 and Sµw ≃ Qµ, and by symmetry
Qµw ≃ Sµ. We know that Jµ is not identically zero, and it cannot be an isomor-
phism, for example because Sµ is not isomorphic to Sµw . So we have ker Jµ = Sµ,
imJµ = Sµw and Jµw ◦ Jµ = 0.

Conversely, if Jµw ◦Jµ = 0 then since both Jµ and Jµw are non-zero we get that at
least one of IndGB µ or IndGB µ

w is not irreducible, and the previous argument shows
that in fact both are reducible. □

Lemma 2.29. Let µ be a smooth character of T . The composition of intertwining
operators Jµw ◦ Jµ is a scalar.

Proof. This follows from our computation EndG(Ind
G
B µ) = C, thanks to the geo-

metric lemma. □

Corollary 2.30. Let µ = µ1⊗µ2 be a smooth character of T . If µ1/µ2|Z×
p
= 1 then

IndGB µ is reducible if and only if (µ1/µ2)(p) ∈ {p, p−1}.

Proof. The case where µ1/µ2 is unitary is covered by Corollary 2.23, so we may
assume that we have µ ̸= µw. Up to twisting µ1 and µ2 by the same character,
we may also assume that we have µ|T0 = 1. By Lemma 2.29 and the first point of
Proposition 2.27 we have

Jµw ◦ Jµ = (1− p−1(µ1/µ2)(p))(1− p−1(µ2/µ1)(p))IdIndGB µ,

and by Lemma 2.28 the statement follows. □

In the ramified case, we are left with a computation.

Proposition 2.31. Assume that µ1/µ2|Z×
p
̸= 1. Let r ≥ 1 be the smallest integer

satisfying µ1/µ2|1+prZp = 1. Then Jµw ◦ Jµ = p−r(µ1/µ2)(−1). In particular, IndGB µ
is irreducible.

Proof. By Lemma 2.29 it is enough to compute Jµw◦Jµ on some non-zero f ∈ IndGB µ.

Again take f supported on B

(
1 0
Zp 1

)
, constant on

(
1 0
Zp 1

)
with f(1) = 1. Since

the second term in the formula defining Jµ(f) vanishes in the ramified case, we
“simply” have

(Jµw ◦ Jµ)(f)(g) =
∫
p1−k0Zp

Jµw(f)

((
1 0
z 1

)
wg

)
|dz|

=

∫
p1−k0Zp

∫
p1−k1Zp

f

((
1 0
y 1

)
w

(
1 0
z 1

)
wg

)
|dy| |dz|.
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for any large enough integer k0, and any large enough integer k1 (which may be
taken uniformly on z ∈ p1−k0Zp since this set is compact, but note that k1 depends
on k0). We may and do assume that k1 > 0. We compute(

1 0
y 1

)
w

(
1 0
z 1

)
w =

(
−1 z
−y yz − 1

)
and since it is enough to evaluate the above integral for g = 1, we want to write this
matrix (assuming that it lies in the support of f) as(

c−1 b
0 c

)(
1 0
u 1

)
=

(
c−1 + bu b

cu c

)
.

We write the above integral in terms of the new variables (c, u). To this end we may
restrict to y ̸= 0, since the subvariety corresponding to y = 0 has measure 0. We
introduce the change of variable

ϕ : Q×
p × (Zp ∖ {0}) −→ Q×

p ×Qp

(c, u) 7−→ (y = −cu, z = −(1 + c−1)u−1)

which is clearly injective. We will see that it has everywhere invertible differential
as well, and describe S := ϕ−1((p1−k1Zp ∖ {0})× p1−k0Zp).

Let us first compute the Jacobian of the change of variables. We find

dy = −udc− cdu, dz =
dc

c2u
+

(1 + c)du

cu2
, dy ∧ dz = du ∧ dc

u
.

By Theorem B.7 the above integral for g = 1 is equal to∫
S

µ1(c)
−1µ2(c)|c|−1|u|−1|du||dc|.

The condition (c, u) ∈ S is equivalent to (A) v(cu) ≥ 1 − k1 and (B) v(1 + c−1) ≥
1 − k0 + v(u). For a given u ∈ Zp ∖ {0} we consider the set of c ∈ Q×

p such that
these two conditions are satisfied.

• If 0 ≤ v(u) ≤ k0−1 then condition (B) is equivalent to v(c−1) ≥ v(u)+1−k0,
so that conditions (A) and (B) together are equivalent to k0 − 1 − v(u) ≥
v(c) ≥ 1− k1− v(u). For any k ∈ Z we have

∫
pkZ×

p
µ1(c)

−1µ2(c)|c|−1|dc| = 0.

• If v(u) > k0 − 1 then condition (B) is equivalent to c ∈ −1 + pv(u)+1−k0Zp,
and so condition (A) reads v(u) ≥ 1 − k1, which is automatically satisfied
since k1 > 0. We have∫

−1+pv(u)+1−k0Zp

µ1(c)
−1µ2(c)|dc| =

{
0 if v(u) < k0 − 1 + r

pk0−1−v(u)(µ1/µ2)(−1) if v(u) ≥ k0 − 1 + r.

Thus ∫
S

µ1(c)
−1µ2(c)|c|−1|u|−1|du||dc| =

∫
v(u)≥k0−1+r

(µ1/µ2)(−1)pk0−1|du|

= p−r(µ1/µ2)(−1).

□
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We can finally state the classification of non-supercuspidal representations of G.

Theorem 2.32. Any irreducible smooth non-supercuspidal representation of G is
isomorphic to exactly one of the following:

• IndGB µ for µ1/µ2 ̸∈ {| · |±1}, with {µ, µw} uniquely determined,

• χ ◦ det for some continuous character χ : Q×
p → C×,

• (χ ◦ det)⊗ St for some continuous character χ : Q×
p → C×.

Proof. Existence follows from Corollary 2.20, Corollary 2.30 and Proposition 2.31.
Uniqueness follows from consideration of the Jacquet module and the fact that Jµ
is an isomorphism when IndGB µ is irreducible. □

Remark 2.33. We can define the local Langlands correspondence in an ad hoc
manner for principal series. One of the main results of local class field theory is the
existence of a natural isomorphism rec : (WQp)

ab ≃ Q×
p where WQp ⊂ Gal(Qp/Qp)

is the Weil group of Qp. Therefore, it is natural to declare that an irreducible IndGB µ
corresponds to the reducible semi-simple two-dimensional representation µ1 ◦ rec ⊕
µ2 ◦ rec. It is not as clear what one should do for the one dimensional and Steinberg
representations. It turns out that it is natural to associate (χ| · |1/2) ◦ rec ⊕ (χ| ·
|−1/2)◦ rec to χ◦det. Later we will prove that the Steinberg representation is square-
integrable, although it is clearly not supercuspidal. It turns out that it is natural
to introduce the Weil-Deligne group WDQp := WQp × SL2(C). Of course the above
representations of WQp can simply be seen as representations of WDQp which are
trivial on the second factor. The Langlands parameter of (χ◦det)⊗St is χ◦ rec⊗ν2
where ν2 is (by definition) the irreducible algebraic 2-dimensional representation of
SL2(C).

More generally, to formulate the local Langlands correspondance for GLn(F ),
F a non-Archimedean local fields, one should consider n-dimensional semi-simple
continuous representations ρ of WDF := WF × SL2(C) which are algebraic (i.e.
polynomial or equivalently, holomorphic) on the factor SL2(C). To such a ρ one
can associate a pair (ρ′, N) where ρ′ : WF → GLn(C) is the semi-simple continuous
representation which is the composition of ρ with the embedding

WF −→WDF

w 7−→ (w, diag(|w|1/2, |w|−1/2))

and N ∈Mn(C) is defined as dρ

(
0 1
0 0

)
. This pair satisfies ρ′(w)Nρ′(w)−1 = |w|N

for any w ∈ WF . Conversely using the Jacobson-Morozov theorem we see that any
such pair (ρ′, N) arises from ρ as above, so the two formulations are equivalent.
Such a pair (ρ′, N) is called a Weil-Deligne representation, and is more natural in
an arithmetic setting (see [Tat79, 4.1 and 4.2]).

2.6. Supercuspidal representations.

Definition 2.34. Let I be a compact open subgroup of G. We say that I has an
Iwahori factorization if, denoting N I = N ∩ I, TI = T ∩ I and NI = N ∩ I, the
product map NI × TI ×N I → I is surjective.
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Of course this map is always injective, and it is clear that it is always a homeo-
morphism onto an open subset of I.

Remark 2.35. (1) Let T− be the set of t ∈ T such that |t1/t2| ≤ 1. In [Cas, §1.4]
there is an extra condition in the definition of Iwahori factorization, namely
that for any t ∈ T− we have tNIt

−1 ⊂ NI and t−1N It ⊂ N I . It is easy to
check that this condition is automatically satisfied in the particular case of
GL2(Qp), due to the particularly simple classification of closed subgroups of
Qp.

(2) Taking inverses, we also have N I × TI ×NI ≃ I.

Example 2.36. (1) The Iwahori subgroup

(
Z×
p Zp

pZp Z×
p

)
has an Iwahori factor-

ization (and is the reason for this terminology).

(2) For any integer i ≥ 1 the subgroup Ki =

(
1 + piZp piZp
piZp 1 + piZp

)
also satisfies

this condition.

We will use a more compact notation for in the second case: N i = Ki ∩ N ,

Ti = T ∩Ki and Ni = N ∩Ki. For i < 0 we can also define N i =

(
1 0

piZp 1

)
and

Ni =

(
1 piZp
0 1

)
.

Note however that K does not admit an Iwahori factorization, in fact one can
check that I is maximal among compact open subgroups admitting an Iwahori fac-
torization. For our purpose in this section we will only use the fact that there are
arbitrarily small compact open subgroups of G having an Iwahori factorization. We
will come back to the Iwahori case later.

Lemma 2.37. Let I be a compact open subgroup of G admitting an Iwahori factor-
ization. For any f ∈ C∞(I), we have the integration formula.∫

NI×TI×NI

f(ntn)dndtdn =

∫
I

f(g)dg.

Proof. The proof is similar to the proof of the integration formula for the Iwasawa
decomposition (Lemma 2.13), only simpler because the decomposition is a bijection.
The pullback to NI × TI × N I of the Haar measure on I (restriction of the Haar
measure on G) is clearly left NI-invariant and right N I-invariant. It is also left and
right TI-invariant because any t ∈ TI normalizes N I and NI and preserves their
Haar measures because TI is compact (see Equation (2.1)). □

For g ∈ G denote by ġ its image in G/Z.

Theorem 2.38. Let (π, V ) be a smooth representation of G. The following are
equivalent:

(1) (π, V ) is supercuspidal.
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(2) For any v ∈ V and ṽ ∈ Ṽ , there is a compact subset C of G/Z such that
⟨π(g)v, ṽ⟩ = 0 for all g ∈ G such that ġ ∈ G/Z ∖ C.

(3) For any v ∈ V and any compact open subgroup K of G, there is a compact
subset C of G/Z such that π(eK)π(g)v = 0 for all g ∈ G such that ġ ∈
G/Z ∖ C.

Proof. First we prove that (2) implies (3). Let G′ = {g ∈ G| det g ∈ Z×
p }, an open

subgroup of G which contains all compact subgroups of G. Note that ZG′ has finite
index (two) in G, and that G′ → G/Z is proper. Let v ∈ V and K ⊂ G a compact
open subgroup of G. LetW be the sub-vector space of V K generated by π(eK)π(g)v
for g ∈ G′. Let S be a subset of K\G′ such that (π(eK)π(g)v)g∈S is a basis of W .
Recall that V is a semi-simple representation of K, in particular we have a canonical
decomposition V = V K ⊕ V ′ where V ′ is stable under K and (V ′)K = 0, and so

Ṽ K ≃ HomC(V
K ,C) surjects (by restriction) onto HomC(W,C). We deduce that

there exists ṽ ∈ Ṽ K such that for any g ∈ S we have ⟨π(eK)π(g)v, ṽ⟩ = 1. Observe
that we have ⟨π(eK)π(g)v, ṽ⟩ = ⟨π(g)v, ṽ⟩ because ṽ is fixed by K (decompose π(g)v
in V K ⊕ V ′). By the assumption (2) applied to the pair (v, ṽ), the set S is finite,

i.e. dimCW < +∞. There is a finite family (ṽi)1≤i≤k of elements of Ṽ K such that
we have

{w ∈ W | ⟨w, ṽ1⟩ = · · · = ⟨w, ṽk⟩ = 0} = {0}.
Now applying assumption (2) to all pairs (v, ṽi) shows that the function G′ → W ,
g 7→ π(eK)π(g)v has compact support. Let t = diag(p, 1) ∈ G. Since no assumption
was made on v in the above argument, it also applies to π(t)v and the map G′ → V ,
g 7→ π(eK)π(gt)v also has compact support. Since Z is central in G (Z being the
center . . . ) and G = ZG′ ⊔ZG′t we get that G→ V , g 7→ π(eK)π(g)v has compact
support modulo Z, i.e. there exists C as in (3).

Now let us show that (3) implies (1). Let v ∈ V . Pick i ≥ 1 such that v ∈ V Ki .
We still denote t = diag(p, 1), so that t−1N it ⊂ N i, in fact t−1N it = N i+1. By
assumption and the Cartan decomposition, for m >> 0 we have π(eKi

)π(tm)v = 0.
By the integration formula (Lemma 2.37) and passing tm to the left, for any m ≥ 0
we have

π(eKi
)π(tm)v = π(tm)π(et−mNitm)π(eTi)π(et−mN itm

)v.

Form >> 0, because v is fixed byN i ⊃ t−mN it
m and by Ti we obtain π(et−mNitm)v =

0, i.e. v ∈ V (Ni−m).
Finally we show that (1) implies (2). Using the same formula as above, we see

that for any i ≥ 1 and v ∈ V Ki there exists m0 ≥ 0 such that for any m ≥ m0 we
have π(eKi

)π(tm)v = 0. This implies the following:

(2.7) ∀i ≥ i,∀v ∈ V Ki ,∃m0 ≥ 0,∀m ≥ m0,∀z ∈ Z, ∀ṽ ∈ Ṽ Ki , ⟨π(ztm)v, ṽ⟩ = 0.

Now let v ∈ V and ṽ ∈ Ṽ . There exists i ≥ 1 such that v and ṽ are both fixed by
Ki. Let Ri ⊂ K0 be a set of representatives for the finite quotient K0/Ki. By the
Cartan decomposition we have

G = ⊔m≥0K0t
mK0Z = ∪m≥0

r∈Ri
r′∈Ri

r−1Kit
mKir

′Z.
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Now we apply (2.7) to the pairs (π(r′)v, π(r)ṽ) for r, r′ ∈ Ri. Note that there are
only finitely many such pairs and that all these vectors are also fixed by Ki because
it is distinguished in K0. Also note that we have (and this is the whole point of
rewriting the Cartan decomposition as above)

⟨π(ztm)π(r′)v, π(r)ṽ⟩ = ⟨π(r−1tmr′z)v, ṽ⟩.

We deduce that there exists C of the form ∪m<m0K0t
mK0Z/Z such that we have

⟨π(g)v, ṽ⟩ = 0 for all g ∈ G satisfying ġ ∈ G/Z ∖ C. □

Corollary 2.39. Any irreducible supercuspidal representation is admissible.

Proof. Pick any v ∈ V ∖ {0} and a compact open sugroup K of G which fixes
v. The sub-vector space W ⊂ V K generated by π(eK)π(g)v for g ∈ G has finite
dimension by (3) above (here Schur’s lemma is used). Since V is irreducible we have
W = π(eK)V = V K . □

Remark 2.40. Together with Lemma 2.12 and Corollary 2.20 (and the fact that a
subrepresentation of an admissible representation is admissible), this shows that any
irreducible smooth representation of G is admissible.

Exercise 2.41. Let (V, π) be a smooth representation of G.

(1) Show that if V is not irreducible then Ṽ is not irreducible.

(2) Show that if V is irreducible then Ṽ is irreducible.

Definition 2.42. Let (V, π) be a smooth representation of G, and assume that it
has a (unique and smooth) central character ωπ : Z → C×. We say that π is square-
integrable (or part of the discrete series) if ωπ is unitary and for any v ∈ V and

ṽ ∈ Ṽ ,
∫
G/Z
|⟨π(g)v, ṽ⟩|2dg < +∞.

We say that π is essentially square-integrable if there exists s ∈ R>0 (unique)
such that | det |s ⊗ π is square-integrable.

Any irreducible supercuspidal representation is essentially square-integrable.

Lemma 2.43. If (V, π) is an irreducible smooth representation of G with unitary
central character ωπ (Corollary 2.7) then it is square-integrable if and only if there

exist non-zero v0 ∈ V and ṽ0 ∈ Ṽ such that
∫
G/Z
|⟨π(g)v0, ṽ0⟩|2dg < +∞.

Proof. The set of v ∈ V such that ġ 7→ |⟨π(g)v, ṽ0⟩|2 is integrable is stable under G
(by right invariance of the Haar measure) and is a sub-vector space of V (using the
Cauchy-Schwarz inequality). Since it contains v0 ̸= 0, it equals V . Repeating this

argument for Ṽ allows to conclude. □

Exercise 2.44. Let (V, π) be a smooth representation of G. Let V := C⊗C V where
C on the left is considered as a C-algebra via the conjugation map. This is naturally
a smooth representation of V with the action defined by π(g)(λ⊗ v) = λ⊗ (π(g)v).
Let HermiG(V ) be the C-vector space of G-invariant sesquilinear pairings on V . Our
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convention is that these are linear in the first variable and conjugate-linear in the
second variable. Show that the linear map

HomG(V , Ṽ ) −→ HermiG(V )

φ 7−→ ((v1, v2) 7→ ⟨v1, φ(1⊗ v2)⟩)

is an isomorphism.

Lemma 2.45. Any irreducible square-integrable representation is unitarizable, i.e.
admits a G-invariant hermitian inner product. Moreover the G-invariant hermitian
inner product is unique up to R>0.

Proof. Let L2(G,ωπ) be the space of measurable functions G→ C such that f(zg) =
ωπ(z)f(g) for all z ∈ Z and g ∈ G and

∫
G/Z
|f(g)|2dġ < +∞, quotiented (as usual)

by the subspace of functions which vanish outside a set of measure 0. This is a
(non-smooth!) representation of G, for the action defined by (gf)(x) = f(xg), and
it has a G-invariant Hermitian inner product defined by

(f1, f2) 7→
∫
G/Z

f1(g)f2(g)dġ.

Pick ṽ ∈ Ṽ ∖ {0}. Then v 7→ (g 7→ ⟨π(g)v, ṽ⟩) gives a G-equivariant linear
map V → L2(G,ωπ). Because V is irreducible it is injective. Restricting the above
G-invariant Hermitian inner product on L2(G,ωπ) to V gives the sought-after inner
product. Denote by H this G-invariant Hermitian inner product on V .

It is easy to check that (V , π) (see previous exercise) is also irreducible. By

Exercise 2.41 the contragredient representation Ṽ is irreducible, so by Schur’s lemma

we have dimCHomG(V , Ṽ ) ≤ 1. Using the previous exercise this implies that any
G-invariant sesquilinear pairing on V is equal to λH for some λ ∈ C, which is unique
because H does not vanish identically. Finally the pairing λH is an inner product
if and only if λ ∈ R>0. □

Remark 2.46. The same argument shows that an irreducible supercuspidal repre-
sentation of G can be realized in C∞

c (G,ωπ), the space of smooth functions f → C
such that f(zg) = ωπ(z)f(g) and such that the support of f is compact modulo Z.
In fact it is easy to check that the image is included in the space C∞

cusp(G,ωπ) of

cuspidal functions, that is the subspace of functions f satisfying
∫
N
f(xny)dn = 0

for all x, y ∈ G.

Proposition 2.47. Let (V, π) be an irreducible essentially square-integrable repre-
sentation of G. There exists a unique dπ ∈ R>0, called the formal degree of π, such

that for any u, v ∈ V and ũ, ṽ ∈ Ṽ we have∫
G/Z

⟨π(g)u, ũ⟩⟨π(g−1)v, ṽ⟩dġ = d−1
π ⟨u, ṽ⟩⟨v, ũ⟩.

Observe that the integral is well-defined and converges absolutely.
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Proof. Fix v and ũ. Then the integral, seen as a function of (u, ṽ), defines a G-

invariant pairing on V × Ṽ . By Schur’s lemma it is a complex number times the
canonical pairing. The same argument with u and ṽ fixed shows that the integral
equals cπ⟨u, ṽ⟩⟨v, ũ⟩ for some cπ ∈ C.

It remains to show that cπ ∈ R>0. Up to twisting by a character we can assume
that π is square-integrable. Pick a G-invariant Hermitian inner product (·, ·) on V
(see the previous lemma), which is equivalent to an isomorphism φ : V ≃ Ṽ such
that (v, v) := ⟨v, φ(1⊗ v)⟩ ∈ R>0 for all non-zero v ∈ V . Taking ṽ = φ(1⊗ u) and
ũ = φ(1⊗ v) for arbitrary u, v ∈ V ∖ {0}, the integrand equals

(π(g)u, v)(π(g−1)v, u) = |(π(g)u, v)|2

which is non-negative, smooth and not identically vanishing, and the right-hand side
equals cπ(u, u)(v, v), therefore cπ ∈ R>0. □

Remark 2.48. (1) The constant dπ depends on the choice of Haar measure for
G/Z. The Haar measure dπdġ is canonically associated to π.

(2) This Proposition (and its proof) are inspired by the same result for irreducible
unitary representations of finite (or more generally compact) groups, which
are all square-integrable and finite-dimensional. In this simpler case, taking
the Haar measure to be a probability measure (and removing the quotient
by Z) one can check that dπ is the dimension of π. Proposition 2.47 for
compact groups has a better known coordinate-free analogue (orthonormality
of characters of irreducible representations), but it is not as straightforward to
generalize this to the infinite-dimensional case. We will prove an analogous
theorem for G later.

Corollary 2.49. If (V, π) is an irreducible supercuspidal representation of G and
(U, σ) is a smooth representation of G such that σ(zg) = ωπ(z)σ(g) for all z ∈ Z
and g ∈ G then any non-zero morphism P : U → V admits a splitting.

Proof. Pick v0 ∈ V and ṽ0 ∈ Ṽ such that ⟨v0, ṽ0⟩ = dπ. Pick u0 ∈ U mapping to
v0. Define s : V → U by s(v) =

∫
G/Z
⟨π(g−1)v, ṽ0⟩σ(g)u0dġ. The linear map s is

G-equivariant: for h ∈ G, using the change of variable x = h−1g,

s(π(h)v) =

∫
G/Z

⟨π((h−1g)−1)v, ṽ0⟩σ(g)u0 dġ

=

∫
G/Z

⟨π(x−1)v, ṽ0⟩σ(hx)u0 dġ = σ(h)s(v).

To compute the image of s(v) in V , take any test vector ṽ ∈ Ṽ . The previous
proposition gives us ⟨P (s(v)), ṽ⟩ = ⟨v, ṽ⟩ and so P (s(v)) = v. □

Corollary 2.50. For any smooth character µ of T , the induced representation
IndGB µ has finite length ≤ 2, and no constituent is supercuspidal.

Proof. First we show that any irreducible subquotient of IndGB µ is not supercuspidal.
Let W be a subrepresentation of IndGB µ and W ′ an irreducible quotient of W . If W ′
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is supercuspidal then by Corollary 2.49 we have a splitting W ′ → W , so we can see
W ′ as an irreducible supercuspidal subrepresentation of IndGB µ. But this contradicts
Theorem 2.19!

Now consider a finite chain 0 ⊊ W1 ⊊ · · · ⊊ Wk = IndGB µ of representations
of G. By Zorn’s lemma any quotient Wi/Wi−1 admits an irreducible subquotient,
which is also a subquotient of V and so is not supercuspidal. By exactness of
the Jacquet functor this implies that each ResB(Wi/Wi−1) ̸= 0. Since we have
computed that the representation ResB IndGB µ of T has length 2, we deduce k ≤ 2,
in particular IndGB µ has finite length. We may then assume that each constituent
Wi/Wi−1 is irreducible. We also get that each Wi/Wi−1 is not supercuspidal, so
that ResB(Wi/Wi−1) is either one-dimensional (with action of T by µ or µw) or
two-dimensional equal to ResB IndGB µ. The latter case occurs if and only if IndGB µ
is irreducible. □

2.7. The Iwahori-Hecke algebra and the Steinberg representation. Recall
that the Iwahori subgroup I ofK0 is the preimage underK0 ↠ GL2(Fp) of the upper-
triangular Borel subgroup. We now study the Iwahori-Hecke algebra H(G, I), which
will be useful to study the Steinberg representation because we will see that StI ̸= 0.

Denote T0 = T ∩K0. In particular T0 ⊂ I. Let W̃ = NG(T )/T0 be the extended
affine Weyl group, it surjects onto W = NG(T )/T = {1, w}, with kernel T/T0 ≃ Z2.

The natural map NK(T0)/T0 → W is an isomorphism and gives a splitting of W̃ →
W , realizing W̃ as T/T0 ⋊W .

Proposition 2.51 (Affine Bruhat decomposition). G =
⊔
x∈W̃ IxI.

Proof. First note that G/I parametrizes pairs (L,D) where L is a lattice in Q2
p and

D ⊂ L/pL is an Fp-line: the coset gI corresponds to (Zpe1⊕Zpe2, ⟨e1⟩) where e1, e2
are the columns of g.

So we have to show that for any (L1, D1) and (L2, D2) as above, there exists
a basis (e, f) of L1 and a, b ∈ Z such that D1 = ⟨e⟩, (pae, pbf) is a basis of L2

and D2 = ⟨pae1⟩ or ⟨pbe2⟩, and that the pair (a, b) ∈ Z2 is unique (this equivalent
statement of unuiqueness requires a bit of head scratching . . . ). Thanks to the
Cartan decomposition we know that there is a basis (e, f) of L1 and (unique) integers
a ≥ b such that (pae, pbf) is a basis of L2. It is clear that we may substitute e+ µf
for e, for any µ ∈ Zp. Since any line in L1/pL1 is generated by f or by e + µf for
some µ ∈ Fp, we obtain that up to swapping e and f (which does not preserve the
condition a ≥ b!) we may assume that D1 = ⟨e1⟩.

• If b ≤ a, we may substitute f + pa−bµe for f where µ ∈ Zp is arbitrary, since
pb(f + pa−bµe) = pbf + paµe. By the same argument as above, if D2 ̸= ⟨pae⟩
we can reduce to D2 = ⟨pbf⟩.

• If b > a, we may substitute e + pb−aµf for e where µ ∈ Zp is arbitrary, and
as in the previous case this allows us to achieve D2 = ⟨pae⟩ if D2 ̸= ⟨pbf⟩.

Uniqueness can be seen on this argument and is left as an exercise. □

We will use the following more precise description of the double cosets contained
in K0.
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Proposition 2.52. We have a decomposition

K0 = I ⊔ IwI = I ⊔
⊔
y∈Fp

(
1 y
0 1

)
wI.

Note that the last term makes sense!

Proof. Observe that K1 ⊂ I ⊂ K0 with K1 distinguished in K0 and K0/K1 =
GL2(Fp). The assertion follows immediately from the Bruhat decomposition in
GL2(Fp). □

Note that we have IxI =
⊔
k kxI where k ranges over representatives of I/I ∩

xIx−1 (there is a similar description into left I-cosets). In particular vol(IxI) =
|I/I ∩ xIx−1| vol(I). If x = diag(pa, pb) then we have

xIx−1 =

(
Z×
p pa−bZp

p1+b−aZp Z×
p

)
and I ∩ xIx−1 =

(
Z×
p pmax(0,a−b)Zp

p1+max(b−a,0)Zp Z×
p

)
.

We easily deduce |I/I ∩ xIx−1| = p|a−b|.

Before we consider elements in W̃ ∖ T/T0, define w̃ =

(
0 1
p 0

)
. This element is

interesting because we have w̃Iw̃−1 = I. For x = diag(pa, pb)w ∈ W̃ ∖T/T0 we have
x ∈ diag(pa, pb−1)w̃T0 and we conclude |I/I ∩ xIx−1| = p|a−b+1|.

Definition 2.53. Let l : I\G/I → Z≥0 be the length function on I\G/I ≃ W̃ ,
defined by |I/I ∩ xIx−1| = pl(x).

Denote by [IxI] ∈ H(G, I) the element supported on IxI mapping x to vol(I)−1.
Note that the action of [IxI] on any smooth representation of G does not depend
on the choice of a Haar measure on G, which appears both in the definition of the
action and in the definition of [IxI]. For example the element [IxI] acts on the
trivial (one-dimensional) representation of G by

vol(IxI)/ vol(I) = |I/I ∩ xIx−1| = pl(x).

Lemma 2.54. For x, y ∈ G we have

[IxI][IyI] =
∑

z∈I\G/I

c(x, y, z)[IzI]

where c(x, y, z) ∈ Z≥0 is non-zero for only finitely many z, and c(x, y, xy) > 0.

Proof. For x, y, g ∈ G we have

(1xI ∗ 1Iy)(g) =
∫
xI

1Iy(h
−1g)dh

=

∫
xI

1g(y)−1I(h)dh

= vol(I)1xIy(g)
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and so 1xI ∗ 1Iy = vol(I)1xIy. Using this formula we compute

[IxI][IyI] = vol(I)−2
∑

k∈I/I∩xIx−1

∑
k′∈I∩y−1Iy\I

1kxI ∗ 1Iyk′(2.8)

= vol(I)−1
∑

k∈I/I∩xIx−1

∑
k′∈I∩y−1Iy\I

1kxIyk′

and so [IxI][IyI] takes values in vol(I)−1Z≥0. Because [IxI][IyI] is also I-invariant
on both sides, it is a finite sum of finitely many [IzI], including z = xy at least once
(consider k = k′ = 1 in the sum above). □

The previous lemma is completely general and uses nothing particular about I.
It implies that if vol(IxI) vol(IyI) = vol(I) vol(IxyI), i.e. if l(xy) = l(x) + l(y),
then we have [IxI][IyI] = [IxyI] (consider the action on the trivial representation).
We will use this observation to obtain the following description of the structure of
H(G, I).

Proposition 2.55. Consider the elements S = [IwI] and T = [Iw̃I] of H(G, I).

(1) T is invertible in H(G, I).

(2) We have T 2S = ST 2 and (S − p)(S + 1) = 0.

(3) S, T and T−1 generate the algebra H(G, I), in fact for any x ∈ G the element
[IxI] of H(G, I) can be written as a product of elements in {S, T, T−1}.

Proof. Since w̃ normalizes I we have T 2 = [Iw̃2I] and w̃2 = diag(p, p) is central
in G. This shows both that T 2 is central in H(G, I) and that T is invertible in
H(G, I), with T−1 = T [Idiag(p−1, p−1)I]. To compute S2 we first observe that S2,
like S, is supported on the subgroup K0 = I ⊔ IwI, and so we have S2 = λeI + µS
for some λ, µ ∈ Z≥0. To avoid computations we deduce from the action on the
trivial representation the equality p2 = λ+ pµ. To pin down λ and µ we resort to a
computation similar to (2.8). For x, y, g ∈ G we have

(1Ix ∗ 1yI)(g) =
∫
Ix

1yI(h
−1g)dh

=

∫
Ix

1gIy−1(h)dh

= vol(Ixy ∩ gI)

Note that this function of g is clearly I-invariant on both sides, vanishes outside of
IxyI, and so we have

1Ix ∗ 1yI = vol(I ∩ y−1x−1Ixy)1IxyI .

For x, y ∈ G we have

[IxI][IyI] = vol(I)−2
∑

k∈I∩x−1Ix\I

∑
k′∈I/I∩yIy−1

1Ixk ∗ 1k′yI .
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Taking x = y = w and evaluating at 1 we obtain

λ = |{(k, k′) ∈ (I/I ∩ wIw)× (I ∩ wIw\I) | wkk′w ∈ I}| .

The set of elements (
1 u
0 1

)
, u ∈ {0, . . . , p− 1}

(or any other set of representatives of Z/pZ) is a set of representatives for both
I/I ∩ wIw and I ∩ wIw\I. This allows us to conclude:

λ =
∣∣{(u, u′) ∈ F2

p

∣∣ u+ u′ = 0
}∣∣ = p

and so µ = p− 1.

We prove that for any x ∈ W̃ the element [IxI] can be written as a product of
T±1’s and S’s by induction on l(x). It is clear from our computations just before
Definition 2.53 that the elements of length 0 are exactly Z ⊔ Zw̃, and in this case

[IxI] is a power of T . If x ∈ W̃ is such that l(x) > 0, we distinguish two cases.

• If x = diag(pa, pb) then a ̸= b. If a < b then l(xw) = b − a − 1 = l(x) − 1,
so that l(x) = l(xw−1) + l(w). This implies [IxI] = [IxwI]S. If a > b then
l(wx) = a− b− 1 = l(x)− 1 and similarly [IxI] = S[IwxI].

• If x ∈ W̃ ∖ T/T0 we may multiply x by w̃ to reduce to the previous case.

□

Remark 2.56. This proposition holds with coefficients Z instead of C, i.e.H(G, I) is
naturally the extension of scalars from Z to C of a Z-algebra, namely

⊕
x∈I\G/I Z[IxI],

in which the proposition holds. Although we will not need it, one can show that the
proposition gives a full presentation of H(G, I). For generalizations see the original
paper [IM65], and a more modern exposition [HKP10] using a different approach and
including many other results, such as Bernstein’s presentation.

Now consider the H(G, I)-modules (IndGB µ)
I . We see functions in IndGB µ as

functions on K0.
From the decomposition K0 = I ⊔ N0wI (i.e. the Bruhat decomposition for

GL2(Fp)) and the fact that T0 ⊂ I is normalized by w, it follows that (IndGB µ)
I = 0

if µ|T0 ̸= 1. If µ|T0 = 1 we get an isomorphism (IndGB µ)
I → C2, f 7→ (f(1), f(w)).

Let us compute the matrices of S and T in the corresponding basis B = (b1, bw) of
(IndGB µ)

I .
We have

(w̃f)(1) = f

((
0 1
p 0

))
= f

((
−1 0
0 p

)
w

)
= µ2(p)p

1/2f(w)

and

(w̃f)(w) = f

((
−p 0
0 1

))
= µ1(p)p

−1/2f(1)

so the matrix of T is

(
0 µ2(p)p

1/2

µ1(p)p
−1/2 0

)
.
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We have

([IwI]f)(1) =
∑
y∈Fp

f

((
1 y
0 1

)
w

)
= pf(w)

and

([IwI]f)(w) =
∑
y∈Fp

f

(
w

(
1 y
0 1

)
w

)
=
∑
y∈Fp

f

((
−1 0
y −1

))
= f(1) + (p− 1)f(w)

since

(
−1 0
y −1

)
∈ K0 and it belongs to I if and only if y ∈ pZp. So the matrix of

S is

(
0 p
1 p− 1

)
.

Let Q =

(
1 −p
1 1

)
, chosen because we have Q−1Mat(S,B)Q = diag(p,−1). We

compute

(2.9) Q−1Mat(T,B)Q =
p1/2

p+ 1

(
µ1(p) + µ2(p) µ2(p)− pµ1(p)

p−1µ1(p)− µ2(p) −µ1(p)− µ2(p)

)
.

We recover the fact that IndGB µ is reducible if (µ1/µ2)(p) ∈ {p±1}. More importantly,
specializing to µ1(p) = p−1/2 and µ2(p) = p1/2 we see that (2.9) specializes to(

1 0
p−1 − 1 −1

)
and we obtain that StI is a line on which S and T both act by −1.

Proposition 2.57. The Steinberg representation St is square-integrable.

Proof. By Lemma 2.43 it is enough to check that one non-zero matrix coefficient is

square-integrable. Let v ∈ StI and ṽ ∈ S̃t
I
(both lines) be such that ⟨v, ṽ⟩ = 1.

Then ∫
G/Z

|⟨St(g)v, ṽ⟩|2dg =
∑

x∈W̃/Z

|⟨St(x)v, ṽ⟩|2 vol(IxIZ/Z).

Note that we have volG/Z(IxIZ/Z) = volZ(Z ∩ I)−1 volG(IxI) (exercise!). Moreover
for any k, k′ ∈ I we have ⟨St(kxk′)v, ṽ⟩ = ⟨St(x)v, ṽ⟩ and so we have

⟨St([IxI])v, ṽ⟩ = vol(IxI) vol(I)−1⟨St(x)v, ṽ⟩.

This allows us to express the above integral as

volZ(Z ∩ I)−1 vol(I)
∑

x∈W̃/Z

|⟨St([IxI])v, ṽ⟩|2p−l(x).

Using Proposition 2.55 we see that we have ⟨St([IxI])v, ṽ⟩ ∈ {±1} for any x ∈ W̃ .

Using the fact that there are exactly two elements of W̃/Z of a given length in Z≥0,
the above integral equals

2 volZ(Z ∩ I)−1 vol(I)
∑
a≥0

p−a <∞.

□
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Remark 2.58. A similar argument shows that the trivial irreducible representation
of G is not square-integrable.

Proposition 2.59. If (V, π) is a supercuspidal representation of G then V I = 0.

Proof. We go back to the computation to prove (3) implies (1) in Theorem 2.38,
this time with the Iwahori subgroup I instead of a very small Ki. Let v ∈ V I , then
for large enough a ∈ Z we have π(eI)π(diag(p

a, 1))v = 0. The vector v is invariant
under I so we have

π([Idiag(pa, 1)I])v =
vol(Idiag(pa, 1)I)

vol(I)
π(eI)π(diag(p

a, 1))v = 0.

In H(G, I) we have [Idiag(pa, 1)I] = (ST )a as soon as a ≥ 0, so we obtain that the
action of ST on V I is nilpotent. But ST is invertible in H(G, I): we already know
that T is invertible, and S(S − p+ 1) = peI . □

Remark 2.60. Pushing this argument further, one can prove Casselman’s criterion
for square-integrability (see [Cas, Theorem 4.4.6] or [Ren10, Théorème VII.1.2]): one
can read whether a representation of G is square-integrable on its Jacquet module.
This generalizes to arbitrary connected reductive groups as well (but classifying rep-
resentations as in Theorem 2.32 becomes a very complicated combinatorial problem
for general groups).

2.8. The unramified Hecke algebra and the Satake isomorphism.

Lemma 2.61. Fix Haar measures on G and B. The map

H(G,K0) −→ H(B,B ∩K0)

f 7−→ vol(K0)

vol(B ∩K0)
f |B

is a morphism of Hecke algebras.

Proof. First note (exercise) that H(B) is indeed an associate algebra for the convo-
lution product defined using a left Haar measure, even though B is not unimodular.

We use the BK0 integration formula 2.13. For f1, f2 ∈ H(G,K0) and b ∈ B,

(f1 ∗ f2)(b) =
∫
G

f1(g)f2(g
−1b) dg

=

∫
B

∫
K0

f1(ak)f2(k
−1a−1b) dk da

= volK0(K0)

∫
B

f1(a)f2(a
−1b) da

where volK0 is the volume with respect to the chosen Haar measure on K0. Recall
that the Haar measures on G, K0 and B are chosen to be compatible for the inte-
gration formula, and this compatibility is equivalent to volB(B ∩ K0) volK0(K0) =
volG(K0) (apply the integration formula to the characteristic function of K0). Multi-
plying both sides of the above equation by volK0(K0) shows that the mapH(G,K0)→
H(B,B ∩K0) preserves ∗. □
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Lemma 2.62. Choose Haar measures on T and N , determining a left Haar measure
on B = TN (the product measure). Then the map ϕ : H(B) → H(T ), f 7→(
t 7→

∫
N
f(tn)dn

)
is a morphism of algebras.

Proof. We compute ϕ(f1 ∗ f2)(t) for t ∈ T :∫
N

∫
B

f1(b)f2(b
−1tn) db dn =

∫
N

∫
T

∫
N

f1(xu)f2(u
−1x−1tn) du dx dn

=

∫
T

∫
N

∫
N

f1(xu)f2(x
−1t(t−1xu−1x−1t)n) dn du dx

=

∫
T

∫
N

f1(xu)ϕ(f2)(x
−1t) du dx

=

∫
T

ϕ(f1)(x)ϕ(f2)(x
−1t) dx.

□

In particular we obtain by composition a morphism of unital algebrasH(G,K0)→
H(T, T0) ≃ C[T/T0] (a group algebra because T is commutative). For reasons ex-

plained below, it is useful to twist this morphism by δ
1/2
B .

Definition 2.63. Normalize the Haar measures on G, T and N so that K0, T0 and
N0 all have measure 1. The Satake transform Sat : H(G,K0)→ H(T, T0) = C[T/T0]
is the morphism of unital algebras defined by Sat(f)(t) = δ

1/2
B (t)

∫
N
f(tn)dn.

Theorem 2.64 (Satake). The Satake transform takes values in C[T/T0]W and in-
duces an isomorphism H(G,K0) ≃ C[T/T0]W .

Proof. The fact that the image of Sat is contained in C[T/T0]W will be proved later
(Lemma 3.4), since it is natural to use orbital integrals for this (of course there will
be no circular argument . . . ). Note that this invariance property is the reason for

the normalisation by δ
1/2
B .

Granting this, we are left to show that the image of Sat contains C[T/T0]W
and that Sat is injective. By the Cartan decomposition the characteristic functions
fa,b of the sets K0diag(p

a, pb)K0 with a ≥ b form a basis of H(G,K0). Similarly
we have a basis ea,b = [diag(pa, pb)] + [diag(pb, pb)] of C[T/T0]. Write Sat(fa,b) =∑

a′≥b′ λ(a, b, a
′, b′)ea′,b′ . It is clear that λ(a, b, a, b) ∈ R>0, and that λ(a, b, a′, b′) = 0

if a′ + b′ ̸= a+ b (consider determinants).
For t = diag(x, y) and n ∈ N the product tn belongs to a unique double coset

K0diag(p
a, pb)K0 with a ≥ b. By Lemma 2.65 below we have a− b ≥ |v(x)− v(y)|.

This implies that for any d ∈ Z and c ∈ Z≥0 we have

(2.10) Sat
( ⊕

a≥b
a+b=d
a−b≤c

Cfa,b
)
⊂
⊕
a≥b
a+b=d
a−b≤c

Cea,b.

With this inclusion and the observation that λ(a, b, a, b) ̸= 0, one easily shows by
induction on c ≥ 0 that the inclusion (2.10) is an equality, showing that Sat is
surjective. Comparing dimensions (or using a similar induction) we obtain that Sat
is also injective. □
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Lemma 2.65. Let t = diag(x, y) ∈ T and c ≥ 0, then for n =

(
1 u
0 1

)
we have

tn ∈ K0diag(p
a, pb)K0 for some a, b satisfying b+ c ≥ a ≥ b if and only if

|v(x)− v(y)| ≤ c and v(u) ≥ −c− v(x) + v(y)

2
.

Proof. Let (a, b) be the unique pair of integers satisfying

a ≥ b and tn ∈ K0diag(p
a, pb)K0.

We have to prove the equality

(2.11) a− b = max (|v(x)− v(y)|,−2v(u)− v(x) + v(y)) .

First we assume that we have v(x) ≥ v(y).

• If v(u) ≥ v(y)− v(x) then

tn =

(
1 uxy−1

0 1

)
t

belongs to K0t and we have

−2v(u)− v(x) + v(y) ≤ v(x)− v(y)

so the equality (2.11) holds with a− b = v(x)− v(y).

• If v(u) < v(y)− v(x) we write(
u−1x−1y −1

1 0

)
tn

(
1 0
−u−1 1

)
=

(
u−1y 0
0 ux

)
.

We have v(−u−1) ≥ v(u−1x−1y) > 0 so diag(u−1y, ux) belongs to K0tnK0.
Furthermore we have

v(u−1y)− v(ux) = −2v(u) + v(y)− v(x) > v(x)− v(y) ≥ 0

so we have found the double coset appearing in the Cartan decomposition in
which tn lies and we have

a− b = −2v(u) + v(y)− v(x).

We have already observed above the inequality

−2v(u) + v(y)− v(x) > v(x)− v(y)

so the equality (2.11) holds.
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We are left to prove (2.11) in the case where v(x) < v(y). To avoid repeating
computations we observe that the Cartan decomposition is stable under transposi-
tion and we write(

0 1
1 0

)(
x 0
xu y

)(
0 1
1 0

)
=

(
y xu
0 x

)
=

(
x′ x′u′

0 y′

)
where x′ = y, y′ = x and u′ = y−1xu. Thanks to the equalities

|v(x)− v(y)| = |v(x′)− v(y′)|
and − 2v(u)− v(x) + v(y) = −2v(u′)− v(x′) + v(y′)

we are reduced to the previous case. □

Remark 2.66. (1) In particular, H(G,K0) is commutative. This can also be
proved by observing that the anti-automorphism g 7→ tg of G preserves the
Cartan decomposition.

(2) One can check that the Satake isomorphism can be defined over Z[p1/2], and
is still an isomorphism over this ring.

Definition 2.67. We say that an irreducible smooth representation (V, π) is unram-
ified if V K0 ̸= 0.

The Satake isomorphism gives a simple description of all unramified represen-
tations of G: by Lemma 2.10 they correspond bijectively to C-algebra morphisms
H(G,K0)→ C (any simple finite-dimensional H(G,K0)-module is one-dimensional
since H(G,K0) is commutative). More precisely, writing C[T/T0] = C[X±1

1 , X±2
2 ]

where X1 (resp. X2) corresponds to diag(p, 1) (resp. diag(1.p)), we have C[T/T0]W =
C[X1 +X2, (X1X2)

±1]. Therefore characters of H(G,K0) are parametrized by pairs
(x1, x2) ∈ (C×)2 up to permutation (x1, x2) 7→ (x2, x1).

Proposition 2.68. Any unramified representation of G is isomorphic to

• χ ◦ det for some unramified character Q×
p → C×, or

• IndGB µ for some unramified character µ = µ1 ⊗ µ2 such that µ1(p)/µ2(p) ̸∈
{p±1}.

Proof. Since I ⊂ K0, Proposition 2.59 implies that for any supercuspidal (V, π) we
have V K0 = 0. By the classification theorem 2.32, we are left to consider (IndGB µ)

K0 .
Using the Iwasawa decomposition, we see that this space vanishes if µ is ramified,
and is one-dimensional if µ is unramified. □

The explicit comparison of the two classifications of unramified representations
(i.e. the relation xi = µi(p) up to the action of the Weyl group) is left as an exercise.

Remark 2.69. (1) The definition of the Satake morphism and proof that it is
an isomorphism are easier than the complete classification. This becomes
even more true for groups more complicated than GL2.

(2) The phenomenon that IndGB µ is reducible in exceptional cases is not visible
on the Satake isomorphism.
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3. Harmonic analysis

We start doing harmonic analysis in the following sense: relating conjugacy
classes in G (more precisely, orbital integrals of functions on G, defined below) to
traces trπ(f) for π an admissible representation of G and f ∈ H(G) (which makes
sense because the image of π(f) has finite dimension).

3.1. Conjugacy classes in G. The classification of conjugacy classes in G is a
special case of the classification of GLn(k)-orbits under conjugation on Mn(k) where
k is a commutative field (deduced from the structure theorem for finitely generated
k[X]-modules, in the special case of torsion modules). There are four types of
conjugacy classes:

• central elements, i.e. Z,

• non-semisimple elements, i.e. elements conjugated to z

(
1 1
0 1

)
for some

(uniquely determined) z ∈ Z,

• hyperbolic (or split) semisimple regular elements, conjugated to diag(x, y) ∈
T for x ̸= y, uniquely determined up to the action of NG(T )/T = W , that
is up to (x, y) 7→ (y, x),

• elliptic semisimple regular elements, determined by an irreducible charac-
teristic polynomial X2 + aX + b ∈ Qp[X] with b ̸= 0 (explicitly, take the
companion matrix). These can be grouped according to the quadratic ex-
tension E of Qp splitting this polynomial as follows. Choose an isomorphism
of Qp-vector spaces ψ : Q2

p ≃ E, then any x ∈ E× defines mx ∈ AutQp(E)

(multiplication by x), and ψ−1 ◦ mx ◦ ψ ∈ G is elliptic semisimple regular
if and only if x ∈ E ∖ Qp. The subgroup T ′ = {ψ−1 ◦ mx ◦ ψ |x ∈ E}
of G is called an anisotropic (or elliptic) maximal torus of G. Note that
T ′/Z ≃ E×/Q×

p is compact. Denoting Gal(E/Qp) = {1, σ}, it is easy to
check that NG(T

′)/T ′ = Z/2Z, the non-trivial element being represented by
ψ−1 ◦ σ ◦ ψ.

We denote by Grs the set of semisimple regular elements of G. For T ′ a maximal
torus of G (elliptic or conjugated to our “standard” split torus T ) we will denote by
T ′
G−reg = T ′ ∖ Z the subset of regular elements.
Central or non-semisimple elements of G (i.e. G ∖ Grs) form a closed subset of

G (in fact, Zariski-closed because they are the solutions of the equation tr2 = 4det)
of measure 0. Indeed, Z is a sub-p-adic manifold of G of dimension 1 < 4 = dimG,
and it is easy to check that the differential of tr2−4 det does not vanish at any point
of G∖ (Z ∪Grs) so this subset of G is a submanifold of dimension 3.

For g ∈ G let D(g) = 4 − det(g)−1 tr(g)2, so that G ∖ Grs is also the vanishing
locus of D. It is not difficult to compute that for T ′ a maximal torus of G and g ∈ T ′

we have

D(g) = det (1− Ad(g) |Lie(G)/Lie(T ′)) .
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3.2. Orbital integrals.

Definition 3.1. For γ ∈ G and f ∈ C∞
c (G), define the orbital integral of f at γ as

Oγ(f) :=

∫
Gγ\G

f(g−1γg) dġ

where Gγ is the centralizer of γ in G, provided the integral converges absolutely.

Remark 3.2. (1) We have a well-defined right G-invariant quotient measure on
Gγ\G because G and Gγ are both unimodular (we will give a “differential”
definition of this measure in the proof of Theorem 3.12). Note that the orbital
integral depends on choices of Haar measures on G and Gγ. Via the bijection
Gγ\G ≃ G/Gγ, Gγg 7→ g−1Gγ, the quotient measures are identified and so
we also have Oγ(f) =

∫
G/Gγ

f(gγg−1) dġ.

(2) For g ∈ G, denoting f g : h 7→ f(ghg−1), we have Oγ(f
g) = Oγ(f).

(3) If h ∈ G then, using the isomorphism Ad(h) : Gh−1γh → Gγ to match Haar
measures on these two groups, we have Oγ(f) = Oh−1γh(f): use the measure-
preserving bijection Gγ\G ≃ Gh−1γh\G, g 7→ h−1g.

The integrand in the definition of an orbital integral is clearly smooth. If γ is
semisimple we will show that the integrand is also compactly supported (Lemma
3.5 below). More precisely, let K be a compact open subgroup such that f is bi-
K-invariant. We will show that there are only finitely many double cosets [g] =
GγgK ⊂ G such that g−1γg belongs to the support of f , and so the integrand
in Definition 3.1 is smooth and compactly supported. By the calculation of the
quotient measure in Example A.5, we have

(3.1) Oγ(f) =
∑

[g]∈Gγ\G/K

f(g−1γg)
volG(K)

volGγ (Gγ ∩ gKg−1)
.

Note that these statements are trivial if γ is central, so we will consider semi-simple
regular γ’s.

First look at the case where γ is regular semisimple hyperbolic. Up to conjugacy
we may assume that γ ∈ T , so that Gγ = T .

Lemma 3.3. Let CG be a compact subset of G. Let CT be a compact subset of
TG−reg.

(1) There exists a compact subset X of N such that for any γ ∈ CT , n ∈ N ∖X
and k ∈ K0 we have (nk)−1γnk ̸∈ CG.

(2) The set of Tg ∈ T\G such that there exists γ ∈ CT for which g−1γg belongs
to CG is compact.

Proof. (1) For γ = diag(x, y) ∈ CT and n =

(
1 u
0 1

)
∈ N we have

n−1γn = γ

(
1 (1− y/x)u
0 1

)
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so if (nk)−1γnk ∈ CG for some k ∈ K0 we have(
1(1− y/x)u

0 1

)
∈ C−1

T K0CGK0

and so (1− y/x)u belongs to a compact subset of Qp. On CT the valuation
of 1 − y/x is bounded (in fact it only takes finitely many values) and so u
belongs to a compact subset of Qp.

(2) The set in question is easily seen to be a closed subset of T\G. By the
Iwasawa decomposition G = TNK0 and the previous point it is contained in
a compact subset of T\G, namely the image of XK0.

□

This suggests calculating the orbital integral in this case using the integration
formula for the Iwasawa decomposition given in Lemma 2.13. Normalizing Haar
measures as in this lemma, it is clear that the quotient measure on T\G (both
groups are unimodular so this is a special case of Example A.5) can be computed as

F ∈ Cc(T\G) 7−→
∫
N×K0

F (nk)dndk.

So for γ ∈ TG−reg and f ∈ C∞
c (G) we have

Oγ(f) =

∫
N×K0

f(k−1n−1γnk) dn dk.

As above denote γ = diag(x, y) and n =

(
1 u
0 1

)
, so that we have

n−1γn = γ

(
1 (1− y/x)u
0 1

)
.

Using the change of variable u′ = (1− y/x)u we obtain

Oγ(f) = |1− y/x|−1

∫
N×K0

f(k−1γn′k) dn′ dk

= |x/y|1/2|x/y − 1|−1/2|y/x− 1|−1/2

∫
N×K0

f(k−1γnk) dn′ dk

= |D(γ)|−1/2δ
1/2
B (γ)

∫
N×K0

f(k−1γnk) dn′ dk.(3.2)

We recognize a generalization of the formula defining the Satake morphism. This
allows us to prove the outstanding claim in Theorem 2.64.

Lemma 3.4. For any f ∈ H(G,K0), Sat(f) ∈ H(T, T0) is invariant under the Weyl
group W = {1, w} of T .

Proof. Any coset in T/T0 contains a regular element γ, and Sat(f)(γ) = |D(γ)|1/2Oγ(f)
by 3.2. By the third point in Remark 3.2, this is invariant under w. □
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Lemma 3.5. Let T ′ be a maximal torus of G. Let CT ′ be a compact subset of T ′
G−reg.

Let CG be a compact subset of G. The set of g ∈ T ′\G such that there exists γ ∈ CT ′

for which g−1γg belongs to CG is compact.
In particular for any f ∈ C∞

c (G) we have:

• for any semisimple γ ∈ G the sum on the right-hand side of (3.1) has finitely
many non-zero terms,

• for any maximal torus T ′ of G the map

T ′
G−reg −→ C

γ 7−→ Oγ(f)

is smooth.

Proof. If T ′ is split then up to conjugating by an element of G we may assume that
T ′ is the diagonal torus T , in which case the first statement is Lemma 3.3. So assume
that T ′ is elliptic. There exists a quadratic field extension E of Qp such that the
characteristic polynomial of any element of T ′ splits over E. In fact E is unique up
to isomorphism and can be taken to be the sub-Qp-algebra of M2(Qp) generated by
the elements of T ′, but it will be clearer to keep it abstract. Let GE be GL2(E),
which contains G as a subgroup. Let T ′

E be the centralizer of T ′ in GE, which is also
the group of invertible elements in the sub-E-vector space of M2(E) generated by
the elements of T ′. Note that this vector space is two-dimensional and generated by
1 and any element of T ′

G−reg. There exists h ∈ GE such that hT ′
Eh

−1 is the subgroup
of diagonal matrices in GE. Let N

′
E be the subgroup

h−1

(
1 E
0 1

)
h

of GE. It is normalized by T ′
E, and it depends on the choice of h but the choice will

not matter for the argument (as long as h is fixed). Denote Gal(E/Qp) = {1, σ}.
We simply denote by σ the obvious action on GE, which leaves G fixed pointwise.
The choice of h gives an isomorphism ϕ : T ′

E ≃ (E×)2: if ϕ(t) = (t1, t2) then
hth−1 = diag(t1, t2). For γ ∈ T ′

G−reg we have ϕ(γ) = (x, σ(x)) for some x ∈ E×∖Q×
p .

Using the above description of T ′
E and the equality σ(γ) = γ we see that for any

t ∈ T ′
E, denoting ϕ(t) = (t1, t2), we have

ϕ(σ(t)) = (σ(t2), σ(t1)).

Let KE be a maximal compact subgroup of GE (for example GL2(OE); the proof of
Lemma 2.1 generalizes to GE). The proof of Lemma 2.2 (Iwasawa decomposition)
also generalizes, so we have GE = T ′

EN
′
EKE. The proof of Lemma 3.3 also gener-

alizes: there is a compact subset X of N ′
E such that for any n ∈ N ′

E ∖X, γ ∈ CT ′

and k ∈ KE we have (nk)−1γnk ̸∈ CG.
Let P be the set of (t, n, k) ∈ T ′

E ×N ′
E ×KE such that

• g = tnk belongs to G, i.e. it is fixed by σ, and

• g−1γg belongs to CG for some γ ∈ CT ′ .
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For (t, n, k) ∈ P we have n ∈ X, and so

t−1σ(t) = nkσ(k)−1σ(n)−1

belongs to

T ′
E ∩

(
XKEσ(KE)

−1σ(X)−1
)
,

a compact subset of T ′
E. There exists c ∈ R≥0 such that for any diag(x, y) in this

compact subset of T ′
E we have |v(x)| ≤ c. For t ∈ T ′

E, denoting ϕ(t) = (t1, t2) we
have

ϕ(t−1σ(t)) = (t−1
1 σ(t2), t

−1
2 σ(t1)).

In particular if (t, n, k) ∈ P then we have |v(t1)− v(t2)| ≤ c. In particular, because
v(E×) is a subgroup of 1

2
Z, up to multiplying t on the left by an element of Z we

may assume that we have

0 ≤ v(t1) ≤ c+ 1/2 and 0 ≤ v(t2) ≤ c+ 1/2,

which defines a compact subset Y of T ′
E. We have shown that for g ∈ G such that

g−1γg belongs to CG for some γ ∈ CT ′ there exists z ∈ Z such that zg belongs to
the compact subset G ∩ (Y XKE) of G. In particular the set{

Zg ∈ Z\G
∣∣∃γ ∈ CT ′ , g−1γg ∈ CG

}
is relatively compact in Z\G, and since it is clearly closed in Z\G it is simply
compact.

The remaining claims in the lemma are simple consequences of the first claim
and are left as an exercise. □

Remark 3.6. (1) A similar argument works for semisimple elements in arbi-
trary reductive groups, see [HC70, Lemma 19, p.52].

(2) For non-semisimple elements it is not true that the right-hand side of (3.1)
has finitely many non-vanishing terms, but the integral defining the orbital
integral does converge absolutely. For GL2 this is an exercise; for arbitrary
reductive groups it is a theorem of Ranga Rao and Deligne (see [RR72]).

(3) For ω a smooth character of Z, the same arguments apply to orbital integrals
of smooth ω-equivariant functions on G which have compact support modulo
Z.

Lemma 3.7. Let f ∈ C∞
c (G). Let T ′ be a maximal torus in G. Then the support

of

ϕ : T ′
G−reg −→ C

t 7−→ Ot(f)

is relatively compact in T ′. If the support of f is contained in Grs then the support
of ϕ is compact.
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Proof. The map Ξ = (tr, det) : G → Qp × Q×
p is continuous. Let us show that the

restriction Ξ|T ′ of Ξ to T ′ is proper. If T ′ is elliptic then T ′ can be identified with
E× for some quadratic extension E/Qp and via this identification the determinant
T ′ → Q×

p is given by the norm NE/Qp : E× → Q×
p . This norm map is proper

(consider valuations) so det |T ′ is proper and ΞT ′ is proper. If T ′ is split we have an
identification T ′ ≃ Q×

p ×Q×
p and the restriction of Ξ to T ′ is identified with the map

Q×
p ×Q×

p −→ Qp ×Q×
p

(x, y) 7−→ (x+ y, xy).

Any compact subset in Qp×Q×
p is contained in the union of finitely many compact

open subsets of the form paZp × pbZ×
p . If x, y ∈ Q×

p are such that x + y ∈ paZp
and xy ∈ pbZ×

p then either x and y both have valuation b/2, in which case they lie

in the compact subset pb/2Z×
p of Q×

p , or they have distinct valuations and we have
a = v(x+ y) = min(v(x), v(y)), which implies

a ≤ min(v(x), v(y)) ≤ max(v(x), v(y)) ≤ b− a.

This shows that the closed subset (Ξ|T ′)−1(paZp × pbZ×
p ) of T is compact.

Now ϕ vanishes away from the compact subset (ΞT ′)−1(Ξ(suppf)) of T ′. If f is
supported on Grs then this compact subset is contained in

Ξ−1({(t, d) | t2 ̸= 4d}) = Grs.

□

Orbital integrals will show up naturally in the trace formula. But right now
we will compute these in a special case. This will allow us to estimate them in
general, and such estimates will be useful when we study characters of admissible
representations of G.

Let γ be a semisimple regular element of G. Assume that γ is compact, i.e. the
sequence (γn)n∈Z is bounded, equivalently its closure is compact. Equivalently, γ is
conjugated to an element of K0 (by Lemma 2.1). We will compute Oγ(eK0).

If γ is hyperbolic, i.e. if its eigenvalues are in Qp, then we may assume that
γ ∈ T0 and so Gγ = T . Since eK0 is bi-K0-invariant Formula (3.2) gives Oγ(eK0) =
|D(γ)|−1/2 vol(T0)

−1.
Consider now the case where γ is elliptic, i.e. E := Qp[γ] ⊂ M2(Qp) is a qua-

dratic extension of Qp. Recall that Gγ can be identified with E×. Notice that the
set of [g] ∈ Gγ\G/K0 such that g−1γg ∈ K0 maps (by g 7→ g−1γg . . . ) bijectively
onto the set of K0-conjugacy classes [γ′] in K0 having the same characteristic poly-
nomial as γ. Let G1 be the groupoid associated to the action of Gγ on G/K0 by left
multiplication, i.e. the objects of G1 are the elements of G/K0 and the set of mor-
phisms from xK0 to yK0 is the set of h ∈ Gγ such that hxK0 = yK0 (equivalently,
h ∈ yK0x

−1). The group of automorphisms of an object xK0 of G1 is Gγ ∩ xK0x
−1.

We see that the groupoid G1 has additional structure: each automorphism group
is endowed with a topology for which it is a topological group, and for any mor-
phism between two objects, the resulting group isomorphism between automorphism
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groups is a homeomorphism. In fact each automorphism group is profinite. Fur-
thermore each automorphism group AutG1(x) is endowed with a Haar measure µx,
induced by the fixed Haar measure on Gγ ≃ E×. So G1 is naturally a “measured
topological groupoid” (this terminology is not standard . . . ). Note that Oγ(eK0) can
be interpreted as the mass of this measured topological groupoid: Formula (3.1) can
be written abstractly

Oγ(eK0) =
∑
[x]

µx(AutG1(x))
−1

where the sum is over isomorphism classes in G1. Let G2 be the groupoid of Zp[γ]-
modules which are finite free of rank 2 over Zp (equivalently, finite torsion-free
Zp[γ]-modules which become one-dimensional over E after E ⊗Zp[γ] ·). We have an
obvious functor G1 → G2 mapping the object gK0 to the Zp-lattice g(Z2

p) with the

obvious action of γ, and mapping h ∈ MorG1(xK0, yK0) = Gγ ∩ yK0x
−1 to the in-

duced isomorphim of Zp[γ]-modules x(Z2
p)→ y(Z2

p). This functor is easily seen to be
an equivalence of categories. Note that for an object L of G2 the group of automor-
phisms of L contains Zp[γ]× and is contained in E×, this inclusion being compatible
with the above functor and the identification of Gγ with E×. By compactness, the
group of automorphisms of L is even contained in O×

E . We deduce

Oγ(eK0) =
∑
[L]

vol({λ ∈ O×
E |λL = L})−1

where the sum is over isomorphism classes in G2, and the volume is taken for the fixed
Haar measure on Gγ ≃ E×. The following lemma gives an explicit representative in
each isomorphism class.

Lemma 3.8. (1) Let L be a Zp[γ]-lattice which is free of rank two over Zp. Then
there is an isomorphism of Zp[γ]-modules ϕ : L ≃ ϕ(L) with Zp[γ] ⊂ ϕ(L) ⊂
OE, and ϕ(L) is uniquely determined by the isomorphism class of L.

(2) Let L be a Zp-submodule of OE which contains Zp[γ]. Then L is a Zp-algebra
(i.e. it is stable under multiplication), in particular it is a Zp[γ]-module, and
the group of automorphisms of the Zp[γ]-module L is L×.

Proof. Choose an isomorphism of E-vector spaces ϕ : Qp ⊗Zp L ≃ E. Since L is
p-torsion free, L embeds in Qp ⊗Zp L and so ϕ embeds L in E. The OE-module
OEϕ(L) ⊂ E is of the form ϖi

EOE for some i ∈ Z, where ϖE is a uniformizer of
E. Up to composing ϕ with multiplication by ϖ−i

E , we may assume that OEϕ(L) =
OE. In particular ϕ(L) contains an element u ∈ O×

E . Up to composing ϕ with
multiplication by u−1 we can also assume that 1 ∈ ϕ(L), and so Zp[γ] ⊂ ϕ(L) ⊂ OE.
This shows existence.

Let x ∈ OE be such that OE = Zp[x]. Then any sub-Zp-module L of OE of rank
2 and containing Zp is of the form Zp ⊕ Zppnx, where n is determined by the index
|OE/L| = pn. From this description it is clear that L is stable under multiplication.

Now if Zp[γ] ⊂ L,L′ ⊂ OE are Zp[γ]-modules, any isomorphism (of Zp[γ]-
modules) L ≃ L′ is multiplication by some t ∈ L′ (t being the image of 1 ∈ L),
because such an isomorphism is determined by its restriction to Zp[γ]. Since L and
L′ both generate OE as an OE-module we have t ∈ O×

E , which implies |OE/L| =



44 OLIVIER TAÏBI

|OE/L′| and so L = L′. This shows uniqueness. Considering the inverse morphism
we see that t−1 also belongs to L, and so the group of automorphisms of L is L×. □

We deduce

(3.3) Oγ(eK0) =
∑

Zp[γ]⊂L⊂OE

vol(L×)−1

where the sum is over Zp-modules. To obtain a simple explicit formula it remains
to compute the index of each L× in O×

E .

Lemma 3.9. Let L be an order for E, i.e. a sub-Zp-algebra of OE which has rank
2 as a Zp-module. Let n ∈ Z≥0 be the integer defined by the equality |OE/L| = pn.
We have

|O×
E/L

×| =


pn if E/Qp is ramified,,

1 if L = OE,
pn + pn−1 if E/Qp is unramified and L ⊊ OE.

Proof. As in the proof of the previous lemma choose x ∈ OE such that OE = Zp[x].
If E/Qp is ramified, we may and do assume that x generates the maximal ideal of
OE (equivalently, 2v(x) = v(p)).

If E/Qp is unramified we have

|O×
E/(1 + pOE)| = |F×

p2| = p2 − 1.

If E/Qp is ramified we have

|O×
E/(1 + pOE)| = |O×

E/(1 + xOE)||(1 + xOE)/(1 + pOE)| = p|F×
p | = p2 − p.

For any i ≥ 1 we have (1 + piOE)/(1 + pi+1OE) ≃ OE/pOE. By induction on i ≥ 1
we find

|O×
E/(1 + piOE)| =

{
p2i − p2i−2 if E/Qp is unramified,

p2i − p2i−1 if E/Qp is ramified.

For L and n as in the lemma we have L = Zp⊕Zppnx. The case n = 0 is trivial
so assume n > 0. In this case we have L× = Z×

p + Zppnx and so the morphism
Z×
p → L×/(1 + pnOE) is surjective. The kernel of this morphism is 1 + pnZp, so we

have
|L×/(1 + pnOE)| = pn − pn−1.

Decomposing

|O×
E/L

×| = |O×
E/(1 + pnOE)|

|L×/(1 + pnOE)|−1

gives the formula in the lemma. □

Let m ∈ Z≥0 be defined by the equality |OE/Zp[γ]| = pm. Plugging the result of
Lemma 3.9 into Formula (3.3), we finally obtain
(3.4)

Oγ(eK0) vol(O×
E) =

{
(1 + p+ · · ·+ pm) = (pm+1−1)

(p−1)
if E/Qp is ramified,

(1 + (1 + p−1)(p+ · · ·+ pm)) = pm+1+pm−2
p−1

if E/Qp is unramified.
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Proposition 3.10. There are constants C > c > 0 such that for any γ ∈ Grs we
have C|D(γ)|−1/2 ≥ Oγ(eK0) ≥ c|D(γ)|−1/2.

Note that this makes sense even though the orbital integrals depend on choices
of measures: there are finitely many conjugacy classes of maximal tori in G, and we
may fix a Haar measure on each maximal torus, as well as a Haar measure on G.
Different choices only affect the constants C and c.

Proof. For γ ∈ Grs not conjugated to an element of K0 it is clear that Oγ(eK0) =
0, so we may restrict to γ ∈ Grs ∩ K0. For γ split this is clear by the above
computation Oγ(eK0) = |D(γ)|−1/2. For γ elliptic it remains to relate the integer
m appearing in Formula (3.4) to |D(γ)|1/2. As above introduce x ∈ OE such that
we have OE = Zp[x]. Up to multiplying x by an element of Z×

p we may assume
that we have γ = pmx + y with y ∈ Zp. Write σ for the non-trivial element of
Gal(E/Qp). We have D(γ) = (γ/σ(γ)− 1)(σ(γ)/γ − 1), and since γ is compact we
have v(D(γ)) = 2v(γ−σ(γ)) = 2(m+v(x−σ(x))). The estimate of the proposition
is easily deduced from this equality and Formula (3.4). □

Corollary 3.11. Let f ∈ H(G). Then there exists C > 0 such that for any γ ∈ Grs

we have |Oγ(f)| ≤ C|D(γ)|−1/2.

As in Proposition 3.10 the precise constant depends not only on f , but also on
choices of Haar measures. As before we fix Haar measures on maximal tori of G.

Proof. Let X = {g ∈ supp(f)|D(g) = 0}, a compact subset of G. For any g ∈ X,
there exists z ∈ Z and h ∈ G such that g ∈ zhK0h

−1 (in factK0 could be replaced by
any neighbourhood of 1 in G). By compactness of X there is a finite family (zi, hi)i∈I
such thatX ⊂

⋃
i∈I zihiK0h

−1
i . Therefore there exists c1 > 0 and frs ∈ C∞

c (Grs,R≥0)

(for example, supported on supp(f)∖
⋃
i∈I zihiK0h

−1
i ) such that

|f | ≤ frs +
∑
i∈I

c1 vol(K0)
−11zihiK0h

−1
i
.

By Lemma 3.5 and Lemma 3.7 for any maximal torus T ′ of G the function

F : T ′
G−reg −→ C

γ 7−→ Oγ(frs)

is smooth and compactly supported, whence bounded.
By Proposition 3.10 there exists a constant C > 0 such that for any γ ∈ Grs,

Oγ(vol(K0)
−11zihiK0h

−1
i
) = Oγz−1

i
(eK0) ≤ C|D(γ)|−1/2.

We obtain

|Oγ(f)| ≤
(

sup
γ′∈Grs

(
|D(γ′)|1/2Oγ′(frs)

)
+ |I|c1C

)
|D(γ)|−1/2.

□
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3.3. The Weyl integration formula. For T ′ a maximal torus of G we have a map
ϕT ′ : T ′

G−reg × T ′\G → Grs, (t, ġ) 7→ g−1tg. Then (t, ġ) and (s, ḣ) map to the same

point if and only if hg−1 ∈ NG(T
′) and s = hg−1tgh−1. Since NG(T

′)/T ′ = Z/2Z
we get that each non-empty fiber of ϕT ′ has two elements. Let T be a set of
representatives of maximal tori of G, under conjugation by G. Note that T is finite.

Theorem 3.12 (Weyl integration formula). Let f be a measurable function on G.
Then ∫

G

f(g) dg =
∑
T ′∈T

1

2

∫
T ′
G−reg

|D(t)|Ot(f) dt

if one side is absolutely convergent (i.e. convergent if we substitute |f | for f).

Note that the complex Haar measure Ot(f)dt on T ′ does not depend on the
choice of Haar measure on T ′, since Ot(f) is defined using a quotient measure.

Proof. Since G∖Grs has measure zero and Grs =
⊔
T ′∈T Im(ϕT ′), by linearity of the

formula to be proved we may assume without loss of generality that there exists
T ′ ∈ T such that f vanishes identically outside Im(ϕT ′). We will apply Theorem
B.7 to ϕT ′ . We can write dg = |ωG| where ωG ∈ ΩdimG(G) is left G-invariant

and non-zero, and so ωG corresponds to a non-zero element in
∧dimG(T1G)

∗ =∧dimG Lie(G)∗. By Example B.8, ωG is also right G-invariant. Similarly, we can

choose ωT ′ corresponding to an element of
∧dimT ′

Lie(T ′)∗, inducing a Haar measure
on T ′. We will use these to define a right G-invariant ωT ′\G ∈ ΩdimG−dimT ′

(T ′\G).
For g ∈ G, differentiating the submersion G→ T ′\G, h 7→ T ′hg gives a short exact
sequence

0→ Lie(T ′)→ Lie(G)→ Tġ(T
′\G)→ 0

whose dual gives an isomorphism

ιg :
dimG∧

Lie(G)∗ ≃
dimT ′∧

Lie(T ′)∗ ⊗Qp

dimG−dimT ′∧
Tġ(T

′\G)∗.

In particular we have a basis ωT ′\G,g of the Qp-line
∧dimG−dimT ′

Tġ(T
′\G)∗ such that

ιg(ωG) = ωT ′⊗ωT ′\G,g. We have to check that it depends on g only via g 7→ ġ = T ′g.
If g′ = tg with t ∈ T ′ then we have a commutative diagram

G T ′\G

G

Rg′

Ad(t−1) Rg

where Ad(t−1) : h 7→ t−1ht fixes 1 ∈ G and preserves T ′. We have Ad(t−1)∗ωG =
det(Ad(t−1) | Lie(G)) and Ad(t−1)∗ωT ′ = det(Ad(t−1) | Lie(T ′)), and so ωT ′\G,g′ =
det(Ad(t−1) | Lie(G)/Lie(T ′))ωT ′\G,g. It is easy to check that

det(Ad(t−1) | Lie(G)/Lie(T ′)) = 1
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as this can be computed after tensoring with a finite extension of Qp splitting T ′.
We claim that there is a unique right G-invariant ωT ′\G ∈ ΩdimG−dimT ′

(T ′\G) which
specializes to ωT ′\G,1 at 1̇ = T ′ ∈ T ′\G. Around any point of T ′\G there exists an
open subset U of T ′\G and a local section s : U → G (morphism of p-adic manifolds)
of G→ T ′\G. Define ωT ′\G|U by pulling back ωT ′\G,1 along Rs(?)−1 : T ′\G→ T ′\G.
The previous computation shows that this does not depend on the choice of s, and
it is clear that this construction glues to T ′\G. Note that we recover the existence
of the quotient measure |ωT ′\G| on T ′\G (this is not surprising since the trivial
determinant above implies that the modulus characters of G and T ′ coincide on T ′).

Let t ∈ T ′ and g ∈ G, defining ġ = T ′g ∈ T ′\G. We want to compute the dual
of

dimG∧
d(t,ġ)ϕT ′ :

(
dimT ′∧

Tt(T
′)

)
⊗Qp

(
dimG−dimT ′∧

Tġ(T
′\G)

)
−→

dimG∧
Tg−1tg(G)

in the bases ωT ′ , ωT ′\G and ωG. We have a commutative diagram (vertical maps are
isomorphisms)

T ′ × T ′\G G

T ′ × T ′\G G

ϕT ′

Rt×Rg

ψt

Rtg◦Lg−1

where Ra (resp. La) denotes right (resp. left) multiplication by a and ψt(x, ḣ) =
h−1xtht−1. Taking differentials, we get a commutative diagram

Tt(T
′)× Tġ(T ′\G) Tg−1tgG

Lie(T ′)⊕ Lie(G)/Lie(T ′) LieG

dt,ġ(ϕT ′ )

d1(Rt)⊕d1̇(Rg)

d1,1̇(ψt)

d1(Rtg◦Lg−1 )

Writing x = exp δ = 1 + ϵ + O(δ2) for δ ∈ LieT ′ and h = exp ϵ = 1 + ϵ + O(ϵ2)
for ϵ in a complementary subspace of LieT ′ in LieG, we compute d1,1̇(ψt)(δ, ϵ) =
δ + (Ad(t) − 1)(ϵ). Since ωG is invariant under left and right multiplication maps,
ωT ′ is also invariant under multiplication maps and ωT ′\G is invariant under right
multiplication maps, we obtain

(ϕ∗
T ′ωG) |t,ġ = det (Ad(t)− 1 |Lie(G)/Lie(T ′))× (ωT ′ |t) ∧

(
ωT ′\G|ġ

)
.

The formula now follows from Theorem B.7 and Fubini’s theorem. □

Proposition 3.13. Let ϵ > 0. Any measurable function G → C which coincides
with |D|−1+ϵ on Grs is locally integrable.
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Proof. The function is locally smooth on Grs so we only have to show that for any
x ∈ G∖Grs, there is a neighbourhood U of x in G such that

∫
U∩Grs

|D(g)|−1+ϵ dg <

+∞. Recall that any element of G∖Grs is conjugated to an element of ZN (or even
ZNi for an arbitrary i ∈ Z, using conjugation by T ). The function D is invariant
by conjugation and by multiplication by Z, so we may replace x by zgxg−1 for some
g ∈ G and some z ∈ Z. This allows us to assume that x belongs to K0. We simply
take U = K0. To show that eK0|D|−1+ϵ is integrable, we apply the Weyl integration
formula:

vol(K0)
−1

∫
K0

|D(g)|−1+ϵ dg =
∑
T ′∈T

1

2

∫
T ′
G−reg

|D(t)|ϵOt(eK0) dt

and by Proposition 3.10 we are left to show that for any maximal torus T ′, the
function |D|−1/2+ϵ is locally integrable on T ′ (for the Haar measure on T ′). For
T ′ = T this amounts to bounding∫

Z×
p ∖{1}

|1− x|−1+2ϵ |dx| ≤
∫
Zp∖{0}

|u|−1+2ϵ |du| = vol(Z×
p )
∑
k≥0

p−kpk−2ϵk < +∞.

For T ′ anisotropic, corresponding to a quadratic extension E/Qp, we have∫
O×

E∖Z×
p

|x− σ(x)|−1+2ϵ dx ≤ C

∫
Zp∖{0}

|2ux0|−1+2ϵ |du|

where x0 ∈ OE ∖ Zp is such that σ(x0) = −x0, and we conclude as in the previous
case. □

3.4. Harish-Chandra characters. We now begin the study of characters of rep-
resentations of G. If (V, π) is an admissible representation of G (for example if it
is an irreducible smooth representation of G) then for any f ∈ H(G) the operator
π(f) : V → V has image contained in the finite-dimensional subspace V K for any
compact open subgroup K such that f is left K-invariant. Thus we can define
tr π(f) = tr (π(f) |π(f)(V )), which also equals tr

(
π(f)

∣∣V K
)
for K as above by the

following lemma applied to W = V K and A = π(f)|V K .

Lemma 3.14. Let A be an endomorphism of a finite-dimensional vector space W
over a field. Then trA = tr(A |A(W )).

Proof. Left as an exercise. □

Thanks to the theory of finite-dimensional representation of algebras, if (V1, π1),
. . . , (Vk, πk) are non-isomorphic irreducible smooth representations of G then the
linear forms trπi on H(G) are linearly independent (this follows from the existence
of projection operators, see [Lan02, XVII Theorem 3.7]). In particular the trace of
an admissible semisimple representation of G determines the isomorphism class of
this representation (exercise . . . ).

Theorem 3.15. Let (V, π) be an irreducible smooth representation of G. Then there
is a unique smooth function Θπ : Grs → C such that, extending Θπ arbitrarily to G,
Θπ is locally integrable on G, and for any f ∈ H(G) we have

trπ(f) =

∫
G

f(g)Θπ(g) dg.
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Moreover Θπ is invariant under conjugation by G and |D|1/2Θπ is bounded on Grs.

Remark 3.16. (1) The function Θπ does not depend on the choice of Haar mea-
sure (the measure occurs in the definition of trπ(f) as well).

(2) Using the Weyl integration formula the theorem also gives the expression

trπ(f) =
∑
T ′∈T

1

2

∫
T ′
G−reg

|D(t)|

where |D|1/2Θπ and t 7→ |D|1/2Ot(f) are both bounded (Corollary 3.11), and
the support of the latter is relatively compact in T ′.

Uniqueness and conjugation invariance in Theorem 3.15 are easier than existence
and left as an exercise (use the fact that for any x ∈ Grs there exists a compact open
subgroup K of G such that xK is contained in Grs and Θπ is constant on xK, so
that tr π(1xK) = vol(K)Θπ(x)). The proof of existence is going to be quite long.
First we handle the supercuspidal case.

Lemma 3.17. Let (V, π) be an irreducible supercuspidal representation. Let v ∈ V
and ṽ ∈ Ṽ be such that ⟨v, ṽ⟩ = dπ. Then for any f ∈ H(G),

ġ 7→
∫
G

f(h)⟨π(g−1hg)v, ṽ⟩ dh

is a smooth compactly supported function on G/Z and we have

tr π(f) =

∫
G/Z

∫
G

f(h)⟨π(g−1hg)v, ṽ⟩ dh dġ.

Proof. Let (vi)i be a basis of V such that each vi belongs to aK0-isotypic component.

Let (ṽi)i be the dual basis of Ṽ (this is well-defined by admissibility of V ). Let
ai,j = ⟨π(f)vi, ṽj⟩. By admissibility of π (and since f if bi-K-invariant for some open
subgroup K ⊂ K0) only finitely many of them are non-zero, and tr π(f) =

∑
i ai,i.

Note that π(f)vi =
∑

j ai,jvj, and so for any w ∈ V we have w =
∑

i⟨w, ṽi⟩vi and
π(f)w =

∑
i⟨w, ṽi⟩

∑
j ai,jvj, in particular (taking w = π(g)v)

⟨π(g−1)π(f)π(g)v, ṽ⟩ = ⟨π(f)π(g)v, π̃(g)ṽ⟩ =
∑
i,j

ai,j⟨π(g)v, ṽi⟩⟨vj, π̃(g)ṽ⟩.

This can also be written∫
G

f(h)⟨π(g−1hg)v, ṽ⟩dh =
∑
i,j

ai,j⟨π(g)v, ṽi⟩⟨π(g−1)vj, ṽ⟩.

This function of ġ ∈ G/Z is clearly smooth. By Theorem 2.38 it is compactly
supported. Integrating over ġ ∈ G/Z and using Schur orthogonality (Proposition
2.47) we get∫

G/Z

∫
G

f(h)⟨π(g−1)hg)v, ṽ⟩dġ =
∑
i,j

ai,jd
−1
π ⟨v, ṽ⟩⟨vj, vi⟩ =

∑
i

ai,i = trπ(f).

□
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Now we would very much like to swap integral signs in this formula. This is not
formal, and in fact wrong!

It is however justified if we restrict to g in the subset Gell
rs of elliptic regular

semisimple elements.

Lemma 3.18. Let f ∈ C∞
c (G) and ψ ∈ C∞

c (G,ω) for some smooth character
ω : Z → C×. Then the function (ġ, h) 7→ f(h)ψ(g−1hg) is integrable on G/Z ×Gell

rs

and ∫
G/Z×Gell

rs

f(h)ψ(g−1hg) dġ dh =

∫
Gell

rs

f(h) vol(Gh/Z)Oh(ψ)dh.

Proof. We can assume that f, ψ take values in R≥0. Let T ell be a set of represen-
tatives for the G-conjugacy classes of elliptic maximal tori in G. Now for h ∈ Gell

rs

we have
∫
G/Z

ψ(g−1hg)dġ = vol(Gh/Z)Oh(ψ) because Gh/Z is compact. Now by

Corollary 3.11 and Proposition 3.13 the function h 7→ Oh(ψ), extended by zero on
G∖Gell

rs , is locally integrable on G. Therefore∫
Gell

rs

f(h)

∫
G/Z

ψ(g−1hg) dġ dh =

∫
Gell

rs

f(h) vol(Gh/Z)Oh(ψ) dh <∞.

□

This argument does not work for h ∈ Grs ∖Gell
rs because then vol(Gh/Z) = +∞.

But recall from Remark 2.46 that the matrix coefficient ψ is not just any element
of C∞

c (G,ωπ): it belongs to the subspace C∞
cusp(G,ωπ).

Lemma 3.19 (Selberg’s principle). Let ω : Z → C× be a smooth character. Let
ψ ∈ C∞

cusp(G,ω), i.e. for any x, y ∈ G we have
∫
N
ψ(xny) dn = 0. Then for any

h ∈ Grs ∖Gell
rs we have Oh(ψ) = 0.

Proof. It is enough to consider h ∈ TG−reg. We computed (see (3.2))

Oh(ψ) = |D(h)|−1/2δ
1/2
B (h)

∫
K0×N

ψ(k−1hnk) dk dn = 0.

□

To “swap the two
∫

signs” in the formula given in Lemma 3.17, we will write
the outer integral as a limit over a particular increasing and exhaustive sequence of
compact subsets of G/Z. For c ≥ 0 an integer define Xc =

⊔
m≤cK0diag(p

m, 1)K0Z,
so that Xc/Z is a bi-K0-invariant compact subset of G/Z.

Lemma 3.20. Let ω : Z → C× be a smooth character and ψ ∈ C∞
cusp(G,ω). The

sequence of functions on Ghyp
rs(
Θψ,c : h 7→

∫
Xc/Z

ψ(g−1hg)dġ

)
c≥0

converges pointwise as c → +∞ to a smooth function Θψ which is invariant under
conjugation by G. Moreover there exists κ > 0 such that for any c ≥ 0 we have
|Θψ,c| ≤ κ|D|−1/2 on Ghyp

rs . For h ∈ TG−reg we have

Θψ(h) =

∫
N×K0

ψ(k−1n−1hnk)min(0, 2v(n)) dn dk
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where we have denoted v(n) = v(u) for n =

(
1 u
0 1

)
∈ N .

Note that this formula for Θψ(h) differs from the formula for Oh(ψ) only by the
factor min(0, 2v(n)) in the integrand. This expression is called a weighted orbital
integral.

Proof. We can replace ψ by h 7→
∫
K0
ψ(k−1hk) dk and assume that ψ is invariant

under conjugation by K0. Let h ∈ Ghyp
rs , then we can write h = α−1diag(a, b)α for

some α ∈ G and a, b ∈ Q×
p satisfying a ̸= b. For future use we note that up to

conjugating by w we can assume that we have δB(diag(a, b)) ≤ 1. We can write α ∈
TNK0. Since the sets Xc are left K0-invariant the function h 7→

∫
Xc/Z

ψ(g−1hg) dg

is invariant under conjugation by K0 and we can reduce to α ∈ TN , and so h ∈ TN .
Since any element of T centralizes diag(a, b) we can even assume α ∈ N . Let ġ ∈ G

and write g = diag(x, 1)

(
1 u
0 1

)
k with x ∈ Q×

p , u ∈ Qp and k ∈ K0. Recall from

Lemma 2.65 that g ∈ Xc if and only if

|v(x)| ≤ c and v(u) ≥ (−v(x)− c)/2.

Let Yc be the compact open subset of TN/Z consisting of elements satisfying
these two conditions. Using the integration formula for the Iwasawa decomposi-
tion (Lemma 2.13) and invariance under K0-conjugation of ψ, we have∫

Xc/Z

ψ(g−1hg) dg =

∫
Yc/Z

ψ(n−1t−1htn) dt dn.

Writing h = diag(a, b)

(
1 z
0 1

)
we have

n−1t−1htn = diag(a, b)

(
1 x−1z
0 1

)(
1 (1− a−1b)u
0 1

)
.

The set of (ġ1, ġ2) ∈ (G/Z)2 such that g1 and g1g2 belong to supp(ψ) is compact.
The subgroup ZN of G is closed so N is closed in G/Z, and so the set of (ġ, n) ∈
(G/Z)×N such that ġ and ġn belong to the support of ψ is also compact. Therefore
its projection on N is contained in the compact subgroup N−d(ψ) of N for some
integer d(ψ) ≥ 0. Let β ∈ G and i ≥ d(ψ). If βN−i meets the support of ψ then we
have

supp(ψ) ∩ βN ⊂ βN−iN−d(ψ) = βN−i.

By cuspidality of ψ, this implies

(3.5)

∫
p−iZp

ψ

(
β

(
1 u′

0 1

))
|du′| = 0.

(either the integrand vanishes identically or the integral is equal to the same integral

over Qp). We will apply this to β(h, x) = diag(a, b)

(
1 x−1z
0 1

)
.



52 OLIVIER TAÏBI

For fixed x ∈ Q×
p such that |v(x)| ≤ c we integrate over u ∈ Qp satisfying

v(u) ≥ (−v(x)− c)/2. Using the change of variables u′ = (1− a−1b)u we compute∫
v(u)≥(−v(x)−c)/2

ψ

(
β(h, x)

(
1 (1− a−1b)u
0 1

))
|du| =

|1− a−1b|−1

∫
v(u′)≥v(1−a−1b)+(−v(x)−c)/2

ψ

(
β(h, x)

(
1 u′

0 1

))
|du′|

If v(1 − a−1b) + (−v(x) − c)/2 ≤ −d(ψ) this vanishes. Otherwise, that is if −c ≤
v(x) < −c+ 2v(1− a−1b) + 2d(ψ), denoting e = 2v(1− a−1b)− v(x)− c > −2d(ψ)
we have ∣∣∣∣∫

v(u′)≥e/2
ψ

(
β(h, x)

(
1 u′

0 1

))
|du′|

∣∣∣∣ ≤ ∥ψ∥∞p−e/2.
Therefore, summing over possible values for v(x),∣∣∣∣∫

Xc/Z

ψ(g−1hg) dġ

∣∣∣∣ ≤ |1− a−1b|−1 × ∥ψ∥∞
∑

e>−2d(ψ)

p−e/2

≤ |1− a−1b|−1 × p−d(ψ)(1− p−1/2)−1∥ψ∥∞.

Recall (see (3.2)) that |1− a−1b|−1 = |D(h)|−1/2δ
1/2
B (diag(a, b)). As noted above we

can assume that we have δB(diag(a, b)) ≤ 1, so we have |Θψ,c| ≤ κ|D|−1/2 on Ghyp
rs

with
κ = p−d(ψ)(1− p−1/2)−1∥ψ∥.

Thanks to Proposition 3.13 (with ϵ = 1/2) this last function is locally integrable on
the closure of Ghyp

rs in G.
We are left to compute, for a fixed h, the limit of Θψ,c(h) as c→ +∞. As observed

above we can restrict to x ∈ Q×
p satisfying −c ≤ v(x) < −c+ 2v(1− a−1b) + 2d(ψ)

and so β(h, x)→ diag(a, b) uniformly in x. Therefore the limit exists 4 and is given
by

Θψ(h) := lim
c→+∞

∫
Xc/Z

ψ(g−1hg) dġ

=|1− a−1b|−1

2v(1−a−1b)∑
e=−2d(ψ)+1

∫
v(u′)≥e/2

ψ

(
diag(a, b)

(
1 u′

0 1

))
|du′|

=2|1− a−1b|−1

v(1−a−1b)∑
k=−d(ψ)+1

∫
v(u′)≥k

ψ

(
diag(a, b)

(
1 u′

0 1

))
|du′|

where we have grouped the terms for e = 2k − 1 and e = 2k. By Formula (3.5)
above (cuspidality of ψ) we have∫
v(u′)≥k

ψ

(
diag(a, b)

(
1 u′

0 1

))
|du′| = −

∫
k>v(u′)≥−d(ψ)

ψ

(
diag(a, b)

(
1 u′

0 1

))
|du′|

4the sequence (Θψ,c(h))c is even stationary!
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and so |1− a−1b|Θψ,c(h) is equal to

2

v(1−a−1b)∑
k=−d(ψ)+1

∫
v(u′)≥k

ψ

(
diag(a, b)

(
1 u′

0 1

))
|du′|

= − 2

v(1−a−1b)∑
k=−d(ψ)+1

k−1∑
i=−d(ψ)

∫
v(u′)=i

ψ

(
diag(a, b)

(
1 u′

0 1

))
|du′|

= − 2

v(1−a−1b)−1∑
i=−d(ψ)

v(1−a−1b)∑
k=i+1

∫
v(u′)=i

ψ

(
diag(a, b)

(
1 u′

0 1

))
|du′|

=2

v(1−a−1b)−1∑
i=−d(ψ)

(i− v(1− a−1b))

∫
v(u′)=i

ψ

(
diag(a, b)

(
1 u′

0 1

))
|du′|.

Reverting the change of variable u′ = (1− a−1b)u, we compute

(i− v(1− a−1b))

∫
v(u′)=i

ψ

(
diag(a, b)

(
1 u′

0 1

))
|du′|

=(i− v(1− a−1b))|1− a−1b|
∫
v(u)=i−v(1−a−1b)

ψ

(
diag(a, b)

(
1 (1− a−1b)u
0 1

))
|du|

= |1− a−1b|
∫
v(u)=i−v(1−a−1b)

ψ

(
diag(a, b)

(
1 (1− a−1b)u
0 1

))
v(u) |du|

and we deduce the simplification

Θψ(h)

=

∫
0>v(u)≥−d(ψ)−v(1−a−1b)

ψ

(
diag(a, b)

(
1 (1− a−1b)u
0 1

))
2v(u) |du|

= |1− a−1b|
∫
v(u)≥−d(ψ)−v(1−a−1b)

ψ

(
diag(a, b)

(
1 (1− a−1b)u
0 1

))
min(0, 2v(u)) |du|.

Observe that substracting Formula (3.5) for two consecutive values of i gives the
vanishing of ∫

v(u)=i

ψ

(
diag(a, b)

(
1 (1− a−1b)u
0 1

))
|du|

for i < −d(ψ)− v(1− a−1b). We finally obtain, still under the assumption that ψ is
invariant under conjugation by K0:

Θψ(h) =

∫
N

ψ(n−1diag(a, b)n)min(0, 2v(n)) dn.

Recall that we can reduce to this case by averaging overK0, and the formula given in
the Lemma follows. The smoothness and invariance by conjugation of ψ follow. □

Corollary 3.21. If (V, π) is an irreducible supercuspidal representation of G then
Theorem 3.15 holds for π.
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Proof. Let ψ ∈ C∞
cusp(G,ωπ) be the matrix coefficient defined by

ψ(g) = ⟨π(g)v, ṽ⟩

for v ∈ V and ṽ ∈ Ṽ as in Lemma 3.17, i.e. satisfying ⟨v, ṽ⟩ = dπ. By Lemma 3.17
we have, for c large enough,

trπ(f) =

∫
G/Z

∫
G

f(h)ψ(g−1hg) dh dġ

=

∫
Xc/Z

∫
G

f(h)ψ(g−1hg) dh dġ

=

∫
G

f(h)

∫
Xc/Z

ψ(g−1hg) dġ dh

=

∫
Grs

f(h)

∫
Xc/Z

ψ(g−1hg) dġ dh.

Here we are simply integrating a smooth function on a compact set (G could be
replaced by the support of f), so swapping the integrals is justified. We split this
last integral as two integrals over Gell

rs and Ghyp
rs , and take the limit as c goes to +∞.

By Lemma 3.18 we have

lim
c→+∞

∫
Gell

rs

∫
Xc/Z

f(h)ψ(g−1hg) dġ dh =

∫
Gell

rs

∫
G/Z

f(h)ψ(g−1hg) dġ dh

=

∫
Gell

rs

f(h) vol(Gh/Z)Oh(ψ)dh

because the integrand is absolutely integrable on G/Z ×Gell
rs .

By Lemma 3.20, Proposition 3.13 and the dominated convergence theorem we
have

lim
c→+∞

∫
Ghyp

rs

f(h)

∫
Xc/Z

ψ(g−1hg) dġ dh =

∫
Ghyp

rs

f(h)Θψ(h) dh.

This concludes the proof of Theorem 3.15, with

Θπ(h) =

{
vol(Gh/Z)Oh(ψ) if h is elliptic,

Θψ(h) if h is hyperbolic.

□

Remark 3.22. This generalizes to arbitrary connected reductive groups: the Harish-
Chandra character of an irreducible supercuspidal representation is given by the
weighted orbital integral of any matrix coefficient whose value at 1 is the formal
degree. See [Art87].

To conclude the proof of Theorem 3.15 we are left to consider non-supercuspidal
representations.
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Proposition 3.23. Let µ : T → C× be a smooth character, and consider (V, π) =
IndGB µ. Then Theorem 3.15 holds for π, and Θπ is the unique G-invariant function
on Grs which vanishes identically on Gell

rs and such that for any t ∈ TG−reg we have
Θπ(t) = |D(t)|−1/2(µ(t) + µw(t)).

Note that since IndGB µ may be reducible, it is not strictly speaking Theorem 3.15
that we prove for IndGB µ, but the statement makes sense.

Proof. Recall that we can realize IndGB µ as the space of smooth functions ϕ : K0 → C
such that ϕ(bk) = µ(b)ϕ(k) for any b ∈ B0. For such a ϕ, f ∈ H(G) and k1 ∈ K0

we have

π(f)(ϕ)(k1) =

∫
G

f(g)ϕ(k1g)dg =

∫
G

ϕ(g)f(k−1
1 g)dg.

Using the integration formula for the Iwasawa decomposition this also equals∫
K0×B

ϕ(bk2)f(k
−1
1 bk2) dk2 db =

∫
K0

ϕ(k2)

∫
B

µ(b)δ
1/2
B (b)f(k−1

1 bk2) db dk2

=

∫
K0

ϕ(k2)ψ(k1, k2) dk2

with ψ(k1, k2) =
∫
B
µ(b)δ

1/2
B (b)f(k−1

1 bk2) db (as usual, using a left Haar measure on
B). Note that ψ is a smooth function on K0 ×K0. The operator

I(ψ) : ϕ 7−→
(
k1 7→

∫
K0

ϕ(k2)ψ(k1, k2) dk2

)
is defined for ϕ ∈ C∞(K0), not just on the subspace IndGB µ of B0-equivariant func-
tions for µ. For k1, k2 ∈ K0 and x ∈ B0 we have

ψ(xk1, k2) =

∫
B

µ(b)δ
1/2
B (b)f(k−1

1 x−1bk2) db

=

∫
B

µ(xb′)δ
1/2
B (xb′)f(k−1

1 b′k2) db
′

= µ(x)ψ(k1, k2)

using the change of variable b′ = x−1b. Therefore I(ψ) maps C∞(K0) to IndGB µ
and coincides with π(f) on IndGB µ ⊂ C∞(K0), and so trπ(f) = tr I(ψ). Since ψ is
smooth it is left and right Ki-invariant for some i ≥ 1, and so the image of I(ψ)
is contained in C∞(K0)

Ki and we can compute tr I(ψ) on this finite-dimensional
subspace. For this we consider the basis of characteristic functions of cosets of Ki

in K0: for k1 ∈ K0 we have

I(ψ)(1k1Ki
)(k1) =

∫
k1Ki

ψ(k1, k2)dk2

and summing over all k1Ki ∈ K0/Ki we obtain

tr I(ψ) =

∫
K0

ψ(k, k) dk.
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Going back to the definition of ψ we find

trπ(f) =

∫
T

∫
N

∫
K0

µ(t)δ
1/2
B (t)f(k−1tnk) dk dn dt =

∫
T

µ(t)|D(t)|1/2Ot(f) dt.

This last integral is also equal to∫
T

µw(t)|D(t)|1/2Ot(f) dt

because the automorphism Ad(w) of T preserves the Haar measure and leaves the
function t 7→ |D(t)|1/2Ot(f) invariant. We conclude

trπ(f) =

∫
Grs

Θπ(g)f(g) dg =
1

2

∫
T

|D(t)|(µ(t) + µw(t))|D(t)|−1/2Ot(f) dt

where Θπ is defined as in the Proposition, thanks to the Weyl integration formula.
□

Remark 3.24. This generalizes to arbitrary connected reductive groups, see [vD72].

Corollary 3.25. Theorem 3.15 holds for the Steinberg representation, and for any
elliptic maximal torus T ′ of G and any t ∈ T ′

G−reg we have ΘSt(t) = −1.

Proof. For µ = δ
±1/2
B the semi-simplification of IndGB µ is isomorphic to 1⊕St (where

1 denotes the trivial one-dimensional representation of G). Obviously the trivial
representation satisfies Theorem 3.15 and Θ1 = 1, so we deduce Theorem 3.15 sor
the Steinberg representation and the relation ΘSt = Θ

IndGB δ
1/2
B
−Θ1 on Grs. □

Of course the Proposition also allows us to compute ΘSt on the split maximal
torus T .

We have just proved a special case of the Jacquet-Langlands correspondence: the
Steinberg representation of G = GL2(Qp) will correspond to the trivial representa-
tion of D×.

Remark 3.26. This strategy of reduction to the supercuspidal case was not success-
ful for arbitrary reductive groups (in general we do not have enough “obvious” cases
like the trivial representation). Harish-Chandra [HC99] proved the general case by
passing to the Lie algebra instead. This uses the exponential map, so this argument
does not apply over positive characteristic local fields.

Remark 3.27. Any ω−1-equivariant smooth function with compact support modulo
Z can be written as g 7→

∫
Z
ω(z)−1f(zg)dz for some f ∈ C∞

c (G) (this can be shown
using local sections of G→ G/Z, for example (SL2(Qp)∩K2)×Z is isomorphic via
the multiplication map to a neighbourhood of 1 in G). This implies (exercise) that
for any f ∈ H(G,ω−1

π ), trπ(f) =
∫
G/Z

f(g)Θπ(g) dġ.



THE JACQUET-LANGLANDS CORRESPONDENCE FOR GL2(Qp) 57

3.5. Coefficients and pseudo-coefficients. We push further the argument used
in the proof of Corollary 2.49.

Proposition 3.28. Let (V, π) be an irreducible supercuspidal representation of G,
and let ωπ be its central character.

(1) Let (U, σ) be a smooth representation of G admitting central character ωπ.

For ṽ0 ∈ Ṽ and u0 ∈ U , the linear map

ϕṽ0,u0 : V −→ U

v 7−→
∫
G/Z

⟨π(g−1)v, ṽ0⟩σ(g)u0 dġ

is G-equivariant. In particular, it vanishes identically if (U, σ) is irreducible
but not isomorphic to (V, π). For (U, σ) = (V, π), ϕṽ0,u0 = d−1

π ⟨u0, ṽ0⟩IdV .

(2) For v0 ∈ V and ṽ0 ∈ Ṽ let fv0,ṽ0 ∈ H(G,ω−1
π ) be the matrix coefficient for Ṽ

g 7→ ⟨π(g−1)v0, ṽ0⟩ = ⟨v0, π̃(g)ṽ0⟩.

Then for any irreducible smooth representation (U, σ) of G having central
character ωπ,

trσ(fv0,ṽ0) =

{
0 if σ ̸≃ π,

d−1
π ⟨v0, ṽ0⟩ if σ ≃ π.

Proof. The first point was proved in the proof of Corollary 2.49. Let (U, σ) be an
irreducible smooth representation of G having central character ωπ. For u ∈ U we
have σ(fv0,ṽ0)u = ϕṽ0,u(v0). The first point shows that σ(fv0,ṽ0) = 0 if σ ̸≃ π. The
first point also shows that for v ∈ V we have π(fv0,ṽ0)v = ϕṽ0,v(v0) = d−1

π ⟨v, ṽ0⟩v0
and so trπ(fv0,ṽ0) = tr π(fv0,ṽ0 |Cv0) = d−1

π ⟨v0, ṽ0⟩. □

In particular if we take v0 ∈ V and ṽ0 ∈ Ṽ0 such that ⟨v0, ṽ0⟩ = dπ then we have
produced f ∈ H(G,ω−1

π ) distinguishing π among all irreducible smooth representa-
tions of G having same central character. Note that for finite (or compact) groups
there is a natural choice for such a function, namely the trace of the contragredient
of π, but for G this is not a smooth compactly supported function! We would like
to have similar functions also for irreducible non-supercuspidal representations of
G. It turns out that this is not possible for an irreducible IndGB µ, but it is almost
possible for the Steinberg representation.

Recall that w̃ =

(
0 1
p 0

)
∈ G normalizes I. Denote Ĩ = IZ/Z ⊔ w̃IZ/Z, a

compact open subgroup of G/Z. Let sign : Ĩ → {±1} be the character which is
trivial on IZ/Z and maps w̃ to −1. Define fEP ∈ H(G/Z) as eK0Z/Z − eĨ,sign where

eĨ,sign is vol(Ĩ)−1sign (extended by zero outside of Ĩ).



58 OLIVIER TAÏBI

Proposition 3.29. For any smooth irreducible representation (V, π) of G having
trivial central character, we have

trπ(fEP) =


−1 if π ≃ St,

1 if π is trivial,

0 otherwise.

Proof. The function fEP is bi-IZ/Z-invariant and so π(f)V ⊂ V I , in particular the
trace vanishes if V I = 0. We classified the representations of G such that V I ̸= 0
in Proposition 2.59 and before Proposition 2.57. The ones having trivial central
character are the characters χ ◦ det for χ : Q×

p → {±1} unramified (there are two

such characters), (χ ◦ det) ⊗ St for the same χ’s, and the irreducible IndGB µ with
µ|Z = 1 (i.e. µ1µ2 = 1) and µ unramified. Note that tr π(eK0Z/Z) = dimV K0 and
tr π(eĨ,sign) = dimker([Iw̃I] + 1 |V I). Recall that we computed the matrix [Iw̃I] in

a basis of (IndGB µ)
I and found(

0 µ2(p)p
1/2

µ1(p)p
−1/2

)
.

If µ|Z = 1 this matrix has trace 0 and determinant 1 so its eigenvalues are ±1. So
for V = IndGB µ with µ|Z = 1 we have

dimV K0 = dimker([Iw̃I] + 1 |V I) = 1

and the trace of fEP on IndGB µ vanishes. If χ : Q×
p → {±1} is the unramified

character of order 2 then for the one-dimensional representation χ◦det of G the two
dimensions above are also equal to 1. For the trivial representation V of G we have
dimV K0 = 1 and ker([Iw̃I] + 1 |V I) = 0. For (χ ◦ det) ⊗ St we have V K0 = 0 and
ker([Iw̃I]+1 |V I) has dimension one (resp. zero) if χ is trivial (resp. non-trivial). □

So apart from the trivial representation, −fEP plays the same role for the Stein-
berg representation as the matrix coefficient for a supercuspidal representation. We
call −fEP a pseudo-coefficient for St.

Inspired by the supercuspidal case, we ask if the orbital integrals of fEP are
related to the Harish-Chandra character of the Steinberg representation.

Theorem 3.30. Let γ ∈ Grs. Then

Oγ(fEP) =

{
0 if γ is hyperbolic,

vol(Gγ/Z)
−1 if γ is elliptic.

Exercise: prove the first case using Proposition 3.29 and Proposition 3.23.
For the proof we introduce a geometric tool. Recall that the discrete set G/K0Z

parametrizes lattices in Q2
p up to rescaling, and that G/IZ parametrizes pairs (L,D)

where L is a lattice in Q2
p and D ⊂ L/pL is an Fp-line, again up to rescaling. In

particular to such a pair (L,D) we can associate another lattice: the preimage of D
in L. This motivates the following definition.
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Definition 3.31. Denote V = G/K0Z. Two lattices-up-to-rescaling [L1], [L2] ⊂ V
are neighbours if L1 and L2 can be chosen so that L2 ⊂ L1 and |L1/L2| = p.

This relation is symmetric (pL1 ⊂ L2 and |L2/pL1| = p2/p = p) and [L] is never
its own neighbour. The neighbours of [L] are naturally in bijection with the set
of lines in L/pL, in particular [L] has p + 1 neighbours. Let E ⊂ P(V) be the set
of {[L1], [L2]} which are neighbours. This new notation suggests that V is a set of
vertices and E is a set of edges, i.e. (V , E) is a graph (in a combinatorial sense). Let
A be the associated topological space:

• For each edge {v1, v2} in E choose an ordering (v1, v2). In other words choose
functions s, t : E → V (“source” and “target”) such that for any e ∈ E we
have e = {s(e), t(e)}.

• Let A be the quotient of

V ⊔ (E × [0, 1])

by the equivalence relation generated by the relations (e, 0) ∼ s(e) and
(e, 1) ∼ t(e) for any e ∈ E .

The space A is Hausdorff and locally compact (exercise). The continuous map

E × [0, 1] −→ A

is surjective because any v ∈ V appears in at least one edge (in fact, p+ 1 edges).

Proposition 3.32. The graph (V , E) is a tree, i.e. it is connected (for any v, v′ ∈ V,
there exist k ≥ 2 and (v1, . . . , vk) ∈ Vk such that v1 = v, vk = v′ and {vi, vi+1} ∈ E
for any i, i.e. a path between v and v′) and does not contain any cycle (that is, a
non-trivial path from v to v such that v1, . . . , vk−1 are pairwise distinct).

Proof. Recall that G acts transitively on V and E . In fact the Cartan decomposition
says that for any [L1] and [L2] in V , there is a basis (e, f) of L1 and integers a ≥ b
such that (pae, pbf) is a basis of L2. From uniqueness in the Cartan decomposition
we get that a− b ∈ Z≥0 is uniquely determined by the orbit of ([L1], [L2]) under G.
Denote d([L1], [L2]) = a − b, then d([L2], [L1]) = d([L1], [L2]) and [L1] and [L2] are
neighbours if and only if d([L1], [L2]) = 1. Up to rescaling one or both lattices we
may assume that b = 0. Then

[L1] = [Zpe⊕ Zpf ]↔ [Zppe⊕ Zpf ]↔ · · · ↔ [Zppae⊕ Zpf ] = [L2]

is a path joining [L1] and [L2].
Now assume that d([L1], [L2]) > 0 (i.e. [L2] ̸= [L1]) and that [L3] is a neighbour

of [L2] distinct from [Zppa−1e ⊕ Zpf ]. This means that we can take L3 to be the
preimage of an Fp-line D in L2/pL2 distinct from Zppae⊕Zppf/L2. This means that
L3/pL2 is generated by f+λpae for some λ ∈ Zp. Up to replacing f by f+λpae (note
that this does not change the above path from [L1] to [L2]: Zppie⊕Zp(f + λpae) =
Zppie ⊕ Zpf for 0 ≤ i ≤ a), we can assume that L3 = Zppa+1e ⊕ Zpf . This shows
d([L1], [L3]) = d([L1], [L2]) + 1, in particular [L3] ̸= [L1]. □
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We can extend the function d(·, ·) to A2 as follows:

(1) For e ∈ E and x, y ∈ [0, 1] define

d((e, x), (e, y)) = |x− y|.

(2) For x, y ∈ A define

d(x, y) = inf

{
k−1∑
i=1

d(xi, xi+1)

∣∣∣∣∣x1 = x, xk = y, ∀i∃e ∈ E , xi, xi+1 ∈ {e} × [0, 1]

}

Exercise: check that this is well-defined and that this infimum is a minimum, that
d(·, ·) is a metric on A (a general fact for any connected graph), that G acts by
isometries, and that for any x, y ∈ A there is a unique geodesic in A from x to y,
denoted [x, y] (existence is true in any connected graph, uniqueness is true in any
tree). Recall that a geodesic is (in this context) a continuous map f : [0, d(x, y)]→ A
such that f(0) = x, f(d(x, y)) = y and for any t1, t2 ∈ [0, d(x, y)], d(f(t1), f(t2)) =
|t1 − t2|.

The Bruhat-Tits tree (for more general groups, the Bruhat-Tits building, see
[BT72] and [BT84]) is a p-adic analogue of symmetric spaces in the theory of real
Lie groups. The Cartan fixed point theorem gives a geometric proof of conjugacy
of maximal compact subgroups in a connected semisimple Lie group. The following
lemma is the analogue in the present context (see [BT72, §3.2] for the general case).

Lemma 3.33. Let K be a compact subgroup of G/Z. Then AK ̸= ∅. In particular,
if γ is an elliptic element of G (i.e. if γ ∈ Z ∪Gell

rs ) then Aγ ̸= ∅.

Proof. Choose v0 ∈ V arbitrarily. Then Kv0 ⊂ V is finite. Since any closed ball in
A is compact, there exists x ∈ A minimizing max{d(x, y) | y ∈ Kv0}. Let us show
that x is unique. Let x′ ∈ A be a different minimizer, and let x′′ ∈ [x, x′] distinct
from x and x′. For any y ∈ A, we have d(x′′, y) < max(d(x, y), d(x′, y)). (Quick and
dirty argument: A∖{x′′} has finitely many connected components, and x and x′ lie
in different components, so y is not in the same component as x or x′, say x. Then
the geodesic [x, y] goes through x′′.) This gives a contradiction. So x is unique. For
any k ∈ K, kx has the same minimizing property, so x is fixed by K.

If γ is elliptic then the closure of the subgroup of G/Z generated by γ is compact.
□

Proof of Theorem 3.30. Let v0 = [Z2
p] ∈ V . For g ∈ G, g−1γg ∈ K0Z/Z if and only

if γ fixes gv0 ∈ V . Note that Ĩ is the stabilizer of e0 = {[Z2
p], [pZp×Zp]} ∈ E (observe

that w̃ swaps the two endpoints). Therefore g−1γg ∈ Ĩ if and only if γ fixes ge0.
Using these facts, we get

Oγ(fEP) =
∑

v∈Gγ\Vγ

vol(StabGγ/Z(v))
−1 −

∑
e∈Gγ\Eγ

vol(StabGγ/Z(e))
−1sign(γ, e)

where sign(γ, e) = +1 if γ fixes e pointwise (i.e. if it fixes the endpoints of e) and
sign(γ, e) = −1 if it swaps the endpoints.
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Let us show that Aγ connected. Let x, y ∈ Aγ, then γ([x, y]) is a geodesic from
γx = x to γy = y, so it equals [x, y] and since γ is an isometry every point of [x, y]
is fixed by γ.

First we consider the case where γ is elliptic. We have just proved that Aγ ̸= ∅.
Now Gγ/Z is compact so by Lemma 3.5 the set Aγ is compact, and we can expand
the above expression to get

Oγ(fEP) =
∑
v∈Vγ

vol(Gγ/Z)
−1 −

∑
e∈Eγ

vol(Gγ/Z)
−1sign(γ, e).

Although it is somewhat artificial, we distinguish two cases:

• If there exists e ∈ Eγ such that sign(γ, e) = −1, then denoting by x the
middle point of e, x is fixed by γ and γ swaps the two connected components
of A∖ {x}, so Vγ = ∅ and Eγ = {e}. It follows that Oγ(fEP) = 1.

• Otherwise Aγ is a subgraph of A, and we are left to compute the difference
between the number of its edges and the number of its vertices (i.e. its Euler
characteristic!). Since Aγ is non-empty and connected, it is also a tree and
one can give a simple elementary argument, by induction on the number
of vertices (remove a vertex from the boundary, as well as the unique edge
containing it; repeat until there is only one vertex left).

We now consider the hyperbolic case. If Aγ = ∅ then the result is obvious, so
we might as well assume that it is non-empty. The centralizer Gγ/Z ≃ Q×

p is not
compact and it acts on Aγ with compact stabilizers, so Aγ is not compact either. If
there exists e ∈ Eγ such that sign(γ, e) = −1 then as above Aγ is a point, but it has
an action of the non-compact group Gγ/Z and the stabilizer of any point of A is a
compact subgroup of G/Z. So for any e ∈ Eγ all points of the image of {e}× [0, 1] in
A are fixed by γ. In particular Vγ is not empty, i.e. γ is conjugated to an element of
K0Z, and so v(det γ) is even. Up to conjugating, we may assume that γ ∈ TG−reg.
Considering the valuation of its determinant we have γ ∈ ZT0. The topological
realization X of the connected subgraph of (V , E) with vertices {[paZp×Zp] | a ∈ Z}
(an apartment in the terminology of Bruhat and Tits, here it is an infinite geodesic),
that we encountered in the proof of Proposition 3.32, is included in Aγ. The element
t = diag(p, 1) of Gγ = T acts simply transitively on the set of vertices of X . For
y ∈ A ∖ X , there is a unique vertex x of X such that d(x′, y) > d(x, y) for any
x′ ∈ X ∖ {x}. We call this x the projection of y on X , denote prX (y). The fibres
of prX give a partition of Aγ ∖ X , and tZ acts simply transitively on this partition.
Since Aγ is connected, for any x ∈ E ∩ X the subset (pr−1

X ({x}) ∩ Aγ) ∪ {x} of
Aγ is a finite subtree and x is one of its endpoints. The quotient group Gγ/Zt

Z is
compact, so the quotient tZ\Aγ is finite, and arguing as in the elliptic case we see
that Oγ(fEP) is proportional to the Euler characteristic of the graph tZ\Aγ. Now
this graph is very simple: tZ\X has one vertex, with one edge from this vertex to
itself (a loop), and so tZ\Aγ is simply obtained by attaching a finite tree to this
vertex. The Euler characteristic of this graph is zero: by the same induction as in
the elliptic case, we are reduced to the case of a loop, which has one vertex and one
edge. □
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Remark 3.34. (1) This beautiful geometric argument generalizes to an algebro-
topologic one for a general connected reductive group, see [Ser71] and [Kot88].

(2) The computation of orbital integrals of eK0 (preceding Proposition 3.10), even
of other elements of H(G,K0), can also be done geometrically using A, see
[Kot05]. Like the “lattice-theoretic” computation, this is particular to GL2.

To conclude, we have constructed a pseudo-coefficient fπ for any essentially
square-integrable representation π, whose orbital integrals are given by Θπ̃ on Gell

rs

and vanishing on Ghyp
rs (in fact any pseudo-coefficient satisfies this, but to prove this

we would need the very natural fact that orbital integrals vanish if all traces vanish,
and this is not obvious . . . ).

3.6. Elliptic orthogonality.

Theorem 3.35. If π1 and π2 are irreducible smooth essentially square-integrable
representations of G with ωπ1 = ωπ2, we have

∑
T ′∈Tell

1

2

∫
T ′
G−reg/Z

|D(t)|Θπ1(t)Θπ̃2(t) vol(T
′/Z)−1 dt =

{
1 if π1 ≃ π2

0 otherwise.

Proof. Recall that we have a pseudo-coefficient fπ2 ∈ C∞
c (G,ω−1

π2
).

tr π1(fπ2) =

∫
G/Z

fπ2(g)Θπ1(g) dġ

=
∑
T ′∈T

1

2

∫
T ′
G−reg/Z

|D(t)|Θπ1(t)Ot(fπ2)(t) dt

=
∑
T ′∈Tell

1

2

∫
T ′
G−reg/Z

|D(t)|Θπ1(t)Θπ̃2(t) vol(T
′/Z)−1 dt.

□

Remark 3.36. If ωπi is unitary (which can always be arranged after twisting), then
both πi’s are unitary and π̃2 ≃ π2 so that (exercise) Θπ̃2 = Θπ2 and we recover the
more familiar “orthogonality of characters” formulation.

3.7. Existence of supercuspidal representations.

Theorem 3.37. Let ω : Z → C× be a smooth character. There exists an irreducible
supercuspidal representation of G having central character ω.

Proof. Maybe later. □

4. Trace formulas

We now change notations: G will denote linear algebraic groups etc.
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4.1. Quaternion algebras and inner forms of GL2. We refer to Appendix D
for general results about quaternion algebras. Let us recall the classification results
over local and global fields that we shall need.

Theorem 4.1. (1) Up to isomorphism there are two quaternion algebras over
R: the split one and the “usual” quaternion algebra R⊕ Ri⊕ Rj ⊕ Rk with
i2 = j2 = −1 and ij = −ji = k.

(2) Up to isomorphism there are two quaternion algebras over Qp: the split one
and E ⊕Eϖ where E/Qp is an unramified quadratic extension, ϖ2 = p and
conjugation by ϖ on E induces the non-trivial element of Gal(E/Qp).

(3) The isomorphism class of a quaternion algebra D over Q is determined by
the finite set S of places of Q such that Dv := Qv ⊗Q D is not isomorphic
to M2(Qv), and this set has even cardinality. Conversely any finite set S of
places of Q having even cardinality is associated to a quaternion algebra over
Q.

The first point is well-known via the relation with quadratic spaces in dimension
3 (see Appendix D), in fact the classification of quadratic spaces over R by their
signature is well-known in any dimension. The second point is contained in Corollary
E.5, except for the explicit construction which is left as an exercise. The third point
(a special case of the theorem of Hasse-Minkowski, itself a special case of several
theorems, many due to Kneser) is harder. See [Ser77, Ch. IV] for an elementary
proof (over Q).

If K is a field of characteristic zero (this will be Q or one of its completions) and
D is a quaternion algebra we denote by G the associated algebraic group over K
defined as the functor

K − Alg −→ Groups

R 7−→ (R⊗K D)×

where K − Alg is the category of commutative K-algebras. In particular the base
change of G to some finite extension K ′ of K is isomorphic to GL2. The group
G can also be described explicitly using the 1-cocycle c introduced in the proof of
Proposition D.1. Using the same notation as in this proof, ψ induces a natural
isomorphism between the functor

(4.1) R 7→ {g ∈ GL2(K
′ ⊗K R) | ∀σ ∈ Gal(K ′/K), Ad(c(σ))(σ(g)) = g}

and G. We call G the inner form of GL2 associated to D (because PGL2 is the
group of inner automorphisms of GL2).

If D is not split we define a maximal torus of G to be the centralizer (as an
algebraic subgroup of G) of an element of G(K) ∖K× = D ∖K. By Lemma D.3
such an element becomes semi-simple regular after extension of scalars to a finite
extension K ′ of K splitting D, so any maximal torus T of G is commutative, satisfies
K ′ ×K T ≃ GL2

1,K , and is the centralizer of any element of T (K)∖K×.

Lemma 4.2. Let K be a field of characteristic zero. Let D be a non-split quaternion
algebra over K. Let G be the associated inner form of GL2.
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(1) Two elements of D are conjugated by G(K) if and only if they have the same
characteristic polynomial (defined in Lemma D.3).

(2) For any maximal torus T of G we have NG(K)(T (K))/T (K) = Z/2Z.

Proof. Let x, y ∈ D have the same characteristic polynomial. If one of them belongs
to K then the result is clear using Lemma D.3. Otherwise they are conjugated
in K ′ ⊗K D for some finite extension K ′/K, i.e. there exists g ∈ G(K ′) such that
gxg−1 = y. We can assume that K ′/K is Galois. Let T be the maximal torus of
G which is the centralizer of x. Denote E = K[x], a quadratic extension of K, so
that T ≃ ResE/K(GL1). For any σ ∈ Gal(K ′/K) we have σ(g)xσ(g)−1 = y and so
σ(g)−1g ∈ T (K ′), and this defines a 1-cocycle Gal(K ′/K) → T (K ′). By Shapiro’s
lemma we have H1(K,T ) ≃ H1(E,GL1) = {1} (by Hilbert 90), so up to replacing
K ′ by a quadratic extension we can find t ∈ T (K ′) such that gt ∈ G(K).

Take x ∈ T (K) ∖ K× and consider x−1 detx. It has the same characteristic
polynomial as x but is not equal to x, otherwise we would have x2 = detx ∈ K× but
in this case we have x2 = − detx. Thus x and x−1 detx are conjugated in G(K) by
an element of NG(K)(T (K)) ∖ T (K). It remains to check that NG(K)(T (K))/T (K)
has at most two elements. Letting E = K[x] ⊂ D be the quadratic extension
corresponding to T , we have an isomorphism

E ⊗K D ≃M2(E)

mapping E⊗KE to the sub-K-algebra of diagonal matrices, and it is easy to see that
we get an embedding of NG(K)(T (K))/T (K) into the Weyl group of the diagonal
torus in GL2(E), which has two elements. □

Proposition 4.3. Let D be a non-split quaternion algebra over Qp. The center of D
is Qp and the non-central conjugacy classes in D× are parametrized by characteristic
polynomials: for every non-split X2 − tX + d ∈ Qp[X] the set of x ∈ D× satisfying
trx = t and detx = d is a (non-empty!) conjugacy class in D×.

Proof. The fact that non-central conjugacy classes are parametrized by characteristic
polynomials is not particular to Qp: see Lemma 4.2. The fact that each non-split
polynomial arises follows from Corollary E.5. □

We now recall two theorems proved in Gabriel Dospinescu’s course, using a
slightly different formulation.

First we mention that for any affine scheme X = SpecR of finite type over
Spec(Q), the set X(A) of A-points has a natural topology: if we choose x1, . . . , xn
generating the Q-algebra R then we have a corresponding embedding X(A) ↪→ An,
and we can endow X(A) with the induced topology. Since X(A), being defined by
polynomial equations, is closed in An, it inherits the property of being Hausdorff
and locally compact. The problem is to show that this topology does not depend
on the choice of x1, . . . , xn. Exercise: prove that this topology coincides with the
topology induced by the embedding X(A) ↪→ AR (here AR, the set of maps R→ A,
is endowed with the product topology).

In particular for D a quaternion algebra over Q and G the associated inner
form of GL2, the group G(A) has a natural topology, making it a locally compact
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topological group. As in the case of GL2 this topological group is can also be
described as a restricted product over all places of Q, namely the restricted product
of the groups G(Qv) with respect to the compact open subgroups G(Zp). Note that
this makes sense: since it is affine of finite type over Q, we can find equations for the
group scheme G over Z[1/m] for some integer m > 0 (a model of G, i.e. a scheme
G over Z[1/m] together with an isomorphism Q×Z[1/m]G ≃ G); then G(Zp) is well-
defined for all p not dividing m. If we consider another model then the two possible
definitions of G(Zp) coincide for almost all p (i.e. all but finitely many). Concretely,
a basis of open neighbourhoods of 1 ∈ G(A) consists of

∏
v∈S Uv ×

∏
p ̸∈S G(Zp)

where S is a large enough finite set of places of Q and Uv ⊂ G(Qv) is an open
neighbourhood of 1 ∈ G(Qv).

These considerations were unnecessary for GL2 because this group is naturally
defined over Z. There are two somewhat related ways to construct isomorphisms
G(Zp) ≃ GL2(Zp) for almost all p.

Proposition 4.4. Let D be a quaternion algebra over Q and G the associated inner
form of GL2. For any model G of G over Z[1/m] (for some integer m ≥ 1) there
exists a finite S of prime numbers containing all prime divisors of m and such that
for any p ̸∈ S the topological group G(Zp) is isomorphic to GL2(Zp).

Proof. We sketch two different proofs.

(1) An order in D is defined to be a finitely generated sub-Z-module A of D of
rank 4, containing Z and stable under multiplication. It is easy to see that
orders exist: if L is any lattice in D then for n ≥ 1 sufficiently divisible the
lattice Z + nL is an order. An order gives a model G of G over Z, defined
as a functor on commutative rings by G(R) = (R ⊗Z A)

×. For any prime
number p the Zp-submodule Ap := Zp ⊗Z A of Dp := Qp ⊗Q D is an order.
If Dp is split, i.e. if there exists an isomorphism ψp : Dp ≃ M2(Qp), then by
the same argument as in Lemma 2.1 there exists gp ∈ GL2(Qp) such that
gpψ(Ap)g

−1
p ⊂ M2(Zp). (In particular we have trx ∈ Zp for any x ∈ Ap.)

Now the bilinear form

D ×D −→ Q
(x, y) 7−→ trxy

is non-degenerate, so A♯ := {x ∈ D | ∀y ∈ A, trxy ∈ Z} is also lattice
in D. For almost all p we have Zp ⊗Z A

♯ = Ap inside Dp (a general fact
about lattices in a Q-vector space) and so with the notation above we have
gpψp(Ap)g

−1
p = M2(Zp), and so G(Zp) is naturally isomorphic to GL2(Zp).

It is easy to deduce from the Cartan decomposition that the normalizer of
GL2(Zp) in GL2(Qp) is Q×

p GL2(Zp), so the isomorphism G(Zp) is uniquely
determined up to composition with conjugation by an element of PGL2(Zp).
This construction can be refined: one can show that there exist maximal
orders in D, which become isomorphic to M2(Zp) at any prime p where D
splits. Using a maximal order gives a “better” model of G over Z.

(2) Using a cocycle c ∈ Z1(Q,PGL2) introduced above, we can give a “con-
crete” model of G as follows. For some finite Galois extension K/Q, the



66 OLIVIER TAÏBI

cocycle c is inflated from an element of Z1(Gal(K/Q),PGL2(K)), that we
abusively still denote c. Let S be a finite set of primes, large enough
so that every prime which ramifies in K/Q is in S and c takes values
in PGL2(OK,S), where OK,S = OK [1/m] with OK the ring of integers of
K and m =

∏
p∈S p. For simplicity we also assume that 2 ∈ S. Then

the functor (4.1) makes sense for Z[1/m]-algebras R, giving us a model
G of G over Z[1/m]. For p ̸∈ S, choose a place p of K over p, and let
cp ∈ Z1(Gal(Kp/Qp),PGL2(OK,p)) (here OK,p is the ring of integers of the
completion Kp) be the 1-cocycle obtained by restricting c to Gal(Kp/Qp)
and using the projection Zp ⊗Z[1/m] OK,S → OK,p. Writing Shapiro’s lemma
explicitly, we see that the group scheme Zp⊗Z[1/m]G is given by the analogue
of (4.1) for cp. But one can show that H1(Gal(Kp/Qp),PGL2(OK,p)) = {1}
(hint: first show that H1(k/Fp,PGL2(k)) = {1} for any finite extension k/Fp
using the interpretation with 3-dimensional quadratic spaces, then use the
filtration of GL2(OK,p) by congruence subgroups and H1(k/Fp, k) = {0}).
Thus there is an isomorphism Zp ×Z[1/m] G ≃ Zp ×Z GL2, well-defined (from
c) up to composing with conjugation by an element of PGL2(Zp). An alter-
native way to produce these isomorphisms is to consider orders in quaternion
algebras, a maximal order in M2(Qp) being conjugated to M2(Zp).
Note that for p ̸∈ S, we similarly have have cp ∈ Z1(Gal(Kp/Qp),PGL2(Kp)),
and its cohomology class is trivial if and only if Qp ⊗Q D is split. Therefore
under this assumption we get an isomorphism Qp ×Q G ≃ Qp ×Z GL2, well-
defined up to composition with conjugation by an element of GL2(Qp).

□

Recall the following special case of a theorem of Mostow and Tamagawa, proved
in Gabriel Dospinescu’s course in the non-adélic setting.

Theorem 4.5. (1) Let D be a non-split quaternion algebra over Q, and G the
corresponding inner form of GL2. Then G(Q)\G(A)/A× is compact.

(2) Let E be a quadratic extension of Q. Then (A⊗Q E)
×/A× is compact.

There are useful variants of this formulation, for example G(Q)\G(A)/R>0 is
also compact, since the map G(Q)\G(A)/R>0 → G(Q)\G(A)/A× is proper: the
fibers are isomorphic to Q×\A×/R>0 ≃

∏
p Z×

p .

Let D and G be as in the previous theorem. Let ω : Q×\A× → C× be a
continuous unitary character. Let L2(G(Q)\G(A), ω) be the space of measurable
functions ϕ : G(Q)\G(A)→ C satisfying:

• ϕ(zg) = ω(z)ϕ(g) for any z ∈ A× and g ∈ G(A), and

• ∫
A×G(Q)\G(A)

|ϕ(g)|2 dġ <∞,

quotiented by the subspace of functions vanishing almost everywhere as usual. It
is naturally a unitary representation of G(A) for the action defined by (g · ϕ)(x) =
ϕ(xg), admitting central character ω.
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Theorem 4.6. Let D be a non-split quaternion algebra over Q. Let G be the as-
sociated inner form of GL2. Let ω : Q×\A× → C× be a continuous unitary char-
acter. Let Kf be a compact open subgroup of G(Af ). The unitary representation
L2(G(Q)\G(A), ω)Kf of G(R) decomposes discretely.

Remark 4.7. There are variants of this formulation, for example the unitary repre-
sentation L2(G(Q)\G(A)/R>0) of G(A)/R>0 also decomposes discretely. This state-
ment is more elegant because it does not isolate the Archimedean place of Q among
all places, but the equivalence between the two statements is not trivial and it will be
easier for us to work with levels Kf .

Recall that the proof relies on a general theorem of Gelfand, Graev and Piatetski-
Shapiro: it is enough to show that for any f ∈ C0

c (G(R), ω−1
∞ ), the operator

ρ(f) : L2(G(Q)\G(A), ω)Kf −→ L2(G(Q)\G(A), ω)Kf

ϕ 7−→
(
g 7→

∫
Z(R)\G(R)

ϕ(gx)f(x) dx

)
is compact. In fact it is even Hilbert-Schmidt (definition recalled below, as we will
also need this notion).

4.2. Compact, Hilbert-Schmidt and trace-class operators. Let V be a sep-
arable Hilbert space. Our convention is that Hermitian inner products are linear
in the first variable. Recall that a continuous operator T : V → V is said to be
compact if the image of any ball is relatively compact. Also recall that compact op-
erators form a closed subspace of the space B(V ) of continuous operators on V (for
the strong topology). The spectrum σ(T ) of a compact operator T is such that for
any ϵ > 0, {λ ∈ σ(T ) | |λ| > ϵ} is finite. We will use the spectral theory of compact
operators only in the normal (even self-adjoint semi-positive definite) case. If T is
compact and normal then for λ ∈ σ(T )∖ {0} the eigenspace ker(T −λIdV ) is finite-
dimensional, and we have an orthogonal decomposition V =

⊕
λ∈σ(T ) ker(T − λId).

Applying this to T ∗T , we get the following “explicit” characterization of compact
operators on Hilbert spaces.

Lemma 4.8. An operator T : V → V is compact if and only if there exist a set J
and orthonormal families (fj)j∈J and (gj)j∈J in V and a family (λj)j∈J such that
for any ϵ > 0, {j ∈ J | |λj| > ϵ} is finite, and for any v ∈ V

Tv =
∑
j∈J

λj(v, fj)gj.

Proof. It is easy to check that for families as in the lemma, the sum converges for
the operator norm, i.e. T is a limit of finite rank operators. Therefore such a T is
compact. Moreover it is easy to compute T ∗v =

∑
j∈J λj(v, gj)fj, and we see that

fj ∈ ker(T ∗T − |λi|2IdV ).
Conversely and guided by this computation, take (fi)i∈I an orthonormal basis of

V consisting of eigenvectors for T ∗T , with eigenvalues ρi ∈ R≥0, and let J = {i ∈
I | ρi > 0}, gj = ρ

−1/2
j Tfj and λj = ρ

1/2
j for j ∈ J . □
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The proof shows that if we impose λj ∈ R>0 then the families are essen-
tially unique (up to reordering and choosing different bases for the eigenspaces of
T ∗T ). Note that Lemma 4.8 is an analogue of the Cartan decomposition GLn(C) =
U(n)D+U(n) where U(n) is the (compact) unitary group and D+ is the group of
diagonal matrices with real, positive and decreasing coefficients on the diagonal. In
fact the proof is identical.

Recall that a continuous operator T : V → V is said to be Hilbert-Schmidt if for
some orthonormal basis (ei)i∈I of V we have

∑
i∈I∥Tei∥2 <∞. Also recall that any

HS operator is compact.

Lemma 4.9. Let T be a Hilbert-Schmidt operator on V . Then ∥T∥2HS :=
∑

i∈I∥Tei∥2
does not depend on the choice of an orthonormal basis (ei)i∈I of V . Moreover
∥T ∗∥HS = ∥T∥HS, and ∥·∥2HS defines a Hermitian inner product on the space B(V )HS

of Hilbert-Schmidt operators on V , endowing it with a Hilbert space structure.
Finally, writing a compact operator T : V → V as in Lemma 4.8, we have that

T is Hilbert-Schmidt if and only if
∑

j∈J |λj|2 <∞.

Proof. Let (fj)j∈J be another orthonormal basis of V . We have∑
i∈I

∥Tei∥2 =
∑
i∈I

∑
j∈J

|(Tei, fj)|2 =
∑
i∈I

∑
j∈J

|(ei, T ∗fj)|2 =
∑
j∈J

∥T ∗fj∥2

and this implies both independence of the choice of basis and ∥T ∗∥HS = ∥T∥HS. The
rest is easy (that is, left as an exercise): any orthonormal basis (ei)i∈I identifies
B(V )HS with ℓ2(I, V ), by T 7→ (Tei)i∈I . □

Let (X,µ) be a separable measured space. Recall that HS operators on L2(X,µ)
are identified with elements of L2(X ×X,µ × µ): a kernel K ∈ L2(X ×X,µ × µ)
defines a Hilbert-Schmidt operator TK : L2(X,µ)→ L2(X,µ) defined by

TK(f)(x) =

∫
X

f(y)K(x, y)dµ(y).

The expression given in Lemma 4.8 amounts to

K(x, y) =
∑
j∈J

λjgj(x)fj(y)

which is a sum of pairwise orthogonal elements of L2(X×X,µ×µ). Exercise: check
that ∥TK∥2HS = ∥K∥2.

Definition 4.10. A continuous operator T : V → V is trace class if it is compact
and for any set J and any orthonormal families (ei)i∈I and (hi)i∈I in V we have∑

i∈I |(Tei, hi)| <∞.

Remark 4.11. This is not the standard definition, as we impose compactness, but
this one does not require us to define

√
T ∗T for arbitrary T ∈ B(V ).

Proposition 4.12. Let V be a Hilbert space.

(1) A linear combination of trace class operators V → V is trace class.
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(2) The composition of two Hilbert-Schmidt operators is trace class.

(3) A continuous operator T : V → V is trace class if and only if∑
ρ∈σ(T ∗T )

√
ρ <∞.

(Equivalently, if T is compact and if, writing T as in Lemma 4.8,
∑

j∈J |λj| <
∞) In particular, any trace class operator is Hilbert-Schmidt.

(4) If T is trace class then trT :=
∑

i∈I(Tei, ei) does not depend on the choice
of an orthonormal basis (ei)i∈I of V .

Proof. (1) Easy.

(2) Using Cauchy-Schwarz,

∑
i∈I

|(T1T2ei, hi)| =
∑
i∈I

|(T2ei, T ∗
1 hi)| ≤

√∑
i∈I

∥T2ei∥2
√∑

i∈I

∥T ∗
1 hi∥2.

(3) Assume that T is of trace class, then T is compact so we can write T as in
Lemma 4.8. Taking ej = fj and hj = gj, we see that

∑
j∈J |λj| <∞.

Conversely, if T can be written as in Lemma 4.8 with
∑

j∈J |λj| < ∞ then

for any orthonormal families (ei)i∈I and (hi)i∈I we have∑
i∈I

|(Tei, hi)| ≤
∑
i∈I

∑
j∈J

|λj||(ei, fj)||(gj, hi)|

≤
∑
j∈J

|λj|
√∑

i∈I

|(ei, fj)|2
√∑

i∈I

|(gj, hi)|2

≤
∑
j∈J

|λj|

using the Cauchy-Schwarz inequality.

(4) Writing T as in Lemma 4.8 we have∑
i∈I

(Tei, ei) =
∑
i∈I

∑
j∈J

λj(ei, fj)(gj, ei) =
∑
j∈J

λj
∑
i∈I

(ei, fj)(gj, ei) =
∑
j∈J

λj(gj, fj)

where the exchange of
∑

signs is justified by absolute convergence:(∑
i∈I

|(ei, fj)(gj, ei)|

)2

≤

(∑
i∈I

|(ei, fj)|2
)(∑

i∈I

|(gj, ei)|2
)

= 1.

□
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It seems that the only practical way of showing that an operator is trace class is
to write it as a sum of products of Hilbert-Schmidt operators: an easy computation
shows that for T1, T2 ∈ B(V )HS we have trT1T2 = (T2, T

∗
1 )HS. Let us make the

trace more explicit in the case where V = L2(X,µ). We have Ti = TKi
for Ki ∈

L2(X × X,µ × µ) and so T1T2 = TK with K(x, y) =
∫
X
K1(x, z)K2(z, y) dµ(z)

(exercise). Note that this makes sense in L2(X × X,µ × µ): the Cauchy-Schwarz
inequality gives us

|K(x, y)|2 ≤
(∫

X

|K1(x, z)|2 dµ(z)
)(∫

X

|K2(z, y)|2 dµ(z)
)

and so ∥K∥2 ≤ ∥K1∥2∥K2∥2. We also deduce that∫
X

|K(x, x)| dµ(x) ≤
∫
X

√∫
X

|K1(x, z)|2 dµ(z)

√∫
X

|K2(z, x)|2 dµ(z) dµ(x)

≤ ∥K1∥ ∥K2∥

where the last inequality is another application of Cauchy-Schwarz. This shows that
the restriction of K to the diagonal in X × X is well-defined (by K1 and K2, not
by K directly!) in L1(X,µ). Thinking of the case where X is finite, we guess that
trTK =

∫
K
K(x, x) dµ(x). This is easy to check when T1 = T ∗

2 , and the general case
follows using the polarization identity for (·, ·)HS.

This formula will be crucial for the trace formula. Unfortunately defining the
restriction of K to the diagonal properly requires us to write K as the convolution
of K1 and K2. While this should be possible in the applications in this course (this
is the approach taken in [Art74]), we would prefer to write trTK =

∫
X
K(x, x)dµ(x)

directly in cases where it makes sense. The following theorem (Theorem 4.10 in
[War79]) achieves just that.

Theorem 4.13. Let X be a locally compact, second-countable topological space and
µ a Radon measure on X. Let TK : L2(X,µ) → L2(X,µ) be a Hilbert-Schmidt
operator. Assume that TK is trace class, and that K can be chosen (among measur-
able functions representing a given class in L2(X × X,µ × µ), i.e. up to adding a
measurable function which vanishes almost everywhere) so that for almost all y ∈ X
the function K(·, y) is continuous. Fix such a representative K. Then x 7→ K(x, x)
is integrable with respect to µ and we have

trTK =

∫
x

K(x, x)dµ(x).

Proof. As we saw above we can write

K(x, y) =
∑
j∈J

λjgj(x)fj(y)

with (fj)j∈J and (gj)j∈J orthonormal families in L2(X,µ), λj > 0 and
∑

j∈J λj <∞.

This equality holds in L2(X × X,µ × µ), i.e. away from a set of µ × µ-measure
zero in X × X. Integrating over X, we see that the series

∑
j∈J λj|gj(x)|2 and
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∑
j∈J λj|fj(y)|2 converge almost everywhere. Write X as the increasing union of

compact subsets (Ck)k≥1. By Lusin’s theorem, for any k ≥ 1, j ∈ J and ϵ > 0 there
is an open subset Uk of Ck such that µ(Uk) < ϵ and gj and fj are continuous on
Ck ∖Uk. By Egorov’s theorem, for any k ≥ 1 and any ϵ > 0 there is an open subset
Uk of Ck such that µ(Uk) < ϵ and

∑
j∈J λj|gj|2 and

∑
j∈J λj|fj|2 converge uniformly

on Ck ∖ Uk. Putting these two results together, we get (exercise) that there is a
sequence (C ′

k)k≥1 of compact subsets of X with C ′
k ⊂ Ck and C ′

k ⊂ C ′
k+1, such that

for any k ≥ 1 we have

• µ(Ck ∖ C ′
k) < 1/k,

• for any j ∈ J , fj and gj are continuous on C ′
k,

•
∑

j∈J λj|fj|2 and
∑

j∈J λj|gj|2 converge uniformly on C ′
k.

Replacing C ′
k be its smallest closed subset of full measure (note that second count-

ability is used here), we may also assume that C ′
k does not admit any proper closed

subset of full measure. It follows from the Cauchy-Schwarz inequality that

K ′(x, y) :=
∑
j∈J

λjgj(x)fj(y)

converges uniformly on C ′
k×C ′

k, and so it defines a continuous function on C ′
k×C ′

k,
which coincides with K away from a negligible set. More precisely, let Sk = {y ∈
C ′
k |
∫
C′

k
|K(x, y)−K ′(x, y)| dµ(x) > 0}, so that µ(Sk) = 0. For any y ∈ C ′

k∖Sk, the
set of x in C ′

k where K(x, y) ̸= K ′(x, y) has measure zero, and since both K(·, y)
and K ′(·, y) are continuous it is also open and by construction of C ′

k it is empty.
Let X ′ = (

⋃
k C

′
k) ∖ (

⋃
k Sk). Taking all k into consideration, we get that K

coincides with K ′ on (X ′)2. We have µ(X ∖X ′) ≤ lim supk µ(Ck∖C ′
k) = 0. Finally

trTK =
∑
j∈J

λj

∫
X

gj(x)fj(x) dµ(x) =
∑
j∈J

λj

∫
X′
gj(x)fj(x) dµ(x) =

∫
X′
K(x, x) dµ(x)

where the last equality is given by the dominated convergence theorem (using
|gj(x)fj(x)| ≤ (|gj(x)|2 + |fj(x)|2)/2 and

∑
j∈J λj < ∞) and also shows that x 7→

K(x, x) is integrable. □

4.3. The trace formula for anisotropic groups. LetD be a non-split quaternion
algebra over Q and denote by G the corresponding inner form of GL2.

Recall that a smooth function on G(A) is f : G(A) → C such that for any
g ∈ G(A), there exists U∞ an open neighbourhood of g∞ inG(R) and Uf a neighbour-
hood of gf in G(Af ), and ψ : U∞ → C a smooth function, such that f(x) = ψ(x∞)
for any x ∈ U∞ × Uf . Similarly, for any k ≥ 1 we define functions of class Ck on
G(A) (note that these are “smooth”, i.e. locally constant, on the finite adélic factor
G(Af )). Exercise: show that any f ∈ Ck

c (G(A)) is a linear combination of functions
of the form

∏
v fv where f∞ ∈ Ck

c (G(R), for any prime number p fp ∈ C∞
c (G(Qp))

and for almost all prime numbers p, fp is the characteristic function of G(Zp). Sim-
ilarly, for ω : A× → C× a continuous character, any function in Ck

c (G(A), ω−1) is a
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linear combination of functions of the form
∏

v fv where for almost all prime numbers
p, fp is supported on G(Zp)Z(Qp) and for any k ∈ G(Zp) we have fp(k) = 1.

Also recall that any Haar measure on G(A) is given by a collection of Haar
measures on G(Qv) such that for almost all prime numbers p, vol(G(Zp)) = 1.

We will consider orbital integrals of functions on G(Qv), v any place of Q, and
G(A). For the case where v is non-Archimedean and Qv ⊗Q D is split we defined
and studied orbital integrals in Section 3.2. For any place v such that Qv ⊗Q D
is not split, for any γ ∈ G(Qv) the quotient Gγ(Qv)\G(Qv) is compact and so the
theory is easy (of course, explicit computations are not so easy . . . ). For GL2(R),
the (formal) definition of Oγ(f) in Definition 3.1, the computation for γ semi-simple
regular hyperbolic (3.2), and Lemma 3.5 (showing that for any f ∈ C0

c (G(R)), Oγ(f)
is the integral of a continuous compactly supported function) all adapt. Of course
in the real case orbital integrals are almost never finite sums as in (3.1). As in
the p-adic case we have similar results when f ∈ C0

c (G(R), ω−1). The analogous
property in the adélic setting is the following fact.

Lemma 4.14. Let ω : A× → C× a continuous character. Fix Haar measures
on Gad(Qv) such that vol(Gad(Zp)) = 1 for almost all prime numbers p. Let
f =

∏
v fv ∈ Ck

c (G(A), ω−1) (as discussed above). Let γ ∈ G(Q) be semi-simple.
Then for almost all p the set of [gp] ∈ Gγ(Qp)\G(Qp)/G(Zp) such that g−1

p γgp ∈
G(Zp)Z(Qp) is simply {[1]}, and so vol(Gγ(Qp)/Z(Qp))Oγ(fp) = 1 for almost all p.
In particular the function g 7→ f(g−1γg) in Ck(Gγ(A)\G(A)) is compactly supported,
and Oγ(f) =

∏
v Oγ(fv).

Proof. Left as an exercise, using formula (3.2) and the argument around Lemma 3.8
(for almost all p we have Zp[γ] = OE). □

Recall the following theorem which was stated in Gabriel Dospinescu’s course,
that we will not prove either.

Theorem 4.15 ([DM78]). For any f ∈ C∞
c (G(R)) there exist k ≥ 1 and f1, g1,

. . . , fk, gk in C∞
c (G(R)) such that f =

∑
i fi ∗ gi.

Remark 4.16. In the applications in this course a weaker result would be enough,
with gi ∈ Ck

c (G(R)) for a large enough integer k. This weaker result is easier to prove
(although far from trivial: another use of elliptic operators . . . ): see [DL71, §I.1.10]
and [War79, Theorem 4.3 and Lemma 4.5]. In fact the reader can check that all
consequences of trace formulas that we will prove could be proved by only considering
functions of the form

∑
i fi ∗ gi (without using that any smooth function can be

written in this manner). In other words, these results are not strictly necessary for
the purpose of these notes. However, avoiding them would make the formulation of
certain results more complicated, and require more computations.

Corollary 4.17. Let ω : Z(Q)\Z(A) → C× be a continuous unitary character.
Then for any f ∈ C∞

c (G(A), ω−1) there exist k ≥ 1 and f1, g1, . . . , fk, gk ∈ C∞
c (G(A), ω−1)

such that f =
∑

i fi ∗ gi.

Theorem 4.18. Fix a Haar measure on Gad(A) and a continuous unitary char-
acter ω : Z(Q)\Z(A) → C×. For any f ∈ C∞

c (G(A), ω−1), the operator ρ(f) on
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L2(G(Q)\G(A), ω) is trace class and

(4.2) tr ρ(f) =
∑
[γ]

ι(γ)−1 vol(Gγ(Q)Z(A)\G(A))Oγ(f)

where the sum is over conjugacy classes of elements γ in Gad(Q), ι(γ) is the index
of Gγ(Q)/Z(Q) in Cent(γ,Gad(Q)) (exercise: ι(γ) ∈ {1, 2}, and ι(γ) = 2 if and
only if tr γ = 0), and only finitely many terms in the sum are non-zero.

Note that the product vol(Gγ(Q)Z(A)\G(A))Oγ(f) does not depend on the
choice of a Haar measure on Gγ(A)/Z(A). Observe also that f is bi-Kf -invariant for
some compact open subgroupKf ofG(Af ), and so we could replace L2(G(Q)\G(A), ω)
by L2(G(Q)\G(A), ω)Kf (same trace), and find ourselves in the setting of Theorem
4.6.

Proof. We have

(ρ(f)ϕ)(x) =

∫
Gad(A)

ϕ(xg)f(g) dġ

=

∫
Gad(A)

ϕ(y)f(x−1y) dẏ

=

∫
Gad(Q)\Gad(A)

ϕ(y)
∑

γ∈Gad(Q)

f(x−1γy) dẏ

=

∫
Gad(Q)\Gad(A)

ϕ(y)Kf (x, y) dẏ

with Kf (x, y) =
∑

γ∈Gad(Q) f(x
−1γy). For x and y in a compact subset C of

G(A), there is a finite subset F (C, supp(f)) of Gad(Q) such that for x, y ∈ C
and γ ∈ Gad(Q) ∖ F (C, supp(f)) we have f(x−1γy) = 0, since Gad(Q) is dis-
crete in Gad(A). In particular the function Kf on (G(Q)\G(A))2 is continuous.
Moreover Kf (z1x, z2y) = ω(z1z

−1
2 )Kf (x, y) for z1, z2 ∈ Z(A), so |Kf | induces a

bounded function on the compact topological space (Gad(Q)\Gad(A))2, in partic-
ular |Kf | ∈ L2((Gad(Q)\Gad(A))2). This shows that ρ(f) is Hilbert-Schmidt. To
show that it is of trace class, use the Dixmier-Malliavin theorem which expresses
ρ(f) as

∑
i ρ(fi)ρ(gi) and apply Proposition 4.12. Finally Theorem 4.13 (or the

Dixmier-Malliavin expression, see the discussion before Theorem 4.13) shows that

tr ρ(f) =

∫
Gad(Q)\Gad(A)

Kf (x, x) dẋ.

Note that integrability of Kf (and of K|f |, defined analogously even though |f |
may not be differentiable . . . ) can also be checked directly, without using Theo-
rem 4.13: x 7→ K|f |(x, x) is a continous function on the compact topological space
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Gad(Q)\Gad(A). This justifies the inversion of integral signs in the following:∫
Gad(Q)\Gad(A)

Kf (x, x) dẋ =
∑
[γ]

∫
Gad(Q)\Gad(A)

∑
δ∈[γ]

f(x−1δx) dẋ

=
∑
[γ]

∫
Gad(Q)\Gad(A)

∑
α∈Cent(γ,Gad(Q))\Gad(Q)

f(x−1α−1γαx) dẋ

=
∑
[γ]

∫
Gad(Q)\Gad(A)

ι(γ)−1
∑

α∈Gγ(Q)\G(Q)

f(x−1α−1γαx) dẋ

Thus

tr ρ(f) =
∑
[γ]

ι(γ)−1

∫
(Gγ(Q)/Z(Q))\Gad(A)

f(x−1γx) dẋ

=
∑
[γ]

ι(γ)−1

∫
Gγ(A)\G(A)

∫
(Gγ(Q)Z(A))\Gγ(A)

f(x−1y−1γyx) dẏ dẋ

=
∑
[γ]

ι(γ)−1

∫
Gγ(A)\G(A)

vol((Gγ(Q)Z(A))\Gγ(A))f(x−1γx) dẋ

=
∑
[γ]

ι(γ)−1 vol((Gγ(Q)Z(A))\Gγ(A))Oγ(f).

Finally we must prove that only finitely many conjugacy classes [γ] in Gad(Q)
satisfy Oγ(f) ̸= 0. In fact this follows from the proof of continuity of Kf above:
choose a compact subset C ⊂ Gad(A) which surjects onto Gad(Q)\Gad(A), then on
C × C only finitely many elements on Gad(Q) contribute to the sum defining Kf .
Although it is not absolutely necessary, let us give a direct argument which does
not use compactness of Gad(Q)\Gad(A). Recall that for any field of characteristic
zero F , conjugacy classes in G(F ) are parametrized by trace and determinant. This
implies that the map ν = tr2 / det : Gad(F ) → F is an invariant of conjugacy
classes in Gad(F ). Consider the compact subset supp(f) of Gad(A), and its image
ν(supp(f)) in A. Since Q is discrete in A, the subset F ∩ ν(supp(f)) of F is
finite. Unfortunately the invariant ν does not completely characterize conjugacy,
although counter-examples are somewhat rare. More precisely, one can check that if
ν(γ1) = ν(γ2) do not vanish then γ1 and γ2 are conjugated in Gad(F ); but ν

−1({0})
is a union of several conjugacy classes in general (if D was split and G = GL2 a

simple example would be diag(−1, 1) and
(

0 1
−1 0

)
). To conclude we also consider

arithmetic invariants of conjugacy classes in Gad(Q). If g ∈ Gad(F ) then for a
lift g ∈ G(F ) of g, the image ζ(g) of det g in F×/F×,2 does not depend on the
choice of the lift g, and is clearly invariant by conjugation. (Identifying Gad with a
special orthogonal group as explained in Section 4.1, ζ(g) is the spinor norm of g.)
There exists a finite set S ′ of places of Q, containing the Archimedean place and all
finite places where ω is ramified (i.e. non-trivial on Z×

p ) such that f = fSf
S where

fS ∈ C∞
c (
∏

v∈S G(Qv), ω
−1
S ) and fS ∈

∏
p ̸∈S C

∞(G(Zp)Z(Qp), ω
−1
p ). Since G(Zp) is

a compact subgroup of G(Qp) we have detG(Zp) ⊂ Q×
p and so a necessary condition
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for the non-vanishing of Oγ(f) is that vp(ζ(γ)) ∈ 2Z (note that this parity is well-
defined!) for all p not in S. Since S is finite this only leaves finitely many possible
values for ζ(γ) in Q×/Q×,2, and since we have already seen that (tr γ)2/ det γ can
only take finitely many values, this implies that up to the action of Z(Q), the pair
(tr γ̃, det γ̃), where γ̃ ∈ G(Q) lifts γ, can only take finitely many values. □

Of course this formula is useful in combination with Theorem 4.6. Recall that
this theorem gives a canonical orthogonal decomposition

L2(G(Q)\G(A), ω)Kf =
⊕̂

π∞∈Ĝ(R)

HomG(R)(π∞, L
2(G(Q)\G(A), ω)Kf )⊗ π∞

where each HomG(R)(π∞, L
2(G(Q)\G(A), ω)Kf ) is finite-dimensional and has an ac-

tion of H(G(Af ), Kf , ω
−1
f ). In particular for any irreducible unitary representation

π∞ of G(R) having central character ω∞,

lim−→
Kf

HomG(R)(π∞, L
2(G(Q)\G(A), ω)Kf )

is an admissible representation of G(Af ) having central character ωf . It is endowed
with a natural G(Af )-invariant Hermitian inner product (canonical up to R>0), and
so it is semi-simple. (Exercise: formulate unitarity of the G(Af )-action in terms of
the Hecke algebra action. Which formulation is clearer?)

Thus we have

(4.3) tr ρ(f) =
∑
π

mG(π) trπ(f)

where mG(π) ∈ Z≥0, the sum is over all isomorphism classes of tensor products
π = π∞ ⊗ πf with π∞ a unitary irreducible representation of G(R) with central
character ω∞ and πf a smooth admissible unitary irreducible representation ofG(Af )
with central character ωf , and all but countably many mG(π) vanish. Note that
the sum is absolutely convergent (by definition of trace class operators), but has
infinitely many terms in general. Also note that each πf decomposes as a restricted
tensor product

⊗′
p πp of irreducible smooth representations of G(Qp), almost all of

which are unramified (and endowed with a non-zero invariant under G(Zp) . . . ). We
will say that π is an automorphic representation if mG(π) > 0.

Remark 4.19. Recall from Gabriel Dospinescu’s course that if we fix a maximal
compact subgroup K∞ of G(R) then we also have a decomposition of the space of
square-integrable automorphic forms

A2(G(Q)\G(A), ω)Kf ≃
⊕

π=π∞⊗πf

(
HC(π∞)⊗ πKf

f

)⊕mG(π)

where HC(π∞) is the (g, K∞)-module (g := C ⊗R LieG(R)) consisting of smooth
K∞-finite vectors in π∞. This decomposition contains the same information as the
decomposition of L2 above since any unitary irreducible representation π∞ is deter-
mined by the (g, K∞)-module HC(π∞). Recall that there is also a decomposition of
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the unitary representation L2(G(Q)\G(A), ω) of G(A) (note that this is not a smooth
representation of G(Af )), which also contains the same information, although the
relation is non-trivial. Note that in this course we have not studied topological rep-
resentations of p-adic groups.

In these notes we will only have to consider topological representations (even uni-
tary on Hilbert spaces) of real groups, and smooth representations of p-adic groups.

Our first application of the trace formula is the existence of automorphic rep-
resentations whose components at finitely many places are given (Theorem 4.22
below). An obvious necessary condition for existence is that the centrals characters
are restrictions to Q×

v of a continuous character Q×\A× → C×. This condition is
made transparent by the following lemma.

Lemma 4.20. Let S ′ be a finite set of prime numbers. Let (ηp)p∈S′ be a family of
(automatically unitary) continuous characters ηp : Z×

p → C×. Then there exists a
continuous unitary character ω : Q×\A× → C× such that for any p ∈ S ′ we have
ω|Z×

p
= ηp.

Proof. Use once again A× = Q×R>0Ẑ×. □

Remark 4.21. The proof shows that we can even find ω which is unramified at all
primes not in S ′ and equal to a given unitary character on R>0. The case of an
arbitrary number field instead of Q is more subtle, the statement is not as simple
but it essentially reduces to Dirichlet’s unit theorem and [Che51].

Theorem 4.22. Let S be the finite set of places where D is not split. Let ω :
Q×\A× → C× be a continuous unitary character. Let S ′ be a finite set of prime
numbers, and (σp)p∈S a collection of smooth irreducible representations of G(Qp)
having central character ωp := ω|Q×

p
. Assume that for any p ∈ S ′ ∖ S the represen-

tation σp is square-integrable. There exists an irreducible representation π =
⊗′

v πv
in lim−→Kf

L2(G(Q)\G(A), ω)Kf such that πp ≃ σp for all p ∈ S ′.

Proof. Up to adding to S ′ a prime number which is not in S, and taking for σp a
supercuspidal representation of G(Qp) having central character ωp (such a represen-
tation exists by Theorem 3.37), we can assume that there exists p ∈ S ′ ∖ S such
that σp is supercuspidal. Let ℓ be a prime number which does not belong to S ′. We
will apply the trace formula to a function f ∈ C∞

c (G(A), ω−1) which can be written
as a product

∏
v fv.

• For v a place of Q which does not belong to S ′∪{ℓ}, pick fv ∈ H(G(Qv), ω
−1
v )

(for v the Archimedean place this means C∞
c (G(Qv), ω

−1
v )) such that fv(1) ̸=

0, and fp is the characteristic function of G(Zp) for almost all primes numbers
p.

• For each p ∈ S ′, choose a pseudo-coefficient fp ∈ H(G(Qp), ω
−1
p ) for the

representation σp. Recall that such pseudo-coefficients were constructed in
Propositions 3.28 and 3.29 for p ̸∈ S, and are easy to construct using finite
group representation theory for p ∈ S (for example fp = (dimσp)

−1trσp).
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• Finally, for Kℓ a compact open subgroup of ker(det : G(Qℓ) → Q×
ℓ ), small

enough so thatKℓ∩Z(Qℓ) = {1}, take fℓ ∈ H(G(Qℓ), ω
−1
ℓ ) to be the function

with support in KℓZ(Qℓ) and such that f(k) = vol(KℓZ(Qℓ)/Z(Qℓ))
−1 for

k ∈ Kℓ.

Now we claim that if Kℓ is chosen sufficiently small, the only non-vanishing sum-
mand on the geometric side of the trace formula (4.2) is for γ = 1. Start with
an arbitrary Kℓ. The set X(supp(f)) of conjugacy classes [γ] in Gad(Q) having a
non-zero contribution in the trace formula is finite. For any non-central γ we have
ν(γ) ̸= 4 (ν as in the proof of Theorem 4.18). By continuity of ν there exists an
open subgroup K ′

ℓ of Kℓ such that ν(K ′
ℓ) ∩ ν(X(supp(f))∖ {[1]}) = ∅. Thus up to

replacing Kℓ by K
′
ℓ, the claim holds true.

So the geometric side of the trace formula is simply vol(Z(A)G(Q)\G(A))f(1).
Since f(1) ̸= 0, it does not vanish, and so the spectral side (4.3) does not vanish
either. In particular there exists π such that mG(π) > 0 and trπ(f) ̸= 0. We have
trπ(f) =

∏
v trπv(fv), so the property of pseudo-coefficients implies that for any

p ∈ S ′, either πp ≃ σp or p ̸∈ S and πp is one-dimensional. Corollary 4.24 below
shows that the second possibility contradicts the fact that there exists p′ ∈ S ′ ∖ S
such that πp′ is supercuspidal. □

Theorem 4.23 (Strong approximation). Let G′ be the algebraic subgroup of G which
is the kernel of the determinant morphism. Let v be a place of Q which is not in S,
i.e. Qv ⊗Q D ≃M2(Qv). Then G

′(Q)G′(Qv) is dense in G′(A).

Proof. See [Kne65, §3]. □

Corollary 4.24. Let π = π∞ ⊗
⊗′

p πp be an automorphic representation of G(A)
having central character ω. Assume that there exists a place v of Q which is not in
S and such that πv is one-dimensional. Then π is one-dimensional, i.e. for every
place w of Q the representation πw is one-dimensional.

Proof. Fix a maximal compact subgroup K∞ of G(R). Fix v0 ∈ HC(π∞)⊗
⊗′

p πp∖
{0}. For simplicity, assume that v0 is a pure tensor. There exists a compact

open subgroup Kf of G(Af ) fixing v0. Let φ : π∞ ⊗ π
Kf

f → L2(G(Q)\G(A), ω)Kf

be a non-zero continuous G(R)-equivariant linear map which is also equivariant
for the action of the Hecke algebra H(G(Af ), Kf ). (Note that this last prop-
erty is equivalent to requiring that φ extends to a G(Af )-equivariant map π →
lim−→K′

f

L2(G(Q)\G(A), ω)K′
f .) Let f = φ(v0), then f is an automorphic form (this

non-trivial fact was proved in Gabriel Dospinescu’s course), in particular it is con-
tinuous. The group G′(Qv) ≃ SL2(Qv) is perfect, so G′(Qv) ⊂ kerπv, and f is
right G′(Qv)-invariant. Let x ∈ G(A) and g ∈ G′(A). There are sequences (γn)n
and (yn)n of elements of G′(Q) and G′(Qv) such that (γnyn)n converges to xgx−1,
so f(xg) = limn→+∞ f(ynx) = f(x). The representation π is irreducible and so φ
is injective, so we deduce that v0 is fixed by G′(A), and so for every place w of
Q there is a non-zero vector in πw fixed by G′(Qw). Since G′(Qw) is distinguished
in G(Qw) this implies that G′(Qw) ⊂ kerπw (for w = ∞ we use the fact that π∞
is topologically irreducible, whereas for finite w we use the fact that πw is simply
irreducible). □
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Remark 4.25. (1) Theorem 4.23 and Corollary 4.24 (for discrete automorphic
representations) are still valid if S = ∅, i.e. if G = GL2, with the same proof.

(2) If we knew more about the classification of representations of GL2(R) and
harmonic analysis for this group, including the existence of pseudo-coefficients
for square-integrable representations, we could also include the Archimedean
place in the set S ′ in Theorem 4.22. For the case of arbitrary reductive groups
over number fields see [Clo86].

4.4. The simple trace formula for GL2. We would like to prove an analogous
formula for GL2. It turns out that this is much harder, due to the continuous part
of the automorphic spectrum on the spectral side, and the contributions of non-
elliptic elements on the geometric side (note that vol(Gγ(Q)Z(A)\Gγ(A)) = +∞
for γ semi-simple regular hyperbolic). Under a simplifying assumption on the test
function, we will get a reasonably simple trace formula for GL2.

For the algebraic group GL2 over Q change the notation used in the first chapters
for GL2(Qp): the letters G, B, T , N will be used to denote the corresponding
algebraic groups over Q.

We first recall the fundamental results on the cuspidal automorphic spectrum
proved in Gabriel Dospinescu’s course. We first introduce cusp forms in the L2

setting. Let ω be a continuous unitary character of Z(Q)\Z(A).

Lemma 4.26. Let ϕ ∈ L2(G(Q)Z(A)\G(A), ω). Then for almost all g ∈ G(A), the
integral on the RHS of

ϕB(g) :=

∫
N(Q)\N(A)

ϕ(ng) dġ

converges absolutely. Moreover if vol
(
Z(A)\{x ∈ G(Q)\G(A) |ϕ(x) ̸= 0}

)
= 0

then ϕB(g) = 0 for almost all g ∈ G(A).

Proof. Let g0 ∈ G(A). There exists a continuous compactly supported function
T0 : Z(A)\G(A) → R≥0 such that T0(g0) > 0. Let T : Z(A)G(Q)\G(A) → R≥0

be defined by T (g) =
∑

γ∈Z(Q)\G(Q) T (γg). This function is clearly continuous and
compactly supported, so it is bounded and∫

Z(A)G(Q)\G(A)
|ϕ(g)|2T (g) dġ <∞.

But this equals∫
Z(A)\G(A)

|ϕ(g)|2T0(g) dg =
∫
Z(A)N(A)\G(A)

∫
N(A)
|ϕ(ng)|2T0(ng) dn dġ

=

∫
Z(A)N(A)\G(A)

∫
N(Q)\N(A)

|ϕ(ng)|2
∑

γ∈N(Q)

T0(γng) dṅ dġ.

The fact that this last integral converges implies both statements in the lemma, using
Cauchy-Schwarz (note that N(Q)\N(A) is compact, so that the constant function
1 on it is square-integrable). □
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Let L2
cusp(G(Q)\G(A), ω) be the subspace of L2(G(Q)\G(A), ω) consisting of all

ϕ such that for almost all g ∈ G(A) we have∫
N(Q)\N(A)

ϕ(ng) dṅ = 0.

Theorem 4.27. Let Kf be a compact open subgroup of G(Af ). Then the unitary
representation L2

cusp(G(Q)\G(A), ω)Kf of G(R) decomposes discretely.

Recall that this theorem is also proved using the theorem of Gelfand, Graev
and Piatetski-Shapiro, that is by proving that for any f ∈ C0

c (Kf\G(A)/Kf , ω
−1),

the operator ρcusp(f), which is the restriction of ρ(f) to L2
cusp(G(Q)\G(A), ω)Kf ,

is compact, even Hilbert-Schmidt. Note that the proof did not exhibit an explicit
kernel for this Hilbert-Schmidt operator. Nevertheless, we shall see that in the case
of a cuspidal test function f , essentially the same arguments, applied to the kernel
instead of automorphic forms, do give an explicit kernel.

Before we can achieve this in Lemma 4.34 below, we need to recall two essential
tools: reduction theory and the Poisson summation formula.

Let K0 be the maximal compact subgroup O2(R)×G(Ẑ) of G(A). Define

B(A)1 =
{(

a b
0 c

)
∈ B(A)

∣∣∣∣ |a|ad = |c|ad = 1

}
.

Note that this subgroup of B(A) contains T (Q)N(A), in particular it contains B(Q).
For η > 0 define

S(η) = {diag(x, y) ∈ G(R) |x, y > 0 and x/y ≥ η}.

We also introduce the function H : G(A) → R defined using the Iwasawa de-

composition by H(bk) = log |x/y| if b =
(
x ∗
0 y

)
∈ B(A) and k ∈ K0. Clearly H

is left B(A)1 and right K0-invariant. We have a “product formula” (actually a sum
because of the logarithm . . . ) H(g) =

∑
vHv(gv). Note that we have

B(A)1S(η) = S(η)B(A)1 =
{(

a b
0 c

)
∈ B(A)

∣∣∣∣ |a|/|c| ≥ η

}
.

and B(A)1S(η)K0 = H−1([log η,+∞[).

Theorem 4.28. There exists a compact subset Ω of B(A)1 and η > 0 such that
G(A) = G(Q)ΩS(η)K0.

Remark 4.29. This is a coarser version of the classical fundamental domain for the
action of SL2(Z) on the Poincaré upper-half plane; explicitly we may take η =

√
3/2,

Ω =

{(
1 x
0 1

) ∣∣∣∣ |x| ≤ 1/2

}
⊂ N(R).

See [Ser77, Ch. VII]. For arbitrary reductive groups over number fields the first part,
together with the compactness criterion for arithmetic quotients, are theorems due
to Borel, Harish-Chandra, Mostow, Tamagawa, Godement, Weil (see [God95] and
[Spr94]; the latter also covers reductive groups of positive characteristic).
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The first point in the following lemma gives “coordinates near the cusps” on
G(Q)\G(A). The second point is a slight generalization that will be useful later.

Lemma 4.30. (1) For any place v of Q, g ∈ G(Qv) and n ∈ N(Qv) we have
Hv(nwg) ≤ −Hv(g). In particular for g ∈ G(A) and n ∈ N(A) we have
H(nwg) ≤ −H(g). In particular for κ > 1 we have an embedding

B(Q)\B(A)1S(κ)K0 ↪→ G(Q)\G(A)

(and similarly if we take quotients by Z(A)).

(2) Let η > 0. Let C be a compact subset of Gad(A). There exists κ > 0
(depending on η and C) such that for any x ∈ B(A)1S(κ)K0, γ ∈ G(Q) and
y ∈ B(A)1S(η)K0 satisfying x−1γy ∈ C, we have γ ∈ B(Q).

Proof. (1) We consider the Archimedean and non-Archimedean cases separately.

In any case we can assume that g =

(
a b
0 1

)
, and that n = 1 since Hv is left

Z(Qv)N(Qv)-invariant. We have wg =

(
0 −1
a −b

)
.

In the real case we compute wg t(wg) =

(
1 b
b a2 + b2

)
and solve for xtx =

wg t(wg) with x ∈ B(Qv). We find x ∈ Z(Qv)

(
a/(a2 + b2) b/(a2 + b2)

0 1

)
,

and log(a/(a2 + b2)) ≤ log(a/a2) = − log a.

For a prime number p, doing column operations on wg we find that if b/a ∈ Zp
then Hp(wg) = −Hp(g) whereas if b/a ∈ Qp ∖ Zp then Hp(wg) = −Hp(g)−
2 log(|b/a|).
The last assertion follows from the Bruhat decomposition for GL2(Q): if
H(g) > 0 and γ ∈ GL2(Q)∖B(Q) then H(γg) ≤ − infn∈N(Q)H(wng) ≤ 0.

(2) Up to replacing C by K0CK0 we may assume that C is bi-K0-invariant.
Then B(A)1S(κ)K0C = B(A)1S(κ)C. There exists ϵ > 0 such that C ⊂
B(A)1S(ϵ)K0, so that B(A)1S(κ)K0C ⊂ B(A)1S(ϵκ)K0. Assume that κ is
large enough so that κϵη > 1. We will show that for any γ ∈ G(Q), if
γB(A)1S(η)K0 ∩ B(A)1S(κ)K0C ̸= ∅ then γ ∈ B(Q). Since B(Q)B(A)1 =
B(A)1 we may assume that γ = 1 or γ ∈ wN(Q) (Bruhat decomposition).
The previous point shows that H(wN(Q)B(A)1S(η)K0) ⊂] −∞,− log(η)],
whereas H(B(A)1S(κ)K0C) ⊂ [log(κϵ),+∞[.

□

I do not know of a reference for a generalization of the second part to arbitrary
reductive groups, but there is no doubt that such a generalization exists . . .

We now recall the Poisson summation formula. First, the classical form, which
is well-known. The assumptions we put are far from optimal.

Proposition 4.31. For f ∈ C1
c (R) we have

∑
u∈Z f(u) =

∑
v∈Z f̂(v), where f̂(x) =∫

R f(t)e
−2iπxt dt and the right-hand side is absolutely convergent.
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Proof. The function t 7→
∑

u∈Z f(t + u) on R is Z-periodic and C1 so it is the sum
of its Fourier series, convergent for the sup norm. □

Recall that A = Q+R+ Ẑ, and that the kernel of the surjection R× Ẑ→ Q\A
is Z. It follows that there is a unique continuous (automatically unitary) character

ψ0 : Q\A/Ẑ→ C× whose restriction to R is t 7→ exp(2iπt).

Exercise 4.32. Show that Q→ Homcont(Q\A,C×), λ 7→ ψ0(λ·) is an isomorphism
of topological groups. (This fact is not strictly necessary for what follows but it ex-
plains the adélic Poisson summation formula in the general framework of Pontryagin
duality.)

For f ∈ L1(A) define f̂ : A → C by f̂(x) =
∫
A f(t)ψ0(−tx) |dt|. Note that

the Haar measure |dt| on A is characterized by the fact that vol(Q\A) = 1. For
x = (xv)v ∈ A× we denote

|x|ad :=
∏
v

|xv|v

the norm of x, where | · |∞ is the usual absolute value and |xp|p := p−vp(xp), which is
equal to 1 for almost all prime numbers p. Note for x ∈ Q× we have |x|ad = 1.

Proposition 4.33. Let f ∈ C1
c (A).

(1) There exists an integer m ≥ 1 such that f is invariant under mẐ.

(2) For any a ∈ A× we have∑
v∈Q

f(a−1v) = |a|ad
∑
v∈Q

f̂(av).

(3) There exists a constant c > 0 such that if f is of class C2 (for the real
variable) then for any a ∈ A× we have∣∣∣∣∣∑

v∈Q

f(a−1v)− |a|adf̂(0)

∣∣∣∣∣ ≤ c|a|−1
adm

2∥f ′′∥L1

where f ′′ is the second derivative of f with respect to the real variable.

Proof. The first point follows from the isomorphism C1
c (A) ≃ C1

c (R)⊗CC
1
c (Af ) and

the corresponding statement for C1
c (Af ). For any compact subset C of A there exists

a finite subset S of Q such that for x ∈ C and v ∈ Q∖S we have f(x+v) = 0. Define

F ∈ C1(Q\A) by F (x) =
∑

v∈Q f(x + v). This defines a function on Q\A/mẐ. By
density of Q+R in A (i.e. strong approximation for the additive group) the natural

morphism R→ Q\A/mẐ is surjective. It has kernel mZ and R/mZ is compact, so
we have an isomorphism of topological groups

R/mZ ≃ Q\A/mẐ.

Define G ∈ C1(R/Z) by G(x) = F (mx). We have

G(0) =
∑
n∈Z

Ĝ(n).
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We compute

Ĝ(n) =

∫
R/Z

F (mt) exp(−2iπnt) dt

=

∫
R/mZ

F (u) exp
(
−2iπ n

m
u
) du

m

=

∫
Q\A

F (t)ψ0

(
− n
m
t
)
|dt|

=

∫
A
f(t)ψ0

(
− n
m
t
)
|dt|

= f̂(n/m).

We obtain the formula ∑
v∈Q

f(v) =
∑
n∈Z

f̂(n/m).

For v ∈ Q ∖ m−1Z there exists x ∈ mẐ such that vx belongs to Af ∖ Ẑ and so
ψ0(vx) is not equal to 1, and we have

f̂(v) =

∫
A
f(t)ψ0(−tv) |dt|

=

∫
A
f(u+ x)ψ0(−(u+ x)v) |du|

= ψ0(vx)
−1

∫
A
f(u)ψ0(−uv) |du|

= ψ0(vx)
−1f̂(v)

which shows that f̂(v) vanishes. So the above formula can also be written∑
v∈Q

f(v) =
∑
v∈Q

f̂(v).

For a ∈ A× define fa ∈ C1
c (A) by fa(x) = f(a−1x). For x ∈ A we have

f̂a(x) =

∫
A
f(a−1t)ψ0(−tx) |dt|

=

∫
A
f(u)ψ0(−uax)|a| |du|

= |a|f̂(ax)

and so applying the above to fa we obtain∑
v∈Q

f(a−1v) =
∑
v∈Q

fa(v) =
∑
v∈Q

f̂a(v) = |a|ad
∑
v∈Q

f̂(av).

Note that this formula does not change if we replace a by an element of aQ×.

Because of the decomposition A× = Q×R>0Ẑ× this allows us to assume that a
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belongs to R>0Ẑ×. In this case the function fa is also invariant under mẐ and we

have f̂(av) = 0 for v ∈ Q∖m−1Z. If f is of class C2 the for x ∈ A we have, using
integration by parts,

f̂ ′′(x) = −4π2x2∞f̂(x).

In particular we have∑
n∈Z∖{0}

f̂(an/m) =
−m2

4π2a2∞

∑
n∈Z∖{0}

f̂ ′′(an/m)

n2
.

Note that for a ∈ R>0Ẑ× we have |aad| = |a∞|. Using the estimate

|f̂ ′′(x)| ≤ ∥f ′′∥L1

we obtain the inequality in the proposition. □

Lemma 4.34. As above Kf is a compact open subgroup of G(Af ) and ω is a unitary
continuous character of Z(Q)\Z(A). Let f ∈ C2

c (Kf\G(A)/Kf , ω
−1) be cuspidal,

i.e. for any x, y ∈ G(A) we have
∫
N(A) f(xny) dn = 0. Then the operator ρ(f)

on L2(G(Q)\G(A), ω) has image contained in L2
cusp(G(Q)\G(A), ω) and is Hilbert-

Schmidt with kernel Kf : (G(Q)\G(A))2 → C, (x, y) 7→
∑

γ∈Z(Q)\G(Q) f(x
−1γy).

This kernel is continuous and bounded.

Proof. Note that bounded implies square-integrable modulo (Z(Q)\Z(A))2. In fact
this is how we will prove that ρf is Hilbert-Schmidt. As in the anisotropic case
the function Kf is continuous, satisfies Kf (z1x, z2y) = ω(z1z

−1
2 )Kf (x, y) for z1, z2 ∈

Z(A) and for any ϕ ∈ L2(G(Q)\G(A), ω) we have

(ρ(f)ϕ)(x) =

∫
Gad(Q)\Gad(A)

ϕ(y)Kf (x, y) dẏ.

If X is a compact subset of Gad(A), for x ∈ X, for any γ ∈ Gad(Q) and y ∈ Gad(A)
such that x−1γy we have that y belongs to the (compact) image of Xsupp(f) in
Gad(Q)\Gad(A). This shows that for x ∈ Gad(Q)\Gad(Q)X the support of |Kf (x, ·)|
is contained in a compact subset of Gad(Q)\Gad(A) which does not depend on x (of
course it depends on X and f), in particular it is bounded independently of x. The
kernel Kf is also cuspidal in the first variable: for any x, y ∈ G(A) we have∫

N(Q)\N(A)
Kf (nx, y) dṅ =

∫
N(Q)\N(A)

∑
γ∈Gad(Q)

f(x−1n−1γy) dṅ

=

∫
N(Q)\N(A)

∑
γ∈N(Q)\Gad(Q)

∑
α∈N(Q)

f(x−1n−1α−1γy) dṅ

=
∑

γ∈N(Q)\Gad(Q)

∫
N(Q)\N(A)

∑
α∈N(Q)

f(x−1n−1α−1γy) dn

=
∑

γ∈N(Q)\Gad(Q)

∫
N(A)

f(x−1n−1γy) dn

= 0
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where the third equality is justified by absolute convergence (K|f | is also continuous
and N(Q)\N(A) is compact so the first integral is finite) and the last equality follows
from cuspidality of f . Now for any x ∈ G(A) the image of N(A)x in Gad(Q)\Gad(A)
is compact, so |Kf | is bounded on N(A)x× (Gad(Q)\Gad(A). Since |ϕ| is integrable
on Gad(Q)\Gad(A) (it is square-integrable and vol(Gad(Q)\Gad(A)) is finite) we have∫

N(Q)\N(A)

∫
Gad(Q)\Gad(A)

|ϕ(y)Kf (nx, y)| dẏ dṅ <∞

so we can swap integral signs and deduce that we have∫
N(Q)\N(A)

(ρ(f)ϕ)(nx) dṅ = 0.

This shows that the image of ρ(f) is contained in L2
cusp(G(Q)\G(A), ω).

Let us now show that |Kf | is bounded. Let C ⊂ Gad(A) be K0supp(f)K0, and
write C = BCK0 for some compact subset BC of Bad(A) which is right Bad(A) ∩
(K0/(K0 ∩ Z(A)))-invariant. Let Ω ⊂ B(A)1 and η > 0 be as in Theorem 4.28. Let
κ > 0 be as in (2) of Lemma 4.30 (with respect to η and C). Let x = oxdiag(ax, 1)kx
with ox ∈ Ω, ax ∈ R≥η and kx ∈ K0, and similarly y = oydiag(ay, 1)ky. Assume that
ax > κ. By Lemma 4.30, if γ ∈ Gad(Q) is such that x−1γy ∈ C then γ ∈ Bad(Q).
We then also have (in Gad(A)) kxx−1γyk−1

y ∈ K0CK0 = BCK0, and moreover

kxx
−1γyk−1

y ∈ Bad(A) so writing γ =

(
aγ ∗
0 1

)
we obtain a−1

x aγay ∈ C ′ where

C ′ ⊂ A× is a compact subset which depends on C and Ω (explicitly C ′ is the image

of ΩBCΩ
−1). Using the decomposition A× = Q×R>0Ẑ× (which is a homeomorphism)

we conclude that there exists ϵ > 0 and a finite set F ⊂ Bad(Q)/N(Q) (depending
on Ω, η and C) such that for x ∈ ΩS(κ)K0, y ∈ ΩS(η)K0 and γ ∈ Gad(Q), if
x−1γy ∈ C then γ ∈ Bad(Q), ax/ay ∈ [ϵ, ϵ−1] and the image of γ in Bad(Q)/N(Q)
lies in F .

This argument is symmetric in x and y, up to replacing C by the larger compact
subset of Gad(A):

K0{g ∈ Gad(A) | g ∈ supp(f) or g−1 ∈ supp(f)}K0.

Let F̃ be the preimage of F in {diag(a, 1) | a ∈ Q×}, naturally in bijection with F .
We have shown that for (x, y) ∈ (ΩS(η)K0)

2, one of them in ΩS(κ)K0, we have

Kf (x, y) =
∑
γ∈F̃

∑
n∈N(Q)

f(x−1γny).

Note that the image of (ΩS(η)K0 ∖ ΩS(κ)K0)
2 in (G(Q)Z(A)\G(A))2 is relatively

compact (essentially because the interval [η, κ] is compact). In order to bound Kf

on (G(Q)\G(A))2, it is therefore enough to bound the sum over n ∈ N(Q) when
x or y belongs to ΩS(κ)K0. For this we will use the Poisson summation formula.

Write γ = diag(aγ, 1) and n =

(
1 u
0 1

)
with u ∈ Q, so that

x−1γny = k−1
x

(
a−1
x 0
0 1

)
o−1
x

(
ax 0
0 1

)(
a−1
x aγay 0
0 1

)
︸ ︷︷ ︸

β1(x,y,γ)

(
1 a−1

y u
0 1

)(
a−1
y 0
0 1

)
oy

(
ay 0
1 0

)
ky.︸ ︷︷ ︸

β2(y)
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Observe that the set {diag(a−1, 1)odiag(a, 1) | o ∈ Ω, a ∈ R≥η} is relatively compact
in B(A)1. Together with the relation ax/ay ∈ [ϵ, ϵ−1] observed above, this implies

that the function β1 (resp. β2) is bounded on (ΩS(η)K0)
2 × F̃ (resp. ΩS(η)K0), in

the sense that its image is relatively compact in G(A). Define

Ξf,x,y,γ : A −→ C

u′ 7−→ f

(
β1(x, y, γ)

(
1 u′

0 1

)
β2(y)

)
.

The Poisson summation formula (Proposition 4.33) reads∑
n∈N(Q)

f(x−1γny) = constant×
∑
v∈Q

ay Ξ̂f,x,y,γ(ayv).

We finally use the assumption that f is cuspidal, which implies that Ξ̂f,x,y,γ(0) = 0.
Thanks to the boundedness of β1 and β2, the integer m in (3) of Proposition 4.33
may be found independently of x, y as above, and the L1 norm is bounded uniformly.
We obtain that Kf goes to 0 at infinity, i.e. for any δ > 0 there exists a compact
subset Cδ of (Gad(Q)\Gad(A))2 such that for any (x, y) ̸∈ Cδ we have |Kf (x, y)| < δ.
In particular |Kf | is bounded. □

Theorem 4.35. Let Kf be a compact open subgroup of G(Af ) and ω a unitary
continuous character of Z(Q)\Z(A). Let f ∈ C∞

c (Kf\G(A)/Kf , ω
−1) be cuspidal.

Assume that for any x ∈ G(A) and γ ∈ Gad(Q) such that f(x−1γx) ̸= 0, γ is
semi-simple regular elliptic (over Q). Then

tr ρ(f) = tr ρcusp(f) =
∑
[γ]

ι(γ)−1 vol(Gγ(Q)Z(A)\G(A))Oγ(f)

where the sum is over conjugacy classes of semi-simple regular elliptic elements γ
in G(Q), and only finitely many terms in the sum are non-zero.

Proof. Recall from Gabriel Dospinescu’s course that the action ρcusp(f) of any el-
ement f of C∞

c (G(A), ω−1) on L2
cusp(G(Q)\G(A), ω) is a Hilbert-Schmidt operator

(we proved this in the previous lemma for cuspidal f , but it holds for arbitrary
f if we restrict to the space of cusp forms). So we can argue as in the proof of
Theorem 4.18 using a Dixmier-Malliavin expression for f to conclude that ρcusp(f)
is trace class. Thanks to the previous lemma, for f cuspidal ρ(f) is also trace
class and tr ρ(f) = tr ρcusp(f) (note that L

2
cusp(G(Q)\G(A), ω) and its orthogonal in

L2(G(Q)\G(A), ω) are stable under ρ(f)).
The main difference with the anisotropic case is that it is not true that K|f | is

also bounded (|f | is not cuspidal . . . ), so while we still have

tr ρ(f) =

∫
Gad(Q)\Gad(A)

Kf (x, x) dẋ

thanks to Theorem 4.13, we cannot blindly insert the definition of Kf and exchange
sums and integrals. Nevertheless, the proof of the previous lemma shows that there
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exists a compact subset C(f) of Gad(Q)\Gad(A) such that for x ∈ G(A) which does
not map to C(f), if γ ∈ Gad(Q) is such that f(x−1γx) ̸= 0 then γ is conjugated (in
Gad(Q)) to an element of Bad(Q). Together with the assumption in the theorem, this
implies thatKf has compact support on the diagonal (even that each term in the sum
defining Kf (x, x) vanishes when x is outside a compact subset of Gad(Q)\Gad(A),
and we can conclude as in the proof of Theorem 4.18 (including the last finiteness
assertion). □

Theorem 4.36. Let ω : Q×\A× → C× be a continuous unitary character. Let S ′ be
a finite set of prime numbers, and (σp)p∈S a collection of smooth irreducible square-
integrable representations of G(Qp) having central character ωp := ω|Q×

p
. There

exists an irreducible representation π =
⊗′

v πv in lim−→Kf
L2
cusp(G(Q)\G(A), ω)Kf such

that πp ≃ σp for all p ∈ S ′.

Proof. Of course the idea is the same as in Theorem 4.22, but now our simple trace
formula does not allow us to use functions f satisfying f(1) ̸= 0. Adding one prime
to S ′ if necessary and thanks to Theorem 3.37 we can assume that at least one σp
is supercuspidal.

First we fix, for each p ∈ S, a pseudo-coefficient fp for σp. Note that the fact
that there exists p ∈ S ′ such that σp is cuspidal implies that fp is cuspidal, and so
will be any product

∏
f fv. Thanks to the elliptic orthogonality formula (Theorem

3.35) applied to (σp, σp) we know that there exists a semi-simple regular elliptic
conjugacy class [γp] in G(Qp) such that Oγp(fp) ̸= 0. Moreover we may assume that
tr γp ̸= 0 since the set of elements of vanishing trace in PGL2(Qp) has measure zero.
It follows from Krasner’s lemma and smoothness of orbital integrals (Lemma 3.5)
that there exists ϵ > 0 such that for any p ∈ S ′, a ∈ Qp and b ∈ Q×

p satisfying
|a − tr γp|p < ϵ and |b − det γp|p < ϵ, the conjugacy class in G(Qp) defined by the
characteristic polynomial X2 − aX + b contains an element δp in the anisotropic
maximal torus Qp[γp]

× of G(Qp) which is regular and sufficiently close to γp so that
Oδp(fp) = Oγp(fp). We can find a ∈ Q and b ∈ Q× in these p-adic balls for all p ∈ S ′:
for a this is essentially the Chinese remainder theorem (we can even assume that
a is integral at finite places not in S ′), for b it follows from Dirichlet’s theorem on
primes in arithmetic progressions. (These two existence results are known as weak
approximation for the additive and multiplicative groups. In fact the additive group
even has strong approximation.) Note that for ϵ small enough the above inequalities
imply a ̸= 0 because tr γp ̸= 0. Let γ be an element of G(Q) having characteristic
polynomial X2 − aX + b. Note that γ is semi-simple regular, and elliptic over Q
since it is elliptic over Qp for some p.

As in the proof of Theorem 4.22, fix ℓ a prime number which does not belong
to S ′. Fix fS

′∪{ℓ} =
∏

v ̸∈S fv with fv ∈ C∞
c (G(Qv), ω

−1
v ) almost all trivial, such

that for any v ̸∈ S ′ ∪ {ℓ} we have Oγ(fv) ̸= 0. (Exercise: such a function exists.)
Finally, take Kℓ an open compact subgroup of SL2(Qℓ) such that Kℓ ∩ Z(Qℓ) =
{1} and define fℓ ∈ C∞

c (G(Qℓ), ω
−1
ℓ ) supported in γKℓZ(Qℓ), right Kℓ-invariant

and such that fℓ(γ) = 1. By essentially the same argument as in the proof of
Theorem 4.22 we see that if Kℓ is small enough then the assumption of Theorem
4.35 is satisfied and the only non-vanishing term in the sum on the geometric side is
ι(γ)−1 vol(Gγ(Q)Z(A)\G(A))Oγ(f), which does not vanish. Note that we arranged
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that ν(γ) ̸= 0 and so ν distinguishes γ from other conjugacy classes in PGL2(Q)
(this fact is crucial for the argument to work). We conclude as in the proof of
Theorem 4.22, using Corollary 4.24. □

5. Comparison of trace formulas

5.1. Separation of representations. To compare trace formulas, we start with
a simplification lemma, to get rid of the infinite sums on the spectral side of trace
formulas.

Recall the notation f ∗(g) := f(g−1).

Lemma 5.1. Let ω : R× → C× be a continuous unitary character. Let (Vi, π)i∈I be
a family of irreducible unitary representations of GL2(R) having central character ω
and pairwise non-isomorphic. Let (λi)i∈I be a family of complex numbers such that

for any f ∈ C∞
c (GL2(R), ω−1), the operator

⊕
i∈I λiπi(f

∗ ∗ f) on
⊕̂⊥

i∈I Vi is trace
class, and

∑
i∈I λi trπi(f

∗ ∗ f) = 0. Then all λi = 0.

Proof. Assume that there exists i0 ∈ I such that λi0 ̸= 0. Up to multiplying all λi’s
by −λ−1

i0
, we can assume that λi0 = −1, so that tr πi0(f

∗ ∗ f) =
∑

i∈I′ λi trπi(f
∗ ∗ f)

with I ′ = {i ∈ I | i ̸= i0 and λi ̸= 0}. For each i ∈ I ′, fix an orthonormal basis
(ei,j)j∈Ji of Vi. The trace class assumption implies that for any f ∈ C∞

c (GL2(R), ω−1)

we have
∑

i∈I′
∑

j∈Ji |λi|∥πi(f)ei,j∥
2
Vi
< ∞. Let V be the completion of

⊕
i∈I′ V

Ji
i

for the Hermitian inner product

∥((vi,j)j∈Ji)i∈I′∥2V =
∑
i∈I′
|λi|
∑
j∈Ji

∥vi,j∥2Vi .

It is naturally a representation of G, which is clearly continuous and unitary. Con-
sider the subspace

W0 =
{
((πi(f)ei,j)j∈Ji)i∈I′

∣∣ f ∈ C∞
c (GL2(R), ω−1)

}
of V , and let W be its closure in V , a subrepresentation of V . Let v ∈ Vi0 be such
that ∥v∥Vi0 = 1. Completing this to form an orthonormal basis of Vi0 and writing

traces in this basis, we obtain that for any f ∈ C∞
c (GL2(R), ω−1)

∥πi0(f)v∥2Vi0 ≤ trπi0(f
∗ ∗ f) =

∑
i∈I′

λi tr πi(f
∗ ∗ f) ≤

∑
i∈I′
|λi|
∑
j∈Ji

∥πi(f)ei,j∥2Vi .

This inequality implies the existence and uniqueness of a continuous linear map
Ξ : W → Vi0 mapping ((πi(f)ei,j)j∈Ji)i∈I′ to πi0(f)v. This characterization shows
that Ξ is GL2(R)-equivariant. Moreover we know that there exists f such that
πi0(f)v ̸= 0, thus Ξ ̸= 0. We can uniquely extend Ξ to a linear map V → Vi0 ,
abusively still denoted Ξ, by imposing that Ξ|W⊥ = 0 (here W⊥ is the orthogonal
of W in V ). This extension is clearly also continuous GL2(R)-equivariant. But
the restriction of Ξ to each factor ((Vi)j∈Ji)i∈I′ is zero since πi ̸≃ πi0 , so Ξ = 0 by
definition of V . We have obtained a contradiction, so the assumption that there
exists i0 ∈ I such that λi0 ̸= 0 was absurd. □
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5.2. Multiplicity one results. For the proof of Theorem 1.1 we will need to admit
a few important theorems, which rely on theories which were not developed in this
course.

Theorem 5.2 (Multiplicity one). Let ω : Z(Q)\Z(A) → C× be a unitary contin-
uous character. Any cuspidal automorphic representation π of GL2(A) occurs with
multiplicity one in lim−→Kf

L2(G(Q)\G(A), ω)Kf , i.e. mGL2
cusp(π) = 1.

This was proved in [JL70] (over arbitrary global fields), and generalized to GLn
in [Sha74]. The proof uses Whittaker models, in particular their local uniqueness
(this generalizes to all quasi-split reductive groups) and the fact that a cusp form
can be reconstructed from Whittaker functionals (this is particular to general linear
groups).

Theorem 5.3 (Strong multiplicity one). Let π and π′ be cuspidal automorphic
representations of GL2(A). Assume that there exists a finite set S of prime numbers
such that for all p ̸∈ S we have πp ≃ π′

p. Then π ≃ π′.

See [PS79] for a proof using Kirillov models (related to the Whittaker models).
Using Rankin-Selberg L-functions (again, relying on Whittaker models), a much
more general result is proved in [JS81]. Morally, Čebotarev density theorem and
linear independence of characters.

For inner forms, these methods do not adapt, essentially because there is no
Whittaker model (at all non-split places, and thus globally). Ultimately one can
show strong multiplicity one results, but using the trace formula and after proving
the local Jacquet-Langlands correspondence.

Nevertheless, Godement-Jacquet L-functions and ϵ factors [GJ72] (this theory
generalizes the abelian case of Tate’s thesis and does not use Whittaker models)
can be used to prove the following weaker result, which will be crucial for the proof
of the local Jacquet-Langlands correspondence. As usual we specialize to the cases
relevant to this course.

Theorem 5.4. Let D be a quaternion algebra over Q, G the associated inner form
of GL2. Let S be a finite set of prime numbers, and (σv)v ̸∈S a collection of smooth
irreducible representations of G(Qv). Then

∑
πm

G(π) < ∞ where the sum is over
automorphic representations π of G(A) such that πv ≃ σv for all places v ̸∈ S.

See [DKV84, Lemme B.1.e p. 80].

5.3. Easy transfer. To compare trace formulas we have to produce matching func-
tions on different groups, i.e. functions which have the same orbital integrals (note
that this requires an identification of conjugacy classes and of centralizers in the two
groups).

Lemma 5.5. Let p be a prime number. Let ω : Z(GL2(Qp)) → C× be a smooth
character. Recall that T denotes a set of representatives for the (finitely many)
conjugacy classes of maximal tori in GL2(Qp). Fix Haar measures on PGL2(Qp) and
on each T ′/Z(GL2(Qp)) for T ′ ∈ T . Let (FT ′)T ′T be a family of smooth functions
T ′
G−reg → C such that FT ′ is ω−1-equivariant, NGL2(Qp)(T

′)-invariant and compactly

supported modulo Z(GL2(Qp)). Then there exists f ∈ C∞
c (GL2(Qp), ω

−1) whose
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support is contained in the set of regular semisimple elements in GL2(Qp) such that
for any T ′ ∈ T and any t ∈ T ′

G−reg we have Ot(f) = F (t), and for any T ′ ∈ T such
that FT ′ vanishes identically f also vanishes on all elements conjugate to elements
of T ′.

Note that the assumption is that the support of FT ′ is a compact subset of
T ′
G−reg/Z(GL2(Qp)), not just a relatively compact subset of T ′/Z(GL2(Qp)).

Proof. We use the functions ϕT ′ defined in Section 3.3. For T ′ ∈ T let UT ′ be a
non-empty compact open subset of T ′\GL2(Qp) such that w′UT ′ ∩ UT ′ = ∅, where
w′ is the non-trivial element of NGL2(Qp)(T

′). Let f(ϕT ′(t, ġ)) = vol(UT ′)−1F (t)/2 if
ġ ∈ U , zero otherwise. Then

Ot(f) =

∫
T ′\GL2(Qp)

f(g−1tg) dġ =

∫
UT ′⊔w′UT ′

f(g−1tg) dġ =
F (t) + F (tw

′
)

2
= F (t).

□

5.4. Proof of the local Jacquet-Langlands correspondence. We can finally
prove Theorem 1.1. In this section D will denote a non-split quaternion algebra over
Qp. The first step is to associate to an essentially square-integrable representation
τp of GL2(Qp) an irreducible representation of D×, satisfying the relation between
Harish-Chandra characters. If τp ≃ (χp ◦ det)⊗ St, we have already seen (Corollary
3.25) that the representation χ ◦ det of D× corresponds to τp.

Thus we can assume that τp is supercuspidal. As in the Steinberg case, it is
enough to prove the result with τp replaced by (χp ◦ det) ⊗ τp for some smooth
character χp : Q×

p → C×. Let ℓ1 ̸= ℓ2 be prime numbers distinct from p. Let
ω : Z(Q)\Z(A) → C× be a continuous unitary character such that ω|Z×

p
= ωτp ,

ω|Z×
ℓ1

= 1. Let χp be one of the two unramified characters of Q×
p satisfying (χ ◦

det |Z(Qp))ωτp = ωp. Let χℓ1 : Q×
ℓ1
→ C× be one of the two unramified characters such

that χℓ1 ◦ det |Z(Qℓ1
) = ωℓ1 . Choose an irreducible supercuspidal representation τℓ2

of GL2(Qℓ2) having central character ωℓ2 (Theorem 3.37). Let Dglob be a quaternion
algebra corresponding to S = {p, ℓ1}, and let G be the associated inner form of
GL2. In particular we have an isomorphism G(Qp) ≃ D×, well-defined up to inner
composing with an inner automorphism. Fix Haar measures on Gad(Qv) (for all
places v, so that Gad(Zp) has volume 1 for almost all p) and endow Gad(A) with
the product of Haar measures. We will apply the trace formula with functions
fv ∈ C∞

c (G(Qv), ωv) as follows:

• fℓ1 is a coefficient for the representation χℓ1 ◦ det of G(Qℓ1). To be explicit,
we can take fℓ1(g) = vol(Gad(Qp))

−1χℓ1(det g)
−1.

• fℓ2 is a coefficient for τℓ2 .

• fp is any smooth function which vanishes on Z(Qp).

• for v ̸∈ {p, ℓ1, ℓ2}, fv is arbitrary, we only impose that fp is the unit in
H(G(Qp), G(Zp), ω−1

p ) for almost all prime numbers p.
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Recall that there is a family (ψv)v ̸∈{p,ℓ1} of isomorphisms ψv : G×QQv ≃ GL2,Qv ,

well-defined up to composition on the right with Ad(g) for some g ∈ GL2(A(p,ℓ1))
where A(p,ℓ1) =

∏′
v ̸∈{p,ℓ1}Qv = A/QpQℓ1 . Fix Haar measures on PGL2(Qv) for all

places v, so that for any For v ̸∈ {p, ℓ1}, endow PGL2(Qv) with the Haar measure
transported from that on Gad(Qv) via ψv. Endow PGL2(Qp) and PGL2(Qℓ1) with
arbitrary Haar measures.

Now choose corresponding functions fGL
v ∈ C∞

c (GL2(Qv), ω
−1
v ) as follows.

• fGL
ℓ1

is the pseudo-coefficient for the representation (χℓ1◦det)⊗St constructed
in Proposition 3.29. Note that by Theorem 3.30 this implies that the orbital
integrals of fGL

ℓ1
are opposite to that of fℓ1 . Note that there is an isomor-

phism between the centralizers (GL2)t(Qℓ1) and Gt(Qℓ1), well-defined up to
normalizers, so we can transport Haar measures between (GL2)t(Qℓ1)/Z(Qℓ1)
and Gt(Qℓ1)/Z(Qℓ1), and comparing orbital integrals makes sense.

• fGL
p is supported on the set of semisimple regular elliptic elements in GL2(Q)
and such that for any semisimple regular t ∈ GL2(Qp) we have

Ot(f
GL
p ) =

{
−Ot′(fp) if t′ ∈ G(Qp) has same characteristic polynomial as t

0 if t is hyperbolic.

The existence of such fp ∈ C∞
c (GL2(Qp), ω

−1
p ) follows from Lemma 5.5. The

same remark as at the place ℓ1 applies for the comparison of Haar measures
of centralizers.

• for any v ̸∈ {ℓ1, p}, there is an isomorphism ψv : GL2,Qv ≃ G×Q Qv, and we
let fGL

v = fv ◦ψ−1
v . In particular fv is trivial for almost all v, and the orbital

integrals of fv do not depend on the choice of ψv.

These choices were made so that the geometric sides of the traces formulas for
GL2 (Theorem 4.35) and G (Theorem 4.18) are equal (again, the centralizers Gγ

and (GL2)γ can be identified up to conjugation by the Weyl group, and the signs at
ℓ1 and p cancel each other so the global orbital integrals are equal). Therefore the
spectral sides are equal:∑

π

mGL2
cusp(π) trπ(f

GL) =
∑
π′

mG(π′) trπ′(f).

Let σ be a cuspidal automorphic representation of GL2(A) with central character
ω such that

• σp ≃ (χp ◦ det)⊗ τp,

• σℓ1 ≃ (χℓ1 ◦ det)⊗ St, and

• σℓ2 ≃ τℓ2 .

The existence of such a σ follows from Theorem 4.36.
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Applying Lemma 5.1 (using ψ∞ to identify GL2(R) and G(R)), we obtain

∑
(πq)q

mGL2
cusp

(
σ∞ ⊗

′⊗
q

πq

)∏
q

trπq(fq) =
∑
(π′

q)q

mG
(
σ∞ ⊗

′⊗
π′
q

)∏
q

trπ′
q(fq)

where the products are over all prime numbers q. Note that both sides are traces in
an admissible representation. As recalled at the beginning of Section 3.4, the theory
of finite-dimensional representation of associative C-algebras (for the Hecke algebra
H(GL2(A(∞,p,ℓ1,ℓ2)), (ω(∞,p,ℓ1,ℓ2))−1)) tells us that this implies

∑
(πp,πℓ1 ,πℓ2 )

mGL2
cusp

(
πp ⊗ πℓ1 ⊗ πℓ2 ⊗

′⊗
v ̸∈{p,ℓ1,ℓ2}

σv

)
trπp(f

GL
p ) trπℓ1(f

GL
ℓ1

) trπℓ2(f
GL
ℓ2

)

=
∑

(π′
p,π

′
ℓ1
,π′

ℓ2
)

mG
(
π′
p ⊗ π′

ℓ1
⊗ π′

ℓ2
⊗

′⊗
v ̸∈{p,ℓ1,ℓ2}

σv

)
trπ′

p(fp) trπ
′
ℓ1
(fℓ1) trπℓ2(f

GL
ℓ2

)

Again this uses (ψv)v ̸∈{p,ℓ1,ℓ2,∞}. Since fℓ2 and fGL
ℓ2

are coefficients for the supercus-
pidal representation τℓ2 ≃ σℓ2 , this implies

∑
(πp,πℓ1 )

mGL2
cusp

(
πp ⊗ πℓ1 ⊗

′⊗
v ̸∈{p,ℓ1}

σv

)
trπp(f

GL
p ) trπℓ1(f

GL
ℓ1

)

=
∑

(π′
p,π

′
ℓ1
)

mG
(
π′
p ⊗ π′

ℓ1
⊗

′⊗
v ̸∈{p,ℓ1}

σv

)
trπ′

p(fp) trπ
′
ℓ1
(fℓ1)

By the same argument as in Theorem 4.36, the analogue of Corollary 4.24 for GL2

implies that for any non-vanishing term on the left-hand side, πℓ1 ≃ σℓ1 (that is, πℓ1
is not isomorphic to χℓ1 ◦ det), and so tr πℓ1(f

GL
ℓ1

) = 1. On the right-hand side, any
non-vanishing term has π′

ℓ1
≃ χℓ1 ◦ det, and so trπ′

ℓ1
(fℓ1) = 1. Therefore

∑
πp

mGL2
cusp

(
πp ⊗

′⊗
v ̸=p

σv

)
trπp(f

GL
p ) =

∑
π′
p

mG
(
π′
p ⊗ (χℓ1 ◦ det)

′⊗
v ̸∈{p,ℓ1}

σv

)
trπ′

p(fp)

Thanks to the strong multiplicity one theorem (Theorem 5.3), we know that the left-
hand side is simply trσp(f

GL
p ). The right-hand side is the trace of fp on a semisimple

admissible smooth representation of G(Qp). Thanks to Theorem 5.4 we know that
it is in fact a finite length (i.e. finite-dimensional) representation, that we denote
JL(σp). It is indeed determined by σp up to isomorphism because its trace is (there
is a restriction on fp, but G(Qp) ∖ Z(Qp) is an open and dense subset of G(Qp)).
Namely, we have Θσp(t) = −ΘJL(σp)(t

′) for any semisimple regular t ∈ GL2(Qp)
and t′ ∈ D× having the same characteristic polynomial (note the minus sign which
comes from the definition of fGL

p ). We need to show that JL(σp) is irreducible. This
follows from elliptic orthogonality (Theorem 3.35 and its easier analogue for D×,
which follows from the analogous Weyl integration formula): if JL(σp) ≃ ⊕iρ⊕mi

i

with distinct irreducible ρi’s, comparing the two elliptic orthogonality relations we
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obtain
∑

im
2
i = 1. Elliptic orthogonality also implies that the map JL is injective

on isomorphism classes (an irreducible essentially square-integrable representation
of GL2(Qp) is determined by the restriction of its Harish-Chandra character to the
semisimple regular elliptic locus).

Finally we need to show that for any irreducible smooth representation ρ of D×,
there exists an irreducible essentially square-integrable representation τp of GL2(Qp)
such that JL(τp) ≃ ρ. The argument is almost the same as above, except that we
start with an automorphic representation σ of G(A) such that σp is a twist of ρ,
σℓ1 ≃ χℓ1 ◦ det and σℓ2 is supercuspidal (such a σ exists thanks to Theorem 4.22).
We obtain∑
πp

mGL2
cusp

(
πp⊗

(
(χℓ1◦det)⊗St

)
⊗

′⊗
v ̸∈{p,ℓ1}

σv

)
trπp(f

GL
p ) =

∑
π′
p

mG
(
π′
p⊗

′⊗
v ̸=p

σv

)
trπ′

p(fp)

By the strong multiplicity one theorem, the left-hand side has at most one non-zero
term, for which the multiplicity is 1. The right-hand side is the trace of fp on a
non-zero representation of G(Qp) of finite length, in particular there exists fp such
that the right-hand side does not vanish. Thus there exists a unique πp contributing
to the left-hand side, and going back to the previous argument we have JL(πp) = ρ.
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Appendix A. Summary of integration theory on groups and
homogeneous spaces

For X a topological space, Cc(X) denotes the space of continuous and compactly
supported functions X → C.

Theorem A.1 (Riesz-Markov-Kakutani Representation Theorem). Let X be a lo-
cally compact Hausdorff topological space. The map

µ 7−→
(
f 7→

∫
X

f(x)dµ(x)

)
is a bijection between

• the set of Radon measures on X, i.e. measures µ on the σ-algebra of Borel
sets on X satisfying

– for any compact subset K of X we have µ(K) <∞,

– for any Borel subset S of X we have

µ(S) = inf{µ(U) |U open subset of X containing S},

– for any Borel subset S of X which is either open in X or satisfying
µ(S) <∞, we have

µ(S) = sup{µ(K) |K compact subset of X contained in S}.

(note that if X is σ-compact, as will always be the case in these notes,
this property then holds for any Borel subset of X),

(resp. complex Radon measures on X, i.e. complex linear combinations of
Radon measures),

• the set of linear maps I : Cc(X) → C which are positive, i.e. for any f ∈
Cc(X) satisfying f(X) ⊂ R≥0 we have I(f) ∈ R≥0 (resp. continuous for
the topology on Cc(X) obtained by realizing Cc(X) as the direct limit of the
Banach spaces C(K) where K ranges over all compact subsets of X).

Proof. See [Rud87, Theorem 2.14]. □

Because of this equivalence, when using integration theory on locally compact
Hausdorff topological spaces it is more convenient to deal with linear forms on Cc(X)
rather than measures.

For details and proofs for all that follows see [Bou63, Ch. 7].

Theorem A.2. Let H be a locally compact Hausdorff topological group.

• There exists a non-zero Radon measure µ0 on H which is left H-invariant,
i.e. for any f ∈ Cc(H) and any g ∈ H we have∫

H

f(gh)dµ0(h) =

∫
H

f(h)dµ0(h).

(equivalently, for any Borel subset S of X and any g ∈ H we have µ0(gS) =
µ0(S)).
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• Fix µ0 as in the previous point. Let µ be a complex Radon measure on H
which is also left H-invariant. There exists a unique c ∈ C such that we
have µ = cµ0.

A non-zero left H-invariant Radon measure on H is called a left Haar measure.
By essentially the same proof, or applying the result to the opposite group, the same
result holds with “left” replaced by “right”.

For any x ∈ H there is a unique ∆H(x) ∈ R>0 such that for any left H-invariant
complex Radon measure µ on H we have∫

H

f(hx)dµ(h) = ∆H(x)
−1

∫
H

f(h)dµ(h).

The map

∆H : H −→ R>0

is easily seen to be a continuous character. For any left Haar measure µ on H the
Radon measure ∆−1

H µ is a right Haar measure. For g ∈ H and f ∈ Cc(H) we have
(A.1)∫

H

f(gh)∆−1
H (h)dµ(h) =

∫
H

f(h)∆−1
H (g−1h)dµ(h) = ∆H(g)

∫
H

f(h)∆−1
H (h)dµ(h).

The topological group H is called unimodular if the character ∆H is trivial. This is
the case if H is commutative, or discrete (the counting measure is a left and right
Haar measure), or compact (∆H(H) is a compact subgroup of R>0, so it is trivial).

Let µ be a left Haar measure on H. For any f ∈ L1(H,µ) the function h 7→
f(h−1)∆H(h)

−1 on H is also integrable with respect to µ and we have∫
H

f(h−1)∆H(h)
−1dµ(h) =

∫
H

f(h)dµ(h).

Let X be a locally compact Hausdorff topological space endowed with a left
action of H which is continuous and proper. Let χ : H → C× be a continuous
character. For f ∈ Cc(X) define fχ : X → C by

fχ(x) =

∫
H

f(h · x)∆−1
H (h)χ(h)−1dµ(h)

Let Cc(X,H, χ) be the space of continuous functions f : X → C satisfying:

• for any g ∈ H and x ∈ X we have f(g · x) = χ(g)f(x),

• the support of f is compact modulo H, i.e. its image in H\X is compact
(equivalently, the set ofH ·x inH\X such that f(x) ̸= 0 is relatively compact
in H\X).

In order to endow Cc(X,H, χ) with a topology, realize it as lim−→K
C(H · K,H, χ)

where the direct limit is over all compact subsets K of X. For any such K the space
C(H ·K,H, χ) is a Banach space for the norm f 7→ supK |f |. Endow Cc(X,H, χ) with
the final topology. If χ is trivial then Cc(X,H, χ) is identified with Cc(H\X) and



THE JACQUET-LANGLANDS CORRESPONDENCE FOR GL2(Qp) 95

this topology coincides with the final topology on lim−→K′ C(K
′), where the inductive

limit is taken over all compact subsets K ′ of H\X.
Let f ∈ Cc(X). For g ∈ H we have

fχ(g · x) =
∫
H

f(hg · x)∆−1
H (h)χ(h)−1dµ(h)

= ∆H(g)χ(g)

∫
H

f(hg · x)∆−1
H (hg)χ(hg)−1dµ(h)

= χ(g)

∫
H

f(h · x)∆−1
H (h)χ(h)−1dµ(h)

= χ(g)fχ(x).

Moreover fχ vanishes away from the preimage of the image of suppf in H\X, so
we have fχ ∈ Cc(X,H, χ).
Proposition A.3. The map

Aχ : Cc(X) −→ Cc(X,H, χ)

f 7−→ fχ

is surjective, and identifies the topological complex vector space Cc(X,H, χ) with the
quotient of Cc(X) by the kernel of Aχ. If χ takes values in R>0 then Aχ maps the
subset of real non-negative functions in Cc(X) onto the subset of real non-negative
functions in Cc(X,H, χ).

Proof. Surjectivity is proved in [Bou63, Ch. 7, §2, Proposition 2], translating between
left and right actions. (This assumes that χ takes values in R>0 but it is clear that
the proof does not use this assumption.) The assertion in the case where χ takes
values in R>0 is also proved loc. cit.

To prove that the topology on Cc(X,H, χ) defined above is the quotient topology
it is enough to prove that Aχ is continuous and open. Continuity is easy using
properness of the action, and openness is easily proved using [Bou63, Ch. 7, §2,
Lemme 1] (which is used to prove Proposition 2 loc. cit.). □

We wish to understand under which assumption a complex Radon measure on
X, seen as a continuous linear map Cc(X)→ C, factors through Aχ. Note that by
the previous proposition, such a factorization is unique. For f ∈ Cc(X) and g ∈ H
consider the function f ′ : X → C defined by f ′(x) = f(g · x). We have

(f ′)χ(x) =

∫
H

f ′(h · x)∆−1
H (h)χ(h)−1dµ(h)

=

∫
H

f(gh · x)∆−1
H (h)χ(h)−1dµ(h)

= ∆H(g)χ(g)

∫
H

f(gh · x)∆−1
H (gh)χ(gh)−1dµ(h)

= ∆H(g)χ(g)

∫
H

f(h · x)∆−1
H (h)χ(h)−1dµ(h)

= ∆H(g)χ(g)f
χ(x).

This suggests the following proposition.
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Proposition A.4. Let ν be a complex Radon measure on X. Assume that ν is left
H-equivariant for the character ∆Hχ, i.e. for any f ∈ Cc(X) and g ∈ H we have∫

X

f(g · x)dν(x) = ∆H(g)χ(g)

∫
X

f(x)dν(x).

There exists a unique linear map Iν,µ,χ : Cc(X,H, χ) → C such that for any f ∈
Cc(X) we have ∫

X

f(x)dν(x) = Iν,µ,χ(f
χ).

The map Iν,µ,χ is continuous. If χ takes values in R>0 and ν is a Radon measure
then Iν,µ,χ is positive, i.e. it maps non-negative functions to R≥0.

Proof. This is one of the implications in [Bou63, Ch. 7, §2, Proposition 3], translating
between left and right actions, at least under the assumption that χ takes values in
R>0.

For the convenience of the reader we translate the proof. Thanks to the previous
proposition it is enough to prove that the kernel of Aχ is contained in the kernel of
the integration map on X with respect to ν. For any f1, f2 ∈ Cc(X) we have∫

X

fχ1 (x)f2(x)dν(x) =

∫
X

∫
H

f1(h · x)f2(x)∆−1
H (h)χ(h)−1dµ(h)dν(x)

=

∫
H

∆−1
H (h)χ(h)−1

∫
X

f1(h · x)f2(x)dν(x)dµ(h)

=

∫
H

∫
X

f1(y)f2(h
−1 · y)dν(y)dµ(h)

=

∫
X

f1(y)

∫
H

f2(h
−1 · y)∆H(h

−1)−1∆H(h)
−1dµ(h)dν(y)

=

∫
X

f1(y)

∫
H

f2(h · y)∆H(h)
−1dµ(h)dν(y)

=

∫
X

f1(y)f
1
2 (y)dν(y).

Assume that f1 ∈ Cc(X) is such that fχ1 vanishes identically. By the previous
proposition and Urysohn’s lemma there exists f2 ∈ Cc(X) such that f 1

2 is constant
equal to 1 on the support of f1. The above calculation shows that we have∫

X

f1(x)dν(x) = 0.

This shows the existence of Iν,µ,χ. □

Example A.5. Assume that X is a locally compact topological group and that H
is a closed subgroup, with the obvious left action by multiplication. Let ν be a right
Haar measure on X. For g ∈ H we have ( (A.1) above)∫

X

f(gx)dν(x) = ∆X(g)

∫
X

f(x)dν(x).
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Therefore the assumption of Proposition A.4 holds for χ = ∆X |H∆−1
H (and only for

this character). Let K be a compact open subgroup of X and x ∈ X. The function
(1xK)

χ clearly vanishes away from HxK. For y = xk ∈ xK we have

(1xK)
χ(y) =

∫
H

1xK(hxk)∆
−1
H (h)χ(h)−1dµ(h)

=

∫
H∩xKx−1

∆−1
X (h)dµ(h)

= µ(H ∩ xKx−1)

because the character ∆X takes values in R>0 and so it is trivial on any compact
subgroup of X. Let fxK be the unique element of Cc(X,H, χ) supported on HxK
and such that fxK(xk) = 1 for any k ∈ K. We thus have

(A.2) Iν,µ,χ(fxK) = µ(H ∩ xKx−1)−1ν(xK) = ∆−1
X (x)

ν(K)

µ(H ∩ xKx−1)
.

If any neighbourhood of 1 in X contains a compact open subgroup of X then the
subspace C∞

c (X,H, χ) of Cc(X,H, χ) consisting of locally constant functions is dense
and any element of C∞

c (X,H, χ) is a linear combination of functions fxK as above.
In particular Formula (A.2) above computes the “quotient measure” Iν,µ,χ.
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Appendix B. Summary of p-adic manifolds and integration using
differential forms

We sketch the foundations of p-adic manifolds (sometimes called p-adic analytic
manifolds) in order to state the “change of variables” formula for measures asso-
ciated to differential forms (introduced in [Wei82]) that is useful for the study of
intertwining operators (Proposition 2.31) and harmonic analysis. We emphasize
differences with the Archimedean case. For details (and proper foundations) see
[Ser06], [Sch11].

Let n ≥ 1 be an integer. Let U be an open subset of Qn
p , and f : U → Qp a

function. We say that f is locally analytic at x0 ∈ U if there is a family (aα)α∈Nn of
elements of Qp and r > 0 such that (|aα|r|α|)α is bounded (notation: |α| =

∑
i αi)

and for any x ∈ U ∩D(x0, r) (open disk of radius r) we have f(x) =
∑

α aα(x−x0)α
(notation: zα =

∏
i z

αi
i ). The same proof as in the complex setting shows that f is

then continuous on U ∩D(x0, r) and locally analytic at any point of U ∩D(x0, r).
The main difference from the complex setting is that any U is totally disconnected:
for example, for any function Fp → Qp, the composition U := Zp → Fp → Qp is
locally analytic (even locally constant!) at every point of U .

We have the notion of a locally analytic function U → Qm
p (coordinate-wise),

and the composition of two locally analytic functions is again locally analytic. A
locally analytic function is differentiable (obvious definition . . . ) and its differential
(taking values in HomQp(Qn

p ,Qm
p ) ≃ Qmn

p ) is again locally analytic.

Theorem B.1 (Inverse function theorem). Let U be an open subset of Qn
p and

x0 ∈ U . Let f = (f1, . . . , fn) : U → Qn
p be a locally analytic function. Assume that

the differential of f at x0 is invertible. Then up to replacing U by an open subset
containing x0, f(U) is open in Qn

p , f is injective and its inverse f(U) → U is also
locally analytic.

Proof. Using the usual reductions (translations so that x0 = 0 and f(x0) = 0, post-
composing f with the inverse of its differential, pre- and post-composing f with
homotheties) we may assume that U = pZnp and each fi is a power series, i.e. for
x ∈ U we have

fi(x) = xi +
∑
α

|α|≥2

ai,αx
α

with ai,α ∈ Zp. Note that under this condition, fi converges on pZnp and maps pZnp to
itself. We look for g satisfying the same conditions: gj(y) = yj +

∑
β bj,βy

β. Solving
the equation of formal power series f ◦g = Id, we see that there is a unique solution.
More precisely, by induction on |β| we see that bj,β = Pj,β(ai,α, |α| ≤ |β|) where Pj,β
is a polynomial with coefficients in Zp.

Reversing the role of f and g, we get that they are inverse maps of each other
pZnp → pZnp . □

This local theory allows to define p-adic manifolds, obtained by gluing open
subsets of Qn

p (or Znp ) using locally analytic maps to change coordinates. More
precisely, if X is a topological space:

• a chart on X is an open subset U of X together with a homeomorphism
ϕ : U → ϕ(U) where ϕ(U) is an open subset of Qn

p for some n,
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• an atlas on X is a family of charts covering X which are pairwise compatible,
i.e. such that the transition maps ϕ′◦ϕ−1 : ϕ(U∩U ′)→ ϕ′(U∩U ′) are locally
analytic (exchanging U and U ′ we get that n = n′ if U ∩ U ′ ̸= ∅).

We say that two atlases are compatible if their charts are pairwise compatible. This
is an equivalence relation, and we get the notion of a p-adic manifold: a topological
space X with an equivalence class of atlases on X, or equivalently a maximal atlas.
Note that the dimension n is a locally constant function on X. We will only consider
p-adic manifolds of constant dimension.

Clearly a p-adic manifold is locally compact (if one uses a definition of “locally
compact” that does not include “Hausdorff”). All examples that we will encounter
will also be Hausdorff and paracompact (i.e. every open cover has a refinement that
is locally finite; this condition holds if X is a countable union of compact subsets).

We have the obvious notion of morphism between p-adic manifolds: continu-
ous maps which are locally analytic in local coordinates given by charts. As in
the Archimedean case one can define tangent and cotangent bundles, and tensor,
symmetric and exterior powers of these bundles, for example differential k-forms.
The differential of a morphism is a morphism between tangent bundles. Fibers of a
submersion are also p-adic manifolds (use the inverse function theorem).

Example: for any smooth algebraic variety X over Qp, X(Qp) is naturally en-
dowed with the structure of a p-adic manifold. This is the case for G, B, T , N , and
the group structure is compatible, i.e. multiplication and inversion are morphisms
of p-adic manifolds, so these are p-adic Lie groups. Of course open subgroups of
these, in particular compact open subgroups, are also p-adic Lie groups.

One may also define submanifolds and quotients of manifolds as in the Archimedean
case. If an equivalence relation R ⊂ X×X is a submanifold and the first projection
pr1 : R → X is a submersion then the quotient manifold exists (without assuming
that R is a submanifold, there is at most one manifold structure on the quotient
such that the projection X → X/R is a submersion).

It is easy to see that any compact open subset of Qn
p is a disjoint union of balls,

which are isomorphic to Znp . With this observation and a little argument, one may
deduce the non-trivial direction in the following theorem, which is the analogue
of the existence of partitions of unity in the Archimedean setting, except much
stronger.

Theorem B.2. Let X be a p-adic manifold. Assume that X is Hausdorff. The
following are equivalent.

(1) X is paracompact.

(2) X is isomorphic to a disjoint union of balls, i.e. p-adic manifolds isomorphic
to Znp for some n.

Moreover in (2) the balls can be chosen to refine any given cover of X by open
subsets.

Proof. See [Ser06, Part II, Chapter III, Appendix 2, Theorem 1]. □

Recall that partitions of unity are the essential technical tool to setup the theory
of integration of top degree differential forms on real manifolds. We want to mimic
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this theory in the non-Archimedean setting, but we are interested in integrating
complex-valued functions, whereas differential forms have p-adic coefficients. For
this we will consider the “norm” of differential forms, and so use complex-valued
partitions of unity. By Theorem B.2 for a Hausdorff paracompact p-adic mani-
folds we have (complex-valued) partitions of unity adapted to any given open cover,
consisting of characteristic functions of compact open subsets.

Give Qp the Haar measure such that vol(Zp) = 1, and give Qn
p the product

measure, that we denote |dx1| . . . |dxn|. If U is an open subset of Qn
p and ω ∈

Ωn(U), which can be written uniquely as ψ(x)dx1 ∧ · · · ∧ dxn where ψ is a locally
analytic function, then we may consider the Radon measure |ω|: for any continuous
compactly supported continuous function f : U → C,∫

U

f |ω| :=
∫
U

f(x)|ψ(x)| |dx1| . . . |dxn|.

We want to globalize this notion, to define
∫
X
f |ω| for any (nice enough) p-adic

manifold X of dimension n, ω ∈ Ωn(X) and f ∈ Cc(X).

Lemma B.3. Let g ∈ GLn(Qp), then vol(g(paZnp )) = | det g|p−an.

Proof. We only sketch the proof. Use the Iwasawa decomposition for GLn(Qp) to
reduce to the case where g is upper triangular, then use Fubini to compute the
volume. The invariance by translation of the Haar measure on Qp implies that the
volume only depends on the diagonal of g. The case n = 1 is elementary. □

Lemma B.4. Let ω be a locally analytic differential form of degree n on Znp . Let
a ∈ Z, and let (ϕi : p

aZnp → Znp )i∈I be a decomposition of Znp into balls (i.e. each
ϕi is injective, locally analytic with everywhere invertible differential, and Znp =⊔
i∈I ϕi(p

aZnp )). For any continuous function f : Znp → C we have

(B.1)

∫
Zn
p

f(x)|ω| =
∑
i

∫
paZn

p

(f ◦ ϕi)|ϕ∗
iω|.

Proof. Write ω = ψ(x)dx1∧· · ·∧dxn where ψ is a locally function on Znp . Replacing
f by f |ψ|, we can assume that we have ω = dx1∧· · ·∧dxn. By density of C∞(Znp ) in
C(Znp ) we may assume that f is smooth. Note that I is finite because Znp is compact.
For any i ∈ I and r ∈ paZnp there exists b ≥ a such that we have:

• f is constant on ϕi(r + pbZnp ),

• decomposing

ϕ′
i,r : p

bZnp −→ Znp
x 7−→ ϕi(r + x)

as ϕi(r) + (dϕi)r ◦ ϕ′′
i,r, the function ϕ′′

i,r is given by a power series

ϕ′′
i,r(x) = x+

∑
α

|α|≥2

aαx
α
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with aα ∈ p(1−b)(|α|−1)Znp . As we saw in the proof of Theorem B.1, this

implies that ϕ′′
i,r is an isomorphism pbZnp → pbZnp . This also easily implies

(dϕ′′
i,r)x ∈ 1 + pMn(Zp) for any x ∈ pbZnp . Moreover these two properties

continue to hold at any element of r + pbZnp .

By a compactness argument, for b ≥ a large enough, for any set R of representatives
for the quotient of paZnp by pbZnp , the above properties hold for any i ∈ I and r ∈ R.
By linearity we may replace (ϕi)i∈I by (ϕ′

i,r)i∈I,r∈R. For any x ∈ pbZnp we have
(ϕ′′

i,r)
∗(dx1 ∧ · · · ∧ dxn)x = ψ(x)dx1 ∧ · · · ∧ dxn with

|ψ(x)| = | det(dϕ′′
i,r)(x)| = 1.

From this equality and the previous lemma applied to (dϕi)r we deduce the formula

(B.2) vol(ϕ′
i,r(p

bZnp )) =
∫
pbZn

p

|(ϕ′
i,r)

∗(dx1 ∧ · · · ∧ dxn)|.

Multiplying by f(ϕi(r)) and summing over all (i, r) ∈ I×R yields Formula (B.1). □

Proposition B.5. Let X be a Hausdorff and paracompact p-adic manifold of con-
stant dimension n. Let ω be a differential form of degree n on X. Let (ϕi : Znp → X)i
and (ϕ′

j : Znp → X)j be two decompositions of X into balls. The two Radon measures
Cc(X)→ C,

f 7−→
∑
i

∫
Zn
p

(f ◦ ϕi)|ϕ∗
iω| and

f 7−→
∑
j

∫
Zn
p

(f ◦ ϕ′
j)|(ϕ′

j)
∗ω|

are equal.

Proof. Decompose each ϕi(Znp ) ∩ ϕ′
j(Znp ) into (finitely many) balls (ϕ′′

i,j,k : Znp →
ϕi(Znp )∩ϕ′

j(Znp ))k and apply the previous lemma to the decompositions (ϕ−1
i ◦ϕ′′

i,j,k)j,k
and ((ϕ′

j)
−1 ◦ ϕ′′

i,j,k)i,k. □

Definition B.6. Let X be a Hausdorff and paracompact p-adic manifold of constant
dimension n. Let ω be a differential form of degree n on X. Recall that decompo-
sitions of X into balls exist by Theorem B.2. The Radon measure in the previous
proposition will be denoted f 7→

∫
X
f |ω|.

Essentially the same argument as in the proof of Proposition B.5 is used to prove
the following “change of variables integration formula”.

Theorem B.7. Let ϕ : X → Y be a morphism between Hausdorff and paracompact
p-adic manifolds of constant dimensions such that the differential of ϕ is everywhere
invertible (in particular, dimX = dimY ). Assume that the fibers of ϕ have bounded
cardinality, and denote cϕ : Y → Z≥0, y 7→ card(ϕ−1({y}). Then for any differential
form ω on Y and any function f : Y → C that is integrable with respect to |ω|, we
have ∫

X

f ◦ ϕ |ϕ∗ω| =
∫
Y

fcϕ |ω|.
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Proof. Left as an exercise, using the density of Cc(Y ) in L1(Y, |ω|). □

Example B.8. On G = GL2(Qp), denoting x = (xi,j)1≤i,j≤2 ∈ G, the differential
form ω = det(x)−2

∧
1≤i,j≤2 xi,j (choose an arbitrary order to take wedges) is both

left- and right-invariant (exercise). This gives a “differential” definition of the Haar
measure on G, and shows that it is unimodular.
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Appendix C. PGL2 and SO3

Let B be a commutative ring with unity, and denote S = SpecB. (The as-
sumption that S is affine is not necessary for what follows, but it simplifies the
formulation.) Recall that a scheme over S (also called a scheme over B) is a scheme
X together with a morphism of schemes X → S. A scheme X over S has an
associated functor

FX : B − Alg −→ Sets

R 7−→ X(R) := HomSch/B(SpecR,X)

where B − Alg denotes the category of commutative algebras over B (with unity)
and Sets is the category of sets.

Lemma C.1. Let X be a scheme over S. The functor FX associated to X is a sheaf
on the big affine Zariski site of S, i.e. for any commutative B-algebra R and any
family (f1, . . . , fn) of elements of R generating its unit ideal, the map

X(R)→
n∏
i=1

X(Rfi)

identifies X(R) with the set of (si)1≤i≤n such that for any 1 ≤ i < j ≤ n, the images
of si and sj in X(Rfifj) coincide.

Proof. Exercise. □

A morphism ϕ : X → Y of schemes over S induces a natural transformation
Fϕ : FX → FY .

Lemma C.2. Let X and Y be schemes over S. The map ϕ 7→ Fϕ is a bijection be-
tween the set of morphism of schemes X → Y and the set of natural transformations
FX → FY .

Proof. If X is affine, say X ≃ SpecA, this is formal using the point in X(A) corre-
sponding to the identity A→ A (same proof as for Yoneda’s lemma).

In general there exists an open cover X =
⋃
i Ui where each Ui is affine. A

morphism ϕ : X → Y amounts to a collection of morphisms (ϕi : Ui → Y )i such
that for any indices i, j the restrictions ϕi|Ui∩Uj

and ϕj|Ui∩Uj
coincide. Using the fact

that each Ui ∩ Uj can also be covered by affine open subschemes, one can reduce to
the previous case. Details are left to the reader. □

These two lemmas tell us that F defines a fully faithful functor from the category
of schemes over S to the category of sheaves on the big affine Zariski site of S.
This functorial point of view on schemes has one advantage: one gets morphisms
of schemes “for free” from the previous lemma. This is especially convenient for
algebraic groups. Recall that an algebraic group over S is a schemeG over S together
with morphisms of schemes eG : S → G (a section of G → S), mG : G ×S G → G
and iG : G → G, such that the usual diagrams are commutative (expressing the
facts that eG is neutral on both sides for mG, that iG is “inversion” with respect
to mG, and that mG is associative). Thanks to the above fully faithful embedding,
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this amounts to a functor B − Alg → Groups such that the composition with the
forgetful functor Groups→ Sets is representable by a scheme. For example for n ≥ 1
the algebraic group GLn over Z is defined as the functor

Z− Alg −→ Groups

R 7−→ GLn(R).

This functor is representable by the scheme SpecA, where

A = Z[Y,Xi,j, 1 ≤ i, j ≤ n]/(Y det((Xi,j)i,j)− 1).

Our next goal is to define the algebraic group PGLn over Z, which intuitively should
be the quotient of GLn by its center GL1 (diagonal matrices). Unfortunately the
functor R 7→ GLn(R)/R

× is not representable, in fact it is not even a sheaf. The Z-
algebra A has a natural grading obtained from the grading on Z[Y,Xi,j, 1 ≤ i, j ≤ n]
for which degXi,j = 1 and deg Y = −n. Let A0 be the degree zero subalgebra, and
define PGLn = SpecA0. We could easily deduce the multiplication, neutral and
inversion maps for PGLn from those for GLn to define a group scheme structure
on GLn (and even write these explicitly), but this will ultimately not be necessary
thanks to the functorial point of view. Denote ζ : GL1 → GLn the morphism of
schemes defined functorially as

GL1(R) = R× 7−→ GLn(R)

x 7−→ diag(x, . . . , x).

The morphism (of schemes) ζ is clearly a morphism of group schemes and a closed
immersion.

Lemma C.3. Let R be a commutative ring. Denote r : GLn(R)→ PGLn(R).

(1) If R is local then r is surjective.

(2) For any g ∈ GLn(R) we have r−1({r(g)}) = gζ(R×).

Proof. (1) Let ϕ : A0 → R be a morphism of rings, i.e. an element of PGLn(R).
We claim that there exists 1 ≤ i, j ≤ n such that ϕ(Xn

i,jY ) is invertible. For
m a positive integer we write

1 = det((Xi,j)i,j)
mY m in A0.

For m >> 0 each monomial in the expansion of det((Xi,j)i,j)
m is divisible

by Xn
i,j for some pair (i, j). This proves the claim because R is local (a sum

of non-invertible elements is not invertible). So we fix a pair (i, j) such that
ϕ(Xn

i,jY ) is invertible. For 1 ≤ k, l ≤ n define

xk,l =
ϕ(Xn−1

i,j Xk,lY )

ϕ(Xn
i,jY )

.

In particular xi,j = 1. We have

det((xk,l)k,l) =
ϕ(X

n(n−1)
i,j Y n det((Xk,l)k,l))

ϕ(Xn2

i,j Y
n)

= ϕ(Xn
i,jY )−1 ∈ R×
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and so (xk,l)k,l defines an element of GLn(R) that we denote ϕ′ : A → R,
which maps Xk,l to xk,l and Y to ϕ(Xn

i,jY ). It remains to check that the

restriction of ϕ′ to A0 is equal to ϕ. It is clear that ϕ and ϕ′ map Y and the
Xn−1
i,j Xk,lY to the same values in R. Let f ∈ A0. For m >> 0 there exists a

polynomial P in n2 variables with coefficients in Z such that we have

f × (Xn
i,jY )m = P ((Xn−1

i,j Xk,lY )k,l).

Applying ϕ and ϕ′ to this equality, we obtain ϕ(f) = ϕ′(f).

(2) The inclusion gζ(R×) ⊂ r−1({r(g)}) is easy and left to the reader.

To prove the other inclusion we first assume that R is local in order to use
the previous construction. Let g1, g2 ∈ GLn(R). Denote ϕ1, ϕ2 : A → R the
corresponding morphisms of rings. Assume that we have r(g1) = r(g2), i.e.
that ϕ1 and ϕ2 have equal restriction ϕ to A0. As above we may choose a
pair (i, j) such that ϕ(Xn

i,jY ) is invertible in R, and construct ϕ′ : A → R
extending ϕ, corresponding to g ∈ GLn(R). It is clear on the definition that
for k ∈ {1, 2} we have gk = ζ(ϕk(xi,j))g in GLn(R). In particular g1g

−1
2

belongs to ζ(R×). This concludes the proof under the assumption that R is
local.

For arbitraryR, let g1, g2 ∈ GLn(R) mapping to the same element of PGLn(R).
We know that for any maximal ideal m of R, the image of g1g

−1
2 in GLn(Rm)

belongs to ζ(R×
m). Since ζ is a closed immersion this implies g1g

−1
2 ∈ ζ(R×).

□

Corollary C.4. The scheme PGLn, seen as a sheaf on the big affine Zariski site of
Z, is the sheafification of the functor (presheaf)

Z− Alg −→ Sets

R 7−→ GLn(R)/R
×

In particular PGLn is naturally endowed with a group scheme structure.

Concretely this means that an element of PGLn(R) is given by two families
(f1, . . . , fk) and (g1, . . . , gk), where fi ∈ R and gi ∈ GLn(Rfi), satisfying:

• (f1, . . . , fk) = R,

• for all 1 ≤ i < j ≤ k the images of gi and gj in GLn(Rfifj)/R
×
fifj

coincide.

(Of course such a representation of an element of PGLn(R) is not unique, and writing
down the equivalence relation is left to the reader.)

For any commutative ring R we have an exact sequence

1→ R× → GLn(R)→ PGLn(R)→ H1
Zar(R,GL1)→ H1

Zar(R,GLn)

where H1
Zar is Čech cohomology for the Zariski topology. The group H1

Zar(R,GL1)
is naturally isomorphic to the Picard group Pic(R) of R, i.e. the group of isomor-
phism classes of line bundles on SpecR (equivalently, finitely generated projective
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R-modules of constant rank 1). Similarly the set H1
Zar(R,GLn) parametrizes the

isomorphism classes of vector bundles of rank n on SpecR (idem with rank n).
Now we consider more closely the case where n = 2, and relate PGL2 to the

special orthogonal group in 3 variables. Consider the quadratic form on V := Z3:

q : (x, y, z) 7−→ x2 + yz.

Note that this definition is universal, i.e. it makes sense with Z replaced by an arbi-
trary commutative ring. In fact q comes from a unique element of Sym2HomZ(V,Z),
where the symmetric product is defined as a quotient of the tensor product. For
any commutative ring R we have a natural identification

R⊗Z Sym
2HomZ(V,Z) ≃ Sym2HomR(R⊗Z V,R).

Denote (e1, e2, e3) the standard basis of V . Let Bq be the symmetric bilinear form
on V associated to q:

Bq(v, w) := q(v + w)− q(v)− q(w).

We have

(Bq(ei, ej))1≤i,j≤3 =

2 0 0
0 0 1
0 1 0

 .

Let C(q) be the Clifford algebra associated to q, i.e. the quotient of the tensor
algebra of V by the bilateral ideal generated by v ⊗ v − q(v) for v ∈ V . The tensor
algebra of V is graded (by non-negative integers), inducing a Z/2Z grading on C(q).
Denote C(q)+ (resp. C(q)−) the even (resp. odd) part. The Clifford algebra, like the
exterior algebra, also inherits a filtration from the grading on the tensor algebra.
The graded pieces of these filtrations are naturally isomorphic, and so lifting a basis
of the tensor algebra gives us a basis of the Clifford algebra. For example

C(q)+ = Z⊕ Ze1e2 ⊕ Ze1e3 ⊕ Ze2e3 and

C(q)− = Ze1 ⊕ Ze2 ⊕ Ze3 ⊕ Ze1e2e3.

In particular the canonical map V → C(q)− realizes V as a factor of C(q)−. We
have e21 = 1, e22 = e23 = 0, e2e1 = −e1e2, e3e1 = −e1e3 and e3e2 = 1− e2e3. We have
an anti-automorphism x 7→ x∗ of C(q), mapping v1 ⊗ · · · ⊗ vk to vk ⊗ · · · ⊗ v1.
Lemma C.5. (1) We have an isomorphism of (non-commutative) Z algebras

α : C(q)+ −→M2(Z)

e1e2 7−→
(
0 1
0 0

)
e2e3 7−→

(
1 0
0 0

)
e1e3 7−→

(
0 0
−1 0

)
.

For any x ∈ C(q)+ we have α(x∗) = α(x)∗, where for y ∈ M2(Z) we also
denote y∗ = tr y − y.
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(2) The element λ = 2e1e2e3−e1 of C(q)− is central in C(q) and satisfies λ2 = 1
and λ∗ = −λ. In particular we have Z[λ] = Z⊕ Zλ.

(3) The multiplication map

Z[λ]⊗Z C(q)
+ −→ C(q)

is an isomorphism of Z-algebras.

Proof. (1) The existence of α simply follows from the computation of the multi-
plication table of C(q)+. The fact that α is surjective is clear, and injectivity
follows from the equality of ranks as finite free Z-modules.

(2) Computation left to the reader.

(3) The fact that this is surjective is a simple computation:

e1 = λ(2e2e3 − 1), e2 = λe1e2, e3 = −λe1e3, e1e2e3 = λe2e3.

The fact that it is an isomorphism follows because it is a morphism between
finite free Z-modules of equal ranks.

□

Remark C.6. This is a special case of a general structure theorem for Clifford
algebra, see [Bou07, §9 n.4] for the general result over a field (the proof can be
adapted to work over an arbitrary ring using the “right” definitions).

The first point implies that for any commutative ring R the map

R⊗Z C(q)
+ −→ R⊗Z C(q)

+

x 7−→ xx∗

takes values in R because α(xx∗) = α(x)α(x)∗ = detα(x). This also shows that
α−1(GL2(R)) = (R⊗Z C(q))

× is the group of x ∈ R⊗Z C(q)
+ satisfying xx∗ ∈ R×.

The third point of the lemma elucidates the structure of C(q)− as a bi-C(q)+-
module: we have an isomorphism

β : C(q)− −→M2(Z)
λy 7−→ α(y)

which satisfies β(x1yx2) = α(x1)β(y)α(x2) for any x1, x2 ∈ C(q)+ and y ∈ C(q)−.
A simple computation shows that we have

β(V ) = {X ∈M2(Z) | trX = 0}.

In particular for any commutative ring R the sub-R-module R⊗ZV of R⊗ZC(q)
− is

stable under conjugation by (R⊗ZC(q)
+)× = α−1(GL2(R)). We obtain a morphism

(R⊗Z C(q)
+)× −→ GL(R⊗Z V )

and one can check that it takes values in SL(R ⊗Z V ) (more generally, it is well-
known that the conjugacy action of GLn on Mn factors through the special linear



108 OLIVIER TAÏBI

group). This conjugation action preserves additional structure. For y ∈ R⊗ZC(q)
−

we can write y = λx with x ∈ C(q)+ and we have

yy∗ = −xx∗ = − detα(x) = − det β(y).

In particular for y ∈ R⊗Z V we have

q(y) = y2 = yy∗ = − det β(y).

Of course the quadratic form det ◦β on R⊗Z V (and on R⊗C(q)−) is preserved by
the conjugation action of (R ⊗Z C(q)

+)×. Let SO3 be the algebraic group over Z
defined as the functor

R 7→ {g ∈ SL(R⊗Z V ) | q ◦ g = q}.
We have just seen that the conjugation action (inside the Clifford algebra) gives us
a morphism

(R⊗Z C(q)
+)× −→ SO3(R)

which is clearly functorial in R. Composing with α−1|GL2 gives us a morphism
of group schemes GL2 → SO3 with kernel GL1, so it factors to give an injective
morphism π : PGL2 → SO3.

Lemma C.7. The morphism π : PGL2 → SO3 is an isomorphism.

Proof. It remains to check surjectivity, i.e. that the initial morphism GL2 → SO3

is surjective (as sheaves on the big affine Zariski site of Z). Equivalently, we have
to show that for any commutative local ring R the morphism GL2(R) → SO3(R)
is surjective. Let m be the maximal ideal of R. First we check that GL2(R) acts
transitively on the set of v ∈ R⊗Z V which map to a non-zero vector in R/m⊗Z V
and satisfy q(v) = 0 in R, or equivalently v2 = 0 in R⊗Z C(q). Write v = λx where

x ∈ R⊗ZC(q)
+. The matrix α(x) = β(v) ∈M2(R) maps to a non-zero matrix β(v)

in M2(R/m) and satisfies β(v)2 = 0. There exists f2 ∈ (R/m)2 such that β(v)f2 ̸= 0
(in (R/m)2). Let f2 ∈ R2 be any lift of f2 and let f1 = β(v)f2. The family (f1, f2)
is a basis of (R/m)2 so by Nakayama’s lemma (f1, f2) is a basis of R2. The matrix
of this basis gives g ∈ GL2(R) such that

π(g)v = β−1

((
0 1
0 0

))
= λe1e2 = e2 in R⊗Z V ⊂ R⊗Z C(q)

−.

It remains to show that the stabilizer of e2 in GL2(R) surjects onto the stabilizer of
e2 in SO3(R). Consider h ∈ SO3(R) fixing e2. Then h stabilizes the orthogonal of
e2 for Bq, which is e⊥2 = Re1 ⊕Re2, and h acts as the identity on R⊗Z V/e

⊥
2 . So in

the basis (e2, e1, e3) of R⊗Z V the matrix of h takes the form1 a c
0 d b
0 0 1

 .

We have d = 1 because deth = 1. A simple computation shows that we have
a = −2b and c = −b2. Another simple computation shows that we have

h = π

((
1 b
0 1

))
.

□
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Of course the use of Clifford algebras is not necessary to state and prove this
result: we could have simply considered the conjugation action of GL2 on the vector
bundle

sl2 : R 7→ {X ∈M2(R) | trX = 0} ,

observed that this action factors through the algebraic subgroup SL(sl2) of GL(sl2)
and preserves the quadratic form given by the determinant on sl2, and proved that
the resulting morphism GL2 → SO3 is surjective (as a morphism of sheaves on the big
affine Zariski site of Z) and has kernel GL1. For this it is not even necessary to define
PGL2 first. However, the arguments above generalize in higher dimension, to define
(general) spin groups and prove that there is a surjective morphism GSpin2n+1 →
SO2n+1 with kernel GL1 for any n (although the proof of Lemma C.7 is particular to
the n = 1 case). More importantly for us, the fact that the constructions above are
universal, in the sense that they are multi-linear and compatible with any extension
of scalars Z→ R, means that they can be generalized without much effort to forms
(in the sense of [Ser94, §III.1]) of the algebra M2 and the quadratic space (sl2, det).
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Appendix D. Quaternion algebras an quadratic forms in dimension 3

For simplicity we work over a field K of characteristic zero. Most of what follows
could be generalized over an arbitrary scheme instead of SpecK. A quaternion
algebra over K is a (non-commutative) K-algebra D such that there exists a finite
extension K ′/K and an isomorphism K ′ ⊗K D ≃ M2(K

′). If D itself is isomorphic
to M2(K) then we say that D is split. Recall that the group of automorphisms of
the K ′-algebra M2(K

′) is PGL2(K
′) (via the adjoint action): to prove this, consider

the idempotents e = diag(1, 0) and f = diag(0, 1) which satisfy ef = fe = 0, and
show that any pairs of non-zero idempotents satisfying this relation is conjugated
to (e, f).

Proposition D.1. Fix an algebraic closure K of K. The pointed set H1(K,PGL2) =
lim−→K′ H

1(Gal(K ′/K),PGL2(K
′)), where the direct limit is over the finite Galois ex-

tensions of K in Ks and the transition maps are given by inflation and are injec-
tive, parametrizes quaternion algebras over K up to isomorphism, by associating to
c ∈ Z1(Gal(K ′/K),PGL2(K

′)) the algebra

(D.1) D = {X ∈M2(K
′) | ∀σ ∈ Gal(K ′/K), Ad(c(σ))(σ(X)) = X}.

Proof. To check that (D.1) defines a quaternion algebra, it is enough to check
that the natural map K ′ ⊗K D → M2(K

′) is an isomorphism. This follows from
Hilbert’s theorem 90 (see [Ser68, Ch. X Proposition 3]), seeing Ad(c) as an element
of Z1(Gal(K ′/K),GL(M2(K

′))).
Conversely, let D be a quaternion algebra over K. There exists a finite extension

K ′/K and an isomorphism ψ : M2(K
′) ≃ K ′ ⊗K D. We may assume that K ′ is a

subextension of K and that it is Galois. For σ ∈ Gal(K ′/K), σ acts on K ′ ⊗K D
(in the natural way on K ′ and trivially on D), and c(σ) := ψ−1 ◦ σ ◦ ψ ◦ σ−1 is an
automorphism of the K ′-algebra M2(K

′), i.e. an element of PGL2(K
′). We obtain

a 1-cocycle c : Gal(K ′/K) → PGL2(K
′), and it is easy to check that a different

choice of ψ amounts to taking another representative in H1(Gal(K ′/K),PGL2(K
′)).

Compatibility with inflation (taking a larger K ′) is formal. The fact that the two
constructions are inverse of each other is left to the reader. □

Remark D.2. If D is a K-algebra such that there exists a field extension K ′/K
(not assumed to be finite or even algebraic) for which K ′ ⊗K D is isomorphic to
M2(K

′) then D is a quaternion algebra. See [Ser94, §III.1 Proposition 2].

Because the trace and determinant maps on M2(K
′) are Galois-equivariant and

invariant under conjugation, they descend to give trace and determinant maps on
D taking values in K and K×.

Let D be a quaternion algebra over K. Choose a finite Galois extension K ′/K
and an isomorphism ψ : M2(K

′) ≃ K ′ ⊗K D. Because the trace and determinant
maps on M2(K

′) are Gal(K ′/K)-equivariant and invariant under conjugation,

tr ◦ψ−1 : K ′ ⊗K D → K ′ and det ◦ψ−1 : K ′ ⊗K D → K ′

are also Gal(K ′/K)-equivariant. Taking Gal(K ′/K)-invariants, they restrict to
maps D → K which are respectively linear and homogeneous polynomial of de-
gree 2. It is easy to check that they do not depend on the choice of K ′ and ψ.



THE JACQUET-LANGLANDS CORRESPONDENCE FOR GL2(Qp) 111

We still denote these maps tr and det and call them trace and determinant. The
trace map gives us the conjugation map D 7→ D, x 7→ x∗ := trx − x which is an
anti-automorphism of D. For any x ∈ D we have xx∗ = x∗x = detx.

Lemma C.7 gives us an isomorphism

H1(K,PGL2) ≃ H1(K, SO3)

and an argument similar to the proof of Proposition D.1 shows that H1(K, SO3)
parametrizes non-degenerate quadratic vector spaces over K of dimension 3 and
discriminant −1. In fact the construction in the previous section extend to forms,
and the correspondence between quaternion algebras and quadratic spaces admits
a natural description:

• If D is a quaternion algebra over K, the 3-dimensional subspace

V = {X ∈ D | trX = 0}

is endowed with the non-degenerate quadratic form q = − det, which has
discriminant −1 because in the above interpretation using Galois cohomol-
ogy, it is obtained from (sl2,− det) by twisting using a cocycle taking values
in SO3 and not just O3.

• If (V, q) is a non-degenerate quadratic vector space of dimension 3 and dis-
criminant −1 then we can form the Clifford algebra C(q) = C(q)+ ⊕ C(q)−
and define D as its even part C(q)+. One can check that D is a quater-
nion algebra (again using the Galois cohomology interpretation allows one
to reduce to the split case).

Lemma D.3. Let D be a non-split quaternion algebra over K.

(1) Any non-zero element of D is invertible in D.

(2) Let x ∈ D∖K. Then its characteristic polynomial, defined as X2−(trx)X+
detx, does not split, i.e. it does not have a root in K.

(3) For x ∈ D∖K the subalgebra K[x] of D is a quadratic field extension of K.

Proof. Let K ′ be a finite extension of K such that K ′⊗KD is isomorphic toM2(K
′).

(1) If x ∈ D ∖ {0} is not invertible then its image in M2(K
′) admits 0 as an

eigenvalue.

If this image is semi-simple then tr x is the other eigenvalue so it does not
vanish and we consider y = 2x/(trx)− 1. We have tr y = 0 and det y = −1,
so the quadratic space (V, q) corresponding to D has a vector y satisfying
q(y) = 1 and so it is split, a contradiction.

Otherwise we have trx = 0 and detx = 0 so x itself defines a vector in V
satisfying q(x) = 0 and so (V, q) is split, a contradiction.

(2) By the Cayley-Hamilton theorem applied in K ′⊗KD ≃M2(K
′), the charac-

teristic polynomial of x kills x. So if this polynomial is equal to (X−α)(X−β)
with α, β ∈ K then x− α or x− β is not invertible in D, and so x is equal
to α or β.
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(3) This follows from the previous point.

□
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Appendix E. Quadratic forms over Qp in dimension ≤ 3

For a, b ∈ Q×
p define the Hilbert symbol

(a, b) =

{
1 if there exists x, y ∈ Qp such that ax2 + by2 = 1,

−1 otherwise.

It clearly factors through (Q×
p /Q×,□

p )2, where Q×,□
p is the subgroup of squares in Q×

p .
The Hilbert symbol can be computed explicitly (see [Ser77, Ch. III Théorème 1])
and on this explicit formula the following result is evident.

Theorem E.1 ([Ser77, Ch. III Théorème 2]). The Hilbert symbol defines a non-
degenerate bilinear form on the F2-vector space Q×

p /Q×,□
p .

Corollary E.2. The map
E 7−→ NE/Qp(E

×)

defines a bijection between the set of isomorphism classes of quadratic extensions of
Qp and the set of index 2 subgroups of Q×

p .

Proof. Recall that quadratic extensions of Qp are parametrized by the non-trivial

elements in Q×
p /Q×,□

p , via b 7→ Qp(
√
b). For b ∈ Q×

p ∖ Q×,□
p , E = Qp(

√
b) and

a ∈ Q×
p it is easy to see that a ∈ NE/Qp(E

×) if and only if (a, b) = 1. This shows
that NE/Qp(E

×) is a subgroup of Q×
p of index 2. Conversely any index 2 subgroup of

Q×
p is the orthogonal for the Hilbert symbol of a unique b ∈ Q×

p /Q×,□
p ∖{1} (observe

that any line in an F2-vector space contains a unique non-zero vector!). □

Theorem E.3. A non-degenerate two-dimensional quadratic space (V, q) over Qp

is isomorphic to exactly one of the following:

• if it has discriminant −1 (in Q×
p /Q×,□

p ), it is split, i.e. isomorphic to Q2
p

endowed with the quadratic form (x, y) 7→ xy,

• if it has discriminant −b with b ∈ Q×
p ∖ Q×,□

p , denoting E = Qp(
√
b) then

(V, q) is either isomorphic to (E,NE/Qp) or to (E, λNE/Qp) where λ ∈ Q×
p ∖

NE/Qp(E
×) (the isomorphism class of this quadratic space does not depend

on the choice of such a λ).

In particular the isomorphism class of (V, q) is determined by

S := {q(v) | v ∈ V ∖ {0}} :

• if 0 belongs to S then (V, q) is split,

• otherwise the subset SS−1 = {xy−1 |x, y ∈ S} of Q×
p is an index two sub-

group of Q×
p , which is equal to NE/Qp(E

×) for a unique (up to isomorphism)
quadratic extension E of Qp, and S is either NE/Qp(E

×) or Q×
p ∖NE/Qp(E

×).

Proof. The case of discriminant −1 is well-known and not particular to Qp. It is also
well-known that if 0 ∈ S then (V, q) is split. Otherwise let −b be the discriminant
of (V, q) and take λ ∈ S, then (V, q) is isomorphic to(

Q2
p, (x, y) 7→ λx2 − λby2

)
,
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i.e. to (E, λNE/Qp). For any µ ∈ E× we have (E, λNE/Qp) ≃ (E, λNE/Qp(µ)NE/Qp).
Details are left to the reader. □

Theorem E.4. There are up to isomorphism exactly two non-degenerate three-
dimensional quadratic spaces (V, q) over Qp of discriminant −1, distinguished by

S = {q(v) | v ∈ V ∖ {0}} :

• The space Q3
p with quadratic form

(x, y, z) 7−→ x2 + yz.

In this case we have S = Qp.

• For a quadratic extension E = Qp(
√
b) of Qp, the space Qp ⊕ E with qua-

dratic form (x, t) 7→ bx2 + λNE/Qp(t) where λ ∈ Q×
p ∖ NE/Qp(E

×). Up to
isomorphism this three-dimensional quadratic space does not depend on the
choice of E, and we have S = Q×

p ∖Q×,□
p .

Proof. Let (V, q) be a non-degenerate three-dimensional quadratic space over Qp,
and S the corresponding set of values. If 1 ∈ S then (V, q) is isomorphic to the direct
sum of (Qp, x 7→ x2) and a two-dimensional non-degenerate quadratic space of dis-
criminant −1, which is then split. If 0 ∈ S then (V, q) admits a split non-degenerate
two-dimensional quadratic space as a factor and we reach the same conclusion.

Otherwise pick b ∈ S, in particular b ∈ Q×
p ∖ Q×,□

p . Denote E = Qp(
√
b)

as usual. Then (V, q) is isomorphic to the direct sum of (Qp, x 7→ bx2) and a two-
dimensional non-degenerate quadratic space of discriminant −b, which is isomorphic
to (E, λNE/Qp) with λ ∈ Q×

p . If λ ∈ NE/Qp(E
×) then 1 ∈ S, a contradiction. So we

have λ ∈ Q×
p ∖NE/Qp(E

×) and it remains to check that S is equal to Q×
p ∖Q×,□

p . Let

a ∈ Q×
p ∖Q×,□

p . If a ∈ bQ×,□
p then we already know that a belongs to S. Otherwise

the quadratic form on Q2
p

(x, y) 7−→ ax2 − by2

has discriminant −b′ = −ab which is neither equal to −1 nor to −b modulo Q×,□
p ,

and so

S ′ := {ax2 − by2 | (x, y) ∈ Q2
p ∖ {(0, 0)}}

is a coset for NF/Qp(F
×) where F = Qp(

√
b′) is not isomorphic to E. In particular

S ′ is not contained in NE/Qp(E
×), and so there exists (x, y) ∈ Q2

p and t ∈ E such
that we have

ax2 = by2 + λNE/Qp(t).

We know that x cannot be equal to 0 (otherwise we would have 0 ∈ S) and so
dividing by x2 we conclude a ∈ S. □

Corollary E.5. Up to isomorphism there is a unique non-split quaternion algebra
D over Qp. For any quadratic extension E of Qp there exists an embedding of
Qp-algebras E → D.
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Proof. The first statement follows directly from the previous theorem and the re-
lation between quaternion algebras and quadratic spaces explained in the previous
section.

Let D be a non-split quaternion algebra over Qp, and let E be a quadratic
extension of Qp. Choose x ∈ E ∖Qp such that b := x2 belongs to Qp. In particular
b is not a square in Qp and E = Qp(x). By the previous theorem there exists y ∈ D
such that tr y = 0 and det y = −b, i.e.

y2 = −yy∗ = b.

There is thus a unique morphism of Qp-algebras E → D mapping x to y. □
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