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1. INTRODUCTION

In these notes, all representations of groups are over the field C of complex
numbers. Let p be a prime number, D a quaternion algebra over Q,. The topological
group D* is compact (even profinite) modulo its center Q-

Theorem 1.1 (Jacquet-Langlands). For any continuous irreducible finite-dimensional
representation o of D*, there is a unique essentially square-integrable irreducible
smooth representation 7 of GLa(Qp) such that for any g € D* \ Q) we have
tro(g) = —0x(¢'), where ¢ € GL2(Q,) has the same trace and determinant as
g and ©, is the Harish-Chandra character of m. Moreover any m corresponds to a
unique o.

We will explain later what “essentially square-integrable” means. Let us simply
mention that all these representations of GLy(Q,) have infinite dimension. In fact we
will classify representations of GL2(Q,) as follows: principal series (quite explicit),
“special” (also quite explicit, and essentially square-integrable), and supercuspidal
(also essentially square-integrable). We will define the Harish-Chandra character O,
even later, it plays the role of the trace function of 7, but since we are considering
infinite-dimensional representations, defining the trace is not obvious.

We will see that supercuspidal representations are the most well-behaved repre-
sentations of GLy(Q,), i.e. that they behave much like representations of a compact
group. Among irreducible smooth representations of GLy(Q), they are however the
least explicit and most mysterious ones. One can see the Jacquet-Langlands corre-
spondence as a classification of all supercuspidal representations 7 of GL2(Q,) by
seemingly simpler finite-dimensional representations of D*.

However, this is not the true motivation for this theorem. The theorem should be
seen as a consequence of the Langlands correspondence for GLy(Q,) and D*. The
following theorem is the most difficult part of this correspondence (we will prove
the easier part concerning reducible Galois representations, in the first part of this
course).

Theorem 1.2 (Jacquet-Langlands, Gelfand-Graev, Tunnell, Kutzko). There is a
“natural” bijection between isomorphism classes of irreducible representations of
D> of dimension > 1 (resp. irreducible supercuspidal representations of GLa(Q,))
and having central character Q) — C* of finite order, and isomorphism classes
of continuous irreducible 2-dimensional representations of the absolute Galois group

Gal(@Q,/Qy)-

Finite-dimensional continuous representations of Gal(Q,/Q,) over C factor through
Gal(F/Q,) for some finite Galois extension F'/Q, so the Galois representations occur-
ring above are also relatively concrete objects. In fact for p > 2 it is not too difficult
to explicitly classify all such Galois representations (essentially because the restric-
tion to the wild ramification subgroup, which is a p-group, cannot be irreducible).
Characterizing the correspondences (i.e. giving “natural” a precise meaning) is not
straightforward: one has to introduce invariants on both sides (L-functions and e
factors), so the Langlands correspondence is not as obviously natural as the Jacquet-
Langlands correspondence.

There is an analogous Langlands correspondence for representations of D*. Al-
though it is probably possible to deduce the Jacquet-Langlands correspondence from
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the Langlands correspondences for both GL2(Q,) and D* after proving the latter,
this is not the path that we will follow. The Jacquet-Langlands correspondence gen-
eralizes to smooth irreducible representations of GL,,(F') (F alocal non-Archimedean
field) and n-dimensional “Galois representations”. One of the two known strategies
to prove the local Langlands correspondence for GL,(F) for F/Q (| ], later
simplified in | |; see [ ] for a different proof) is global (“Thara-Langlands-
Kottwitz method”, which is also the main method to find ¢-adic representations
of the absolute Galois group of a number field attached to an automorphic rep-
resentation in the étale cohomology of a Shimura variety) and uses the Jacquet-
Langlands correspondence as an input. An essential global ingredient that occurs
in the proof of the Jacquet-Langlands correspondence ([ ], |) and in
the Thara-Langlands-Kottwitz method is the Arthur-Selberg trace formula. Follow-
ing [ | and | |, the goal of this course is to prove the Jacquet-Langlands
correspondence for GLy(Q,) using the simple trace formula.

More generally, one can (try to) formulate local and global Langlands corre-
spondences for arbitrary connected reductive groups GG over local or global fields
(conjectural in general). On the Galois side, these involve “Galois representations”
taking values in the Langlands dual group “G (for split G, this is a complex re-
ductive group whose Dynkin diagram is dual to that of G, see | | for a proper
definition).

Assuming these conjectures, whenever we have two connected reductive groups
G and H and a morphism “H — LG, we have a relation between representations
(automorphic in the global setting) of H and GG. In many cases, this relation (“Lang-
lands functoriality”, although by no means functorial in the categorical sense!) can
be formulated without referring to Galois representations, and in some cases it can
even be proved. Some cases of Langlands functoriality can be proved using (some
version of) the Arthur-Selberg trace formula. Such results are needed to construct
Galois representations corresponding to automorphic representations.

Rough plan of the course:

(1) Basic representation theory of GL2(Q,) and “classification” of representa-
tions,

(2) A bit of harmonic analysis for GLy(Q,),
(3) Trace formulas,
(4) Application to the Jacquet-Langlands correspondence.

2. SMOOTH REPRESENTATIONS OF GLy(Q,)

We begin the study of smooth representations of the locally profinite topo-
logical group G = GLy(Q,). Many tools work just as well for general reductive
groups, adding the (non-trivial) combinatorics of Weyl groups etc. References: [Cas],

[ J

2.1. Decompositions. Let K, = GLy(Z,). Note that this is exactly the set of
g € G such that g(Zg) = Zi. Recall that a lattice in Qz is a finitely generated sub-
Z,-module of rank 2 (a finite sub-Z,-module of Q2 is torsion-free so if it is finitely
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generated then it is free of finite rank). It is very easy to check that a family of
vectors in QIQ) is linearly independent over Q,, if and only if it is linearly independent
over Z,. Because G acts transitively on the set of bases in Q3, it also acts transitively
on the set of lattices in QIQJ. We obtain an identification of G/K, with the set of
lattices in Qf,. Note that the quotient topology on G/Kj is the discrete topology
because Kj is open in G.

Lemma 2.1. Let K be a compact subgroup of G. There exists g € G such that
K C gKog_l.

Proof. The group G acts transitively on the set of lattices in Qf, (defined as sub-
Z,-modules of finite type and maximal rank, that is rank 2). The statement is
equivalent to the existence of a lattice L C @12) such that for any k € K, k(L) = L.
Because K is compact, the image of det : K — Qp is compact, and so for any
k € K such that k(L) C L we actually have k(L) = L. So we have to show that
there is a lattice L stable under K. Let Ly be any lattice, for example Zi. There is
an open subgroup K’ C K such that Lg is stable under Ly (if Lo = Zf, we can take
K'= KN Ky). Let L=73" y /g 9(Lo). It works! O

Denote by N be the subgroup

o Do)

of GLy(Q,). Denote by T the subgroup of diagonal matrices in G, and B = TN =~
T x N the Borel subgroup of upper triangular matrices.

Lemma 2.2. We have the Iwasawa decomposition G = BKj.

Proof. We use the same interpretation of G/Kj as in the previous lemma, namely as
the set of lattices in ZZ: the coset g K is identified to the lattice in QIQJ admitting the
columns of g as a basis. The lemma is equivalent to the claim that for any lattice
L C @12,, there is a basis (eq, e2) of L such that the second coordinate of e; is zero.
Denote by (f1, f2) the standard basis of Qf,. Pick a basis e; of LNQ, f;. Pick a basis
€ of the lattice L/(L NQ,f1) in Qg/(@pfl ~ Q,f2. Let ex € L be any preimage of
es. It works! O

Note that the multiplication map B x Ky — G is not injective, since B N Kj is
an open (in particular non-trivial) subgroup of B.

Theorem 2.3. We have the Cartan decomposition

G = |_| Kodiag(p“,pb)Ko.
a,beZ
a>b
Proof. The group G acts transitively on G/Kj, so we have an identification

G\(G/Ky x G/Ky) ~ Ko\G/ Ky,

and so we interpret Ko\G/Kj as the set of orbits of G acting on the set of pairs of
lattices in Qf,. With this identification in mind the theorem is easily deduced from
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the following statement: for any lattices Ly = g1(Z3) and Ly = g»(Z2) in Q2, there is
a unique pair of integers a > b such that there exists a basis (e, f) of Ly (the columns
of gi1k; for ky € Kj) such that (pe,p°f) is a basis of Ly (the columns of goky for
some ks € Kjy). The “relative position” of L; and Ls is given by the double coset
Kogy ' g2 Ko. This statement on lattices is a particular case of the structure theorem
of finitely generated modules over principal ideal domains (applied to Lo/pN*t1L,
where N € Z is large enough so that p’¥ L, C Ly). O

0 -1
Let w = <1 0) eG.
Lemma 2.4. We have the Bruhat decomposition G = B LI BwN, where the natural
map B x N — BwN is an isomorphism of algebraic varieties.

Proof. We have

a b\ (0 =1\ (1 d\ (b —a\ (1 d\ (b bd—a
0 ¢c/\1 0 01/ \c¢ O 0 1) \¢
and solving the equation is easy. 0

It will sometimes be more convenient to translate the Bruhat decomposition on
the right by w™! so that the “big open cell”, which is the complement of a single

coset in B\G, contains 1 € G. Let N be the subgroup (6 (1)> of GG, so that
P
N = wNw™'. Then we have G = BN U Bw™'.

These three decompositions generalize to general linear groups of arbitrary di-
mension (only the Bruhat decomposition requires a more clever proof), and even to
connected reductive groups over QQ,, but the choice of K is delicate if the group
is not reductive over Z, and in general there is more than one conjugacy class of
maximal compact subgroups.

2.2. Smooth representations of G.

Definition 2.5. A smooth representation of G is a complex vector space V together
with a group representation m : G — GL(V') such that for anyv € V, the stabilizer of
v in G is an open subgroup. Denote Rep(G) the category of smooth representations
of G.

A smooth representation (V, ) is admissible if for any open subgroup K of G,
the space VE of K-invariants has finite dimension.

The contragredient (V,7) of a smooth representation (V,m) of G is the space of
linear forms v : V' — C invariant under some open subgroup of G (which typically
depends on U), i.e. the space of smooth vectors in the dual representation in the
algebraic sense. We denote the pairing between v € Vandv eV by (v,v).

The same definitions can be made for any closed subgroup H of G, and we
similarly denote by Rep(H) the category of smooth representations of H.

By definition, we have (r(g)v, 7(g)0) = (v,0) forany v € V, 7€ V and g € G.
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A typical smooth representation of G has infinite dimension. As the example
1 log|det(g)]
0 1
to be semisimple. Later we shall see less obvious examples.
We do however have Schur’s lemma for irreducible smooth representations of G.

shows, even finite-dimensional representations of G may fail

Lemma 2.6. Let (V,7) be an irreducible smooth representation of G, and let ¢ €
Homg(V, V') be an endomorphism. Then ¢ is multiplication by a scalar.

Proof. We claim first that the complex vector space Homg(V, V) has countable
dimension. Let v € V \ {0}, and let K be a compact open subgroup of G such
that v € VX. Then V = >-gec/ix Cm(g)v. The Cartan decomposition implies that
G/K is countable, so that V' has countable dimension, and any G-equivariant map
V — V is determined by the image of V' so Endg(V) also has countable dimension.

Now we claim that there exists A € C such that ¢—Aldy ¢ GL(V). Otherwise we
would obtain a morphism of algebras C(X) — Endg(V'), which would be injective
since the source is a field, and since C(X') does not have countable dimension over C
(e.g. the vectors ((X —\)™!)aec are linearly independent) this gives a contradiction.

So for some A € C we have ker(¢ —\) # 0 or im(¢ — \) # V, and ker(¢ — \) and
im(¢ — A) are subrepresentations of G. By irreducibility of V, in the first case we
have ker(¢ — A) =V and in the second case we have im(¢ — \) = 0. O

There is an easier proof under the assumption that V' is admissible. Later we
will show that in fact any irreducible smooth representation of G is admissible.
Let Z = {diag(z,z)|x € Q)} be the center of G.

Corollary 2.7. If (V,7) is an irreducible smooth representation of G then there
exists a unique smooth character w, : Z — C* such that for any z € Z we have
7(2) = we(2)Idy.

Let (V, 7) be a smooth representation of G. Let K be any compact open subgroup
of G. Recall that any compact open subgroup of G' has an open subgroup which is
contained and distinguished in K. For 7 an irreducible representation of K factoring
through K /K’ for some distinguished open subgroup K’ of K (note that K/K’ is a
finite group and so 7 has finite dimension), denote V;, = Homg (7, V)®c7. Using just
representation theory of finite groups we see that we have a canonical isomorphism
@D, V. ~ V of representations of K, where the sum is over isomorphism classes
of irreducible representations 7 of K factoring through K/K’ as above. (Exercise:
any continuous irreducible finite-dimensional representation of a profinite topological
group factors through a quotient by a distinguished open subgroup. We will not need
this fact, in fact we will not need the Peter-Weyl theorem or any result concerning
continuous representations of profinite groups.)

For an open distinguished subgroup K’ of K, the finite group K/K' has only
finitely many isomorphism classes of irreducible representations. We deduce that
as a representation of K, V is canonically identified with @_Homc(V;,C). The
following lemma then follows easily (exercise).

Lemma 2.8. Let (V,m) be a smooth representation of G. Let K be a compact open
subgroup of G. The following are equivalent
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(1) For any irreducible representation T of K factoring through K/K' for some
distinguished open subgroup of K we have dimc Homg (7,V) < 0o (equiva-
lently, V. has finite dimension).

(2) V is admissible,

(3) V is admissible,

(4) the natural (always injective) map V' — V is surjective.

We fix (until further notice) a left Haar measure on G. Recall that it is unique
up to multiplication by R-. Recall the Riesz-Markov-Kakutani representation the-
orem: for a locally compact Hausdorff topological space X, Radon measures cor-
respond bijectively to positive linear functionals on C.(X), the space of continuous
compactly supported functions on X. With this formulation of measure theory, in
the case of a locally profinite topological space such as G, one can construct the
Haar measure concretely as follows (see | , Chapitre 7, §1.6] for details in a
more general setting):

e Choose vol(Ky) € Ry arbitrarily !
e For any open subgroup K C K, define vol(K) = |Ky/ K| vol(K).

e For any f € CX(G), the space of smooth (this means locally constant)
compactly supported functions on G, choose K as above such that f is right
K-invariant, and let [, f = vol(K) > gxec/k f(9). Exercise: this does not
depend on the choice of K!

e Extend [, to C(G) by continuity (approximate any continuous compactly
supported function by smooth ones).

This concrete definition can also be used to check that GG is unimodular, i.e. this left
Haar measure is also right-invariant 2. Later we will give an explicit “differential”
definition of the Haar measure on GG, and this will show that G is unimodular.

One can define Haar measures on the closed (also locally profinite) subgroups
B, T, N in the same way. The groups 7" and N are commutative and so also
unimodular, but B is not unimodular.

Exercise 2.9. Let dt and dn be Haar measures on T and N.

(1) There ezists a unique left Haar measure db on B such that for any f € C.(B)
we have

/ s = [ fin)dtdn.
B TxN

Lchoosing it in Qs allows one to extend many results to fields of coefficients having characteristic
zero but with no naturally embedding in C.

2Exercise: prove it. Hint: wusing the Cartan decomposition we are reduced to comput-
ing the modulus character at diag(p®,p®), which can be done by considering the subgroup
K — (1 + p'Z, p'Zy

;=

p'7Zy 1+ pin> of Ky for large enough 1.
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(2) Fort = diag(ti,t2) € T and f € C.(N) we have
(2.1) / FE nt)dn = |t /t] / f(n)dn
N N
x)

where |z| = p

(3) For any f € C.(B) and a € B we have
[ #eayiv=sata) [ sy
B B

where dg (3 Z) = |z /y|. This implies that 65(b)db is a right Haar measure
on B.

By default Haar measures will be left Haar measures in these notes.

Let H(G) be the space of smooth (this means locally constant in this setting)
compactly supported functions f : G — C. Denote H(G) = C°(G). This notation
emphasizes the fact that we think of it as a Hecke algebra: H(G) is a convolution
algebra, for the convolution product defined by the formula

(% 1)) = /G )y a)dy = /G Fay)f (v dy.

Checking that this product is associative is left as an exercise. This algebra is not
commutative and has no unit (that would be a Dirac distribution ...), but it has
lots of idempotents: for any compact open subgroup K of G, ex = vol(K) g
is an idempotent. Similarly, it is easy to define an idempotent ey . for any finite-
dimensional irreducible representation 7 of K/K’ where K’ is an open distinguished
subgroup of K, but we shall not need this. Note that for any idempotent e € H(G)
we have a unital subalgebra eH(G)e of H(G). We denote H(G, K) = exH(G)ek,
which is identified with the space of functions K\G/K — C having finite support.
If (V,m) is a smooth representation then H(G) acts on V' by the formula

w(f)o = /G f(g)(g)v dg

Note that there is no analysis and very little measure theory involved in this action:
choose a compact open subgroup K of G such that v € VE and f is right K-
invariant, then we have m(f)v = 3_ /g vol(K) f(g)m(g)v where only finitely many
terms are non-zero since f has compact support. In fact this could be taken as the
definition, and one can check directly that this expression does not depend on the
choice of K. For any compact open subgroup K of G we have exV = VE (this is
clear using the discussion above on the structure of V' as a representation of K).

Conversely, if V is an H(G)-module such that >, exV = V, one can endow
V with a smooth action of G: for v € VX and g € G let 7(g)v = vol(K) ', xv
(exercise: this does not depend on K and defines a group action). Thus smooth
representations of G are equivalent to smooth H(G)-modules.



10 OLIVIER TAIBI

Lemma 2.10. Let K be a compact open subgroup of G. The functor V ~» VE =
m(ex)V, from smooth representations of G to representations of H(G, K), induces

a bijection between irreducible smooth representations V of G such that VX # 0 and
simple H(G, K)-modules.

Proof. (1) First we check that if (V,7) is an irreducible smooth representation
of G then V¥ is a simple H(G, K)-module. Let M C VE be a non-zero sub-
H(G, K)-module. By irreducibility we have V' = > _,7(9)M = H(G)M

and so we have

VE = (H(G)YM)® = ex H(G)YM = exH(G)exM = H(G, K)M = M.

(2) Let M be a H(G, K)-module, consider the H(G)-module Fo(M) = H(G) @ (e, k)
M. From the smoothness of H(G) as a representation of G' (on either side)
we deduce that Fy(M) is also a smooth representation of G. In general this
smooth representation of G is too big (i.e. it happens that for some simple
H(G, K)-modules M, Fy(M) is not irreducible). Consider the linear map
oy 2 Fo(M) — M, f ® m — exfexm, which restricts to a morphism of
H(G, K)-modules Fy(M)X — M which is surjective because 1 ® m maps to
m. Let W(M) = {v € Fy(M)|exH(G)v = 0}, that is the largest sub-H(G)-
module W of Fy(M) such that we have ex W = 0. We have W (M) C ker ¢y,
and exW (M) = 0, and because Fy(M) is a semisimple representation of
K the natural map Fo(M)® — (Fo(M)/W(M))¥ is an isomorphism. So
we have a functor F' : M ~» Fy(M)/W (M) from the category of H(G, K)-
module to Rep(G) and a natural transformation ¢, : F(?)% —?. The map
én : F(M)E — M is clearly surjective, and it is also injective:

(H(G) ®’H(G,K) M)K = (GKH(G)) ®7—[(G,K) M = €KH(G)€K ®’H(G,K) M ~ M.

(3) Now assume that M is a simple H(G, K)-module. We claim that F(M)
is an irreducible representation of G. With notation as above, let V; be a
subrepresentation of Fy(M) such that W (M) C Vi. By definition of W (M)
we have VK # 0 so that ¢y (V/X) # 0. Since M is simple this implies
dp(ViE) = M, and so V; contains H(G)(1 @ M) = Fy(M).

(4) The outstanding claim that we have to check is that for V' an irreducible
smooth representation of G such that VE = 0, we have a (natural) isomor-
phism F(VX) ~ V. There is a natural morphism H(G) Q@uc.x) VE = V,
which is surjective since VX # 0 and V is irreducible. It clearly factors
through F(VE), and since we have shown that F(VK) is irreducible we get
that the natural morphism F(VE) — V is an isomorphism.

O

This lemma suggests that we restrict our study to admissible representations,
so that we can study only finite-dimensional objects. Unfortunately, beyond a few
cases (small index in Kj) it is difficult to describe H(G, K) in a useful manner, so
this point of view is rather limited. We will come back to H(G, K') in special cases
later.
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2.3. Parabolic induction and the Jacquet functor. The easiest way to con-
struct representations of G is to induce representations from smaller subgroups. For
these to be “not too big” it is natural to induce from the cocompact (by the Iwa-
sawa decomposition) subgroup B. We will be even more specific and induce only
representations of B which are trivial on its distinguished subgroup N. Non-trivial
characters of N are also very interesting, but this is another subject (Whittaker
functionals).

Definition 2.11. Let (W, u) be a smooth representation of T, that we see as a
representation of B via the projection B — B/N ~ T. Let Indg W (or Ind$ 1) be
the space of smooth functions f : G — W satisfying

f(bg) = 85(b)"p(b) f(9)
forallb e B and g € G. It is endowed with a smooth action of G defined by

(- f)(g) = f(gz)
forz,g e G.

If W has dimension one then p = p; ® po is a smooth character of 7', that is
p(diag(wy, v2)) = pa(x1)p2(ze) where p; @ Q) — C* is a smooth character. Note
that Ind$ y admits pqp0 as a central character, using the obvious identification
Q, =~ Z. Note also that for a smooth character x : Q) — C* we have a natural

isomorphism Ind%(xu ® xpz) =~ Ind$ (1 ® pa) @ (x o det).

Lemma 2.12. Let p be a smooth character of T. The representation Indg wof G
15 admissible.

Proof. Let K be a compact open subgroup of G. We may assume that K C K.
Since G = BK, and K,/K is finite, the set B\G/K is also finite, showing that
dimg(Ind§ )% < 4o0. O

For W # 0 one can see that Indg W has infinite dimension by producing functions
as follows. Pick x € G and v € W ~ {0}. There exists a compact open subgroup
K of G such that w is fixed by Kz~ N B. Then there is a unique f € Ind% W
supported on Bz K such that f(zk) =1 for k € K.

The character 6)° : diag(z1, 12) — |z1/22|"/? was introduced so that IndS pre-
serves unitarity. Let us briefly explain this (our goal is Corollary 2.15 below). If y is
unitary character, in which case we may assume W = C, for f € Ind% p the function
|f]? : G — C belongs to C*°(G, B, dp) = Ind$ (5}3/2, the space of smooth functions
G — C such that f(bg) = 05(b)f(g) for all b € B and g € G. We will construct a
G-invariant “integration map” C*(G, B,dp) — C. In fact this is a special case of
Example A.5 (which deals more generally with continuous functions, not just locally
constant functions), but we can be more concrete and give an alternative argument,
proving a formula that will turn out to be useful on several occasions. We have a
map

b1 C®(G) — C(G, B, 6p)

fr— (g — /Bf(bg)db> :
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One can show that it is surjective 3. We want to define an integration map”
C™(G, B,dp) — Cmapping ¢(f) to [, f(g)dg, so we have to check that [, f(g)dg =
0 if ¥(f) = 0. This follows from the followmg integration formula for the Iwasawa
decomposition, which has the benefit of giving a simple explicit formula for the
sought-after linear form on C*(G, B, ).

Lemma 2.13. Choose Haar measures on the unimodular groups G, T', N and K,
so that volg(Kp) = volg(B N Ky) volg,(Ko). Let [ be either an integrable function
G — C or a measurable function G — R>q. Then we have

/f(g)dg:/ f(tnk)dtdndk:/ f(ntk:)dgl(t)dndtdk.
G TxNxKo NxTxKg

Proof. 1t is enough to prove the formulas for f € C.(G), by density of C.(G) in
L'(G) for the first case, and monotone convergence for the second case. Also note
that via the homeomorphism 7' x N ~ B, (t,n) + tn, the product of Haar measures
on T and N is a left Haar measure on B. So the second equality has nothing to do
with G or K, and is a consequence of the definition of the modulus character for
B since dndt is a right Haar measure on B = NT'. So it is enough to prove the
formula [, f(g)dg = fBXKo f(bk) dbdk where a left Haar measure on B is used.
Consider the map

¢ : C.(B x Ko) — C.(G)
Fr—s (bk — / F(bh, k™*h) dh>
BNKy

where we have written an arbitrary element of G as bk for b € B and k € K; using
the Iwasawa decomposition. It is surjective because B N K| is compact, in fact it
has a natural section onto the subspace of C.(B x Kj) consisting of the functions
F' factoring through (b, k) — bk~'. Moreover ' — [, ¢(F)(g)dg is left B x K-
invariant because the Haar measure on G is invariant under left multiplication by
B and right multiplication by Ky, so it coincides with F' fBXKo F(b,k)dbdk up
to a scalar. The scalar is computed by taking f to be the characteristic function of
K. O

Corollary 2.14. The linear map
C*(G,B,ég) — C
fr—=| [f(k)dk
Ko

is G-invariant (for the action by right translation on the source and the trivial action
on the target).

Proof. Any f € C®(G,B,dp) can be written as g — [, a(bg)db for some o €

C=(G), s
Kof(k) dk:/KO/Ba(bk) dbdk:/Ga(g) dg

3Exercise: check this, either by adapting the above argument exhibiting non-zero functions in
Indg 1, or using right translates of the Bruhat decomposition.
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and (g - f)(z) = [, » a(brg)db, so the assertion follows from the fact that the Haar
measure on G is right G-invariant. O

Corollary 2.15. If p is a unitary character then IndG i has a natural G-invariant
Hermitian inner product, defined by || f||* = [, 1f(k |2 dk.

Corollary 2.14 also shows that [ Ky gives an intertwining operator Indg 5,19/ 5 C
where the target is endowed with the trivial representation of G. It is easy to see
that this linear form is non-zero: as explained above the source contains a positive
function.

Definition 2.16. The Steinberg representation St of G is the subrepresentation of
Ind§ (5]13/2 consisting of all functions f satisfying fKo f(k)dk = 0.

Later we will prove that the Steinberg representation is irreducible. Dually
(this duality will not be explained in these notes ... ), we have an embedding C —
Ind§ 5;/ 2 (constant functions) and we will see later that St is also realized as the
cokernel of this map.

Definition 2.17. Let (V, ) be a smooth representation of N. Let V(N) ="\ (m(n)—
1)V. Let Vy = V/V(N), the space of coinvariants under N, i.e. the largest quotient
of V. on which N acts trivially. This defines a functor Rep(N) — Vec. Restrict-
g to smooth representations of B, using that N is distinguished in B we obtain a
functor Rep(B) — Rep(T') (exercise: check that for V. a smooth representation of
B, the representation Vy of T is smooth).

Define the (normalized) Jacquet functor Resg : Rep(B) — Rep(T') by Resp V' =
0g 22 Vy. Composing with the forgetful functor Rep(G) — Rep(B), we obtain a
functor Rep(G) — Rep(T') that we abusively also denote by Resp.

If (V, ) is smooth representation of G we say that it is supercuspidal if Resg V =
0 (equivalently if Viy =0).

Note that any compact open subgroup of N ~ Q, is of the form

1)

for some n € Z. In particular NN is the union of its compact open subgroups. For
N, such a subgroup and (V, 7T) smooth representation of N we let V(V,) be the
space of v € V such that fN n)vdn = 0. Note that for N. C N/ compact open
subgroups of N we have V(N ) C V(N ). This notation is justified by the following
lemma.

x € p"Zp}

Lemma 2.18. (1) For any smooth representation of N, V(N) = Uy, V(Ne)
where the union is over all compact open subgroups N. of N.

(2) The functor Resp : Rep(IN) — Vec is exact, i.e. for any short exact sequence
00—V, — Vo = V53— 0inRep(N), the sequence 0 — Resp V; — Resp Vo —
Resg Va3 — 0 is also exact.

Proof. (1) For ny,...,ng € N choose N, containing all n;’s, then it is clear that
for any vy, ..., v, € V we have [ m(n) S (m(ng) — Dvidn = 0.



14 OLIVIER TAIBI

Conversely suppose that v' € V(N.). Let N, C N, be an open subgroup
fixing v'. We have

0 :/ 7(n)v'dn = vol(NY) Z 7(n)v" = vol(N.)v" mod V(N)

neN./N/,
and we deduce v' € V(N).

(2) The only non-formal part of this statement is the injectivity of Resp V; —
Resg V5, but this follows easily from the previous point.
O

The following theorem (Frobenius reciprocity) is easy to prove but fundamental.

Theorem 2.19. The Jacquet functor Resg : Rep(G) — Rep(T) is left adjoint to
Ind% : Rep(T) — Rep(G). More explicitly, for any smooth representation (m,V)
(resp. (o, W)) of G (resp. T') we have an identification

Homg (V, Ind% W) ~ Homg(Resp V, W)
a— (T a(v)(1))

(v (0 B(E@)0))) <1 8
that is functorial in both V and W .

Proof. The proof is completely formal. First check that for o : V — Indg W the
map v — «(v)(1) vanishes on V(N). Then check that for a : V — Ind§ W (resp.
B:ResgV — W) themap @ — a(v)(1) (resp. v — (z — B(7(x)v))) is T-equivariant
(resp. G-equivariant). Finally check that the two compositions are equal to the
identity. Details are left as an exercise. 0

Corollary 2.20. Let (V,7) be an irreducible smooth representation of G. Assume
that Resp V' # 0 (equivalently, Vy # 0). Then V' embeds in a representation induced
from a character of T.

Proof. First we show that the representation Resp V' of T is finitely generated.
Choose v € V \ {0} and let K be a compact open subgroup of G fixing v. There
exists a finite R C G such that G = BRK. By irreducibility we have

V= {Z A (bgr ik )v

el

[ finite, b; EB,riERandkEK}

and we see that {m(r)v|r € R} generates Resg V.

Now assume that Resg V' # 0. We claim that Resg V' admits an irreducible
quotient. We may assume that Resp V' is not irreducible. We have shown that
the representation Resg V' of T may be generated by a finite set F'. Applying
Zorn’s lemma to the set of subrepresentations of Resg V' which do not contain F,
we find an irreducible quotient of ResgT'. By Schur’s lemma a smooth irreducible
representation of 7' is one-dimensional (on which 7" acts by a character, of course),
and we conclude by applying the previous theorem. 0
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In particular any irreducible smooth non-supercuspidal representation is admis-
sible.
The Bruhat decomposition is useful to study the restriction of Indg i to N.

Lemma 2.21. Let y be a smooth character of T'. The morphism of C-vector spaces

Ind$ yu — C*(Q,,C) & C

e (o ) )

is injective and its image is the space of pairs (F,v) such that there exists a compact
subset C' of Q, containing 0 such that for any x € Q, \ C we have

F(z) = [0 (diag(z ", 2)) v.

Proof. Injectivity is clear. To characterize the image, note that for £ >> 0 we have

f ((1 O)) = f(1) for any y € p*Z,, and if y # 0 we have

y 1
~1 ~1
10 _ (Y 1 w 1y
y 1 0 y 0 1
and take z = y~!. Details are left to the reader. 0

2.4. The geometric lemma. Let VV be a complex line on which 7" acts by a smooth
character pu = 1 ® pio. We now compute W = Resp Indg V. Let W; be the subspace
of functions supported on BwN, i.e. functions f such that f(1) = 0. We have an
identification

Wy — C°(N,V)
f— [l
By Lemma 2.21 we have a short exact sequence of smooth representations of B

0=W, - IndSV - W, =0

with W, = 5}3/2®V. Since N acts trivially on W5 we have W5(N) = 0 and Resg Wy =
V. Now Wi(N) is the kernel of ¢ : Wy — V, f — [ f(wn)dn. This morphism is
easily seen to be surjective, and for f € W; and b € B, writing b = ut with t € T
and u € N we have

oo 1) = [ flunb)an
—/ f(wtw ™ wt ™ nut)dn
N

— SB( 2 (1) /N F(wt nt)dn

= 0p(t) 2t (t)0p(t)e(f)
= o)1 (t)p(f)



16 OLIVIER TAIBI

where p*(t) := p(wtw™') and using Equation (2.1). So Resg W; has dimension one
and T acts by u" = ps ® puq on it. So we have a short exact sequence

O—>u“’—>ResBIndgu—>u—>O.

The existence of this short exact sequence is the “geometric lemma” for G. See
[ | for the case of a general reductive group over a non-Archimedean local field.

We can be more precise and completely determine Resp Indg p (Proposition 2.22
below). Since T'is commutative, if u* # p (i.e. if pq # uo) this short exact sequence
splits: choose t € T such that p(t) # p*(t) and consider ker(t — uu(t)| Resp Ind% V).

We now consider the case " = p, and show that in this case the short exact
sequence does not split. The sequence splits if and only if there exists f € Indg \%4
such that f(1) # 0 and for any b € B, b-f—é}_f(b)u(b)f € (Ind% V)(N) = Wy(N) =
ker p. We can take b =t € T', then

0wy 7)) -owonor (g 1))

= Sp() 2 () F (wty o) — 0 (D)u(t) F ()
It is clear that b- f — 5}9/2(b)u(b)f € Wi, so for k >> 0 we have

0= [ SOV OF @t )~ 5 OuO (@) |da

P

= 5a(1)"? (wt) [ F@lad =) [ P \dx\)

where |dz| denotes the Haar measure on Q, giving Z, volume 1 (notation to be
clarified later in the course). Under our assumption that u* = u, we see that this
vanishes for any ¢ € T if and only if for £ >> 0 we have vanishing of fp_ egx (x) |dz|.
Using Lemma 2.21 this equals

[, et ) 0 b = (1= 1) 100

since i = fo.
Let us state what we have just proved.

Proposition 2.22. Let u be a smooth character of T'. If i # p* then Resp Indg [T
wd p”. If u* = u then we have a short exact sequence

0—>u—>ResBIndgu—>u—>0
which does not split.

Corollary 2.23. Let p = py ® po be a smooth character of T'. If py/us is unitary,
that is if |1 (p)/pe(p)| = 1, then Ind$ p is irreducible.

Proof. Up to twisting by an unramified character we can assume that p; and s
are unitary. Then Indg i admits a G-invariant Hermitian inner product, and in
particular it is semi-simple, so it is irreducible if and only if the vector space
Homg(Ind$ 1, Ind$ 1) has dimension one. By Theorem 2.19 this space is isomorphic
to Homyp(C (), Resp Ind$ 1) and we can conclude with the above computation of
Resp Ind% p. O
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2.5. Reducibility of parabolically induced representations in the non-unitary
case: intertwining operators. It remains to study reducibility of Ind$ y in the
case where pi1 /2 is not unitary, in particular g # p. Frobenius reciprocity tells us
that the representation Indg 1 is indecomposable, so if it is not irreducible Corollary
2.50 tells us that it has a unique irreducible representation and a unique irreducible
quotient.

Note that by Theorem 2.19 and the computation of RespInd$ u (Proposition
2.22) we have

dim¢ Homg(Ind$ g, IndG ) = 1

whether " is equal to p or not. We will construct a basis of this space, i.e. a
non-zero intertwining operator, more explicitly. Start with f € Ind$ u. To produce
a function which transform under left action of B by p*, in particular left invariant
under N, it is natural to consider the integral

(2.2) g»—>/Nf(wng)dn.

Indeed if we assume that it converges absolutely then for any ¢ € T we have
(2.3) / f(wntg)dn = / fwtw ™ wt ™ Intg)dn
N N
— [ w050 1wt ntg)in
N
—n(O5°(0) [ flun'g)in
N

where we let n’ = t~'nt and used Formula (2.1).
Lemma 2.24. If | (p)/p2(p)| < 1, the integral (2.2) converges absolutely.

1 0

Proof. Write n = (1 y) with y € Q,. We have wnw™! = <—y 1

LI o) =

show that we have
and since the integrand is obviously a smooth function it is enough to show that we

have
10
(2.4) / f (( 1) wg)‘ |dy| < +o0
Qp\Pkap Yy

for some integer k. As in Lemma 2.21 we write, for y € Q.,

i) =Co ) y)

ko
For ky large enough f is constant on w ((1) P 1Zp> wg, equal to f(w?g) = f(—g).

). We want to

P

We note for future use that we may even take the same ky for any ¢ in a given
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compact subset of G. Decomposing Q, \ p' ™7, as |_|k>k0p Z , we obtain that
(2.4) is equivalent to the convergence of

S [ o ol o) bl =150 3 o)) / i

k‘>k k‘>k() P

=1 =1/plf(=g)l D lmp)/palp

k>ko

where we have used the change of variables y = p~*2z and the fact that |p;| = || = 1
on the compact group Z;'. O

Removing absolute values in the integral in the proof of the lemma, we also see
that if |u1(p)/pu2(p)| < 1, for ko large enough (depending on f and a compact subset
of G in which g lies) we have

(2.5) /Nf(wng)dnz/plkozpf«; (1)) wg> |y

(p1/p2) (p)" .
e 0 [ ) ) )

Moreover by orthogonality of smooth characters of Z; we have

{(1 —1/p) i (i /p)]y =1

(2.6) /Z 1 (y) a(y) |dy| =

> 0 otherwise.

These formulas, which are purely algebraic (the integrals now involve only smooth
functions on compact spaces), motivate the following definition which “removes
denominators” and makes no assumption on .

Definition 2.25. Let 1 = 1 ® iy be a smooth character of T. For f € Ind$pu
define J,(f) : G — C by

10006 ==l [ 5 (5 7)) 1

+ (1= 1/p) f(=g)(pa/p2) (p)*

if (M1/N2)|Zg =1, and

Ju(f)(g)z/plkozpf(@ (1)> wg) |y

otherwise, where in both cases kg € Z is large enough so that f is constant on
1 phZ,
0 1

choice of ko).

Lemma 2.26. Let = 1 ® po be a smooth character of T. For any f € Indgu
the function J,(f) belongs to Ind$ . The linear map Jyu Ind% 1 — Ind§ pu® is
G-equivariant (in other words, it is an intertwining operator ).

> wg (Ezercise: check that the above definition does not depend on the
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Proof. As noted in the previous proof for a given f € Ind% we may choose a uniform
ko in the formula defining J,(f) for ¢ in a given compact subset of GG, and so it is
clear that J,(f) is also smooth. If | (11 /p2)(p)| < 1 then by (2.5), (2.6) and (2.3) we
have J,(f) € Ind$ u®. Tt could be possible to prove this for |(u/p2)(p)| > 1 using
an unpleasant computation, but it is more elegant to use analytic (in fact, algebraic)
continuation.

Because of the decomposition G = BK, we can identify Indg [ with the space
of functions f : Ky — C such that f(bz) = u(b) f(x) for any b € BN K, and = € K.
Note that this space can be defined purely in terms of y|z,, but that the action of G
really depends on p (and is rather complicated to write explicitly). We now replace
the coefficient field C by A := C[X;, X3'], and consider the character

Hx : T — A
t = diag(tl, tQ) — U1 (t1>Xfp(tl)M2(t2)X;p(t2)

and the space Ind% A(ux) of smooth A-valued functions which transform under
B on the left by (5]13/ “ux. Let fx € Ind% A(px) be the unique function such that
Ix|k, = flk, (a smooth interpolation of f). Define J,, (fx) : G — A as in Definition
2.25, so that J,(f) is its specialization at X; = Xy = 1, i.e. the composition with
the morphism of C-algebras A — C mapping X; and X, to 1. Consider, for g € G
and b € B, the element P := J, (fx)(bg) — px(b)dp(0)/2 ], (fx)(g) of A. The set
S of (z1,79) € C* such that |(u1/p2)(p)r1/xe] < 1 is Zariski-dense in (C*)?, for
example because for any x; € C* there are infinitely many xo € C* such that this
condition is satisfied. For any (z1,z2) € S we have P(zy,25) = 0, so P = 0 and
P(1,1) = 0. O

Proposition 2.27. (1) In the case ply, = 1, let f, € Ind§pu be the unique
function such that flx, =1. Then J,(f.) = (1 — p~ (u1/u2)(p)) fouw -

(2) In any case the intertwining operator J,, Ind% 1 — Ind$ u® is non-zero.

Proof. (1) For g € Ky the formula in Definition 2.25 holds for ky = 0 or kg = 1,
and we easily deduce the formula.

(2) If Ml/@”zg = 1 the up to twisting p; and po by the same smooth character

of Q we may assume that |z, = 1, and if moreover (u1/p2)(p) # p, we are
done by the previous point.

Otherwise take f supported on B (2 O) and constant non-zero on ( ! 0).

1 Z, 1
P p
Evaluate at ¢ = w™!, then the above formula holds with kg = 1 and the sec-
ond term vanishes while the first one does not (one can also go back to the
original integral and observe that the integrand is compactly supported).

O

Lemma 2.28. Let y be a smooth character of T. Assume that we have p # p®.
The representation Indgu is reducible (i.e. has length 2 by Corollary 2.50) if and
only if JwoJ,=0.
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Proof. Assume first that Ind$ ;1 has length two, then it is not semisimple since we
have computed Endg(Indg p) = C, and so it has a unique irreducible quotient @,,,
and a unique irreducible subrepresentation S,. By the geometric lemma and exact-
ness of the functor Resg, (Resg @, RespS,) € {(, ), (u*, 1) }. If Resp Q, =
then @), embeds in Ind$ i1 (see Corollary 2.20), but this implies Qu =~ Sy, which is a
contradiction since they have distinct Jacquet modules. So we have Resg @), ~ p*
and @, embeds in Indg 1", and because Respg Indg WY~ pdp” we see that Indg A
is not irreducible either, so it also has length 2 and S,» ~ @, and by symmetry
Qv >~ S,. We know that J, is not identically zero, and it cannot be an isomor-
phism, for example because .S, is not isomorphic to S,». So we have ker J, = S,
imJ,, = Sy and Jywo J, = 0.

Conversely, if J,»o0J,, = 0 then since both J, and J,,» are non-zero we get that at
least one of Ind$ y or Ind$, u® is not irreducible, and the previous argument shows
that in fact both are reducible. U

Lemma 2.29. Let pu be a smooth character of T'. The composition of intertwining
operators Jyw o J, is a scalar.

Proof. This follows from our computation Endg(Indg p) = C, thanks to the geo-
metric lemma. O
Corollary 2.30. Let p = py @ pe be a smooth character of T'. If /“/W’Z? =1 then
Ind$ yu is reducible if and only if (11 /p2)(p) € {p,p~'}.

Proof. The case where py/po is unitary is covered by Corollary 2.23, so we may
assume that we have pu # p*. Up to twisting puy and ps by the same character,

we may also assume that we have u|n, = 1. By Lemma 2.29 and the first point of
Proposition 2.27 we have

T © Juw = (1= p~ (1 /12) () (1 = ™" (/1) ()1 ngg

and by Lemma 2.28 the statement follows. O

In the ramified case, we are left with a computation.

Proposition 2.31. Assume that ,ul/ug|zg # 1. Let r > 1 be the smallest integer

satisfying pi1/pol14prz, = 1. Then Jyw o J, = p~"(p1/p2)(—1). In particular, Ind$
15 irreducible.

Proof. By Lemma 2.29 it is enough to compute J,,»w0J,, on some non-zero f € Indg L.

Again take f supported on B ( ! , constant on with f(1) = 1. Since

0 1 0
Z, 1 Z, 1
the second term in the formula defining .J,(f) vanishes in the ramified case, we
“simply” have

e )00 = [ g (1) wo) 1

10\ (10
= dy| |dz].
[ (b R O ED R
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for any large enough integer ko, and any large enough integer k; (which may be
taken uniformly on z € p' 77, since this set is compact, but note that k; depends
on ko). We may and do assume that k1 > 0. We compute

(e D=0 0

and since it is enough to evaluate the above integral for ¢ = 1, we want to write this
matrix (assuming that it lies in the support of f) as

b b\ (1 0\ [ct4bu b
0 ¢/ \u 1) cu c)’

We write the above integral in terms of the new variables (¢, ). To this end we may
restrict to y # 0, since the subvariety corresponding to y = 0 has measure 0. We
introduce the change of variable

¢ Qp x (Zp~{0}) — Q) x @
(c,u) — (y = —cu,z = —(1 +c Hu™)
which is clearly injective. We will see that it has everywhere invertible differential

as well, and describe S := ¢~ 1((p'™™Z, ~ {0}) x p' 7 Z,).
Let us first compute the Jacobian of the change of variables. We find
d 1 d du Nd

c2u cu? U

dy = —udc — cdu, dz =

By Theorem B.7 the above integral for g =1 is equal to

/S 111(0) " o) ]l dul)del.

The condition (¢,u) € S is equivalent to (A) v(cu) > 1 —k; and (B) v(1+ ¢ 1) >
1 — ko + v(u). For a given u € Z, \ {0} we consider the set of ¢ € Q such that
these two conditions are satisfied.

e If 0 < v(u) < ko—1 then condition (B) is equivalent to v(¢™') > v(u)+1— ko,
so that conditions (A) and (B) together are equivalent to kg — 1 — v(u) >
v(e) > 1=k —v(u). For any k € Z we have [, pi(c) ™ pa(c)|c| ™ |de| = 0.

e If v(u) > ko — 1 then condition (B) is equivalent to ¢ € —1 + p*W+1=ho7,
and so condition (A) reads v(u) > 1 — k;, which is automatically satisfied
since k1 > 0. We have

_ 0 ifo(u) <ky—1+r
[V RCTEA I S |
14pr+i-koz, p ([1,1/,&2)(—1) if v(u) >ko—1+r.

Thus
/ 11 (0) " pn(@) el fu| |l de] = / (1a/112) (— 1) du
S

v(u)>ko—1+4r
=p " (m/p2)(=1).
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We can finally state the classification of non-supercuspidal representations of G.

Theorem 2.32. Any irreducible smooth non-supercuspidal representation of G is
1somorphic to exactly one of the following:

o Ind$ it for puy/po & {| - |F'}, with {p, u} uniquely determined,
e x odet for some continuous character x : Q; — C*,

e (yodet)® St for some continuous character x : Q — C*.

Proof. Existence follows from Corollary 2.20, Corollary 2.30 and Proposition 2.31.
Uniqueness follows from consideration of the Jacquet module and the fact that J,
is an isomorphism when Ind$ y is irreducible. U

Remark 2.33. We can define the local Langlands correspondence in an ad hoc
manner for principal series. One of the main results of local class field theory is the
eistence of a natural isomorphism rec : (Wg, )™ ~ QX where Wg, C Gal(Q,/Q,)
is the Weil group of Q,. Therefore, it is natural to declare that an irreducible Indg 1
corresponds to the reducible semi-simple two-dimensional representation iy o rec
[ orec. It is not as clear what one should do for the one dimensional and Steinberg
representations. It turns out that it is natural to associate (x| - |'/?) o rec @ (x| -
\_1/2) orec to yodet. Later we will prove that the Steinberg representation is square-
integrable, although it is clearly not supercuspidal. It turns out that it is natural
to introduce the Weil-Deligne group WDgq, := Wg, x SLy(C). Of course the above
representations of Wgq, can simply be seen as representations of WDgq, which are
trivial on the second factor. The Langlands parameter of (x odet) ® St is y orec ® vy
where vy is (by definition) the irreducible algebraic 2-dimensional representation of
SLy(C).

More generally, to formulate the local Langlands correspondance for GL,(F),
F' a non-Archimedean local fields, one should consider n-dimensional semi-simple
continuous representations p of WDp := Wpg X SLy(C) which are algebraic (i.e.
polynomial or equivalently, holomorphic) on the factor SLo(C). To such a p one
can associate a pair (p', N) where p' : Wgp — GL,,(C) is the semi-simple continuous
representation which is the composition of p with the embedding

Wr — WDpr

w > (w, diag(|w]'/?, [w]~"/?))

and N € M, (C) is defined as dp (8 [1)) This pair satisfies p'(w)Np'(w)™! = |w|N

for any w € Wg. Conversely using the Jacobson-Morozov theorem we see that any
such pair (p', N) arises from p as above, so the two formulations are equivalent.
Such a pair (p', N) is called a Weil-Deligne representation, and is more natural in
an arithmetic setting (see | , 4.1 and 4.2]).

2.6. Supercuspidal representations.

Definition 2.34. Let I be a compact open subgroup of G. We say that I has an
Iwahori factorization z'f,_denotmg Ny =NNI, T, =TnNI and Ny = NN 1, the
product map Ny x Tt x Ny — I s surjective.
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Of course this map is always injective, and it is clear that it is always a homeo-
morphism onto an open subset of I.

Remark 2.35. (1) LetT~ be the set oft € T such that |t1/ta] < 1. In[Cas, §1.4]
there is an extra condition in the definition of Iwahori factorization, namely
that for any t € T~ we have tN;jt~' C N; and t—'N;t C Ny. It is easy to
check that this condition is automatically satisfied in the particular case of
GL3(Q,), due to the particularly simple classification of closed subgroups of

Qp.

(2) Taking inverses, we also have Ny x Ty x Ny ~ 1.

X

Example 2.36. (1) The Iwahori subgroup (fi %ﬁ) has an ITwahori factor-
p D

ization (and is the reason for this terminology).

1+9p'2, p'Z,

(2) For any integer i > 1 the subgroup K; = ( Pz, 1+pZ,

) also satisfies

this condition.

We will use a more compact notation for in the second case: N; = K; N N,

T.=TNK; and N; = NN K;. For i < 0 we can also define N; = (p’lz (1)) and
p

1 p'Z,
0 1

Note however that K does not admit an Iwahori factorization, in fact one can
check that I is maximal among compact open subgroups admitting an Iwahori fac-
torization. For our purpose in this section we will only use the fact that there are
arbitrarily small compact open subgroups of G having an Iwahori factorization. We
will come back to the Iwahori case later.

N; =

Lemma 2.37. Let I be a compact open subgroup of G admitting an Twahori factor-
ization. For any f € C*°(I), we have the integration formula.

/ B f(ntﬁ)dndtdﬁ—/f(g)dg.
NixTrxNy I

Proof. The proof is similar to the proof of the integration formula for the Iwasawa
decomposition (Lemma 2.13), only simpler because the decomposition is a bijection.
The pullback to N; x T; x N; of the Haar measure on [ (restriction of the Haar
measure on G) is clearly left N;-invariant and right N j-invariant. It is also left and
right Tr-invariant because any ¢ € T; normalizes N; and N; and preserves their

Haar measures because 77 is compact (see Equation (2.1)). O

For g € G denote by ¢ its image in G/Z.

Theorem 2.38. Let (m,V) be a smooth representation of G. The following are
equivalent:

(1) (m, V) is supercuspidal.
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(2) For anyv € V and o € V, there is a compact subset C of G/Z such that
(m(g)v,vy =0 for all g € G such that g € G/Z \ C.

(3) For any v € V and any compact open subgroup K of G, there is a compact
subset C' of G/Z such that w(ex)m(g)v = 0 for all g € G such that § €
G/Z\C.

Proof. First we prove that (2) implies (3). Let G’ = {g € G|detg € Z)}, an open
subgroup of G which contains all compact subgroups of G. Note that ZG’ has finite
index (two) in G, and that G’ — G/Z is proper. Let v € V and K C G a compact
open subgroup of G. Let W be the sub-vector space of VE generated by 7(ex)m(g)v
for g € G'. Let S be a subset of K\G’ such that (7(ex)m(g)v)4es is a basis of W.
Recall that V' is a semi-simple representation of K, in particular we have a canonical
decomposition V' = VE @ V' where V' is stable under K and (V)% = 0, and so
VE ~ Homc(VE,C) surjects (by restriction) onto Home(W,C). We deduce that
there exists ¥ € VX such that for any g € S we have (m(ex)m(g)v,7) = 1. Observe
that we have (m(ex)m(g)v,v) = (7(g)v,v) because v is fixed by K (decompose 7(g)v
in VX @ V’). By the assumption (2) applied to the pair (v,?), the set S is finite,
i.e. dime¢ W < +o0. There is a finite family (v;)1<;<x of elements of VE such that
we have

{weW|(w,) == (w,v) =0} = {0}.

Now applying assumption (2) to all pairs (v,v;) shows that the function G' — W,
g — 7(ex)m(g)v has compact support. Let ¢t = diag(p, 1) € G. Since no assumption
was made on v in the above argument, it also applies to 7(¢)v and the map G' — V/,
g — 7(ex)m(gt)v also has compact support. Since Z is central in G (Z being the
center ...) and G = ZG'U ZG't we get that G — V', g — 7(ex)m(g)v has compact
support modulo Z, i.e. there exists C' as in (3).

Now let us show that (3) implies (1). Let v € V. Pick i > 1 such that v € Vi,
We still denote t = diag(p, 1), so that t"*N;t C Ny, in fact t *N;jt = Ny ;. By
assumption and the Cartan decomposition, for m >> 0 we have 7(ek,)m(t™)v = 0.
By the integration formula (Lemma 2.37) and passing ¢™ to the left, for any m > 0
we have

m(ex)m(t™)v = w(" )7 (er-my,pm )7 (er )7 (€-m m V-

For m >> 0, because v is fixed by N; D "™ N;t™ and by T; we obtain m(e;-m y,m )v =
0,ie. ve V(Ni_pm).

Finally we show that (1) implies (2). Using the same formula as above, we see
that for any 7 > 1 and v € V& there exists my > 0 such that for any m > mg we
have 7(eg,)m(t™)v = 0. This implies the following:

(27)  Vi>i,Yoe VE 3mg > 0,Ym > mg,Vz € Z,V0 € VEi (r(2t™)v,7) = 0.

Now let v € V and ¥ € V. There exists ¢ > 1 such that v and ¥ are both fixed by
K;. Let R; C Ky be a set of representatives for the finite quotient Ky/K;. By the
Cartan decomposition we have

G = I—lmZOKOthOZ =Um>0 TﬁlKithir/Z'
reR;
T’ERi
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Now we apply (2.7) to the pairs (w(r")v, 7w(r)v) for r,7" € R;. Note that there are
only finitely many such pairs and that all these vectors are also fixed by K; because
it is distinguished in Kj. Also note that we have (and this is the whole point of
rewriting the Cartan decomposition as above)

(™) (r Yo, 7(r)0) = (z(r '™ 2)v, D).

We deduce that there exists C' of the form U,,<p,, Kot™KoZ/Z such that we have
(r(g)v,v) =0 for all g € G satistying g € G/Z \ C. O

Corollary 2.39. Any irreducible supercuspidal representation is admissible.

Proof. Pick any v € V ~ {0} and a compact open sugroup K of G which fixes
v. The sub-vector space W C VE generated by 7(ex)m(g)v for g € G has finite
dimension by (3) above (here Schur’s lemma is used). Since V' is irreducible we have
W =m(eg)V = VE. O

Remark 2.40. Together with Lemma 2.12 and Corollary 2.20 (and the fact that a
subrepresentation of an admissible representation is admissible), this shows that any
irreducible smooth representation of G is admissible.

Exercise 2.41. Let (V,m) be a smooth representation of G.
(1) Show that if V is not irreducible then V is not irreducible.

(2) Show that if V is irreducible then V is irreducible.

Definition 2.42. Let (V,m) be a smooth representation of G, and assume that it
has a (unique and smooth) central character w, : Z — C*. We say that 7 is square-
integrable (or part of the discrete series) if w, is unitary and for any v € V and

VeV, [g71{m(g)v.D)[Pdg < +oo.
We say that m is essentially square-integrable if there exists s € R~o (unique)
such that |det |* ® m is square-integrable.

Any irreducible supercuspidal representation is essentially square-integrable.

Lemma 2.43. If (V,7) is an irreducible smooth representation of G with unitary
central character w, (Corollary 2.7) then it is square-integrable if and only if there

exist non-zero vg € V and vy € V' such that fG/Z |((g)vo, o) |*dg < +o0.

Proof. The set of v € V such that g — |[(m(g)v,79)|? is integrable is stable under G
(by right invariance of the Haar measure) and is a sub-vector space of V' (using the
Cauchy-Schwarz inequality). Since it contains vy # 0, it equals V. Repeating this
argument for V allows to conclude. O

Exercise 2.44. Let (V, ) be a smooth representation of G. Let V := C®¢c V where
C on the left is considered as a C-algebra via the conjugation map. This is naturally
a smooth representation of V' with the action defined by T(g)(A @ v) = A ® (7(g)v).
Let Hermig(V') be the C-vector space of G-invariant sesquilinear pairings on V. Our
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convention s that these are linear in the first variable and conjugate-linear in the
second variable. Show that the linear map

Homg(V, V) —s Hermig(V)
@ ((v1,v2) = (v, (1 ® v2)))

1S an isomorphism.

Lemma 2.45. Any irreducible square-integrable representation is unitarizable, i.e.
admits a G-invariant hermitian inner product. Moreover the G-invariant hermitian
inner product is unique up to Ryg.

Proof. Let L*(G,w,) be the space of measurable functions G — C such that f(zg) =
wr(2)f(g) for all z € Z and g € G and fG/Z |f(9)]?dg < 400, quotiented (as usual)
by the subspace of functions which vanish outside a set of measure 0. This is a
(non-smooth!) representation of G, for the action defined by (¢gf)(z) = f(xg), and
it has a G-invariant Hermitian inner product defined by

(f1, f2) = f1(g) f2(9)dg.

G/z

Pick 7 € V ~ {0}. Then v — (g — (r(g)v,?)) gives a G-equivariant lincar
map V — L*(G,w;,). Because V is irreducible it is injective. Restricting the above
G-invariant Hermitian inner product on L?(G, w,) to V gives the sought-after inner
product. Denote by H this G-invariant Hermitian inner product on V.

It is easy to check that (V,7) (see previous exercise) is also irreducible. By
Exercise 2.41 the contragredient representation Vis irreducible, so by Schur’s lemma
we have dime Homg(V, V) < 1. Using the previous exercise this implies that any
G-invariant sesquilinear pairing on V' is equal to AH for some A € C, which is unique

because H does not vanish identically. Finally the pairing AH is an inner product
if and only if A € Ry. O

Remark 2.46. The same argument shows that an irreducible supercuspidal repre-
sentation of G can be realized in C°(G,w,), the space of smooth functions f — C
such that f(zg) = wx(2)f(g) and such that the support of f is compact modulo Z.
In fact it is easy to check that the image is included in the space Coy (G, wy) of

cuspidal functions, that is the subspace of functions f satisfying fN f(zny)dn = 0
forallz,y € G.

Proposition 2.47. Let (V,7) be an irreducible essentially square-integrable repre-
sentation of G. There exists a unique d, € Rxo, called the formal degree of 7, such
that for any u,v € V and u,v € V we have

/G RO L O R T

Observe that the integral is well-defined and converges absolutely.
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Proof. Fix v and w. Then the integral, seen as a function of (u,v), defines a G-
invariant pairing on V' x V. By Schur’s lemma it is a complex number times the
canonical pairing. The same argument with v and v fixed shows that the integral
equals ¢, (u,v) (v, u) for some ¢, € C.

It remains to show that ¢, € Ryy. Up to twisting by a character we can assume
that 7 is square-integrable. Pick a G-invariant Hermitian inner product (-,-) on V
(see the previous lemma), which is equivalent to an isomorphism ¢ : V ~ V such
that (v,v) := (v,¢(1 ® v)) € Ry for all non-zero v € V. Taking v = ¢(1 ® u) and
u = (1 ®wv) for arbitrary u,v € V ~\ {0}, the integrand equals

(n(g)u, v)(m(g" ), u) = [(n(g)u, v)|"

which is non-negative, smooth and not identically vanishing, and the right-hand side
equals ¢, (u, u)(v,v), therefore ¢, € Ryy. d

Remark 2.48. (1) The constant d, depends on the choice of Haar measure for
G/Z. The Haar measure d,dg is canonically associated to .

(2) This Proposition (and its proof) are inspired by the same result for irreducible
unitary representations of finite (or more generally compact) groups, which
are all square-integrable and finite-dimensional. In this simpler case, taking
the Haar measure to be a probability measure (and removing the quotient
by Z) one can check that d, is the dimension of w. Proposition 2.47 for
compact groups has a better known coordinate-free analogue (orthonormality
of characters of irreducible representations), but it is not as straightforward to
generalize this to the infinite-dimensional case. We will prove an analogous
theorem for G later.

Corollary 2.49. If (V,7) is an irreducible supercuspidal representation of G and
(U,0) is a smooth representation of G such that o(zg) = wx(z)o(g) for all z € Z
and g € G then any non-zero morphism P : U — V admits a splitting.

Proof. Pick vy € V and vy € V such that (vo,09) = dy. Pick ug € U mapping to
vg. Define s : V.— U by s(v) = fG/Z<7T(g*1)U,50>J(g)u0dg. The linear map s is
G-equivariant: for h € G, using the change of variable z = h™!g,

s(r(R)v) = / 79 Tolg)u s

N /G/Z<7T<$1)’Uv Uo)o (hx)ug dg = o(h)s(v).

To compute the image of s(v) in V, take any test vector v € V. The previous
proposition gives us (P(s(v)),v) = (v,v) and so P(s(v)) = v. O

Corollary 2.50. For any smooth character  of T, the induced representation
Indg i has finite length < 2, and no constituent is supercuspidal.

Proof. First we show that any irreducible subquotient of Indg {4 is not supercuspidal.
Let W be a subrepresentation of Ind$ y and W' an irreducible quotient of W. If W’
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is supercuspidal then by Corollary 2.49 we have a splitting W’ — W, so we can see
W' as an irreducible supercuspidal subrepresentation of Indg p. But this contradicts
Theorem 2.19!

Now consider a finite chain 0 € Wy € --- € W, = Ind$ p of representations
of G. By Zorn’s lemma any quotient W;/W,_; admits an irreducible subquotient,
which is also a subquotient of V' and so is not supercuspidal. By exactness of
the Jacquet functor this implies that each Resg(W;/W;_1) # 0. Since we have
computed that the representation Resp Indg w of T has length 2, we deduce k < 2,
in particular Indg i has finite length. We may then assume that each constituent
W;/W,_1 is irreducible. We also get that each W;/W;_; is not supercuspidal, so
that Resg(W;/W;_1) is either one-dimensional (with action of T" by p or p*) or
two-dimensional equal to Resp Indg . The latter case occurs if and only if Indg [
is irreducible. 0

2.7. The Iwahori-Hecke algebra and the Steinberg representation. Recall
that the Iwahori subgroup I of K is the preimage under Ky — GLy(F,) of the upper-
triangular Borel subgroup. We now study the Iwahori-Hecke algebra H (G, I), which
will be useful to study the Steinberg representation because we will see that St £ 0.

Denote Ty = T'N Ky. In particular Ty C I. Let W = Ng(T') /T, be the extended
affine Weyl group, it surjects onto W = Ng(T)/T = {1,w}, with kernel T'/T;, ~ Z2.
The natural map Ng(1p)/To — W is an isomorphism and gives a splitting of W —
W, realizing W as T/Ty x W.

Proposition 2.51 (Affine Bruhat decomposition). G = | |, 5 T21.

Proof. First note that G/I parametrizes pairs (L, D) where L is a lattice in QZQ) and
D C L/pL is an Fy-line: the coset gl corresponds to (Zyey @ Zyea, (e1)) where ey, es
are the columns of g.

So we have to show that for any (L, D;) and (Lo, Ds) as above, there exists
a basis (e, f) of Ly and a,b € Z such that D; = (e), (p®e,p’f) is a basis of Ly
and Dy = (p%e;) or (pey), and that the pair (a,b) € Z? is unique (this equivalent
statement of unuiqueness requires a bit of head scratching ...). Thanks to the
Cartan decomposition we know that there is a basis (e, f) of L; and (unique) integers
a > b such that (p%e, p°f) is a basis of Lo. It is clear that we may substitute e + p.f
for e, for any p € Z,. Since any line in L,/pL; is generated by f or by e + uf for
some p € F,, we obtain that up to swapping e and f (which does not preserve the
condition a > bl) we may assume that Dy = (ey).

e If b < a, we may substitute f + p®~bue for f where p € Z, is arbitrary, since
P°(f +p*bue) = p’f + p*ue. By the same argument as above, if Dy # (pe)
we can reduce to Dy = (p°f).

e If b > a, we may substitute e + p*~*uf for e where u € Z, is arbitrary, and
as in the previous case this allows us to achieve Dy = (p%e) if Dy # (p°f).

Uniqueness can be seen on this argument and is left as an exercise. 0

We will use the following more precise description of the double cosets contained
in Ko.
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Proposition 2.52. We have a decomposition

Ko=IUTwl=TU| | ((1) :‘{)wl.

IS
Note that the last term makes sense!

Proof. Observe that Ky C I C K, with K; distinguished in K, and Ky/K; =
GLy(F,). The assertion follows immediately from the Bruhat decomposition in
GLy(F,). O

Note that we have Izl = | |, kxl where k ranges over representatives of 1/1 N
xlz™! (there is a similar description into left I-cosets). In particular vol(Izl) =
|[I/INxlz=t vol(I). If x = diag(p?, p®) then we have

_ 7x Pz _ 7y R/
oIl = (prf“Zp 7 7’) and I Nala™" = <p1+max(§)—a70)z 75 ')
p

p D
We easily deduce |I/1 Nzlz~!| = plo~tl.
Before we consider elements in W ~. T /Ty, define w = (2 (1)) This element is

interesting because we have wlw ! = I. For x = diag(p®, p’)w € W~ T /T, we have
z € diag(p?, p* H)wT, and we conclude |I/I N xlz~!| = pla=t+1il,

Definition 2.53. Let | : I\G/I — Z>o be the length function on I\G/I ~ W,
defined by |I/I Nxlz~t| = p'@),

Denote by [[zI] € H(G, I) the element supported on Iz mapping z to vol(I)~!.
Note that the action of [/zI] on any smooth representation of G does not depend
on the choice of a Haar measure on GG, which appears both in the definition of the
action and in the definition of [[zI]. For example the element [[xI] acts on the
trivial (one-dimensional) representation of G by

vol(IxI)/vol(I) = |I/I Nalz~'| = p'@.

Lemma 2.54. For z,y € G we have

[[xI][Iyl] = Z c(x,y, z)[I=1]
zeI\G/I

where c(x,y, z) € Zxo is non-zero for only finitely many z, and c(x,y,xy) > 0.

Proof. For x,y,g9 € G we have

(Lr * 11,)(g) = / 1y (™" g)dh

xl

= /1 Ly)-11(h)dh
= vol(1)1,1,(9)
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and so 1,7 * 17, = vol(/)1,7,. Using this formula we compute

(2.8) [IaI)[TyI) =vol(I)* ) > Lk L

kel/INzIz—1 kK'elny—1Iy\I

:VOI(])_l Z Z 1kx1yk’

kel/INnzlz—1 kK'elny—1Iy\I

and so [Iz]][Iyl] takes values in vol(I)~'Zsq. Because [[zI][IyI] is also [-invariant
on both sides, it is a finite sum of finitely many [/z]], including z = zy at least once
(consider k = k' = 1 in the sum above). O

The previous lemma is completely general and uses nothing particular about I.
It implies that if vol(/zT)vol(Iyl) = vol(I)vol(lzyl), i.e. if l(zy) = I(x) + I(y),
then we have [IxI|[Iyl] = [Ixyl] (consider the action on the trivial representation).
We will use this observation to obtain the following description of the structure of

H(G,I).

Proposition 2.55. Consider the elements S = [[wl]| and T = [Iwl] of H(G,I).
(1) T is invertible in H(G, I).
(2) We have T?S = ST? and (S —p)(S+1) =0.

(3) S, T and T~ generate the algebra H(G, I), in fact for any v € G the element
[Iz1] of H(G,I) can be written as a product of elements in {S,T,T~'}.

Proof. Since w normalizes I we have T? = [[w*I] and w* = diag(p,p) is central
in G. This shows both that T2 is central in H(G,I) and that T is invertible in
H(G, I), with T~ = T[Idiag(p~t,p~')I]. To compute S? we first observe that 52
like S, is supported on the subgroup Ky = I Ll Iwl, and so we have S? = \e; + uS
for some A\, € Z>o. To avoid computations we deduce from the action on the
trivial representation the equality p* = X + pu. To pin down A and g we resort to a
computation similar to (2.8). For x,y,g € G we have

(1 1)) = [ 10l g)dn

Ix

= / Lyry-1(h)dh
Iz
= vol(lzy Ngl)

Note that this function of g is clearly /-invariant on both sides, vanishes outside of
Izyl, and so we have

1, * 1,y = vol(I Ny o™ Txy) 1.

For z,y € G we have

[TaI)[IyI] = vol(I)~> )~ > Lpak o Ly

kelnz—YIz\I k'el/INyly—1
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Taking x = y = w and evaluating at 1 we obtain

A=k, k) e (I/INwlw) x (I Nwlw\I) | wkk'w € I}|.

1 u
(O 1), ue{0,...,p—1}

(or any other set of representatives of Z/pZ) is a set of representatives for both
I/INwlw and I Nwlw\I. This allows us to conclude:

The set of elements

A=|{(w,u) €F; |u+u =0} =p

and so p=p— 1.

We prove that for any # € W the element [[z]] can be written as a product of
T*V’s and S’s by induction on [(x). It is clear from our computations just before
Definition 2.53 that the elements of length 0 are exactly Z LU Zw, and in this case
[IxI] is a power of T. If z € W is such that [(xz) > 0, we distinguish two cases.

o If z = diag(p®, p®) then a # b. If a < b then l(zw) =b—a—1=I(z) — 1,
so that I(z) = l(zw™!) + l[(w). This implies [[z]] = [[zwl]S. If a > b then
l(wx) =a—b—1=I(zx) — 1 and similarly [[zI] = S[Iwx]I].

o Ifz e W T /Ty we may multiply z by w to reduce to the previous case.
O

Remark 2.56. This proposition holds with coefficients Z instead of C, i.e. H(G, 1) is
naturally the extension of scalars from Z to C of a Z-algebra, namely @, g,y ZIx1],
i which the proposition holds. Although we will not need it, one can show that the
proposition gives a full presentation of H(G,I). For generalizations see the original
paper | |, and a more modern exposition | | using a different approach and
including many other results, such as Bernstein’s presentation.

Now consider the H (G, I)-modules (Ind% u)!. We see functions in Ind$ u as
functions on Kj.

From the decomposition Ky = I U Nowl (i.e. the Bruhat decomposition for
GLy(F,)) and the fact that Ty C I is normalized by w, it follows that (Ind$ u)! = 0
if ply, # 1. If ply, = 1 we get an isomorphism (Ind$ p)! — C2, f — (f(1), f(w)).
Let us compute the matrices of S and 7" in the corresponding basis B = (b1, b,,) of
(Indf 1)

We have

anw=1((3 0)=7((5 3)w) = mosw

@new =1 ((F 7)) =mew e

: : 0 pa(p)p/ 2)
so the matrix of T is .
(ul (p)p~ '/ 0

and
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We have
([TwI]f ;F:f« )w)zpf(w)
and
(Tw]f) Zf(( )) Zf(( _1))=f(1)+(p—1)f(w)

y€elF, y€elF,

since (_yl _01> € Ky and it belongs to [ if and only if y € pZ,. So the matrix of

. (0 p
S is <1 p—1>'

Let @ = bo=p , chosen because we have Q~'Mat (S, B)Q = diag(p, —1). We
1 1

compute

. _ P2 m(p) + pa(p)  pa(p) — pra(p)
(29) Q" Mat(T, B)Q = -= (pwp) — pia(p) —pua(p) — uz(p)> '

We recover the fact that Ind% y is reducible if (1 /p12)(p) € {p*'}. More importantly,
specializing to ui(p) = p~'/? and ps(p) = p'/? we see that (2.9) specializes to

(p_11_ 1 _01> and we obtain that St’ is a line on which S and T both act by —1.

Proposition 2.57. The Steinberg representation St is square-integrable.

Proof. By Lemma 2.43 it is enough to check that one non-zero matrix coefficient is

square-integrable. Let v € St’ and v € St' (both lines) be such that (v,0) = 1.
Then

/G/Z [(St(g)v, 9)|*dg = Z [(St(z)v, D) |*vol(Ix[Z/Z).

xEW/Z

Note that we have volg,z(Ix1Z/Z) = volz(ZNI)~" volg(IxI) (exercise!). Moreover
for any k, k" € I we have (St(kzk')v,v) = (St(x)v,v) and so we have

(St([Ix1]))v, D) = vol(IxI)vol(I)~ (St(x)v,).
This allows us to express the above integral as

volz(Z N I)~ vol(I) Y [(St([IxI])v, T)*p "),
zeW /Z

Using Proposition 2.55 we see that we have (St([IzI])v,7) € {1} for any = € W.
Using the fact that there are exactly two elements of W /Z of a given length in Z>,
the above integral equals

2voly(Z N I) " vol(I Zp < 00.
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Remark 2.58. A similar argument shows that the trivial irreducible representation
of G is not square-integrable.

Proposition 2.59. If (V, ) is a supercuspidal representation of G then VI = 0.

Proof. We go back to the computation to prove (3) implies (1) in Theorem 2.38,
this time with the Iwahori subgroup I instead of a very small K;. Let v € V!, then
for large enough a € Z we have m(ey)m(diag(p®, 1))v = 0. The vector v is invariant
under I so we have

_ vol(Idiag(p®, 1)I)
vol(I)

([ Idiag(p", 1]} r(er)m(diag(p, 1))o = 0.

In H(G, I) we have [Idiag(p®, 1)I] = (ST)* as soon as a > 0, so we obtain that the
action of ST on V' is nilpotent. But ST is invertible in H(G, I): we already know
that T is invertible, and S(S — p+ 1) = pe;. O

Remark 2.60. Pushing this argument further, one can prove Casselman’s criterion
for square-integrability (see [Cas, Theorem 4.4.6] or [ , Théoreme VII.1.2]): one
can read whether a representation of G is square-integrable on its Jacquet module.
This generalizes to arbitrary connected reductive groups as well (but classifying rep-
resentations as in Theorem 2.32 becomes a very complicated combinatorial problem
for general groups).

2.8. The unramified Hecke algebra and the Satake isomorphism.

Lemma 2.61. Fix Haar measures on G and B. The map
%(G, Ko) — H(B, BN Ko)

vol(Kyp)
I = B Ky’ ?

is a morphism of Hecke algebras.

Proof. First note (exercise) that H(B) is indeed an associate algebra for the convo-
lution product defined using a left Haar measure, even though B is not unimodular.
We use the BK) integration formula 2.13. For fi, fo € H(G, Ky) and b € B,

(fi* f2)(b /fl ) f2(g
—/ fi(ak) fo(k~ a™'b) dk da
B J K,

:VOIKO(KO)/Bfl(a)fg(alb) da

where volg, is the volume with respect to the chosen Haar measure on Kj. Recall
that the Haar measures on GG, Ky and B are chosen to be compatible for the inte-
gration formula, and this compatibility is equivalent to volg(B N Kj) volk, (Ky) =
volg(Ky) (apply the integration formula to the characteristic function of Kjy). Multi-
plying both sides of the above equation by volg, (Ky) shows that the map H(G, Ky) —
H(B, BN Kj) preserves . O
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Lemma 2.62. Choose Haar measures on'l' and N, determining a left Haar measure
on B = TN (the product measure). Then the map ¢ : H(B) — H(T), f —
(t — fN f(tn) dn) is a morphism of algebras.

Proof. We compute ¢(f1 * fo)(t) for t € T

//f1 ) fo(b~tn) dbdn—///ﬁ xu) fo(u 'z~ n) du dx dn
///f1 wu) fole~ (1t eu e~ )n) dn du de
= [ [ ntewotra o duds

/¢ F)@)6(f) (2 t) da.
[l

In particular we obtain by composition a morphism of unital algebras H(G, Ky) —
H(T,Ty) ~ C[T/Ty] (a group algebra because T is commutative). For reasons ex-

plained below, it is useful to twist this morphism by (5]13/ 2,

Definition 2.63. Normalize the Haar measures on G, T and N so that Kq, Ty and
Ny all have measure 1. The Satake transform Sat : ’H(G Ky) — H(T, TO) [T/TO]

is the morphism of unital algebras defined by Sat(f)(t) = 51/2 fN

Theorem 2.64 (Satake). The Satake transform takes values in (C[T/To] and in-
duces an isomorphism H(G, Ky) ~ C[T/To]"

Proof. The fact that the image of Sat is contained in C[T/Ty]" will be proved later
(Lemma 3.4), since it is natural to use orbital integrals for this (of course there will
be no circular argument ...). Note that this invariance property is the reason for
the normalisation by 6119/ 2,

Granting this, we are left to show that the image of Sat contains C[T'/Tp)"
and that Sat is injective. By the Cartan decomposition the characteristic functions
fap of the sets Kodiag(p®, p’) Ko with a > b form a basis of H(G, Ko). Similarly
we have a basis e, = [diag(p®, p°)] + [diag(p®, p°)] of C[T/Ty). Write Sat(fas) =
D owsy AMa,b,a’ b )eq . It is clear that A(a, b, a,b) € Ry, and that A(a,b,a’,b') =0
if a' + 0 # a+ b (consider determinants).

For ¢ = diag(z,y) and n € N the product tn belongs to a unique double coset
Kodiag(p®, p*) Ko with a > b. By Lemma 2.65 below we have a — b > |v(z) — v(y)|.
This implies that for any d € Z and ¢ € Z>, we have

(2.10) sat( @D Cfus) € P Cean

a>b a>b
a+b=d a-+b=d
a—b<c a—b<c

With this inclusion and the observation that A(a,b,a,b) # 0, one easily shows by
induction on ¢ > 0 that the inclusion (2.10) is an equality, showing that Sat is
surjective. Comparing dimensions (or using a similar induction) we obtain that Sat
is also injective. 0
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Lemma 2.65. Let t = diag(x,y) € T and ¢ > 0, then for n = ((1) qf
tn € Kodiag(p®, p°) Ky for some a,b satisfying b+ ¢ > a > b if and only if

) we have

—c—v(z) +v(y)
. |

lv(x) —ov(y)| <c and v(u)>
Proof. Let (a,b) be the unique pair of integers satisfying
a>b and tn € Kydiag(p®, p*)Ko.
We have to prove the equality
(2.11) a—b=max (|v(x) —v(y)|, —2v(u) — v(z) +v(y)) .
First we assume that we have v(z) > v(y).

o If v(u) > v(y) — v(zx) then

(1 uay!
tn-(o 1 )t

belongs to Kyt and we have
—20(u) —v(z) +v(y) < v(z) —v(y)
so the equality (2.11) holds with a — b = v(z) — v(y).

o If v(u) <wv(y) —v(x) we write

ulzly —1 ; 1 0\ [(uly O
1 0)"\ =t 1)"\ 0 )

We have v(—u~!) > v(u™'x"y) > 0 so diag(u~'y,uz) belongs to KotnKj.
Furthermore we have

v(uty) —v(uz) = —20(u) +v(y) —v(z) > v(x) —v(y) >0

so we have found the double coset appearing in the Cartan decomposition in
which tn lies and we have

a—b=—-2v(u)+v(y) —v(x).
We have already observed above the inequality
—2v(u) +v(y) —v(z) > v(z) — v(y)

so the equality (2.11) holds.
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We are left to prove (2.11) in the case where v(z) < v(y). To avoid repeating
computations we observe that the Cartan decomposition is stable under transposi-
tion and we write

0 1 x 0) (0 1\ [y zu\ [2' 2
1 0/ \zu y/)\1 0) \O =) \0O ¢
where 2/ =y, y = x and v/ = y~'zu. Thanks to the equalities

[v(z) —v(y)| = |v(2') —v(y')|
and — 20(u) — v(z) +v(y) = —2v(u') — v(z') + v(¥)

we are reduced to the previous case. O

Remark 2.66. (1) In particular, H(G, Ky) is commutative. This can also be
proved by observing that the anti-automorphism g — ‘g of G preserves the
Cartan decomposition.

(2) One can check that the Satake isomorphism can be defined over Z[p*/?], and
is still an isomorphism over this ring.

Definition 2.67. We say that an irreducible smooth representation (V, ) is unram-
ified if Vo £ 0.

The Satake isomorphism gives a simple description of all unramified represen-
tations of G: by Lemma 2.10 they correspond bijectively to C-algebra morphisms
H(G, Ky) — C (any simple finite-dimensional H (G, Ky)-module is one-dimensional
since H(G, Ky) is commutative). More precisely, writing C[T'/Ty] = C[X{, X577
where X; (resp. X») corresponds to diag(p, 1) (resp. diag(1.p)), we have C[T /T, =
C[X; + X, (X1 X2)*!]. Therefore characters of H(G, K) are parametrized by pairs
(x1,22) € (C*)? up to permutation (xq,z3) — (z2,21).

Proposition 2.68. Any unramified representation of G is isomorphic to

e x odet for some unramified character Q; — C*, or

o Ind§ iu for some unramified character j = iy @ g such that py (p)/pa(p) &
1},

Proof. Since I C Ky, Proposition 2.59 implies that for any supercuspidal (V, ) we
have V50 = 0. By the classification theorem 2.32, we are left to consider (Ind$ u)%o.
Using the Iwasawa decomposition, we see that this space vanishes if p is ramified,
and is one-dimensional if p is unramified. ([l

The explicit comparison of the two classifications of unramified representations
(i.e. the relation x; = p;(p) up to the action of the Weyl group) is left as an exercise.

Remark 2.69. (1) The definition of the Satake morphism and proof that it is
an isomorphism are easier than the complete classification. This becomes
even more true for groups more complicated than GLs.

(2) The phenomenon that Ind$ yu is reducible in exceptional cases is not visible
on the Satake isomorphism.
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3. HARMONIC ANALYSIS

We start doing harmonic analysis in the following sense: relating conjugacy
classes in G (more precisely, orbital integrals of functions on G, defined below) to
traces trw(f) for m an admissible representation of G and f € H(G) (which makes
sense because the image of 7(f) has finite dimension).

3.1. Conjugacy classes in (. The classification of conjugacy classes in G is a
special case of the classification of GL,,(k)-orbits under conjugation on M, (k) where
k is a commutative field (deduced from the structure theorem for finitely generated
k[X]-modules, in the special case of torsion modules). There are four types of
conjugacy classes:

e central elements, i.e. Z,

. . . 11
e non-semisimple elements, i.e. elements conjugated to z (0 1) for some

(uniquely determined) z € Z,

e hyperbolic (or split) semisimple regular elements, conjugated to diag(z,y) €
T for x # y, uniquely determined up to the action of Ng(T')/T = W, that

is up to (z,y) — (y,z),

e clliptic semisimple regular elements, determined by an irreducible charac-
teristic polynomial X? + aX + b € Q,[X] with b # 0 (explicitly, take the
companion matrix). These can be grouped according to the quadratic ex-
tension £ of QQ, splitting this polynomial as follows. Choose an isomorphism
of Q,-vector spaces 1) : Q]% ~ I, then any x € E* defines m, € Autg, (E)
(multiplication by z), and )~! o m, o1 € G is elliptic semisimple regular
if and only if # € F ~\ Q,. The subgroup 7" = {¢) "t om, o¢p|z € E}
of G is called an anisotropic (or elliptic) maximal torus of G. Note that
1'/Z ~ E*/Q) is compact. Denoting Gal(E/Q,) = {1,0}, it is easy to
check that Ng(T")/T" = Z/2Z, the non-trivial element being represented by
vlogow.

We denote by G, the set of semisimple regular elements of G. For 7" a maximal
torus of G (elliptic or conjugated to our “standard” split torus 7") we will denote by
TG —reg = 1"\ Z the subset of regular elements.

Central or non-semisimple elements of G' (i.e. G \ Gy) form a closed subset of
G (in fact, Zariski-closed because they are the solutions of the equation tr? = 4 det)
of measure 0. Indeed, Z is a sub-p-adic manifold of G of dimension 1 < 4 = dim G,
and it is easy to check that the differential of tr? —4 det does not vanish at any point
of G\ (Z U Gys) so this subset of G is a submanifold of dimension 3.

For g € G let D(g) = 4 — det(g) "' tr(g)?, so that G \ Gy is also the vanishing
locus of D. It is not difficult to compute that for 7" a maximal torus of G and g € T”
we have

D(g) = det (1 — Ad(g) | Lie(G)/ Lie(T")).
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3.2. Orbital integrals.
Definition 3.1. Fory € G and f € CX(G), define the orbital integral of f at v as

0.(f) = /G S0

where G, is the centralizer of v in G, provided the integral converges absolutely.

Remark 3.2. (1) We have a well-defined right G-invariant quotient measure on
G, \G because G and G, are both unimodular (we will give a “differential”
definition of this measure in the proof of Theorem 3.12). Note that the orbital
integral depends on choices of Haar measures on G and G.,. Via the bijection
G \G ~ G/G,, G,g — g 'G,, the quotient measures are identified and so

we also have O,(f) = fG/GW flgvg™) dg.
(2) For g € G, denoting f9: h— f(ghg™!), we have O,(f?) = O,(f).

(3) If h € G then, using the isomorphism Ad(h) : Gp-1,, — G, to match Haar
measures on these two groups, we have O(f) = Op-1,4(f): use the measure-
preserving bijection G, \G ~ Gp-1,,\G, g — h™'g.

The integrand in the definition of an orbital integral is clearly smooth. If v is
semisimple we will show that the integrand is also compactly supported (Lemma
3.5 below). More precisely, let K be a compact open subgroup such that f is bi-
K-invariant. We will show that there are only finitely many double cosets [g] =
G.,gK C G such that g~'vg belongs to the support of f, and so the integrand
in Definition 3.1 is smooth and compactly supported. By the calculation of the
quotient measure in Example A.5, we have

VOl(;(K)
a, (GyNgKg™)

(3.1) 0,(f)= > f(g‘lvg)vo1

[9]€G/\G/K

Note that these statements are trivial if 7 is central, so we will consider semi-simple
regular 7’s.

First look at the case where 7 is regular semisimple hyperbolic. Up to conjugacy
we may assume that v € T, so that G, =T.

Lemma 3.3. Let Cq be a compact subset of G. Let Cp be a compact subset of
TGfreg-

(1) There exists a compact subset X of N such that for any v € Cp, n € NN X
and k € Ko we have (nk)™'ynk & Cqg.

(2) The set of Tg € T\G such that there exists v € Cp for which g~'~vg belongs
to Cq is compact.

1 w
01

I (T

Proof. (1) For v = diag(z,y) € Cr and n = ( ) € N we have
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so if (nk)~'ynk € Cg for some k € K{ we have

and so (1 —y/x)u belongs to a compact subset of Q,. On Cr the valuation
of 1 — y/z is bounded (in fact it only takes finitely many values) and so u
belongs to a compact subset of Q,.

(2) The set in question is easily seen to be a closed subset of T\G. By the
Iwasawa decomposition G = T'N K, and the previous point it is contained in

a compact subset of T\G, namely the image of X K.
O

This suggests calculating the orbital integral in this case using the integration
formula for the Iwasawa decomposition given in Lemma 2.13. Normalizing Haar
measures as in this lemma, it is clear that the quotient measure on T\G (both
groups are unimodular so this is a special case of Example A.5) can be computed as

F e C.(T\G) — F(nk)dndk.
N><K0

So for v € Tg_ree and f € C°(G) we have

OV(f):/N B f(k™'n"tynk) dn dk.

As above denote 7 = diag(z,y) and n = (1 >, so that we have

U
0 1
-1 _ I (1-y/z)u
n ’yn-’y(o 1 .

Using the change of variable v’ = (1 — y/x)u we obtain

Ou(f) = I1=y/al™ [ by ' d

NXKO

= lafy[Va )y — 17 yfe — 172 / FOk k) dn’ dk
Nx Ko

(3.2) — [D(y)|2642(7) / F (k™ ymk) d d.

NXKO

We recognize a generalization of the formula defining the Satake morphism. This
allows us to prove the outstanding claim in Theorem 2.64.

Lemma 3.4. For any f € H(G, Ky), Sat(f) € H(T,Tp) is invariant under the Weyl
group W = {1, w} of T.

Proof. Any coset in T/ Ty contains a regular element -y, and Sat(f)(v) = |D(v)|"20,(f)
by 3.2. By the third point in Remark 3.2, this is invariant under w. U
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Lemma 3.5. Let T be a mazimal torus of G. Let Crr be a compact subset of Tg,_ -
Let Cq be a compact subset of G. The set of g € T'\G such that there exists v € Cp
for which g=tvyg belongs to Cg is compact.

In particular for any f € CX(G) we have:

o for any semisimple v € G the sum on the right-hand side of (3.1) has finitely
many non-zero terms,

e for any mazimal torus T' of G the map

Té—reg —C
Y Ov(f)

18 smooth.

Proof. If T" is split then up to conjugating by an element of G we may assume that
T" is the diagonal torus 7', in which case the first statement is Lemma 3.3. So assume
that 7" is elliptic. There exists a quadratic field extension E of @, such that the
characteristic polynomial of any element of 7" splits over E. In fact E is unique up
to isomorphism and can be taken to be the sub-Q,-algebra of M>(Q,) generated by
the elements of 7", but it will be clearer to keep it abstract. Let Gg be GLo(E),
which contains G as a subgroup. Let T}, be the centralizer of 7" in G g, which is also
the group of invertible elements in the sub-FE-vector space of Ms(E) generated by
the elements of T”. Note that this vector space is two-dimensional and generated by
1 and any element of T¢, . There exists h € G such that hT;h~" is the subgroup
of diagonal matrices in Gg. Let Ny be the subgroup

(1 E
h(o 1)h

of Gg. It is normalized by 7%, and it depends on the choice of h but the choice will
not matter for the argument (as long as h is fixed). Denote Gal(E/Q,) = {1,0}.
We simply denote by o the obvious action on GGg, which leaves GG fixed pointwise.
The choice of h gives an isomorphism ¢ : Tf ~ (E*)* if ¢(t) = (t1,t2) then
hth™' = diag(ty,t5). Fory € T¢_,,, we have ¢(7) = (z,0(x)) for some z € EX Q).
Using the above description of T, and the equality o(vy) = v we see that for any
t € T}, denoting ¢(t) = (t1,t2), we have

¢(o(t)) = (a(t2), o(tr))-

Let Kg be a maximal compact subgroup of G (for example GL2(Opg); the proof of
Lemma 2.1 generalizes to Gg). The proof of Lemma 2.2 (Iwasawa decomposition)
also generalizes, so we have Gg = TN Kg. The proof of Lemma 3.3 also gener-
alizes: there is a compact subset X of Nj, such that for any n € N\ X, v € Cp
and k € Kg we have (nk) 'ynk & Cg.

Let P be the set of (t,n,k) € Ty x N x Kg such that

e g = tnk belongs to G, i.e. it is fixed by o, and

e g !'vg belongs to Cg for some v € Cypr.
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For (t,n,k) € P we have n € X, and so
to(t) = nko(k) to(n)™*

belongs to
T;:? N (XKEO'(KE)ilO'(X)il) y

a compact subset of T7,. There exists ¢ € R>q such that for any diag(z,y) in this
compact subset of T} we have |v(z)| < ¢. For t € T}, denoting ¢(t) = (t1,t2) we
have

St (t)) = (ty o(ta), by o (t)).

In particular if (¢,n,k) € P then we have |v(t;) — v(t2)| < c. In particular, because
v(E*) is a subgroup of %Z, up to multiplying ¢ on the left by an element of Z we
may assume that we have

0<wv(t) <c+1/2and 0 <v(ty) <c+1/2,

which defines a compact subset Y of Tj,. We have shown that for ¢ € G such that
g 'vg belongs to Cg for some v € Oy there exists z € Z such that zg belongs to
the compact subset G N (Y X Kg) of G. In particular the set

{Zg € Z\G ‘ Iy e Cp, gl vg € Cg}

is relatively compact in Z\G, and since it is clearly closed in Z\G it is simply
compact.
The remaining claims in the lemma are simple consequences of the first claim

and are left as an exercise. 0
Remark 3.6. (1) A similar argument works for semisimple elements in arbi-
trary reductive groups, see | , Lemma 19, p.52].

(2) For non-semisimple elements it is not true that the right-hand side of (3.1)
has finitely many non-vanishing terms, but the integral defining the orbital
integral does converge absolutely. For Gl this is an exercise; for arbitrary
reductive groups it is a theorem of Ranga Rao and Deligne (see | 1).

(3) Forw a smooth character of Z, the same arguments apply to orbital integrals
of smooth w-equivariant functions on G which have compact support modulo

Z.

Lemma 3.7. Let f € C°(G). Let T be a maximal torus in G. Then the support
of
o T’G_reg — C

is relatively compact in T'. If the support of f is contained in G.s then the support
of ¢ is compact.
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Proof. The map = = (tr,det) : G — Q, X Q, is continuous. Let us show that the
restriction Z|p of = to 7" is proper. If T is elliptic then 7" can be identified with
E* for some quadratic extension £/Q, and via this identification the determinant
T" — Q) is given by the norm Ngqg, : E* — Q). This norm map is proper
(consider valuations) so det |7+ is proper and = is proper. If T” is split we have an
identification 7" ~ Q,’ x Q, and the restriction of = to 7" is identified with the map

Q xQy — Q, x Q)
(z,y) — (z +y, 7y).

Any compact subset in Q, x Q. is contained in the union of finitely many compact
open subsets of the form p*Z, x pr;. If z,y € Q) are such that x +y € p*Z,
and xy € pr; then either x and y both have valuation b/2, in which case they lie
in the compact subset p?/ QZ; of Q,, or they have distinct valuations and we have

a =v(x+y)=min(v(z),v(y)), which implies
a < min(v(z),v(y)) < max(v(z),v(y)) < b—a.

This shows that the closed subset (Z|p) " (p*Z, x pZx) of T is compact.
Now ¢ vanishes away from the compact subset (27+)~}(Z(suppf)) of T". If f is
supported on G, then this compact subset is contained in

= ({(t.d) | # 4d)) = G,
OJ

Orbital integrals will show up naturally in the trace formula. But right now
we will compute these in a special case. This will allow us to estimate them in
general, and such estimates will be useful when we study characters of admissible
representations of G.

Let v be a semisimple regular element of G. Assume that v is compact, i.e. the
sequence (7")nez is bounded, equivalently its closure is compact. Equivalently, v is
conjugated to an element of K (by Lemma 2.1). We will compute O, (e,).

If v is hyperbolic, i.e. if its eigenvalues are in @Q,, then we may assume that
v € Ty and so G, = T'. Since e, is bi-K-invariant Formula (3.2) gives O, (ek,) =
D)2 vol(To) .

Consider now the case where 7 is elliptic, i.e. E := Q,[y] C M2(Q,) is a qua-
dratic extension of Q,. Recall that G, can be identified with E*. Notice that the
set of [g] € G,\G/K, such that g~'yg € Ky maps (by g — ¢ 'yg ...) bijectively
onto the set of Ky-conjugacy classes [y'] in K having the same characteristic poly-
nomial as . Let G; be the groupoid associated to the action of G, on G/Kj by left
multiplication, i.e. the objects of G; are the elements of G/K, and the set of mor-
phisms from 2K, to yKj is the set of h € G, such that hx Ky = yK, (equivalently,
h € yKoz~'). The group of automorphisms of an object Ky of G is G, NxKozx ™.
We see that the groupoid G; has additional structure: each automorphism group
is endowed with a topology for which it is a topological group, and for any mor-
phism between two objects, the resulting group isomorphism between automorphism



THE JACQUET-LANGLANDS CORRESPONDENCE FOR GL2(Qp) 43

groups is a homeomorphism. In fact each automorphism group is profinite. Fur-
thermore each automorphism group Autg, (x) is endowed with a Haar measure fi,,
induced by the fixed Haar measure on G, ~ E*. So G; is naturally a “measured
topological groupoid” (this terminology is not standard . ..). Note that O, (ek,) can
be interpreted as the mass of this measured topological groupoid: Formula (3.1) can
be written abstractly

O’Y(BKO) = Z pz(Autg, (x))_l
(=]

where the sum is over isomorphism classes in G;. Let Gy be the groupoid of Z,[v]-
modules which are finite free of rank 2 over Z, (equivalently, finite torsion-free
Zy[v]-modules which become one-dimensional over E after £ ®z,, -). We have an
obvious functor G; — G, mapping the object gKj to the Z,-lattice g(ZIQ)) with the
obvious action of 7, and mapping h € Morg, (Ko, yKo) = G, NyKoz~* to the in-
duced isomorphim of Z,[y]-modules (Z2) — y(Z2). This functor is easily seen to be
an equivalence of categories. Note that for an object L of G5 the group of automor-
phisms of L contains Z,[y|* and is contained in £*, this inclusion being compatible
with the above functor and the identification of G, with E*. By compactness, the
group of automorphisms of L is even contained in Oj. We deduce

O (ex,) = Y _vol({A € OF|AL = L})™!
(L]

where the sum is over isomorphism classes in G, and the volume is taken for the fixed
Haar measure on G, ~ E*. The following lemma gives an explicit representative in
each isomorphism class.

Lemma 3.8. (1) Let L be a Zy[]-lattice which is free of rank two over Z,. Then
there is an isomorphism of Zy[y]-modules ¢ : L ~ ¢(L) with Z,[y] C ¢(L) C
Og, and ¢(L) is uniquely determined by the isomorphism class of L.

(2) Let L be a Z,-submodule of O which contains Zy|y]. Then L is a Z,-algebra
(i.e. it is stable under multiplication), in particular it is a Z,[y]-module, and
the group of automorphisms of the Zy|y]-module L is L*.

Proof. Choose an isomorphism of E-vector spaces ¢ : Q, ®z, L ~ E. Since L is
p-torsion free, L embeds in Q, ®z, L and so ¢ embeds L in E. The Og-module
Og¢(L) C E is of the form @t O for some i € Z, where wg is a uniformizer of
E. Up to composing ¢ with multiplication by w’, we may assume that Op¢(L) =
Opg. In particular ¢(L) contains an element v € OF. Up to composing ¢ with
multiplication by u~! we can also assume that 1 € ¢(L), and so Z,[y] C ¢(L) C Og.
This shows existence.

Let x € O be such that O = Z,[x]. Then any sub-Z,-module L of O of rank
2 and containing Z, is of the form Z, @ Z,p"x, where n is determined by the index
|Og/L| = p". From this description it is clear that L is stable under multiplication.

Now if Z,[y] € L,L' C Op are Zy[y]-modules, any isomorphism (of Z,[v]-
modules) L ~ L’ is multiplication by some ¢t € L' (¢t being the image of 1 € L),
because such an isomorphism is determined by its restriction to Z,[y]. Since L and
L' both generate Op as an Og-module we have ¢t € O, which implies |Og/L| =



44 OLIVIER TAIBI

|Op/L'| and so L = L'. This shows uniqueness. Considering the inverse morphism
we see that ¢! also belongs to L, and so the group of automorphisms of L is L*. [

We deduce
(3.3) Oy(exy) = Y vol(L¥)™!

Zply]CLCOg

where the sum is over Z,-modules. To obtain a simple explicit formula it remains
to compute the index of each L* in O.

Lemma 3.9. Let L be an order for E, i.e. a sub-Z,-algebra of O which has rank
2 as a Zy,-module. Let n € Zsq be the integer defined by the equality |Op/L| = p".
We have

p" if E/Q, is ramified,,
|OF/L7| =41 if L =0p,
p"+p" Tt if B/Q, is unramified and L C Og.

Proof. As in the proof of the previous lemma choose © € O such that O = Z,[z].
If £/Q, is ramified, we may and do assume that x generates the maximal ideal of
Op (equivalently, 2v(z) = v(p)).

If £/Q, is unramified we have

05/(1+pOg)| = [F| = p* — 1.
If £/Q, is ramified we have
|05/ (1+pOE)| = |05/(1 + 20p)||(1 + 20g) /(1 + pOE)| = p|F; | = p* — p.

For any ¢ > 1 we have (1 +p'Og)/(1 4 p™'Op) ~ Op/pOg. By induction on i > 1
we find

% _ 22 : :
; P —p if £/Q, is unramified,
|OE/(1+pOE)‘ = 2% 2i—1 . g . .
P —p if £/Q, is ramified.

For L and n as in the lemma we have L = Z, ® Z,p"x. The case n = 0 is trivial
so assume n > 0. In this case we have L* = Z; + Z,p"z and so the morphism
Zy — L* /(14 p"Og) is surjective. The kernel of this morphism is 1+ p"Z,, so we
have

|L*/(1+p"Op)| =p" = p" .

Decomposing

|O></L><| _ |Og/(1+pn0E)|
" L7/ (1+p"Op)|~!
gives the formula in the lemma. O

Let m € Zs( be defined by the equality |Og/Z,[7y]| = p™. Plugging the result of
Lemma 3.9 into Formula (3.3), we finally obtain
(3.4)

O, (ex,) vol(O%) = {(1 +p+ ") = 1) if £/Q, is ramified,
i 0 E) —

(p-1)

p—1

1I+QQ+p Hp+---+p™) = o2y E/Q, is unramified.
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Proposition 3.10. There are constants C' > ¢ > 0 such that for any v € G5 we
have C|D(y)|71/? = O, (ex,) = c|D(y)|7/2.

Note that this makes sense even though the orbital integrals depend on choices
of measures: there are finitely many conjugacy classes of maximal tori in GG, and we
may fix a Haar measure on each maximal torus, as well as a Haar measure on G.
Different choices only affect the constants C' and c.

Proof. For v € G,s not conjugated to an element of Ky it is clear that O,(ex,) =
0, so we may restrict to v € G, N Ky. For ~ split this is clear by the above
computation O, (ex,) = |D(y)|~Y/2. For v elliptic it remains to relate the integer
m appearing in Formula (3.4) to |D(7)|/2. As above introduce z € Op such that
we have Op = Z,[z]. Up to multiplying = by an element of Z, we may assume
that we have v = p"x + y with y € Z,. Write o for the non-trivial element of
Gal(E/Q,). We have D(v) = (y/o(y) — 1)(o(y)/y — 1), and since 7 is compact we
have v(D(y)) = 2v(y—0o(7)) = 2(m+v(x —o(x))). The estimate of the proposition
is easily deduced from this equality and Formula (3.4). O

Corollary 3.11. Let f € H(G). Then there ezists C' > 0 such that for any v € Gy
we have [O4(f)] < C|D(v)|7'/2.

As in Proposition 3.10 the precise constant depends not only on f, but also on
choices of Haar measures. As before we fix Haar measures on maximal tori of G.

Proof. Let X = {g € supp(f)|D(g) = 0}, a compact subset of G. For any g € X,
there exists z € Z and h € G such that g € zhKyh™! (in fact K could be replaced by
any neighbourhood of 1 in GG). By compactness of X there is a finite family (z;, h;)ier
such that X C (J,, zhiKoh; ' Therefore there exists ¢; > 0 and f.s € C°(Gs, Rg)

(for example, supported on supp(f) \ U,; 2z:hiKoh; ') such that

|fI < fos + Z 1 VOI(KO)_llzihiKoh;I'

il
By Lemma 3.5 and Lemma 3.7 for any maximal torus 7" of G the function
F: T(';_reg — C
v > Oy(frs)

is smooth and compactly supported, whence bounded.
By Proposition 3.10 there exists a constant C' > 0 such that for any v € Gy,

O, (vol(Ko) 1,y eon-t) = 0.1 (ex) < CID(3)] 772,

We obtain

0.(/)] < ( sup (ID()205(fu) + mclc) D)2

7' €Ghs
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3.3. The Weyl integration formula. For 77 a maximal torus of G we have a map

1 2 TG g X T\G — G, (t,9) — g 'tg. Then (t,§) and (s, h) map to the same
point if and only if hg™' € Ng(T") and s = hg 'tgh™t. Since Ng(T")/T' = Z/2Z
we get that each non-empty fiber of ¢+ has two elements. Let 7 be a set of

representatives of maximal tori of G, under conjugation by GG. Note that 7T is finite.

Theorem 3.12 (Weyl integration formula). Let f be a measurable function on G.

Then
/f )dg= > 5 / ()]0 f) dt

T/E'T G reg

if one side is absolutely convergent (i.e. convergent if we substitute |f| for f).

Note that the complex Haar measure O.(f)dt on T" does not depend on the
choice of Haar measure on 7", since Oy(f) is defined using a quotient measure.

Proof. Since G \ G,s has measure zero and Gy = | |/ Im(¢7v), by linearity of the
formula to be proved we may assume without loss of generality that there exists
T" € T such that f vanishes identically outside Im(¢/). We will apply Theorem
B.7 to ¢rn. We can write dg = |wg| where wg € QMG (G) is left G-invariant
and non-zero, and so wg corresponds to a non-zero element in /\dimG(TlG)* =
/\dimGLie(G)*. By Example B.8, wg is also right G-invariant. Similarly, we can
choose wy corresponding to an element, of A“™ r Lie(T")*, inducing a Haar measure
on 7". We will use these to define a right G-invariant wyng € QEmE—dmT (T G),
For g € G, differentiating the submersion G — T'\G, h — T’hg gives a short exact
sequence
0 — Lie(T") — Lie(G) — T;(T"\G) — 0

whose dual gives an isomorphism

dim G dim 7" dim G—dim T”

[\ Lie(@) ~ N Lie(T")®q, /N T,(T\G)"

In particular we have a basis wyn ¢ 4 of the Q,-line A®™ G=dm T (T\G)* such that
tg(we) = wr @wrng,g. We have to check that it depends on g only via g — ¢ = T"g.
If ¢ =tg with t € T" then we have a commutative diagram

s TG

\/

where Ad(t™!) : t~'ht fixes 1 € G and preserves T". We have Ad(t 1) wg =
det(Ad(t™1) | Lle( )) and Ad(t ) wp = det(Ad(t™!) | Lie(T")), and so wrngy =
det(Ad(t™!) | Lie(G)/ Lie(T"))wrna,q- It is easy to check that

det(Ad(t™ ') | Lie(G)/ Lie(T")) = 1
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as this can be computed after tensoring with a finite extension of Q, splitting 7.
We claim that there is a unique right G-invariant wpn g € QU™ G=dmT(T\ @) which
specializes to wrngy at 1 =T" € T'\G. Around any point of 7"\G there exists an
open subset U of 7"\ G and a local section s : U — G (morphism of p-adic manifolds)
of G — T"\G. Define wpn¢|v by pulling back w1 along Ryoy-1 : T'\G — T'\G.
The previous computation shows that this does not depend on the choice of s, and
it is clear that this construction glues to 7"\ G. Note that we recover the existence
of the quotient measure |wyng| on T"\G (this is not surprising since the trivial
determinant above implies that the modulus characters of G and 7" coincide on T").

Let t € T and g € G, defining ¢ = T"g € T"\G. We want to compute the dual
of

dim G dim 7" dim G—dim 7" dim G
N deyor : ( A Tt(T')> ®q, < A Tg(T'\G)> — N\ Ty1e(G)

in the bases wy, wrn ¢ and wg. We have a commutative diagram (vertical maps are
isomorphisms)

T'x T\G — G

Ry xRy RigoL 1
/ / bt
T xT\G —* @

where R, (resp. L,) denotes right (resp. left) multiplication by a and (x, h) =
h=tatht=!. Taking differentials, we get a commutative diagram

T(T') x T,(T\G) —*“" . T,.,,G
d1 (Rt)@di(Rg) dl(RthLgfl)
. , . . ’ dy i (%) .
Lie(T") & Lie(G)/ Lie(T") > LieG

Writing z = expd = 1+ ¢ + O(§?) for § € LieT” and h = expe = 1 + € + O(¢?)
for € in a complementary subspace of LieT” in Lie G, we compute d, j(¢;)(d,€) =
0 4+ (Ad(t) — 1)(e). Since wg is invariant under left and right multiplication maps,
wrr is also invariant under multiplication maps and wyn ¢ is invariant under right
multiplication maps, we obtain

(¢§va) ’t,g = det (Ad(t) —1 ’ Lle(G)/Lle(T/)) X (wT/\t) A\ (wT/\G‘g) .
The formula now follows from Theorem B.7 and Fubini’s theorem. |

Proposition 3.13. Let € > 0. Any measurable function G — C which coincides
with |D|7'%¢ on Gy is locally integrable.
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Proof. The function is locally smooth on G5 so we only have to show that for any
x € G\ Gy, there is a neighbourhood U of z in G such that [, [D(g)|"'*“dg <
+00. Recall that any element of G\ G is conjugated to an element of ZN (or even
ZN; for an arbitrary i € 7Z, using conjugation by 7T"). The function D is invariant
by conjugation and by multiplication by Z, so we may replace x by zgzg~* for some
g € G and some z € Z. This allows us to assume that x belongs to Ky. We simply
take U = Ky. To show that ex,|D|~!"¢ is integrable, we apply the Weyl integration

formula:
vol(Ky) / D) Hdg= 3 1 / ()] Onlex,) dt
Ko !

T/GT G—reg
and by Proposition 3.10 we are left to show that for any maximal torus 7", the
function |D|~!/2*¢ is locally integrable on T" (for the Haar measure on 7"). For
T’ =T this amounts to bounding

/ 11— 2|72 | du| g/ Jul 72 du| = vol(Zy) Y T pFpF T < oo
Zpy ~{1} Zp~{0}

k>0

For 7" anisotropic, corresponding to a quadratic extension £/Q,, we have

/ |z — o(z)| " dr < C'/ |12uxo| 12 |dul
OpNZy Zp~{0}

where zy € Op \ Z, is such that o(z¢) = —z9, and we conclude as in the previous
case. L]

3.4. Harish-Chandra characters. We now begin the study of characters of rep-
resentations of G. If (V,7) is an admissible representation of G (for example if it
is an irreducible smooth representation of GG) then for any f € H(G) the operator
7(f) : V — V has image contained in the finite-dimensional subspace VX for any
compact open subgroup K such that f is left K-invariant. Thus we can define
tr(f) = tr (w(f) | 7(f)(V)), which also equals tr (7(f) | V¥) for K as above by the
following lemma applied to W = VE and A = w(f)|y«.

Lemma 3.14. Let A be an endomorphism of a finite-dimensional vector space W

over a field. Then tr A = tr(A| A(W)).
Proof. Left as an exercise. O

Thanks to the theory of finite-dimensional representation of algebras, if (V3, m),

, (Vi, ) are non-isomorphic irreducible smooth representations of G then the
linear forms trm; on H(G) are linearly independent (this follows from the existence
of projection operators, see | , XVII Theorem 3.7]). In particular the trace of
an admissible semisimple representation of G determines the isomorphism class of
this representation (exercise ... ).

Theorem 3.15. Let (V,m) be an irreducible smooth representation of G. Then there
18 a unique smooth function O, : G.s — C such that, extending O, arbitrarily to G,
O is locally integrable on G, and for any f € H(G) we have

tr(f) = /G f(9)@
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Moreover O is invariant under conjugation by G and |D|*/?0, is bounded on G.s.

Remark 3.16. (1) The function ©, does not depend on the choice of Haar mea-
sure (the measure occurs in the definition of tr w(f) as well).

(2) Using the Weyl integration formula the theorem also gives the expression

wr(=> 5 [ b

2
TeT G—reg

where |D|*?0, and t — |D|Y2O.(f) are both bounded (Corollary 3.11), and
the support of the latter is relatively compact in T".

Uniqueness and conjugation invariance in Theorem 3.15 are easier than existence
and left as an exercise (use the fact that for any = € G, there exists a compact open
subgroup K of G such that K is contained in G4 and ©, is constant on zK, so
that trm(1,x) = vol(K)O.(x)). The proof of existence is going to be quite long.
First we handle the supercuspidal case.

Lemma 3.17. Let (V,7) be an irreducible supercuspidal representation. Let v € V
and v € V' be such that (v,0) = d,. Then for any f € H(G),

P /G F(0) (x(g ™ hg)v, T) dh

is a smooth compactly supported function on G/Z and we have

we(h) = | ; | 10t vy ) dn g

Proof. Let (v;); be a basis of V' such that each v; belongs to a Ky-isotypic component.
Let (;); be the dual basis of V (this is well-defined by admissibility of V). Let
a;; = (m(f)vi,v;). By admissibility of 7 (and since f if bi- K-invariant for some open
subgroup K C Kj) only finitely many of them are non-zero, and trw(f) = >, a;;.
Note that 7(f)v; = >_; a;jv;, and so for any w € V' we have w = (w,v;)v; and
T(flw = (w,v;) 3, aijv;, in particular (taking w = 7(g)v)

(m(gHm(f)m(g)v, D) = (x(f)m(g)v Za” 9)v, i) vy, T(g)D).
This can also be written

/G S (g™ h)o, Do = 3 asrlg)o, Ty (g~ oy, D)

This function of ¢ € G/Z is clearly smooth. By Theorem 2.38 it is compactly
supported. Integrating over ¢ € G/Z and using Schur orthogonality (Proposition
2.47) we get

/G/z/ f(h “Hhg)v,v)dg = Zamd;l(v,f)}(vj,vﬁ = Zam = tro(f).

%,J )
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Now we would very much like to swap integral signs in this formula. This is not
formal, and in fact wrong!

It is however justified if we restrict to g in the subset G¢! of elliptic regular
semisimple elements.

Lemma 3.18. Let f € CX(G) and ¢ € CX(G,w) for some smooth character
w:Z — C*. Then the function (g,h) — f(h)y (g thg) is integrable on G/Z x G°!
and
[ Hwete g dgan = | F0)vol(Ga/Z)On()ih

G/ZxGel Gell
Proof. We can assume that f, take values in Rsg. Let T°! be a set of represen-
tatives for the G-conjugacy classes of elliptic maximal tori in G. Now for h € G¢!
we have fG/Z Y(g thg)dg = vol(G/Z)On () because G/Z is compact. Now by
Corollary 3.11 and Proposition 3.13 the function h — O (1)), extended by zero on
G~ G is locally integrable on G. Therefore

rs

/ f(h) Y(gthg) dgdh = f(R)vol(Gh/Z)On (1) dh < .
Gel G/Z Gell

O

This argument does not work for h € G \ G2 because then vol(G},/Z) = +oc.
But recall from Remark 2.46 that the matrix coefficient 1) is not just any element
of C°(G,wy): it belongs to the subspace C (G, wy).

cusp
Lemma 3.19 (Selberg’s principle). Let w : Z — C* be a smooth character. Let
Y € Cp(Giw), e for any z,y € G we have [y (zny)dn = 0. Then for any
h € G\ G2 we have Oy () = 0.

Proof. 1t is enough to consider h € T We computed (see (3.2))

On(h) = yD(h)|—1/25}9/2(h)/ (k™ hnk) dk dn = 0.

K()XN

O

To “swap the two [ signs” in the formula given in Lemma 3.17, we will write
the outer integral as a limit over a particular increasing and exhaustive sequence of
compact subsets of G/Z. For ¢ > 0 an integer define X, = | | . Kodiag(p™, 1)KoZ,
so that X./Z is a bi-K-invariant compact subset of G/Z.

Lemma 3.20. Let w : Z — C* be a smooth character and v € Cg5,,(G,w). The
sequence of functions on GYP

S

m<c

(@w s w<g—1hg>dg)
c>0

X./Z

converges pointwise as ¢ — +00 to a smooth function © which is invariant under
conjugation by G. Moreover there exists k > 0 such that for any ¢ > 0 we have
1Oy.c| < K|ID|7Y2 on GWP. For h € Tg_reg we have

Oy(h) = /N B (k™ 'n " hnk) min(0, 2v(n)) dn dk



THE JACQUET-LANGLANDS CORRESPONDENCE FOR GL2(Qp) 51

where we have denoted v(n) = v(u) for n = (é 7{) €N.

Note that this formula for ©,(h) differs from the formula for Oy () only by the
factor min(0,2v(n)) in the integrand. This expression is called a weighted orbital
integral.

Proof. We can replace ¢ by h — fKo Y(k~1hk) dk and assume that ¢ is invariant
under conjugation by Ky. Let h € GP, then we can write h = o~ 'diag(a, b)a for

some o € G and a,b € Q satisfying a # b. For future use we note that up to
conjugating by w we can assume that we have dg(diag(a, b)) < 1. We can write o €
TN K. Since the sets X, are left Ky-invariant the function h fXC/Z Y(g thg)dg
is invariant under conjugation by K, and we can reduce to a € T'N, and so h € T'N.
Since any element of T' centralizes diag(a,b) we can even assume aw € N. Let g € G
[1) 1)k with z € Q) uw € Q, and k € Ky. Recall from
Lemma 2.65 that g € X, if and only if

and write g = diag(z, 1)

lv(x)| < cand v(u) > (—v(z) —¢)/2.

Let Y. be the compact open subset of T'N/Z consisting of elements satisfying
these two conditions. Using the integration formula for the Iwasawa decomposi-
tion (Lemma 2.13) and invariance under Ky-conjugation of ), we have

U(g~thg) dg = (n~ 't~ htn) dt dn.
X./Z Y.)Z
o . 1 z
Writing h = diag(a, b) (0 1) we have

I T 1 72\ (1 (1—a'b)u
n~ "t~ htn = diag(a, b) (O ] 0 1 .

The set of (g1, g2) € (G/Z)? such that g; and g;g» belong to supp(v) is compact.
The subgroup ZN of G is closed so N is closed in G/Z, and so the set of (¢,n) €
(G/Z) x N such that g and gn belong to the support of ¢ is also compact. Therefore
its projection on N is contained in the compact subgroup N_g) of N for some
integer d(1) > 0. Let 5 € G and ¢ > d(¢). If SN_; meets the support of ¢ then we
have

supp(v) N BN C BN_;N_qp) = BN_;.
By cuspidality of v, this implies

(3.5) /p L (ﬁ ((1) 1{)) | = 0.

(either the integrand vanishes identically or the integral is equal to the same integral

—1
over Q,). We will apply this to B(h, z) = diag(a, b) (é . . Z>
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For fixed » € Q) such that |v(z)| < ¢ we integrate over u € Q, satisfying
v(u) > (—v(x) — ¢)/2. Using the change of variables v’ = (1 — a~'b)u we compute

/ ¢(ﬁ(h,x> (1 “‘C"”’)“)) du| =
o(u)>(—v()—c)/2 0 1
1 1
-y [ o (s (o)) 1wt
v(u)>v(l—a=1b)+(—v(z)—c)/2

If v(1 —a™'b) + (—v(z) — ¢)/2 < —d(¢)) this vanishes. Otherwise, that is if —c <
v(r) < —c+ 2v(1 — a™1b) + 2d(v)), denoting e = 2v(1 — a~tb) — v(z) — ¢ > —2d(v))

we have /
1 u
o (o) (g ) 1wt
v(u')>e/2

Therefore, summing over possible values for v(z),

< [ llocp™

¢<glhg>dg"su—alb|l Wle S 5

e>—2d(v)
<[1=a™'0 7 x p™ (1 = p )7 [¢ oo

X./Z

)|Y/25}/%(diag(a, b)). As noted above we

Recall (see (3.2)) that |1 —a™'b|™' = |D(h
< 1, so we have |0, | < x|D|~/% on GI¥P

= |
can assume that we have dg(diag(a, b)
with

D(h
)

k=p 11 —p 7)Yy

Thanks to Proposition 3.13 (with e = 1/2) this last function is locally integrable on
the closure of GI¥P in G.

We are left to compute, for a fixed h, the limit of © .(h) as ¢ — +00. As observed
above we can restrict to z € Q) satisfying —¢ < v(x) < —c+ 2v(1 — a™'b) 4 2d(¢))
and so B(h,z) — diag(a, b) uniformly in z. Therefore the limit exists * and is given
by

Ou(h) == lim [ w(g~'hg)dg

c—+00 XC/Z

2v(1 a”

= ot /v(u " (dlag(a b) (O 1)) du|

e=— 2d(7,/; )+1

a1 — -1b|1 Z /u (dlagab) (0 q)) du!|

where we have grouped the terms for e = 2k — 1 and e = 2k. By Formula (3.5)
above (cuspidality of 1) we have

4the sequence (O, .(h)). is even stationary!
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and so |1 — a*1b|@¢,c(h) is equal to

. z/ ooy

k=—d())+1 i=—d(

v(l—a=1b)—1v(l—a~ 1 ,
= —2 Z Z / (dlag a,b) <O l{)) |du/|

i=—d(yp)  k=it1 JvW)=i
v(l—a~1bh)—1

=2 > (i—v(l—a‘lb))/(u/)mzp(dlag(a b) (0 1)) |du).

i=—d(¥) v

Reverting the change of variable v’ = (1 — a~'b)u, we compute

(= ot —an) [ L (dioe(et) (g ) la
(i —v(1 = a D)1 — b / . (diag(a, b) <(1) (1- ilb)”» d|
— 11— a / . (diag(a, b) ((1) (1= ‘flb)u)) o(u) |dul

and we deduce the simplification

©y(h)

R
_ / @/}(diag(a,b) (é (1 ‘ b>u))2@(u)|du|
0>v(u)>—d(¢)—v(1—a=1b)
1—ath)u

f—a /( s _lb)¢<diag(a,b) ((1) (1-a ))min(O,Qv(u))]du!.

Observe that substracting Formula (3.5) for two consecutive values of i gives the

vanishing of
-1
/ " <diag(a,b) <1 (1—a b)“>) |dul
v(u)=1 0 1

for i < —d(¢) —v(1 —a'b). We finally obtain, still under the assumption that ¥ is
invariant under conjugation by Kjy:

Oy(h) = / Y(n~*diag(a, b)n) min(0, 2v(n)) dn.
N
Recall that we can reduce to this case by averaging over Ky, and the formula given in

the Lemma follows. The smoothness and invariance by conjugation of v follow. [

Corollary 3.21. If (V, ) is an irreducible supercuspidal representation of G then
Theorem 3.15 holds for .
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Proof. Let ¢ € O, (G, wx) be the matrix coefficient defined by

¥(g) = (m(g9)v,v)

for ve V and ¥ € V as in Lemma 3.17, i.e. satisfying (v,v) = d,. By Lemma 3.17
we have, for ¢ large enough,

tr(f / /f g 'hg)dhdg
G/Z

/ /f g 'hg)dhdg
/7

= [0 [ vl hgydgan
G Xc/Z

_ / f) [ (g hg) dgdh.
s Xc/Z

Here we are simply integrating a smooth function on a compact set (G could be

replaced by the support of f), so swapping the integrals is justified. We split this

last integral as two integrals over G¢!! and G'P, and take the limit as ¢ goes to +oc.
By Lemma 3.18 we have

lim st gy dian= [ [ s(hyts ko) didn

c——+00 G?él XC/Z

= [ f(h)vol(Gn/Z)On(¢)dh

1l
Gts

because the integrand is absolutely integrable on G/Z x G¢lL.

By Lemma 3.20, Proposition 3.13 and the dominated convergence theorem we
have

i [ f0) [ vt hg)dgdh= | F(1)@y(h) dh
c o G?syp X./Z Ghyp

TS

This concludes the proof of Theorem 3.15, with

0,(h) = vol(G/Z)On () if h is elliptic,
e Oy (h) if h is hyperbolic.

O

Remark 3.22. This generalizes to arbitrary connected reductive groups: the Harish-
Chandra character of an irreducible supercuspidal representation is given by the

weighted orbital integral of any matriz coefficient whose value at 1 is the formal
degree. See | ].

To conclude the proof of Theorem 3.15 we are left to consider non-supercuspidal
representations.
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Proposition 3.23. Let p: T — C* be a smooth character, and consider (V,m) =
Ind$, yu. Then Theorem 3.15 holds for w, and © is the unique G-invariant function
on G5 which vanishes identically on G and such that for any t € Tg_req we have

Ox(t) = [D(B)| 72 (u(t) + p(1)).-

Note that since Indg (1 may be reducible, it is not strictly speaking Theorem 3.15
that we prove for Indg i, but the statement makes sense.

Proof. Recall that we can realize Ind$, ;1 as the space of smooth functions ¢ : Ky — C
such that ¢(bk) = u(b)¢(k) for any b € By. For such a ¢, f € H(G) and k; € K,

we have

() (0) (k) = /G F(9)6(kig)dg = /G og) f (ki g)dg.

Using the integration formula for the Iwasawa decomposition this also equals

[ ottt bks) vy~
Kox B

Ko

o) [ )5 (0)F 0 k)

= [ ¢(k2)(ky, ko) dksy

Ko

with (ki, ko) = [ M(b)513/2<b)f(kl_lbk2) db (as usual, using a left Haar measure on
B). Note that 1 is a smooth function on Ky x Kjy. The operator

I(Y): ¢ — (/ﬁ = p ¢(k2)¢(1€1,/€2)dk2)

is defined for ¢ € C(K,), not just on the subspace Ind$ i of By-equivariant func-
tions for p. For ki, ke € Ky and x € By we have

ki) = [ a5 0100 bha)

_ / (b)Y (b ) f (kb k)
= pu(x)p(k1, k2)

using the change of variable &' = x~'b. Therefore I(¢)) maps C*®(Ky) to IndG p
and coincides with 7(f) on Ind$ u € C*(Kj), and so trw(f) = tr I(¢)). Since 1 is
smooth it is left and right Kj;-invariant for some ¢ > 1, and so the image of I(v))
is contained in C*°(K;,)%i and we can compute tr/(¢)) on this finite-dimensional
subspace. For this we consider the basis of characteristic functions of cosets of K;
in Ky: for k; € Ky we have

1) (Liy i, ) (K1) = U (ky, ka)dks

k1 K;

and summing over all k1 K; € Ky/K; we obtain

trI(y) = [ (k&) dk.

Ko
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Going back to the definition of ) we find

wr() = [ [ | n@siwse miy akande = [ o)) odp

This last integral is also equal to

Awwwwmamﬁ

because the automorphism Ad(w) of T preserves the Haar measure and leaves the
function t +— |D(t)|'/20,(f) invariant. We conclude

wr(f) = | Oxa)ilo)ds = 5 [ IDOIult) + @)D PO )t

TS

where O, is defined as in the Proposition, thanks to the Weyl integration formula.
O

Remark 3.24. This generalizes to arbitrary connected reductive groups, see | ].

Corollary 3.25. Theorem 3.15 holds for the Steinberg representation, and for any
elliptic mazimal torus T" of G and any t € T/,_,., we have Og;(t) = —1.

reg

Proof. For p = 5;1/ ? the semi-simplification of Indg p is isomorphic to 1@ St (where
1 denotes the trivial one-dimensional representation of GG). Obviously the trivial
representation satisfies Theorem 3.15 and ©; = 1, so we deduce Theorem 3.15 sor
the Steinberg representation and the relation Og, = © — 07 on G. O

G ¢1/2
Ind§ 5/

Of course the Proposition also allows us to compute Og; on the split maximal
torus T

We have just proved a special case of the Jacquet-Langlands correspondence: the
Steinberg representation of G = GLy(Q,) will correspond to the trivial representa-
tion of D*.

Remark 3.26. This strategy of reduction to the supercuspidal case was not success-
ful for arbitrary reductive groups (in general we do not have enough “obvious” cases
like the trivial representation). Harish-Chandra | | proved the general case by
passing to the Lie algebra instead. This uses the exponential map, so this argument
does not apply over positive characteristic local fields.

Remark 3.27. Any w™l-equivariant smooth function with compact support modulo
Z can be written as g — [, w(2)7! f(zg)dz for some f € CX(G) (this can be shown
using local sections of G — G/Z, for example (SL2(Q,) N Ky) X Z is isomorphic via
the multiplication map to a neighbourhood of 1 in G). This implies (exercise) that

for any f € H(G,wi), tro(f) =[5/, f(9)Ox(9) dg.
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3.5. Coefficients and pseudo-coefficients. We push further the argument used
in the proof of Corollary 2.49.

Proposition 3.28. Let (V,7) be an irreducible supercuspidal representation of G,
and let w, be its central character.

(1) Let (U,o) be a smooth representation of G admitting central character wy.

For vy € V and ug € U, the linear map

¢'170’u0 'V —U

v (m(g~")v, Do) (g)uo dg
G/Z

is G-equivariant. In particular, it vanishes identically if (U, o) is irreducible
but not isomorphic to (V,x). For (U,0) = (V,T), ¢upuy = d {ug, Vo) Idy .

(2) Forvy eV and Ty € V let foyzm, € H(G,w;') be the matriz coefficient for V

g+ (m(g~")vo, Do) = (vo, T(g)00)-

Then for any irreducible smooth representation (U,o) of G having central
character w,

0 if o 2,

d- vy, o) ifo~m.

tr O-(fvo,io) = {

Proof. The first point was proved in the proof of Corollary 2.49. Let (U,o) be an
irreducible smooth representation of G having central character w,. For u € U we
have o (fu,5,)t = ¢w,.u(vo). The first point shows that o(f,, ) = 0 if o % 7. The
first point also shows that for v € V' we have m(fy,5,)0 = ¢5.0(v0) = (v, Vo)vo
and 0 tr 7( fuy 50) = tr T(fue 50 | Cvo) = d{vg, Vo). O

In particular if we take vy € V and vy € \70 such that (vg,vp) = d, then we have
produced f € H(G,w ') distinguishing 7 among all irreducible smooth representa-
tions of G having same central character. Note that for finite (or compact) groups
there is a natural choice for such a function, namely the trace of the contragredient
of 7, but for G this is not a smooth compactly supported function! We would like
to have similar functions also for irreducible non-supercuspidal representations of
G. It turns out that this is not possible for an irreducible Ind% p, but it is almost
possible for the Steinberg representation.

Recall that w = <g é) € G normalizes I. Denote I = I1Z/Z UwlZ]Z, a

compact open subgroup of G/Z. Let sign : I — {£1} be the character which is
trivial on 1Z/Z and maps w to —1. Define fep € H(G/Z) as ex,2/z — where

ef,sign

€7 sign 1S vol(I)~'sign (extended by zero outside of I).
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Proposition 3.29. For any smooth irreducible representation (V,7) of G having
trivial central character, we have

—1  if m~ St,
tr(fep) =< 1 if m is trivial,
0 otherwise.

Proof. The function fgp is bi-IZ/Z-invariant and so 7(f)V C V!, in particular the
trace vanishes if V/ = 0. We classified the representations of G such that V! # 0
in Proposition 2.59 and before Proposition 2.57. The ones having trivial central
character are the characters y o det for x : Q) — {£1} unramified (there are two
such characters), (y o det) ® St for the same y’s, and the irreducible Ind$ ;i with
plz =1 (ie. pps = 1) and p unramified. Note that tr (e, z/z) = dim VX and
tr (€7 y,) = dimker([Jwl] + 1] V1), Recall that we computed the matrix [[wl] in
a basis of (Ind$ ) and found

(m (p)Opl/2 pi2(p)p 2) '

If |z = 1 this matrix has trace 0 and determinant 1 so its eigenvalues are £1. So
for V = Ind$ yu with p|, = 1 we have

dim Vo = dimker([ITwl] + 1| V') =1

and the trace of fgp on Ind$ u vanishes. If x : Q; — {£l} is the unramified
character of order 2 then for the one-dimensional representation y odet of G the two
dimensions above are also equal to 1. For the trivial representation V' of G we have
dim VEo =1 and ker([IwI] + 1| V?) = 0. For (x o det) ® St we have VEo = 0 and
ker([ITwI]+1| V') has dimension one (resp. zero) if y is trivial (resp. non-trivial). [J

So apart from the trivial representation, — fgp plays the same role for the Stein-
berg representation as the matrix coefficient for a supercuspidal representation. We
call — fgp a pseudo-coefficient for St.

Inspired by the supercuspidal case, we ask if the orbital integrals of fgp are
related to the Harish-Chandra character of the Steinberg representation.

Theorem 3.30. Let v € G,s. Then

0 if v is hyperbolic,
O,(fep) = { IR
vol(G./2) if 7y is elliptic.

Exercise: prove the first case using Proposition 3.29 and Proposition 3.23.

For the proof we introduce a geometric tool. Recall that the discrete set G/KyZ
parametrizes lattices in @f, up to rescaling, and that G /IZ parametrizes pairs (L, D)
where L is a lattice in @123 and D C L/pL is an F,-line, again up to rescaling. In
particular to such a pair (L, D) we can associate another lattice: the preimage of D
in L. This motivates the following definition.
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Definition 3.31. Denote ¥V = G/KyZ. Two lattices-up-to-rescaling [L1],[Ls] C V
are neighbours if Ly and Ly can be chosen so that Ly C Ly and |Ly/Ls| = p.

This relation is symmetric (pL; C Ly and |Ly/pLy| = p?/p = p) and [L] is never
its own neighbour. The neighbours of [L] are naturally in bijection with the set
of lines in L/pL, in particular [L] has p + 1 neighbours. Let £ C P(V) be the set
of {[L1],[Le]} which are neighbours. This new notation suggests that V' is a set of
vertices and £ is a set of edges, i.e. (V,€) is a graph (in a combinatorial sense). Let
A be the associated topological space:

e For each edge {vy, v} in € choose an ordering (v, v2). In other words choose
functions s,t : € — V (“source” and “target”) such that for any e € £ we
have e = {s(e), t(e)}.

e Let A be the quotient of
VU (€ x0,1])

by the equivalence relation generated by the relations (e,0) ~ s(e) and
(e,1) ~t(e) for any e € £.

The space A is Hausdorff and locally compact (exercise). The continuous map
Ex0,1]— A

is surjective because any v € V appears in at least one edge (in fact, p + 1 edges).

Proposition 3.32. The graph (V, &) is a tree, i.e. it is connected (for any v,v' € V,
there exist k > 2 and (v, ...,vy) € V¥ such that vy = v, v, = v and {v;,v;i1} € €
for any i, i.e. a path between v and v') and does not contain any cycle (that is, a
non-trivial path from v to v such that vy, ... ,vx_1 are pairwise distinct).

Proof. Recall that GG acts transitively on V and £. In fact the Cartan decomposition
says that for any [L;] and [Ls] in V), there is a basis (e, f) of L; and integers a > b
such that (p%e,p°f) is a basis of Ly. From uniqueness in the Cartan decomposition
we get that a — b € Zs is uniquely determined by the orbit of ([L1], [Ls]) under G.
Denote d([L1],[Ls]) = a — b, then d([Ls], [L1]) = d([L1], [L2]) and [L4] and [Ls] are
neighbours if and only if d([L4],[L2]) = 1. Up to rescaling one or both lattices we
may assume that b = 0. Then

[L1] = [Zpe ® Zypf] <> [Zppe @ Ly f] <> -+ <> [Lpp“e ® Zy f] = [Lo]

is a path joining [L,] and [Lo].

Now assume that d([Lq], [Ls]) > 0 (i.e. [Ls] # [L1]) and that [L3] is a neighbour
of [Lo] distinct from [Z,p* ‘e & Z,f]. This means that we can take L3 to be the
preimage of an F,-line D in Ly /pLsy distinct from Z,p*e ©Z,pf/Lo. This means that
Ls/pL, is generated by f+Ap®e for some A € Z,. Up to replacing f by f+Ape (note
that this does not change the above path from [L;] to [Lo]: Zyp'e & Z,(f + \pe) =
Zyp'e ® Zyf for 0 < i < a), we can assume that Lz = Z,p*™'e ® Z,f. This shows
d([L], [Ls]) = d([L1], [L2]) + 1, in particular [Lg] # [L4]. O
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We can extend the function d(-,-) to A? as follows:

(1) For e € £ and z,y € [0, 1] define
d((e,x), (6’y)) = |[E - y|

(2) For z,y € A define

k—1

d(xz,y) = inf {Z d(x;, i)

i=1

T =2, T =Y, Vide € gyxiaxi-i-l € {6} X [O’ 1]}

Exercise: check that this is well-defined and that this infimum is a minimum, that
d(-,-) is a metric on A (a general fact for any connected graph), that G acts by
isometries, and that for any x,y € A there is a unique geodesic in A from z to vy,
denoted [z, y] (existence is true in any connected graph, uniqueness is true in any
tree). Recall that a geodesic is (in this context) a continuous map f : [0, d(z,y)] — A
such that f(0) = z, f(d(z,y)) = y and for any t,ts € [0,d(z,y)], d(f(t1), f(t2)) =
Ity — tol.

The Bruhat-Tits tree (for more general groups, the Bruhat-Tits building, see
[ | and | ]) is a p-adic analogue of symmetric spaces in the theory of real
Lie groups. The Cartan fixed point theorem gives a geometric proof of conjugacy
of maximal compact subgroups in a connected semisimple Lie group. The following
lemma is the analogue in the present context (see [ , §3.2] for the general case).

Lemma 3.33. Let K be a compact subgroup of G/Z. Then AX 0. In particular,
if v is an elliptic element of G (i.e. if v € ZUGYY) then A7 # ().

Proof. Choose vy € V arbitrarily. Then Kvg C V is finite. Since any closed ball in
A is compact, there exists © € A minimizing max{d(z,y) |y € Kvo}. Let us show
that x is unique. Let 2’ € A be a different minimizer, and let z” € [z, 2] distinct
from z and 2’. For any y € A, we have d(z”,y) < max(d(z,y),d(z’,y)). (Quick and
dirty argument: A\ {z”} has finitely many connected components, and = and 2’ lie
in different components, so y is not in the same component as x or x’, say x. Then
the geodesic [z, y] goes through z”.) This gives a contradiction. So z is unique. For
any k € K, kz has the same minimizing property, so x is fixed by K.
If v is elliptic then the closure of the subgroup of G/Z generated by + is compact.
O

Proof of Theorem 3.30. Let vy = [Z2] € V. For g € G, g~'vg € KoZ/Z if and only

if v fixes gvy € V. Note that I is the stabilizer of ¢y = {[Z22], [pZ, x Zy)} € E (observe

that w swaps the two endpoints). Therefore g~ 1yg € I if and only if v fixes gey.
Using these facts, we get

O,(fep) = Y wvol(Stabg, z(v))™' = Y vol(Stabe,,z(e)) 'sign(v, e)

veEGL\VY e€GH\EY

where sign(vy,e) = +1 if v fixes e pointwise (i.e. if it fixes the endpoints of e) and
sign(v, e) = —1 if it swaps the endpoints.
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Let us show that A" connected. Let x,y € A?, then v([z, y]) is a geodesic from
yr =z to yy =y, so it equals [z,y| and since 7 is an isometry every point of [z, y]
is fixed by 7.

First we consider the case where v is elliptic. We have just proved that A7 # ().
Now G, /Z is compact so by Lemma 3.5 the set A" is compact, and we can expand
the above expression to get

O,(fep) = Z vol(G.,/Z) ™! — Z vol(G.,/Z) 'sign(v, e).

veEVY ec&
Although it is somewhat artificial, we distinguish two cases:

o If there exists e € £ such that sign(y,e) = —1, then denoting by z the
middle point of e, x is fixed by v and v swaps the two connected components

of AN {z}, s0 V' =0 and &7 = {e}. It follows that O, (fgp) = 1.

e Otherwise A" is a subgraph of A, and we are left to compute the difference
between the number of its edges and the number of its vertices (i.e. its Euler
characteristic!). Since A7 is non-empty and connected, it is also a tree and
one can give a simple elementary argument, by induction on the number
of vertices (remove a vertex from the boundary, as well as the unique edge
containing it; repeat until there is only one vertex left).

We now consider the hyperbolic case. If AY = () then the result is obvious, so
we might as well assume that it is non-empty. The centralizer G,/Z =~ Q, is not
compact and it acts on A” with compact stabilizers, so A7 is not compact either. If
there exists e € £7 such that sign(y,e) = —1 then as above A" is a point, but it has
an action of the non-compact group G./Z and the stabilizer of any point of A is a
compact subgroup of G/Z. So for any e € £7 all points of the image of {e} x [0, 1] in
A are fixed by 7. In particular V7 is not empty, i.e. 7y is conjugated to an element of
KoZ, and so v(dety) is even. Up to conjugating, we may assume that v € Ti5_eq.
Considering the valuation of its determinant we have v € ZT,. The topological
realization X’ of the connected subgraph of (V, £) with vertices {[p*Z, X Z,| | a € Z}
(an apartment in the terminology of Bruhat and Tits, here it is an infinite geodesic),
that we encountered in the proof of Proposition 3.32, is included in A”. The element
t = diag(p,1) of G, = T acts simply transitively on the set of vertices of X'. For
y € AN X, there is a unique vertex = of X such that d(z',y) > d(x,y) for any
' € X ~ {x}. We call this = the projection of y on X', denote pry(y). The fibres
of pry give a partition of AY \ X, and tZ acts simply transitively on this partition.
Since A" is connected, for any z € £ N X the subset (pry'({z}) N .AY) U {z} of
A" is a finite subtree and z is one of its endpoints. The quotient group G, /Zt% is
compact, so the quotient t#\ A" is finite, and arguing as in the elliptic case we see
that O, (fep) is proportional to the Euler characteristic of the graph t*\.A7. Now
this graph is very simple: 2\ has one vertex, with one edge from this vertex to
itself (a loop), and so t#\ A7 is simply obtained by attaching a finite tree to this
vertex. The Euler characteristic of this graph is zero: by the same induction as in
the elliptic case, we are reduced to the case of a loop, which has one vertex and one
edge. 0
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Remark 3.34. (1) This beautiful geometric arqgument generalizes to an algebro-
topologic one for a general connected reductive group, see | | and | ].

(2) The computation of orbital integrals of ex, (preceding Proposition 3.10), even
of other elements of H(G, Ky), can also be done geometrically using A, see
[ |. Like the “lattice-theoretic” computation, this is particular to GLs.

To conclude, we have constructed a pseudo-coefficient f, for any essentially
square-integrable representation 7, whose orbital integrals are given by ©z on G
and vanishing on G™¥ (in fact any pseudo-coefficient satisfies this, but to prove this
we would need the very natural fact that orbital integrals vanish if all traces vanish,
and this is not obvious ...).

3.6. Elliptic orthogonality.

Theorem 3.35. If m; and my are irreducible smooth essentially square-integrable
representations of G with w;, = wy,, we have

; |D(t)|0, (1)O=(t) vol(T'/Z) " dt = {

2
T,€7Vell Téfreg /Z

1 aifm ~m

0 otherwise.

Proof. Recall that we have a pseudo-coefficient f, € C°(G,w,}).

trﬂ-l(fﬂ'Q) = fﬂz(g)@m(g) dg

G/Z

-y

1eT © TG res/?

D(t)|Ox, (1) Ou( fr,)(t) dt
S % D010 (005(0)vol(T'/2) .
T'€Ten TG—reg/?

O

Remark 3.36. If w,, is unitary (which can always be arranged after twisting), then
both m;’s are unitary and Ty ~ T3 so that (exercise) O = O, and we recover the
more familiar “orthogonality of characters” formulation.

3.7. Existence of supercuspidal representations.

Theorem 3.37. Let w : Z — C* be a smooth character. There exists an irreducible
supercuspidal representation of G having central character w.

Proof. Maybe later. 0

4. TRACE FORMULAS

We now change notations: G will denote linear algebraic groups etc.
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4.1. Quaternion algebras and inner forms of GL,. We refer to Appendix D
for general results about quaternion algebras. Let us recall the classification results
over local and global fields that we shall need.

Theorem 4.1. (1) Up to isomorphism there are two quaternion algebras over
R: the split one and the “usual” quaternion algebra R & Ri ® Ry & Rk with
i?=32=—-1andij = —ji = k.

(2) Up to isomorphism there are two quaternion algebras over Q,: the split one
and E ® Ew where E/Q, is an unramified quadratic extension, w* = p and
conjugation by w on E induces the non-trivial element of Gal(E/Q,).

(3) The isomorphism class of a quaternion algebra D over Q is determined by
the finite set S of places of Q such that D, := Q, ®q D is not isomorphic
to M5(Qy,), and this set has even cardinality. Conversely any finite set S of
places of Q having even cardinality is associated to a quaternion algebra over

Q.

The first point is well-known via the relation with quadratic spaces in dimension
3 (see Appendix D), in fact the classification of quadratic spaces over R by their
signature is well-known in any dimension. The second point is contained in Corollary
E.5, except for the explicit construction which is left as an exercise. The third point
(a special case of the theorem of Hasse-Minkowski, itself a special case of several
theorems, many due to Kneser) is harder. See | , Ch. IV] for an elementary
proof (over Q).

If K is a field of characteristic zero (this will be Q or one of its completions) and
D is a quaternion algebra we denote by G the associated algebraic group over K
defined as the functor

K — Alg — Groups
R+— (R@K D)X

where K — Alg is the category of commutative K-algebras. In particular the base
change of G to some finite extension K’ of K is isomorphic to GLs. The group
G can also be described explicitly using the 1-cocycle ¢ introduced in the proof of
Proposition D.1. Using the same notation as in this proof, ¢ induces a natural
isomorphism between the functor

(4.1) R {g € GLy(K' ®k R)|Vo € Gal(K'/K), Ad(c(0))(c(9)) = g}

and G. We call G the inner form of GLy associated to D (because PGLy is the
group of inner automorphisms of GLj).

If D is not split we define a maximal torus of G to be the centralizer (as an
algebraic subgroup of G) of an element of G(K) ~ K* = D\ K. By Lemma D.3
such an element becomes semi-simple regular after extension of scalars to a finite
extension K’ of K splitting D, so any maximal torus 7" of G is commutative, satisfies
K' xgT ~ GL%K, and is the centralizer of any element of T'(K) ~ K*.

Lemma 4.2. Let K be a field of characteristic zero. Let D be a non-split quaternion
algebra over K. Let G be the associated inner form of GLs.
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(1) Two elements of D are conjugated by G(K) if and only if they have the same
characteristic polynomial (defined in Lemma D.3).

(2) For any mazimal torus T' of G we have N\ (T(K))/T(K) = Z/27Z.

Proof. Let x,y € D have the same characteristic polynomial. If one of them belongs
to K then the result is clear using Lemma D.3. Otherwise they are conjugated
in K’ @k D for some finite extension K'/K, i.e. there exists ¢ € G(K’) such that
grg~! = y. We can assume that K’'/K is Galois. Let T be the maximal torus of
G which is the centralizer of x. Denote F = K|[z], a quadratic extension of K, so
that T~ Resg,x(GL1). For any o € Gal(K'/K) we have o(g)zo(g)™" =y and so
o(g)~'g € T(K'), and this defines a 1-cocycle Gal(K'/K) — T(K'). By Shapiro’s
lemma we have H'(K,T) ~ H'(E,GL;) = {1} (by Hilbert 90), so up to replacing
K’ by a quadratic extension we can find ¢t € T'(K’) such that gt € G(K).

Take x € T(K) ~ K* and consider z~!'detz. It has the same characteristic
polynomial as  but is not equal to z, otherwise we would have 2? = det z € K* but
in this case we have 22 = —det x. Thus z and ™! det x are conjugated in G(K) by
an element of Ny (T(K)) \ T(K). It remains to check that N (T(K))/T(K)
has at most two elements. Letting £ = K[z] C D be the quadratic extension
corresponding to T', we have an isomorphism

mapping F®x E to the sub-K-algebra of diagonal matrices, and it is easy to see that
we get an embedding of Ng ) (T(K))/T(K) into the Weyl group of the diagonal
torus in GLy(FE), which has two elements. O

Proposition 4.3. Let D be a non-split quaternion algebra over Q,. The center of D
s Q, and the non-central conjugacy classes in D* are parametrized by characteristic
polynomials: for every non-split X? —tX + d € Q,[X] the set of x € D* satisfying
trz =t and detz = d is a (non-empty!) conjugacy class in D*.

Proof. The fact that non-central conjugacy classes are parametrized by characteristic
polynomials is not particular to Q,: see Lemma 4.2. The fact that each non-split
polynomial arises follows from Corollary E.5. U

We now recall two theorems proved in Gabriel Dospinescu’s course, using a
slightly different formulation.

First we mention that for any affine scheme X = SpecR of finite type over
Spec(Q), the set X (A) of A-points has a natural topology: if we choose zy,...,z,
generating the Q-algebra R then we have a corresponding embedding X (A) < A",
and we can endow X (A) with the induced topology. Since X (A), being defined by
polynomial equations, is closed in A", it inherits the property of being Hausdorff
and locally compact. The problem is to show that this topology does not depend
on the choice of xy,...,x,. Exercise: prove that this topology coincides with the
topology induced by the embedding X (A) — A® (here A%, the set of maps R — A,
is endowed with the product topology).

In particular for D a quaternion algebra over (Q and G the associated inner
form of GLg, the group G(A) has a natural topology, making it a locally compact
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topological group. As in the case of GLs this topological group is can also be
described as a restricted product over all places of Q, namely the restricted product
of the groups G(Q,) with respect to the compact open subgroups G(Z,). Note that
this makes sense: since it is affine of finite type over Q, we can find equations for the
group scheme G over Z[1/m] for some integer m > 0 (a model of G, i.e. a scheme
G over Z[1/m] together with an isomorphism Q Xz /) G =~ G); then G(Z,) is well-
defined for all p not dividing m. If we consider another model then the two possible
definitions of G(Z,) coincide for almost all p (i.e. all but finitely many). Concretely,
a basis of open neighbourhoods of 1 € G(A) consists of [[,cqUs X [[,05 G(Zy)
where S is a large enough finite set of places of Q and U, C G(Q,) is an open
neighbourhood of 1 € G(Q,).

These considerations were unnecessary for GLy because this group is naturally

defined over Z. There are two somewhat related ways to construct isomorphisms
G(Z,) ~ GLy(Z,,) for almost all p.

Proposition 4.4. Let D be a quaternion algebra over Q and G the associated inner
form of GLg. For any model G of G over Z[1/m] (for some integer m > 1) there
exists a finite S of prime numbers containing all prime divisors of m and such that
for any p & S the topological group G(Z,) is isomorphic to GLy(Z,).

Proof. We sketch two different proofs.

(1) An order in D is defined to be a finitely generated sub-Z-module A of D of
rank 4, containing Z and stable under multiplication. It is easy to see that
orders exist: if L is any lattice in D then for n > 1 sufficiently divisible the
lattice Z + nL is an order. An order gives a model G of GG over Z, defined
as a functor on commutative rings by G(R) = (R ®z A)*. For any prime
number p the Z,-submodule A, := Z, ®z A of D, :== Q, ®q D is an order.
If D, is split, i.e. if there exists an isomorphism v, : D, >~ M5(Q,), then by
the same argument as in Lemma 2.1 there exists g, € GL2(Q,) such that
GV(Ap)g, " C My(Zp). (In particular we have trz € Z, for any = € A,.)
Now the bilinear form

DxD—Q
(z,y) —> tray

is non-degenerate, so A* := {z € D|Vy € A, tray € Z} is also lattice
in D. For almost all p we have Z, ®z A* = A, inside D, (a general fact
about lattices in a Q-vector space) and so with the notation above we have
9pUp(Ap)g, ' = My(Zy), and so G(Z,) is naturally isomorphic to GLy(Z,).
It is easy to deduce from the Cartan decomposition that the normalizer of
GLo(Zy) in GL2(Qy) is Q) GLy(Z,), so the isomorphism G(Z,) is uniquely
determined up to composition with conjugation by an element of PGLy(Z,).
This construction can be refined: one can show that there exist maximal

orders in D, which become isomorphic to My(Z,) at any prime p where D
splits. Using a maximal order gives a “better” model of G over Z.

(2) Using a cocycle ¢ € Z'(Q,PGLy) introduced above, we can give a “con-
crete” model of G as follows. For some finite Galois extension K/Q, the



66 OLIVIER TAIBI

cocycle ¢ is inflated from an element of Z'(Gal(K/Q), PGLy(K)), that we
abusively still denote c¢. Let S be a finite set of primes, large enough
so that every prime which ramifies in K/Q is in S and c¢ takes values
in PGLy(Ok.s), where Ok g = Og[l/m] with Ok the ring of integers of
K and m = HpES p. For simplicity we also assume that 2 € S. Then
the functor (4.1) makes sense for Z[1/ml-algebras R, giving us a model
G of G over Z[1/m]. For p ¢ S, choose a place p of K over p, and let
¢, € ZY(Gal(K,/Q,),PGLy(Ok,)) (here Ok, is the ring of integers of the
completion K,) be the 1-cocycle obtained by restricting ¢ to Gal(K,/Q,)
and using the projection Z, ®z(1/m) Ok,s — Ok . Writing Shapiro’s lemma
explicitly, we see that the group scheme Z, @71 /m G is given by the analogue
of (4.1) for ¢,. But one can show that H'(Gal(K,/Q,), PGLy(Ok,)) = {1}
(hint: first show that H'(k/F,, PGLy(k)) = {1} for any finite extension k/F,
using the interpretation with 3-dimensional quadratic spaces, then use the
filtration of GL2(Of,) by congruence subgroups and H'(k/F,, k) = {0}).
Thus there is an isomorphism Z, Xzj1/m] G ~ Z;, x7 GLj, well-defined (from
¢) up to composing with conjugation by an element of PGLy(Z,). An alter-
native way to produce these isomorphisms is to consider orders in quaternion
algebras, a maximal order in My(Q,) being conjugated to Ms(Z,).

Note that for p ¢ S, we similarly have have ¢, € Z'(Gal(K,/Q,), PGLy(K,)),
and its cohomology class is trivial if and only if Q, ®q D is split. Therefore
under this assumption we get an isomorphism Q, xqg G >~ Q, xz GLs, well-
defined up to composition with conjugation by an element of GLy(Q,).

O

Recall the following special case of a theorem of Mostow and Tamagawa, proved
in Gabriel Dospinescu’s course in the non-adélic setting.

Theorem 4.5. (1) Let D be a non-split quaternion algebra over Q, and G the
corresponding inner form of GLy. Then G(Q)\G(A)/A* is compact.

(2) Let E be a quadratic extension of Q. Then (A ®qg E)*/A* is compact.

There are useful variants of this formulation, for example G(Q)\G(A)/R~q is
also compact, since the map G(Q)\G(A)/R.y — G(Q)\G(A)/A* is proper: the
fibers are isomorphic to Q*\A* /R~o ~ ], Z,"

Let D and G be as in the previous theorem. Let w : Q*\A* — C* be a

continuous unitary character. Let L*(G(Q)\G(A),w) be the space of measurable
functions ¢ : G(Q)\G(A) — C satisfying:

e $(z9) = w(z)p(g) for any z € A* and g € G(A), and

/ (o) dg < o,
AXG(Q\G(A)

quotiented by the subspace of functions vanishing almost everywhere as usual. It
is naturally a unitary representation of G(A) for the action defined by (g - ¢)(z) =
¢(zg), admitting central character w.
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Theorem 4.6. Let D be a non-split quaternion algebra over Q. Let G be the as-
sociated inner form of GlLg. Let w : Q*\A* — C* be a continuous unitary char-
acter. Let Ky be a compact open subgroup of G(Ayf). The unitary representation
LA (G(Q\G(A),w)Er of G(R) decomposes discretely.

Remark 4.7. There are variants of this formulation, for example the unitary repre-
sentation L*(G(Q)\G(A)/Rxq) of G(A)/R+q also decomposes discretely. This state-
ment is more elegant because it does not isolate the Archimedean place of Q among
all places, but the equivalence between the two statements is not trivial and it will be
easter for us to work with levels K.

Recall that the proof relies on a general theorem of Gelfand, Graev and Piatetski-
Shapiro: it is enough to show that for any f € C%(G(R),w!), the operator

p(f) : L(GQ\G(A),w)™ — LHG(Q\G(A),w)™

6 (g -/ o @) dm)

is compact. In fact it is even Hilbert-Schmidt (definition recalled below, as we will
also need this notion).

4.2. Compact, Hilbert-Schmidt and trace-class operators. Let V be a sep-
arable Hilbert space. Our convention is that Hermitian inner products are linear
in the first variable. Recall that a continuous operator 7' : V' — V is said to be
compact if the image of any ball is relatively compact. Also recall that compact op-
erators form a closed subspace of the space B(V') of continuous operators on V' (for
the strong topology). The spectrum o(7") of a compact operator 7" is such that for
any € > 0, {\ € o(T") | |A| > €} is finite. We will use the spectral theory of compact
operators only in the normal (even self-adjoint semi-positive definite) case. If T is
compact and normal then for A € o(7T") \. {0} the eigenspace ker(T" — Ady) is finite-
dimensional, and we have an orthogonal decomposition V' = €D, ker(T — Ald).
Applying this to T*T, we get the following “explicit” characterization of compact
operators on Hilbert spaces.

Lemma 4.8. An operator T : V. — V is compact if and only if there exist a set J
and orthonormal families (f;);es and (gj)jes in V and a family (\;)jes such that
for any € >0, {j € J||\j| > €} is finite, and for any v € V

To = N\, f))g;-

jeJ

Proof. 1t is easy to check that for families as in the lemma, the sum converges for
the operator norm, i.e. T" is a limit of finite rank operators. Therefore such a 7' is
compact. Moreover it is easy to compute T*v = Zjej)\_j(v,gj)fj, and we see that
fi € ker(T*T — |\;|*1dy).

Conversely and guided by this computation, take (f;);c; an orthonormal basis of
V' consisting of eigenvectors for 7T, with eigenvalues p; € Rxg, and let J = {i €

Ipi>0}, g;=p; ’Tf; and \; = p)/*for j € J. O
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The proof shows that if we impose \; € Ry, then the families are essen-
tially unique (up to reordering and choosing different bases for the eigenspaces of
T*T). Note that Lemma 4.8 is an analogue of the Cartan decomposition GL,(C) =
U(n)D*U(n) where U(n) is the (compact) unitary group and D7 is the group of
diagonal matrices with real, positive and decreasing coefficients on the diagonal. In
fact the proof is identical.

Recall that a continuous operator 7' : V' — V is said to be Hilbert-Schmidt if for
some orthonormal basis (e;);e; of V we have Y .|| Te;||* < co. Also recall that any
HS operator is compact.

el

Lemma 4.9. Let T be a Hilbert-Schmidt operator on' V. Then ||T||fg == >/l Tesl|?
does not depend on the choice of an orthonormal basis (e;)icr of V. Moreover
|T*|las = |T||us, and ||-||kg defines a Hermitian inner product on the space B(V )us
of Hilbert-Schmidt operators on V', endowing it with a Hilbert space structure.
Finally, writing a compact operator T : V. — V' as in Lemma 4.8, we have that

T is Hilbert-Schmidt if and only if 3. ; [\;|* < oo.
Proof. Let (f;)jes be another orthonormal basis of V. We have

SITel? =Y [(Ter, )P =D e Tf)1P =D _IT £

el el jeJ el jeJ jeJ

and this implies both independence of the choice of basis and ||T*||us = ||T'||us- The
rest is easy (that is, left as an exercise): any orthonormal basis (e;);c; identifies
B(V)HS with EZ(], V), by T — (Tei)ie[. ]

Let (X, i) be a separable measured space. Recall that HS operators on L?(X, 1)
are identified with elements of L?(X x X,u x u): a kernel K € L2(X x X, X p)
defines a Hilbert-Schmidt operator Tk : L*(X, u) — L*(X, i) defined by

/f K (2, y)du(y).

The expression given in Lemma 4.8 amounts to
)= Ngi(x) f;(y)
jed
which is a sum of pairwise orthogonal elements of L?(X x X, u x u). Exercise: check
that || Tk [[fis = 151"

Definition 4.10. A continuous operator T : V' — V is trace class if it is compact
and for any set J and any orthonormal families (e;)ic; and (h;)ier in V we have

Y icr [(Tei, hy)| < oc.

Remark 4.11. This is not the standard definition, as we impose compactness, but
this one does not require us to define NV T*T for arbitrary T € B(V').

Proposition 4.12. Let V' be a Hilbert space.

(1) A linear combination of trace class operators V- — V' is trace class.
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(2) The composition of two Hilbert-Schmidt operators is trace class.

(3) A continuous operator T : V- — V is trace class if and only if

Z Vp < 0.

pEa(T*T)

(Equivalently, if T is compact and if, writing T" as in Lemma 4.8, ZjeJ I\ <
o0) In particular, any trace class operator is Hilbert-Schmidt.

(4) If T is trace class then trT := Y, (Te;,e;) does not depend on the choice
of an orthonormal basis (e;)ie; of V.

Proof. (1) Easy.

(2) Using Cauchy-Schwarz,

D (MToes hi)| =D [(Toes, Trh)| <[> I Toeill? [ T hal>

el el el iel

(3) Assume that T is of trace class, then T is compact so we can write T as in
Lemma 4.8. Taking e; = f; and h; = g;, we see that } . ;[\ < oo,

Conversely, if T' can be written as in Lemma 4.8 with >, ; [A;| < co then
for any orthonormal families (e;);c; and (h;);e; we have

D (e )l <> Il £)II(g;0 b

el i€l jeJ
< 2l 2 e I 3 Mg b
jeJ el el
<> Il
jeJ

using the Cauchy-Schwarz inequality.

(4) Writing T as in Lemma 4.8 we have

ZT@Z,SZ Zz)\ el?f_] g]7el Z)\ Z €z7fj g]aez Z/\j(gj7fj)

el i€l jed jeJ el jeJ

where the exchange of ) signs is justified by absolute convergence:

(Zuei,fj)(gj,ez) (Zre@,f] )(Z\gm >=1.
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It seems that the only practical way of showing that an operator is trace class is
to write it as a sum of products of Hilbert-Schmidt operators: an easy computation
shows that for 77,7y € B(V)us we have tr 17Ty = (15, T} )ns. Let us make the
trace more explicit in the case where V' = L?(X,u). We have T; = Ty, for K; €
L*(X x X,p x p) and so 1Ty = Tx with K(z,y) = [ Ki(z,2)Ks(z,y) du(2)
(exercise). Note that this makes sense in L*(X x X, u x p): the Cauchy-Schwarz
inequality gives us

Kl < ([ 1t due) ) ([ 1ot au)

and so ||K||* < ||K1]|?|| K2]|?. We also deduce that

J 1K@ dut) < [ \/ / |K1<x,z>|2du<z>\/ [ 1K) ) dte)

< [ A

where the last inequality is another application of Cauchy-Schwarz. This shows that
the restriction of K to the diagonal in X x X is well-defined (by K and K5, not
by K directly!) in L'(X, ). Thinking of the case where X is finite, we guess that
tr Tk = [, K(x,2) du(z). This is easy to check when Ty = T3, and the general case
follows using the polarization identity for (-, -)gs.

This formula will be crucial for the trace formula. Unfortunately defining the
restriction of K to the diagonal properly requires us to write K as the convolution
of K7 and K,. While this should be possible in the applications in this course (this
is the approach taken in | ]), we would prefer to write tr Ty = [, K(z, z)du(x)
directly in cases where it makes sense. The following theorem (Theorem 4.10 in
[ |) achieves just that.

Theorem 4.13. Let X be a locally compact, second-countable topological space and
p a Radon measure on X. Let Ty : L*(X,pn) — L*(X, ) be a Hilbert-Schmidt
operator. Assume that Tk is trace class, and that K can be chosen (among measur-
able functions representing a given class in L*(X x X, X ), i.e. up to adding a
measurable function which vanishes almost everywhere) so that for almost ally € X
the function K(-,y) is continuous. Fix such a representative K. Then x — K(x,x)
15 integrable with respect to p and we have

tr Ty = /K(x,x)d,u(x).
Proof. As we saw above we can write

K(z,y) = Xgi(x) f;(y)

jedJ

with (f;)jes and (g;)jes orthonormal families in L?(X, y1), A; > 0 and Y-, ; A; < oc.
This equality holds in L?(X x X, x u), i.e. away from a set of u X u-measure
zero in X x X. Integrating over X, we see that the series >°..; Ajlg;(x)[* and
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> s Al fi(y)]* converge almost everywhere. Write X as the increasing union of
compact subsets (C)r>1. By Lusin’s theorem, for any k£ > 1, j € J and € > 0 there
is an open subset Uy of C} such that pu(Uy) < € and g; and f; are continuous on
Ck N\ Ug. By Egorov’s theorem, for any k£ > 1 and any € > 0 there is an open subset
Uy of Gy, such that p(Uy) < e and Y75 Ajlg;[* and 7., Aj| f;]?* converge uniformly
on Cy \ Ug. Putting these two results together, we get (exercise) that there is a
sequence (C})g>1 of compact subsets of X with C}, C C and C}, C Cj_, such that
for any k£ > 1 we have

. /L(Ck N C,;) < 1//€,
e for any j € J, f; and g; are continuous on C},
® > s NlfilP and 37 5 Ajlgjl* converge uniformly on Cj.

Replacing C, be its smallest closed subset of full measure (note that second count-
ability is used here), we may also assume that C}, does not admit any proper closed
subset of full measure. It follows from the Cauchy-Schwarz inequality that

K'(w,y) =Y \gi() fi(y)

jeJ

converges uniformly on C}. x C}, and so it defines a continuous function on Cj, x C},
which coincides with K away from a negligible set. More precisely, let Sy = {y €
Cr fcl,c |K(x,y) — K'(x,y)| du(x) > 0}, so that u(Sk) = 0. For any y € C}, \ Sk, the
set of z in C}, where K(x,y) # K'(x,y) has measure zero, and since both K(-,y)
and K'(-,y) are continuous it is also open and by construction of C}, it is empty.
Let X" = (U, C}) ~ (U, Sk). Taking all k into consideration, we get that K
coincides with K’ on (X’)2. We have (X \ X’) < limsup,, #(Cj, \ C},) = 0. Finally

tr Ty = ZAJ'/ng(x)mdu(fv) ZZAj/ 9;(@) f; (@) dp(w) = | K(x,x)dp(x)

jed jed X! X!

where the last equality is given by the dominated convergence theorem (using
g;(2) fi(2)] < (lg;(@)]> + [ f;(2)[?)/2 and 37, Aj < o0) and also shows that x
K (z,z) is integrable. O

4.3. The trace formula for anisotropic groups. Let D be a non-split quaternion
algebra over Q and denote by G the corresponding inner form of GLs.

Recall that a smooth function on G(A) is f : G(A) — C such that for any
g € G(A), there exists U an open neighbourhood of g in G(R) and U a neighbour-
hood of gy in G(Ay), and ¢ : Uy, — C a smooth function, such that f(z) = ¢ (r)
for any x € Uy x Uy. Similarly, for any k > 1 we define functions of class C* on
G(A) (note that these are “smooth”, i.e. locally constant, on the finite adélic factor
G(Ay)). Exercise: show that any f € C*(G(A)) is a linear combination of functions
of the form [], f, where fs, € C¥(G(R), for any prime number p f, € C=(G(Q,))
and for almost all prime numbers p, f, is the characteristic function of G(Z,). Sim-
ilarly, for w : A* — C* a continuous character, any function in C*(G(A),w™!) is a
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linear combination of functions of the form [ [, f, where for almost all prime numbers
p, fp is supported on G(Z,)Z(Q,) and for any k € G(Z,) we have f,(k) = 1.

Also recall that any Haar measure on G(A) is given by a collection of Haar
measures on G(Q,) such that for almost all prime numbers p, vol(G(Z,)) = 1.

We will consider orbital integrals of functions on G(Q,), v any place of Q, and
G(A). For the case where v is non-Archimedean and Q, ®qg D is split we defined
and studied orbital integrals in Section 3.2. For any place v such that Q, ®q¢ D
is not split, for any v € G(Q,) the quotient G.(Q,)\G(Q,) is compact and so the
theory is easy (of course, explicit computations are not so easy ...). For GLy(R),
the (formal) definition of O, (f) in Definition 3.1, the computation for v semi-simple
regular hyperbolic (3.2), and Lemma 3.5 (showing that for any f € C2(G(R)), O,(f)
is the integral of a continuous compactly supported function) all adapt. Of course
in the real case orbital integrals are almost never finite sums as in (3.1). As in
the p-adic case we have similar results when f € C%(G(R),w™!). The analogous
property in the adélic setting is the following fact.

Lemma 4.14. Let w : A* — C* a continuous character. Fiz Haar measures
on Gaa(Qy) such that vol(Gada(Z,)) = 1 for almost all prime numbers p. Let
f =1L, f» € CHG(A),w™) (as discussed above). Let v € G(Q) be semi-simple.
Then for almost all p the set of [g,] € G(Qu)\G(Qp)/G(Zy) such that g, 'vg, €
G(Z,)Z(Q,) is simply {[1]}, and so vol(G,(Q,)/Z(Q,)) O,(f,) =1 for almost all p.
In particular the function g — f(g 'vg) in C*(G,(A)\G(A)) is compactly supported,
and O,(f) = 1, 05(f,)

Proof. Left as an exercise, using formula (3.2) and the argument around Lemma 3.8
(for almost all p we have Z,[v] = Og). O

Recall the following theorem which was stated in Gabriel Dospinescu’s course,
that we will not prove either.

Theorem 4.15 (| ). For any f € CX(G(R)) there exist k > 1 and f1, ¢1,
ooy Jrr ge in C(G(R)) such that f =", fi * g;.

Remark 4.16. In the applications in this course a weaker result would be enough,
with g; € C*(G(R)) for a large enough integer k. This weaker result is easier to prove
(although far from trivial: another use of elliptic operators ... ): see | , §1.1.10]
and | , Theorem 4.3 and Lemma 4.5]. In fact the reader can check that all
consequences of trace formulas that we will prove could be proved by only considering
functions of the form Y. fi x g; (without using that any smooth function can be
written in this manner). In other words, these results are not strictly necessary for
the purpose of these notes. However, avoiding them would make the formulation of
certain results more complicated, and require more computations.

Corollary 4.17. Let w : Z(Q)\Z(A) — C* be a continuous unitary character.
Then for any f € C>°(G(A),w™") there exist k > 1 and f1,g1,-- -, fr, gx € C(G(A),w™ 1)
such that f =", f; * g;.

Theorem 4.18. Fiz a Haar measure on Guq(A) and a continuous unitary char-
acter w : Z(Q)\Z(A) — C*. For any f € C*(G(A),w™), the operator p(f) on
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L*(G(Q)\G(A),w) is trace class and

(4.2) trp(f) =Y 1) vol(Go(Q)Z(A)\G(4))O,(f)

[v]

where the sum is over conjugacy classes of elements v in Gaq(Q), () is the index
of G,(Q)/Z(Q) in Cent(y,Gaa(Q)) (exercise: «(y) € {1,2}, and u(y) = 2 if and
only if try = 0), and only finitely many terms in the sum are non-zero.

Note that the product vol(G,(Q)Z(A)\G(A))O,(f) does not depend on the
choice of a Haar measure on G, (A)/Z(A). Observe also that f is bi-K s-invariant for
some compact open subgroup K of G(A;), and so we could replace L*(G(Q)\G(A), w)
by L?(G(Q)\G(A),w)Es (same trace), and find ourselves in the setting of Theorem
4.6.

Proof. We have

B ¢ fla ) d
/Gad@)\cad(m (w) D, flaw)dy

YEGaq (Q)
=/ O(y) Ky(x,y) dy
Gad (Q)\Gad (A)

with Ky¢(z,y) = Zyegad((@)f(x_lfyy). For z and vy in a compact subset C of
G(A), there is a finite subset F(C,supp(f)) of Gad( ) such that for z,y € C
and 7 € G.a(Q) \ F(C,supp(f)) we have f(z~lyy) = 0, since Goq(Q) is dis-
crete in G,q(A). In particular the function K; on (G(Q)\G(A))? is continuous.
Moreover K(zz,20y) = w(z125 ) Ks(x,y) for 21,20 € Z(A), so |K;| induces a
bounded function on the compact topological space (G.q(Q)\Gaa(A))?, in partic-
ular |Ky| € L*((Gaa(Q)\Gaa(A))?). This shows that p(f) is Hilbert-Schmidt. To
show that it is of trace class, use the Dixmier-Malliavin theorem which expresses
p(f) as >, p(fi)p(g;) and apply Proposition 4.12. Finally Theorem 4.13 (or the
Dixmier-Malliavin expression, see the discussion before Theorem 4.13) shows that

eolf) = [ Ky(w, 2) ds.
(Q\Gaa(4)

Note that integrability of K; (and of K|y, defined analogously even though |f]|
may not be differentiable ...) can also be checked directly, without using Theo-
rem 4.13: x +— Kz (z,x) is a continous function on the compact topological space
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Gaad(Q)\Gaq(A). This justifies the inversion of integral signs in the following:

/ (x,z)di = Z/ f(x’l&v) di
Gad(@)\Gad(A) ad(@)\Gad

ol }

= Z/ Z fz o 'yax) di
Gad(@)\Gad( )

A) aeCent(v,Gaa (Q))\Gaa (Q)

[]
= / )Y feTaT e di
['Y] Gad (Q)\Gad (A) OtEG’y (Q)\G(Q)

Thus

tep(f) = 1) [ fa ) di
(G+(Q)/Z(Q)\Gaa(A)

(7]
= ZL(V)_I/ / fla™y yya) dyy dic
- Gy (WN\G(B) (G (Q)Z(A))\Gr ()

= (y) vol((G,(Q)Z(A)\G,(A)) f(z ' yz) die
Z () /G e U@ ZING () 52
- Z 1 v0l((G (@) Z(A)\G (A))O, (£).

Finally we must prove that only finitely many conjugacy classes [y] in G.q(Q)
satisfy O,(f) # 0. In fact this follows from the proof of continuity of K; above:
choose a compact subset C' C G,q(A) which surjects onto Goq(Q)\Gaa(A), then on
C' x C only finitely many elements on G,q(Q) contribute to the sum defining K.
Although it is not absolutely necessary, let us give a direct argument which does
not use compactness of G,q(Q)\Gaa(A). Recall that for any field of characteristic
zero F'| conjugacy classes in G(F) are parametrized by trace and determinant. This
implies that the map v = tr? /det : G,q(F) — F is an invariant of conjugacy
classes in Gq(F'). Consider the compact subset supp(f) of G.q(A), and its image
v(supp(f)) in A. Since Q is discrete in A, the subset F' N v(supp(f)) of F' is
finite. Unfortunately the invariant v does not completely characterize conjugacy,
although counter-examples are somewhat rare. More precisely, one can check that if
v(71) = v(72) do not vanish then v, and 7, are conjugated in Gq(F); but v=1({0})
is a union of several conjugacy classes in general (if D was split and G = GLy a
0 1
S o)
arithmetic invariants of conjugacy classes in G,q(Q). If § € Guq(F) then for a
lift ¢ € G(F) of g, the image ((g) of detg in F*/F*? does not depend on the
choice of the lift g, and is clearly invariant by conjugation. (Identifying G.q with a
special orthogonal group as explained in Section 4.1, ((g) is the spinor norm of g.)
There exists a finite set S’ of places of Q, containing the Archimedean place and all
finite places where w is ramified (i.e. non-trivial on Z)) such that f = fs f° where
fs € C&(Iloes G(Qu),ws ) and 5 € [[,45 C*(G(Zy)Z(Q,),w, ). Since G(Z,) is

a compact subgroup of G(Q,) we have det G(Z,) C Q; and so a necessary condition

simple example would be diag(—1,1) and ( To conclude we also consider
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for the non-vanishing of O,(f) is that v,(¢(y)) € 2Z (note that this parity is well-
defined!) for all p not in S. Since S is finite this only leaves finitely many possible
values for ((7) in Q*/Q*?, and since we have already seen that (tr~)?/det~y can
only take finitely many values, this implies that up to the action of Z(Q), the pair
(tr7,det7), where 7 € G(Q) lifts , can only take finitely many values. O

Of course this formula is useful in combination with Theorem 4.6. Recall that
this theorem gives a canonical orthogonal decomposition

LA(GQ\G(A),w)™ = ED Home(r) (Too, L (G(Q\G(A), w)"7) @ 7o

mX,GG(

where each Homgg) (oo, L*(G(Q)\G(A), w)™7) is finite-dimensional and has an ac-
tion of H(G(Ay), Ky, w;l). In particular for any irreducible unitary representation
Too Of G(R) having central character we,

lim Hom ) (oo, L*(G(Q\G(A),w)" 1)

is an admissible representation of G(Ay) having central character wy. It is endowed
with a natural G(A)-invariant Hermitian inner product (canonical up to Rs), and
so it is semi-simple. (Exercise: formulate unitarity of the G(Ay)-action in terms of
the Hecke algebra action. Which formulation is clearer?)

Thus we have

(4.3) trp(f Zm Ytro(f

where mY(m) € Zsp, the sum is over all isomorphism classes of tensor products
T = T @ my With 7o, a unitary irreducible representation of G(R) with central
character w., and 7y a smooth admissible unitary irreducible representation of G(Ay)
with central character wy, and all but countably many m®(7) vanish. Note that
the sum is absolutely convergent (by definition of trace class operators), but has
infinitely many terms in general. Also note that each 7 decomposes as a restricted
tensor product ®; m, of irreducible smooth representations of G(Q,), almost all of
which are unramified (and endowed with a non-zero invariant under G(Z,) ...). We
will say that 7 is an automorphic representation if m® () > 0.

Remark 4.19. Recall from Gabriel Dospinescu’s course that if we fix a mazximal
compact subgroup Ko, of G(R) then we also have a decomposition of the space of
square-integrable automorphic forms

AGC@\GH. = @ (1o o)

7r:7roo®71'f

where HC (7o) is the (g, Koo)-module (g := C ®g Lie G(R)) consisting of smooth
K -finite vectors in mo,. This decomposition contains the same information as the
decomposition of L* above since any unitary irreducible representation ms, is deter-
mined by the (g, Ko )-module HC(ms). Recall that there is also a decomposition of
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the unitary representation L*(G(Q)\G(A),w) of G(A) (note that this is not a smooth
representation of G(Ay)), which also contains the same information, although the
relation is non-trivial. Note that in this course we have not studied topological rep-
resentations of p-adic groups.

In these notes we will only have to consider topological representations (even uni-
tary on Hilbert spaces) of real groups, and smooth representations of p-adic groups.

Our first application of the trace formula is the existence of automorphic rep-
resentations whose components at finitely many places are given (Theorem 4.22
below). An obvious necessary condition for existence is that the centrals characters
are restrictions to QJ of a continuous character Q*\A* — C*. This condition is
made transparent by the following lemma.

Lemma 4.20. Let S’ be a finite set of prime numbers. Let (n,)pes be a family of
(automatically unitary) continuous characters m, : Zy — C*. Then there exists a
continuous unitary character w : Q*\A* — C* such that for any p € S’ we have

W‘zg = Tlp-
Proof. Use once again A* = QXR>02X. O

Remark 4.21. The proof shows that we can even find w which is unramified at all
primes not in S" and equal to a given unitary character on Rsqy. The case of an
arbitrary number field instead of Q is more subtle, the statement is not as simple
but it essentially reduces to Dirichlet’s unit theorem and | ].

Theorem 4.22. Let S be the finite set of places where D is not split. Let w :
Q*\A* — C* be a continuous unitary character. Let S’ be a finite set of prime
numbers, and (0,)pes a collection of smooth irreducible representations of G(Q,)
having central character w, = w|Q;. Assume that for any p € S’ S the represen-

tation o, is square-integrable. There exists an irreducible representation m = ), m,

in ligle LAH(G(Q)\G(A),w)"r such that 7, ~ o, for allp € S'.

Proof. Up to adding to S’ a prime number which is not in S, and taking for o, a
supercuspidal representation of G(Q,) having central character w, (such a represen-
tation exists by Theorem 3.37), we can assume that there exists p € S’ \ S such
that o, is supercuspidal. Let ¢ be a prime number which does not belong to S’. We
will apply the trace formula to a function f € C°(G(A),w™!) which can be written
as a product [, f,.

e For v a place of Q which does not belong to S’U{¢}, pick f, € H(G(Q,),w; )
(for v the Archimedean place this means C°(G(Q,),w,')) such that f,(1) #
0, and f, is the characteristic function of G(Z,) for almost all primes numbers

P

e For each p € S, choose a pseudo-coefficient f, € H(G(Q,),w,") for the
representation o,. Recall that such pseudo-coefficients were constructed in
Propositions 3.28 and 3.29 for p € S, and are easy to construct using finite
group representation theory for p € S (for example f, = (dimo,) 'tro,).
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e Finally, for K, a compact open subgroup of ker(det : G(Q;) — Q}), small
enough so that K,NZ(Qy) = {1}, take f, € H(G(Qy),w, ") to be the function
with support in K;Z(Qy) and such that f(k) = vol(K,Z(Qy)/Z(Q))™" for
ke K,.

Now we claim that if K, is chosen sufficiently small, the only non-vanishing sum-
mand on the geometric side of the trace formula (4.2) is for v = 1. Start with
an arbitrary K,. The set X (supp(f)) of conjugacy classes [y] in G.q(Q) having a
non-zero contribution in the trace formula is finite. For any non-central v we have
v(y) # 4 (v as in the proof of Theorem 4.18). By continuity of v there exists an
open subgroup K of K, such that v(K;) Nv(X (supp(f)) ~ {[1]}) = 0. Thus up to
replacing K, by K, the claim holds true.

So the geometric side of the trace formula is simply vol(Z(A)G(Q)\G(A))f(1).
Since f(1) # 0, it does not vanish, and so the spectral side (4.3) does not vanish
either. In particular there exists m such that m%(7) > 0 and tr7(f) # 0. We have
trw(f) = [, trmu(fy), so the property of pseudo-coefficients implies that for any
p € 5, either m, ~ 0, or p ¢ S and 7, is one-dimensional. Corollary 4.24 below
shows that the second possibility contradicts the fact that there exists p’ € S’ S
such that 7, is supercuspidal. 0

Theorem 4.23 (Strong approximation). Let G’ be the algebraic subgroup of G which
18 the kernel of the determinant morphism. Let v be a place of Q which is not in S,
i.e. Q, ®g D ~ My(Q,). Then G'(Q)G'(Q,) is dense in G'(A).

Proof. See | , 83]. d

Corollary 4.24. Let 1 = 7o ® ®; 7, be an automorphic representation of G(A)
having central character w. Assume that there exists a place v of Q which is not in
S and such that w, is one-dimensional. Then m is one-dimensional, i.e. for every
place w of Q the representation m, s one-dimensional.

Proof. Fix a maximal compact subgroup K., of G(R). Fix vy € HC(7) ® ®; Tp N
{0}. For simplicity, assume that vy is a pure tensor. There exists a compact
open subgroup K; of G(Ay) fixing vg. Let ¢ : Moo ® Wfff — L*(G(Q)\G(A),w)xs
be a non-zero continuous G(R)-equivariant linear map which is also equivariant
for the action of the Hecke algebra H(G(Ay), Ks). (Note that this last prop-
erty is equivalent to requiring that ¢ extends to a G(Ay)-equivariant map = —
ligK} L2(G(Q)\G(A),w)k7.) Let f = ¢(vy), then f is an automorphic form (this

non-trivial fact was proved in Gabriel Dospinescu’s course), in particular it is con-
tinuous. The group G'(Q,) ~ SLy(Q,) is perfect, so G'(Q,) C kerm,, and f is
right G'(Q,)-invariant. Let z € G(A) and g € G'(A). There are sequences (V,)n
and (y,), of elements of G'(Q) and G'(Q,) such that (y,y,), converges to xgz!,
so f(zg) = lim, 1o f(ynz) = f(x). The representation = is irreducible and so ¢
is injective, so we deduce that vy is fixed by G’(A), and so for every place w of
Q there is a non-zero vector in 7, fixed by G'(Q,,). Since G'(Q,,) is distinguished
in G(Q,) this implies that G'(Q,,) C kerm,, (for w = oo we use the fact that 7
is topologically irreducible, whereas for finite w we use the fact that m, is simply

irreducible). O
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Remark 4.25. (1) Theorem 4.23 and Corollary 4.24 (for discrete automorphic
representations) are still valid if S =0, i.e. if G = GLy, with the same proof.

(2) If we knew more about the classification of representations of GLa(R) and
harmonic analysis for this group, including the existence of pseudo-coefficients
for square-integrable representations, we could also include the Archimedean
place in the set S" in Theorem /.22. For the case of arbitrary reductive groups
over number fields see | .

4.4. The simple trace formula for GL;. We would like to prove an analogous
formula for GL,. It turns out that this is much harder, due to the continuous part
of the automorphic spectrum on the spectral side, and the contributions of non-
elliptic elements on the geometric side (note that vol(G,(Q)Z(A)\G,(A)) = +oo
for 7 semi-simple regular hyperbolic). Under a simplifying assumption on the test
function, we will get a reasonably simple trace formula for GL,.

For the algebraic group GL; over (Q change the notation used in the first chapters
for GLy(Q,): the letters G, B, T, N will be used to denote the corresponding
algebraic groups over Q.

We first recall the fundamental results on the cuspidal automorphic spectrum
proved in Gabriel Dospinescu’s course. We first introduce cusp forms in the L2
setting. Let w be a continuous unitary character of Z(Q)\Z(A).

Lemma 4.26. Let ¢ € L*(G(Q)Z(A)\G(A),w). Then for almost all g € G(A), the

integral on the RHS of
on(0) = [ olng)ds
N(Q)\N(A)

converges absolutely. Moreover if vol (Z(A)\{:B € GQ\GA) | p(x) # 0}> =0
then ¢p(g) = 0 for almost all g € G(A).

Proof. Let gy € G(A). There exists a continuous compactly supported function
Ty : Z(A)\G(A) — Rs¢ such that Ty(go) > 0. Let T : Z(A)G(Q)\G(A) — Ry
be defined by T'(g) = 276 zona@ T (vg). This function is clearly continuous and
compactly supported, so it is bounded and

/ 16(9)T(q) dg < .
Z(A)G(Q\G(A)

But this equals

/ 16(0)"To(g) dg — / / 16(ng)|*To(ng) dn di
Z(A\G(A) Z(A)N(A)\G(A) JN(A)

:/ / p(ng)? Z To(yng) dndg.
Z(A)N(AN\G(A) JN(Q)\N(A)

YEN(Q)

The fact that this last integral converges implies both statements in the lemma, using
Cauchy-Schwarz (note that N(Q)\N(A) is compact, so that the constant function
1 on it is square-integrable). O
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Let L2, (G(Q)\G(A),w) be the subspace of L?*(G(Q)\G(A),w) consisting of all

cusp

¢ such that for almost all g € G(A) we have

/ ¢(ng) dn = 0.
N(@\N(A)

Theorem 4.27. Let Ky be a compact open subgroup of G(Ay). Then the unitary
representation L2 . (G(Q)\G(A),w)Xs of G(R) decomposes discretely.

cusp

Recall that this theorem is also proved using the theorem of Gelfand, Graev
and Piatetski-Shapiro, that is by proving that for any f € CO(K\G(A)/ K w™),
the operator peusp(f), which is the restriction of p(f) to L2, (G(Q\G(A),w)"/,
is compact, even Hilbert-Schmidt. Note that the proof did not exhibit an explicit
kernel for this Hilbert-Schmidt operator. Nevertheless, we shall see that in the case
of a cuspidal test function f, essentially the same arguments, applied to the kernel
instead of automorphic forms, do give an explicit kernel.

Before we can achieve this in Lemma 4.34 below, we need to recall two essential
tools: reduction theory and the Poisson summation formula.

Let K, be the maximal compact subgroup Os(R) x G (Z) of G(A). Define

sy ={(§ V) € B [leha = eha =1}

Note that this subgroup of B(A) contains T'(Q)N(A), in particular it contains B(Q).
For nn > 0 define

S(n) = {diag(z, y) € G(R) [z,y > 0 and z/y > 7}.
We also introduce the function H : G(A) — R defined using the Iwasawa de-
composition by H(bk) = log|z/y| if b = (g Z) € B(A) and k € Ky. Clearly H

is left B(A)! and right Ky-invariant. We have a “product formula” (actually a sum
because of the logarithm ...) H(g) =), H,(g,). Note that we have

sayso = st ={(§ 1) € B

Cc

alfl =}

and B(A)'S(n)K, = H ' ([logn, +o0|).
Theorem 4.28. There exists a compact subset Q of B(A)! and n > 0 such that
G(h) = GQQS () Ky,

Remark 4.29. This is a coarser version of the classical fundamental domain for the
action of SLy(Z) on the Poincaré upper-half plane; explicitly we may take n = \/3/2,

>4 )

See | , Ch. VII]. For arbitrary reductive groups over number fields the first part,
together with the compactness criterion for arithmetic quotients, are theorems due
to Borel, Harish-Chandra, Mostow, Tamagawa, Godement, Weil (see | | and
[ |; the latter also covers reductive groups of positive characteristic).

2| < 1/2} c N(R).
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The first point in the following lemma gives “coordinates near the cusps” on
G(Q)\G(A). The second point is a slight generalization that will be useful later.

Lemma 4.30. (1) For any place v of Q, g € G(Q,) and n € N(Q,) we have

Proof.

H,(nwg) < —H,(g). In particular for g € G(A) and n € N(A) we have
H(nwg) < —H(g). In particular for k > 1 we have an embedding

B(Q)\B(A)'S(r) Ko — G(Q\G(A)
(and similarly if we take quotients by Z(A)).

Let n > 0. Let C be a compact subset of Gaa(A). There ezists k > 0
(depending on n and C') such that for any x € B(A)'S(k)Ky, v € G(Q) and
y € B(A)'S(n)Ky satisfying x~'yy € C, we have v € B(Q).

(1) We consider the Archimedean and non-Archimedean cases separately.

b), and that n = 1 since H,, is left

In any case we can assume that g = (3 1

Z(Q,)N(Q,)-invariant. We have wg = (2 :2)
1 b )
b a*+b?
wg'(wg) with x € B(Q,). We find z € Z(Q,) (a/(a20+ ) b/(a21+ b2)>,
and log(a/(a* + b*)) < log(a/a*) = —loga.

For a prime number p, doing column operations on wg we find that if b/a € Z,

then H,(wg) = —H,(g) whereas if b/a € Q, \ Z,, then H,(wg) = —H,(g) —
2log(|b/al).

The last assertion follows from the Bruhat decomposition for GLy(Q): if
H(g) >0 and v € GLy(Q) \ B(Q) then H(vg) < —inf,enq) H(wng) < 0.

In the real case we compute wg'(wg) = and solve for zfx =

Up to replacing C' by KoCK, we may assume that C is bi-Ky-invariant.
Then B(A)'S(k)KoC = B(A)'S(k)C. There exists ¢ > 0 such that C' C
B(A)'S(€)Ky, so that B(A)'S(k)KoC' C B(A)'S(ex)Ky. Assume that & is
large enough so that xken > 1. We will show that for any v € G(Q), if
YB(A)'S(n) Koy N B(A)'S(k)KoC # 0 then v € B(Q). Since B(Q)B(A)! =
B(A)' we may assume that v = 1 or v € wN(Q) (Bruhat decomposition).
The previous point shows that H(wN(Q)B(A)'S(n)Ky) C] — oo, —log(n)],
whereas H(B(A)'S(k)K,C) C [log(ke), +oo].

—e

O

I do not know of a reference for a generalization of the second part to arbitrary
reductive groups, but there is no doubt that such a generalization exists ...

We now recall the Poisson summation formula. First, the classical form, which
is well-known. The assumptions we put are far from optimal.

~ ~

Proposition 4.31. For f € C(R) we have Y, , f(u) =3, o5 f(v), where f(x) =

Je £(t)

e~ %t dqt and the right-hand side is absolutely convergent.
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Proof. The function ¢t — > ., f(t +u) on R is Z-periodic and C' so it is the sum
of its Fourier series, convergent for the sup norm. 0]

Recall that A =Q+ R+ Z and that the kernel of the surjection R x 7 — Q\A
is Z. It follows that there is a unique continuous (automatically unitary) character
Yo : Q\A/Z — C* whose restriction to R is t — exp(2int).

Exercise 4.32. Show that Q — Homeont (Q\A, C*), X — () is an isomorphism
of topological groups. (This fact is not strictly necessary for what follows but it ex-
plains the adélic Poisson summation formula in the general framework of Pontryagin
duality.)

For f € L'(A) define f : A — C by f(z) = [, f(t)o(—tx)|dt|. Note that
the Haar measure |dt| on A is characterized by the fact that vol(Q\A) = 1. For
zr = (z,), € A" we denote

|'T’ad = H |xv|v

the norm of x, where |- |, is the usual absolute value and |z, |, := p~»®») which is
equal to 1 for almost all prime numbers p. Note for z € Q* we have |z|,q = 1.

Proposition 4.33. Let f € C1(A).
(1) There exists an integer m > 1 such that f is invariant under mZ.

(2) For any a € A* we have

> fla') = lala Y flav).

veQ veEQ

(3) There erists a constant ¢ > 0 such that if f is of class C* (for the real
variable) then for any a € A* we have

> fla™v) = lalua f(0)| < clalgdm?[[ £]|1

veQ

where " is the second derivative of [ with respect to the real variable.

Proof. The first point follows from the isomorphism C}(A) ~ C}(R) ®c C1(Ay) and
the corresponding statement for C}(A ;). For any compact subset C' of A there exists
a finite subset S of Q such that for x € C' and v € Q.S we have f(x+v) = 0. Define
F e C' (Q\A) by F(z) =3¢ f(x +v). This defines a function on Q\A/mZ. By
density of Q4+ R in A (i.e. strong approximation for the additive group) the natural
morphism R — Q\A/ m7Z is surjective. It has kernel mZ and R/mZ is compact, so
we have an isomorphism of topological groups

R/mZ ~ Q\A/mZ.
Define G € CY(R/Z) by G(x) = F(mx). We have

G(0) =Y G(n).

nez
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We compute

du

/
- /R -~ F(u) exp (—2i7r%u> =
/:

/A
= f(n/m)
We obtain the formula R
D f) =) fn/m).
veQ neL

For v € Q . m~'7Z there exists x € mZ such that vz belongs to Ay ~\ Z and so
Yo(vr) is not equal to 1, and we have

Flw) = / F()o(—tv) |df
_ / £+ )o(— (u + 2)v) |du

— yo(vz)”! / ()bl —uw) |du
= Yo (vz) " f(v)

-~

which shows that f(v) vanishes. So the above formula can also be written
D) =2 J).
veQ veEQ

For a € A* define f, € C}(A) by f.(z) = f(a™'z). For x € A we have
Fle) = [ (e tyun(~ta)
A
= [ #(wval(—uaa)lal

~

= la| f(ax)
and so applying the above to f, we obtain
S fa o) =D fulw) =Y falv) = [alaa Y Flav).
veQ veQ veQ veQ

Note that this formula does not change if we replace a by an element of aQ*.
Because of the decomposition A* = Q*R.(Z* this allows us to assume that a
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belongs to R>02X. In this case the function f, is also invariant under mZ and we
have f(av) =0 for v € Q ~ m™'Z. If f is of class C? the for x € A we have, using
integration by parts,

F(x) = —4n*a? f().

In particular we have

-~ _—m? ?;(cm/m)
2 fanfm)=goa >

n€Z~{0} ® nez~{0}
Note that for a € R.Z* we have |aad| = |aoo|. Using the estimate
(@) < (1|2
we obtain the inequality in the proposition. 0

Lemma 4.34. As above Ky is a compact open subgroup of G(Ay) and w is a unitary
continuous character of Z(Q\Z(A). Let f € C*(K;\G(A)/Ks,w™) be cuspidal,
i.e. for any x,y € G(A) we have fN ) f(zny)dn = 0. Then the operator p(f)
on L*(G(Q)\G(A),w) has image contained in L2, (G(Q)\G(A),w) and is Hilbert-
Schmidt with kernel K; : (G(Q\G(A))* = C, (x,y) — ZVQZ(Q)\G(Q)f(x*Wy).
This kernel is continuous and bounded.

Proof. Note that bounded implies square-integrable modulo (Z(Q)\Z(A))2. In fact
this is how we will prove that p; is Hilbert-Schmidt. As in the anisotropic case
the function K is continuous, satisfies K (217, 20y) = w(z125 ) Kf(z,y) for 21, 29 €
Z(A) and for any ¢ € L*(G(Q)\G(A),w) we have

(0(£)6) (x) = / o, DKLU b

If X is a compact subset of Goq(A), for x € X, for any 7 € Goq(Q) and y € G.q(A)
such that x7!yy we have that y belongs to the (compact) image of Xsupp(f) in
Gad(Q)\Gad(A). This shows that for x € Gaq(Q)\Gaa(Q)X the support of |K(z, )|
is contained in a compact subset of G.q(Q)\Gaa(A) which does not depend on z (of
course it depends on X and f), in particular it is bounded independently of x. The
kernel K is also cuspidal in the first variable: for any x,y € G(A) we have

/ Ky(nwz,y) dﬁ:/ Y fanTy)dn
N(@)\N(A) N@\N®) \c&(q)

= dn
/N(Q)\N() Z Z fn e )

A) 4 eN(Q)\Gaa (@) 2EN(Q)

= ) / Y fla'nTla yy)dn
YEN(Q\Gaa(@) Y VQOWA) oen(q)

= > fla™'n" yy) dn
YEN(Q)\Gaa(@) 7 V(A
— 0
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where the third equality is justified by absolute convergence (k| is also continuous
and N(Q)\NN(A) is compact so the first integral is finite) and the last equality follows
from cuspidality of f. Now for any x € G(A) the image of N(A)z in G.q(Q)\Gaa(A)
is compact, so | K| is bounded on N (A)z X (Gaq(Q)\Gaa(A). Since |¢| is integrable
on Ga(Q)\Gaa(A) (it is square-integrable and vol( a(Q)\Gaa(A)) is finite) we have

[ 6(9) K (. 9)| dj i < o
N(Q\N(A) 7 Gaa(Q\Gaa(A)

so we can swap integral signs and deduce that we have

[ o) i =o.
(Q\N(A)

This shows that the image of p(f) is contained in L7, (G(Q)\G(A),w).

Let us now show that |K[| is bounded. Let C' C G.q(A) be Kosupp(f)Ko, and
write C' = B¢ K, for some compact subset Be of Bag(A) which is right Baa(A) N
(Ko/(KoN Z(A)))-invariant. Let Q C B(A)! and > 0 be as in Theorem 4.28. Let
k> 0 be as in (2) of Lemma 4.30 (with respect to n and C). Let z = o,diag(a,, 1)k,
with o, € Q, a, € R>, and k, € K, and similarly y = o,diag(a,, 1)k,. Assume that
a; > k. By Lemma 4.30, if v € G,q(Q) is such that x7'yy € C then v € B.q(Q).
We then also have (in Ga.q(A)) k.2 'vyk, ! € KCKy = BcKj, and moreover
y
0
C" C A* is a compact subset which depends on C' and €2 (explicitly C” is the image
of QBcQ1). Using the decomposition A* = @XR>OZX (which is a homeomorphism)
we conclude that there exists € > 0 and a finite set F' C B,q(Q)/N(Q) (depending
on Q, n and C) such that for z € QS(k)Ky, y € QS(n)Ky and v € G.q(Q), if
z7 vy € C then v € B.a(Q), a./a, € [e,¢ '] and the image of v in B,q(Q)/N(Q)
lies in F'.

This argument is symmetric in z and y, up to replacing C' by the larger compact
subset of Goq(A):

Ko{g € Gaa(A) | g € supp(f) or g~ € supp(f)} Ko.

Let F be the preimage of F in {diag(a,1)|a € Q*}, naturally in bijection with F.
We have shown that for (z,y) € (2S(n)Ky)?, one of them in QS (k) Ky, we have

Kp(z,y)=Y_ > fla'yny).
WEF”GN(Q)

Note that the image of (QS(n)Ky \ QS(x)Kp)? in (G(Q)Z(A)\G(A))? is relatively
compact (essentially because the interval [n, x| is compact). In order to bound K
on (G(Q)\G(A))?, it is therefore enough to bound the sum over n € N(Q) when
x or y belongs to QS(k)Ky. For this we will use the Poisson summation formula.

Write v = diag(a,, 1) and n = ((1] 1;) with u € Q, so that

1 -1 -1 -1
1 g faz O\ g fax O0) (a;aya, 0 (1 a,u\ fa,~ O a, 0
vy =k (0 1)% (0 1)( o 1)\ 1 o 1)%\1 o)

ke 'yyk, !t € Baa(A) so writing v = T) we obtain a,'a,a, € C' where

-~ ~

Br(z,y:7) Ba(y)
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Observe that the set {diag(a™', 1)odiag(a,1) |0 € Q, a € Ry, } is relatively compact
in B(A)'. Together with the relation a,/a, € [¢,e '] observed above, this implies
that the function 8y (resp. B») is bounded on (25(n)Ky)? x F (resp. Q5(n)Ky), in
the sense that its image is relatively compact in G(A). Define

Ef,x,y,w A —C
u — f (51(1',,%7) <(1) l{) Bz(y)) :

The Poisson summation formula (Proposition 4.33) reads

—

Z f(z7'yny) = constant x Z Ay Zf .z~ (ayv).
neN(Q) veQ

We finally use the assumption that f is cuspidal, which implies that m(O) = 0.
Thanks to the boundedness of 5, and (s, the integer m in (3) of Proposition 4.33
may be found independently of z, y as above, and the L! norm is bounded uniformly.
We obtain that Ky goes to 0 at infinity, i.e. for any d > 0 there exists a compact
subset Cs of (Gaa(Q)\Gad(A))? such that for any (z,y) & Cs we have |K(z,y)| < 0.
In particular |K| is bounded. O

Theorem 4.35. Let Ky be a compact open subgroup of G(Ay) and w a unitary
continuous character of Z(Q)\Z(A). Let f € C(K\G(A)/Ky,w™) be cuspidal.
Assume that for any x € G(A) and v € Ga.a(Q) such that f(z'yx) # 0, v is

semi-simple reqular elliptic (over Q). Then

t p(f) = tr peusp(f) = D 1(7) 7" vol(G4(Q) Z(A)\G(A))O4(f)

[

where the sum is over conjugacy classes of semi-simple reqular elliptic elements ~
in G(Q), and only finitely many terms in the sum are non-zero.

Proof. Recall from Gabriel Dospinescu’s course that the action peusp(f) of any el-
ement f of C°(G(A),w™") on L2 (G(Q)\G(A),w) is a Hilbert-Schmidt operator

(we proved this in the previous lefnma for cuspidal f, but it holds for arbitrary
f if we restrict to the space of cusp forms). So we can argue as in the proof of
Theorem 4.18 using a Dixmier-Malliavin expression for f to conclude that peusp(f)
is trace class. Thanks to the previous lemma, for f cuspidal p(f) is also trace
class and tr p(f) = tr peusp(f) (note that L2, (G(Q)\G(A),w) and its orthogonal in
L*(G(Q)\G(A),w) are stable under p(f)).

The main difference with the anisotropic case is that it is not true that Ky is

also bounded (|f]| is not cuspidal ... ), so while we still have

trp(f):/ Ky(x,x)dx
Gaa(Q\Gaa(4)

thanks to Theorem 4.13, we cannot blindly insert the definition of Ky and exchange
sums and integrals. Nevertheless, the proof of the previous lemma shows that there



86 OLIVIER TAIBI

exists a compact subset C(f) of Gaq(Q)\Gaa(A) such that for z € G(A) which does
not map to C(f), if v € Gaq(Q) is such that f(z~'yz) # 0 then v is conjugated (in
Gaa(Q)) to an element of B,q(Q). Together with the assumption in the theorem, this
implies that K ; has compact support on the diagonal (even that each term in the sum
defining K¢(z, ) vanishes when z is outside a compact subset of G,q(Q)\Gaa(A),
and we can conclude as in the proof of Theorem 4.18 (including the last finiteness
assertion). O

Theorem 4.36. Let w : Q*\A* — C* be a continuous unitary character. Let S’ be
a finite set of prime numbers, and (o,)pes a collection of smooth irreducible square-
integrable representations of G(Q,) having central character w, = w[Q;. There

exists an irreducible representation T = @', 7, in ligle L2p(GQ\G(A),w)™s such
that m, >~ o, for allp € 5.

Proof. Of course the idea is the same as in Theorem 4.22, but now our simple trace
formula does not allow us to use functions f satisfying f(1) # 0. Adding one prime
to S’ if necessary and thanks to Theorem 3.37 we can assume that at least one o,
is supercuspidal.

First we fix, for each p € S, a pseudo-coefficient f, for o,. Note that the fact
that there exists p € S’ such that o, is cuspidal implies that f, is cuspidal, and so
will be any product [] s fv. Thanks to the elliptic orthogonality formula (Theorem
3.35) applied to (0,,0,) we know that there exists a semi-simple regular elliptic
conjugacy class [y,] in G(Q,) such that O, (f,) # 0. Moreover we may assume that
try, # 0 since the set of elements of vanishing trace in PGL(Q,) has measure zero.
It follows from Krasner’s lemma and smoothness of orbital integrals (Lemma 3.5)
that there exists ¢ > 0 such that for any p € S, a € @, and b € Q) satisfying
la — trv,|, < € and |b — det~,|, < ¢, the conjugacy class in G(Q,) defined by the
characteristic polynomial X? — aX + b contains an element d, in the anisotropic
maximal torus Q,[7,]* of G(Q,) which is regular and sufficiently close to ~, so that
Os,(fp) = O4,(fp). We can find a € Q and b € Q* in these p-adic balls for all p € S":
for a this is essentially the Chinese remainder theorem (we can even assume that
a is integral at finite places not in S’), for b it follows from Dirichlet’s theorem on
primes in arithmetic progressions. (These two existence results are known as weak
approximation for the additive and multiplicative groups. In fact the additive group
even has strong approximation.) Note that for e small enough the above inequalities
imply a # 0 because try, # 0. Let v be an element of G(Q) having characteristic
polynomial X2 — aX + b. Note that v is semi-simple regular, and elliptic over Q
since it is elliptic over Q, for some p.

As in the proof of Theorem 4.22, fix ¢ a prime number which does not belong
to S'. Fix [Vl = [Logs fo with f, € CZ(G(Qy),w, ") almost all trivial, such
that for any v ¢ S" U {¢} we have O,(f,) # 0. (Exercise: such a function exists.)
Finally, take K, an open compact subgroup of SLy(Q,) such that K, N Z(Q,) =
{1} and define f;, € C=(G(Qy),w; ") supported in vK,Z(Qy), right K,-invariant
and such that fy;(7) = 1. By essentially the same argument as in the proof of
Theorem 4.22 we see that if K, is small enough then the assumption of Theorem
4.35 is satisfied and the only non-vanishing term in the sum on the geometric side is
(v) "t vol(GL(Q)Z(A)\G(A))O,(f), which does not vanish. Note that we arranged
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that v(y) # 0 and so v distinguishes 7 from other conjugacy classes in PGL3(Q)
(this fact is crucial for the argument to work). We conclude as in the proof of
Theorem 4.22, using Corollary 4.24. 0

5. COMPARISON OF TRACE FORMULAS

5.1. Separation of representations. To compare trace formulas, we start with
a simplification lemma, to get rid of the infinite sums on the spectral side of trace
formulas.

Recall the notation f*(g) := f(g~1).

Lemma 5.1. Let w: R* — C* be a continuous unitary character. Let (V;, m);er be
a family of irreducible unitary representations of GLa(R) having central character w
and pairwise non-isomorphic. Let (N\;)ier be a family of complex numbers such that

for any f € C(GLy(R),w™), the operator @, ; \imi(f* * f) on @;IVZ- is trace
class, and Y, Nitrw;(f*x f) = 0. Then all \; = 0.

Proof. Assume that there exists iy € I such that \;, # 0. Up to multiplying all \;’s
by —\;.!, we can assume that A\;, = —1, so that trm, (f** f) = >..p A trm(f* = f)
with I’ = {i € I]i # ip and \; # 0}. For each i € I’, fix an orthonormal basis
(€i)je; of Vi. The trace class assumption implies that for any f € C2°(GLy(R),w™!)
we have Y, > |Ail[lmi(f)eijll3. < co. Let V be the completion of @, V;”

el i
for the Hermitian inner product

1((vig)jen)ier v =D 1l D il

iel’ JjeJi

It is naturally a representation of G, which is clearly continuous and unitary. Con-
sider the subspace

Wo = {(mi(f)eig)ien)icr | F € CF(GLy(R),w ™)}

of V, and let W be its closure in V, a subrepresentation of V. Let v € V;, be such
that [|v[ly;, = 1. Completing this to form an orthonormal basis of V;, and writing
traces in this basis, we obtain that for any f € C>*(GLy(R),w™?)

2
V-

o ()0llF;, < trmig(f7 5 ) = D Ntrm(f = £) < DIl Imi( e

icl’ iel’ Jj€J;

This inequality implies the existence and uniqueness of a continuous linear map
=: W — 'V, mapping ((m;(f)ei;)jes)ier to m,(f)v. This characterization shows
that = is GLy(R)-equivariant. Moreover we know that there exists f such that
i, (f)v # 0, thus Z # 0. We can uniquely extend = to a linear map V' — Vj,,
abusively still denoted Z, by imposing that Z|;;. = 0 (here W+ is the orthogonal
of W in V). This extension is clearly also continuous GLs(R)-equivariant. But
the restriction of = to each factor ((V;);es,)ier is zero since m; % m;,, so £ = 0 by
definition of V. We have obtained a contradiction, so the assumption that there
exists g € I such that \;, # 0 was absurd. O



88 OLIVIER TAIBI

5.2. Multiplicity one results. For the proof of Theorem 1.1 we will need to admit
a few important theorems, which rely on theories which were not developed in this
course.

Theorem 5.2 (Multiplicity one). Let w : Z(Q)\Z(A) — C* be a unitary contin-
uous character. Any cuspidal automorphic representation m of GLg(A) occurs with

multiplicity one in hﬂKf LA(GQ\G(A),w)k7, d.e. mSLz(7) = 1.

cusp
This was proved in [ | (over arbitrary global fields), and generalized to GL,,
in [ ]. The proof uses Whittaker models, in particular their local uniqueness

(this generalizes to all quasi-split reductive groups) and the fact that a cusp form
can be reconstructed from Whittaker functionals (this is particular to general linear

groups).

Theorem 5.3 (Strong multiplicity one). Let m and 7' be cuspidal automorphic
representations of GLa(A). Assume that there exists a finite set S of prime numbers

such that for all p ¢ S we have m, ~m,. Then 7 >~ 7.

See | ] for a proof using Kirillov models (related to the Whittaker models).
Using Rankin-Selberg L-functions (again, relying on Whittaker models), a much
more general result is proved in [ ]. Morally, Cebotarev density theorem and
linear independence of characters.

For inner forms, these methods do not adapt, essentially because there is no
Whittaker model (at all non-split places, and thus globally). Ultimately one can
show strong multiplicity one results, but using the trace formula and after proving
the local Jacquet-Langlands correspondence.

Nevertheless, Godement-Jacquet L-functions and e factors | ] (this theory
generalizes the abelian case of Tate’s thesis and does not use Whittaker models)
can be used to prove the following weaker result, which will be crucial for the proof
of the local Jacquet-Langlands correspondence. As usual we specialize to the cases
relevant to this course.

Theorem 5.4. Let D be a quaternion algebra over Q, G the associated inner form
of GLy. Let S be a finite set of prime numbers, and (0,)yzs a collection of smooth
irreducible representations of G(Q,). Then Y. _mS(m) < oo where the sum is over
automorphic representations m of G(A) such that m, ~ o, for all places v € S.

See | , Lemme B.1.e p. 80].

5.3. Easy transfer. To compare trace formulas we have to produce matching func-
tions on different groups, i.e. functions which have the same orbital integrals (note
that this requires an identification of conjugacy classes and of centralizers in the two

groups).

Lemma 5.5. Let p be a prime number. Let w : Z(GLy(Q,)) — C* be a smooth
character. Recall that T denotes a set of representatives for the (finitely many)
congugacy classes of mazimal tori in GLo(Q,). Fiz Haar measures on PGLy(Q,) and
on each T'/Z(GLy(Qy)) for T" € T. Let (Fp)rT be a family of smooth functions
Tt 1oy — C such that Frr is w™"-equivariant, Nav,(q,)(T")-invariant and compactly
supported modulo Z(Glo(Q,)). Then there exists f € C(GLy(Q,),w™) whose
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support is contained in the set of reqular semisimple elements in GLy(Q,) such that
forany T" € T and any t € T;,_,., we have Oy(f) = F(t), and for any T" € T such
that Fr vanishes identically f also vanishes on all elements conjugate to elements
of T'.

Note that the assumption is that the support of Fp is a compact subset of
T ree/Z(GL2(Qp)), not just a relatively compact subset of 7"/Z(GL2(Q,)).

Proof. We use the functions ¢7+ defined in Section 3.3. For T" € T let Uy be a
non-empty compact open subset of 7"\GLy(Q,) such that «w'Up N Up = ), where
w' is the non-trivial element of Ngr,q,)(T"). Let f(or(t, ) = vol(Up ) F(t)/2 if
g € U, zero otherwise. Then

oin- | Fotgdg= [ g7t dg = FOFFET) _ py,
T\GL2(Qp) U U Uy 2

O

5.4. Proof of the local Jacquet-Langlands correspondence. We can finally
prove Theorem 1.1. In this section D will denote a non-split quaternion algebra over
Q,. The first step is to associate to an essentially square-integrable representation
7, of GL3(Q,) an irreducible representation of D*, satisfying the relation between
Harish-Chandra characters. If 7, ~ (x, o det) ® St, we have already seen (Corollary
3.25) that the representation x o det of D* corresponds to 7.

Thus we can assume that 7, is supercuspidal. As in the Steinberg case, it is
enough to prove the result with 7, replaced by (x, o det) ® 7, for some smooth
character x, : Q; — C*. Let {; # {» be prime numbers distinct from p. Let
w : Z(Q\Z(A) — C* be a continuous unitary character such that wl|,x = wr,,
W‘ZZ = 1. Let x, be one of the two unramified characters of Q) satisfying (x o

det |z(q,))wr, = wp. Let xe, : Q;, — C* be one of the two unramified characters such
that yy, o det | Z(Qe,) = Wey- Choose an irreducible supercuspidal representation 7,
of GL(Qy,) having central character wy, (Theorem 3.37). Let Dyl be a quaternion
algebra corresponding to S = {p, ¢}, and let G be the associated inner form of
GL,. In particular we have an isomorphism G(Q,) ~ D*, well-defined up to inner
composing with an inner automorphism. Fix Haar measures on G,q(Q,) (for all
places v, so that G.q4(Z,) has volume 1 for almost all p) and endow Gq(A) with
the product of Haar measures. We will apply the trace formula with functions
fo € C(G(Qy),w,) as follows:

e f, is a coefficient for the representation yy,, o det of G(Qy,). To be explicit,
we can take fy, (g) = vol(Gaa(Qp)) " xe, (det g) 7t

e fy, is a coefficient for 7, .
e f, is any smooth function which vanishes on Z(Q,).

o for v & {p,l1,0s}, f, is arbitrary, we only impose that f, is the unit in
H(G(Qp),G(Zy),w, ") for almost all prime numbers p.
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Recall that there is a family (1,)yg(p,e,} of isomorphisms 1, : G X Q, ~ GLyg,,
well-defined up to composition on the right with Ad(g) for some g € GLy(A®P4))
where AP#) = Hi}%{p,&} Q, = A/Q,Qy,. Fix Haar measures on PGLy(Q,) for all
places v, so that for any For v € {p,¢,}, endow PGLy(Q,) with the Haar measure
transported from that on G.q(Q,) via ¢,. Endow PGLy(Q,) and PGL(Qy,) with
arbitrary Haar measures.

Now choose corresponding functions f&F € C®(GLy(Q,),w; ) as follows.

e fi! is the pseudo-coefficient for the representation (x, odet) @St constructed
in Proposition 3.29. Note that by Theorem 3.30 this implies that the orbital
integrals of fgL are opposite to that of f,,. Note that there is an isomor-
phism between the centralizers (GLs);(Qy,) and G¢(Qy,), well-defined up to
normalizers, so we can transport Haar measures between (GL2)¢(Qp, )/Z(Qy,)
and G¢(Qy,)/Z(Qy, ), and comparing orbital integrals makes sense.

. ff’L is supported on the set of semisimple regular elliptic elements in GLo(Q)
and such that for any semisimple regular t € GLy(Q,) we have

J(FOL) — —Op(f,) ift' € G(Q,) has same characteristic polynomial as ¢
P 0 if ¢ is hyperbolic.

The existence of such f, € C2*(GLy(Qy),w, ') follows from Lemma 5.5. The
same remark as at the place ¢; applies for the comparison of Haar measures
of centralizers.

e for any v & {1, p}, there is an isomorphism v, : GLo g, ~ G Xg Q,, and we
let f8% = f, 04!, In particular f, is trivial for almost all v, and the orbital
integrals of f, do not depend on the choice of 1,.

These choices were made so that the geometric sides of the traces formulas for
GLy (Theorem 4.35) and G (Theorem 4.18) are equal (again, the centralizers G,
and (GL2), can be identified up to conjugation by the Weyl group, and the signs at
¢, and p cancel each other so the global orbital integrals are equal). Therefore the
spectral sides are equal:

Zmﬁ}sg Ytrw(fCN) = Zm N (f).

Let o be a cuspidal automorphic representation of GLg(A) with central character
w such that

e 0, >~ (x,odet) ® T,
e 0y, ~ (xg odet) ® St, and
® Ty, = Ty,

The existence of such a o follows from Theorem 4.36.
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Applying Lemma 5.1 (using 1, to identify GLy(R) and G(R)), we obtain

Z mfulgf) (0’00 ® ®7Tq> Htl"ﬂ'q(fq) = Z m¢ (000 ® ®7T;> Htrﬁfl(fq)

(7q)q q q (74)q

where the products are over all prime numbers ¢q. Note that both sides are traces in
an admissible representation. As recalled at the beginning of Section 3.4, the theory
of finite-dimensional representation of associative C-algebras (for the Hecke algebra
H(GLy(AePh2)) (y(opbif2))=1Y) tells us that this implies

/
Z mfﬁ;; <7Tp ® o, @ Ty @ ® av> tr Wp(fIS’L) tr e, (fo°) trme, (f2)

(7Tp77r£1 77722) ,Ug{p7€1762}
!/
= Z m¢ (7@’7 ® Ty, @ Ty, ® ® av) tr ) (fp) trmy, (fo) trme, (f5°)
(T, Tey) o@{p,l1,02}

Again this uses (V)vg{p,e1 02,00} - Since fy, and fgL are coefficients for the supercus-
pidal representation 7, >~ oy,, this implies

/
Z mgfgf) (Wp ® Ty, ® ® av) tr Wp(ffL) tr ml(fgL)

(71—17171—41) 'Ug{p,fl}
/
= Y w(mer,e @ o)) um, ()
(o) ve{p.a}

By the same argument as in Theorem 4.36, the analogue of Corollary 4.24 for GL,
implies that for any non-vanishing term on the left-hand side, my, ~ o4, (that is, 7,
is not isomorphic to x;, o det), and so trm, (f5*) = 1. On the right-hand side, any
non-vanishing term has 7, ~ x, o det, and so trm (fs,) = 1. Therefore

meﬂ;é(m@@av) tr fGL Zm <7T ® (x¢, o det) ® Uu) tr 7, (fp)

vFED vg{p.l1}

Thanks to the strong multiplicity one theorem (Theorem 5.3), we know that the left-
hand side is simply tr o,,( fE’L). The right-hand side is the trace of f,, on a semisimple
admissible smooth representation of G(Q,). Thanks to Theorem 5.4 we know that
it is in fact a finite length (i.e. finite-dimensional) representation, that we denote
JL(op). It is indeed determined by o, up to isomorphism because its trace is (there
is a restriction on f,, but G(Q,) ~ Z(Q,) is an open and dense subset of G(Q,)).
Namely, we have O, (t) = —Oji(,)(t') for any semisimple regular t € GLy(Q,)
and ' € D* having the same characteristic polynomial (note the minus sign which
comes from the definition of f5**). We need to show that JL (o) is irreducible. This
follows from elliptic orthogonality (Theorem 3.35 and its easier analogue for D*|
which follows from the analogous Weyl integration formula): if JL(o,) ~ eBlp@ml
with distinct irreducible p;’s, comparing the two elliptic orthogonality relations we
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obtain Y, m? = 1. Elliptic orthogonality also implies that the map JL is injective
on isomorphism classes (an irreducible essentially square-integrable representation
of GLy(Q)) is determined by the restriction of its Harish-Chandra character to the
semisimple regular elliptic locus).

Finally we need to show that for any irreducible smooth representation p of D>,
there exists an irreducible essentially square-integrable representation 7, of GLy(Q,)
such that JL(7,) =~ p. The argument is almost the same as above, except that we
start with an automorphic representation o of G(A) such that o, is a twist of p,
og, ™~ Xe, ©det and oy, is supercuspidal (such a o exists thanks to Theorem 4.22).
We obtain

ng;; (Wp® Xglodet)®St) ® O’U> tr 7y ( fGL Zm <7r ®® ov) tr7r (fp)

vZ{p,l1} v#Ep

By the strong multiplicity one theorem, the left-hand side has at most one non-zero
term, for which the multiplicity is 1. The right-hand side is the trace of f, on a
non-zero representation of G(Q,) of finite length, in particular there exists f, such
that the right-hand side does not vanish. Thus there exists a unique 7, contributing
to the left-hand side, and going back to the previous argument we have JL(m,) = p.
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APPENDIX A. SUMMARY OF INTEGRATION THEORY ON GROUPS AND
HOMOGENEOUS SPACES

For X a topological space, C.(X) denotes the space of continuous and compactly
supported functions X — C.

Theorem A.1 (Riesz-Markov-Kakutani Representation Theorem). Let X be a lo-
cally compact Hausdorff topological space. The map

o (£ [ rwanto)

e the set of Radon measures on X, i.e. measures j on the o-algebra of Borel
sets on X satisfying

18 a bijection between

— for any compact subset K of X we have u(K) < oo,
— for any Borel subset S of X we have

w(S) =inf{u(U) |U open subset of X containing S},

— for any Borel subset S of X which is either open in X or satisfying
w(S) < oo, we have

w(S) = sup{u(K) | K compact subset of X contained in S}.

(note that if X is o-compact, as will always be the case in these notes,
this property then holds for any Borel subset of X ),

(resp. complex Radon measures on X, i.e. complex linear combinations of
Radon measures),

o the set of linear maps I : C.(X) — C which are positive, i.e. for any f €
Co(X) satisfying f(X) C Rso we have I(f) € Rso (resp. continuous for
the topology on C.(X) obtained by realizing C.(X) as the direct limit of the
Banach spaces C(K) where K ranges over all compact subsets of X ).

Proof. See | , Theorem 2.14]. O

Because of this equivalence, when using integration theory on locally compact
Hausdorff topological spaces it is more convenient to deal with linear forms on C,(X)
rather than measures.

For details and proofs for all that follows see | , Ch. 7.

Theorem A.2. Let H be a locally compact Hausdorff topological group.

o There exists a non-zero Radon measure o on H which is left H-invariant,
i.e. for any f € C.(H) and any g € H we have

/ F(gh)duolh) = /H F(h)dpo(h)

(equivalently, for any Borel subset S of X and any g € H we have ug(gS) =
f10(5))-
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o [z ng as in the previous point. Let p be a complex Radon measure on H
which is also left H-invariant. There exists a unique ¢ € C such that we
have | = cpy.

A non-zero left H-invariant Radon measure on H is called a left Haar measure.
By essentially the same proof, or applying the result to the opposite group, the same
result holds with “left” replaced by “right”.

For any x € H there is a unique Ay (x) € R.g such that for any left H-invariant
complex Radon measure 1 on H we have

/H F(ha)dpu(h) = D)™ /H F(h)du(h)

Ap H — Ry

The map

is easily seen to be a continuous character. For any left Haar measure p on H the
Radon measure A is a right Haar measure. For g € H and f € C.(H) we have

(A1)
/H F(gh) A (h)du(h) = /H F(W)A g B)du(h) = An(g) /H () A () du(h).

The topological group H is called unimodular if the character Ay is trivial. This is
the case if H is commutative, or discrete (the counting measure is a left and right
Haar measure), or compact (Ag(H) is a compact subgroup of Ry, so it is trivial).
Let p be a left Haar measure on H. For any f € L'(H,p) the function h —
F(h"HAg(h)™! on H is also integrable with respect to p and we have

/f h)~tdu(h) /f )dp(h

Let X be a locally compact Hausdorff topological space endowed with a left
action of H which is continuous and proper. Let xy : H — C* be a continuous
character. For f € C.(X) define fX: X — C by

- /H f(h-2)AG (h)x(h) ™~ dp(h)

Let C.(X, H, x) be the space of continuous functions f : X — C satisfying:
e for any g € H and z € X we have f(g-x) = x(9)f(z),

e the support of f is compact modulo H, i.e. its image in H\X is compact
(equivalently, the set of H-x in H\ X such that f(z) # 0 is relatively compact
in H\X).

In order to endow C.(X, H,y) with a topology, realize it as hﬂ}( C(H-K,H,Y)
where the direct limit is over all compact subsets K of X. For any such K the space
C(H-K, H, x) is a Banach space for the norm f + supy | f|. Endow C.(X, H, x) with
the final topology. If x is trivial then C.(X, H,x) is identified with C.(H\X) and
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this topology coincides with the final topology on hg e (K"), where the inductive

limit is taken over all compact subsets K’ of H\X.
Let f € C.(X). For g € H we have

X(g-z) = / f(hg - 2) AR (h)x () du(h)
— Ay / f(hg - ) A5 (hg)x(hg) " du(h)

~ \(9) /H F(h - ) A ()X (B du(h)
— (@) (@)

Moreover fX vanishes away from the preimage of the image of suppf in H\X, so
we have fX € C.(X, H, x).

Proposition A.3. The map
Ax : CC(X) — Oc(Xv H»X)
J— X

is surjective, and identifies the topological complex vector space C.(X, H, x) with the
quotient of C.(X) by the kernel of A,. If x takes values in Rso then A, maps the
subset of real non-negative functions in C.(X) onto the subset of real non-negative
functions in Co.(X, H, X).

Proof. Surjectivity is proved in | , Ch. 7, §2, Proposition 2|, translating between
left and right actions. (This assumes that y takes values in R but it is clear that
the proof does not use this assumption.) The assertion in the case where x takes
values in R+ is also proved loc. cit.

To prove that the topology on C.(X, H, x) defined above is the quotient topology
it is enough to prove that A, is continuous and open. Continuity is easy using
properness of the action, and openness is easily proved using [ , Ch. 7, §2,
Lemme 1] (which is used to prove Proposition 2 loc. cit.). O

We wish to understand under which assumption a complex Radon measure on
X, seen as a continuous linear map C.(X) — C, factors through A,. Note that by
the previous proposition, such a factorization is unique. For f € C.(X) and g € H

consider the function f’: X — C defined by f'(x) = f(g- ). We have
V) = [ b)) ()
H
- / Flgh - )Az (h)x() dph)

= Auly / Flh- ) (W) (h) " diuh)
= An(g)x(9)f
This suggests the following proposition.
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Proposition A.4. Let v be a complex Radon measure on X. Assume that v is left
H -equivariant for the character Agx, i.e. for any f € C.(X) and g € H we have

LﬂymwmzAﬂmmaAﬂmmw

There ezists a unique linear map 1, : Co(X, H,x) = C such that for any f €
Ce(X) we have

Aﬂ@@(—nmuw

The map 1, 1s continuous. If x takes values in Ry and v is a Radon measure
then I, \ 1s positive, i.e. it maps non-negative functions to Rx.

Proof. This is one of the implications in | , Ch. 7, §2, Proposition 3|, translating
between left and right actions, at least under the assumption that x takes values in
]R>0.

For the convenience of the reader we translate the proof. Thanks to the previous
proposition it is enough to prove that the kernel of A, is contained in the kernel of
the integration map on X with respect to v. For any fi, fo € C.(X) we have

/h ) fo ) //ﬁhxh 2 x(h) du(h)dv ()
—/ /ﬁhxﬁmwumw

//ﬁ V(b - y)dv(y)du(h)

_ /X () /H Folh™ - ) A () A gy ()~ du(h)duy)
=Aﬁ@LﬁW@MMVWWW@

:Lﬁ@ﬁ@W@.

Assume that f; € C.(X) is such that f{ vanishes identically. By the previous
proposition and Urysohn’s lemma there exists fo € C.(X) such that f; is constant
equal to 1 on the support of f;. The above calculation shows that we have

Aﬁmwmz

This shows the existence of I, , ,. ]

Example A.5. Assume that X is a locally compact topological group and that H
1$ a closed subgroup, with the obvious left action by multiplication. Let v be a right
Haar measure on X. For g € H we have ((A.1) above)

| #Hanyivta) = Ax(o) [ s@rivte
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Therefore the assumption of Proposition A.J holds for x = Ax|g Ay (and only for
this character). Let K be a compact open subgroup of X and x € X. The function
(1.x)X clearly vanishes away from HxK. Fory = xk € x K we have

(Loxe )X (y) = /H L (hak) A ()X (h) " dp(h)

= [ A mdum)
=pu(HNzKz™)

because the character Ax takes values in Ry and so it is trivial on any compact
subgroup of X. Let fox be the unique element of C.(X, H,x) supported on HxK
and such that f.x(xk) =1 for any k € K. We thus have

v(K)

(A.2) L pw(HNxKz=1)

(forx) = p(H NaK2™ ") v(aK) = A (2)

S X

If any neighbourhood of 1 in X contains a compact open subgroup of X then the
subspace C°(X, H, x) of C.(X, H, x) consisting of locally constant functions is dense
and any element of C°(X, H, x) is a linear combination of functions f.x as above.
In particular Formula (A.2) above computes the “quotient measure” I, .
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APPENDIX B. SUMMARY OF p-ADIC MANIFOLDS AND INTEGRATION USING
DIFFERENTIAL FORMS

We sketch the foundations of p-adic manifolds (sometimes called p-adic analytic
manifolds) in order to state the “change of variables” formula for measures asso-
ciated to differential forms (introduced in | ]) that is useful for the study of
intertwining operators (Proposition 2.31) and harmonic analysis. We emphasize
differences with the Archimedean case. For details (and proper foundations) see
[Sex06], [Sch11].

Let n > 1 be an integer. Let U be an open subset of Q}, and f: U — Q, a
function. We say that f is locally analytic at zo € U if there is a family (aq)aenn of
elements of Q, and r > 0 such that (|a,|r®!), is bounded (notation: |a| = Y, c;)
and for any x € UND(z, ) (open disk of radius r) we have f(z) = > a(z — )"
(notation: z* =[], 2z"). The same proof as in the complex setting shows that f is
then continuous on U N D(zo,7) and locally analytic at any point of U N D(x, 7).
The main difference from the complex setting is that any U is totally disconnected:
for example, for any function I, — Q,, the composition U := Z, — F, — Q, is
locally analytic (even locally constant!) at every point of U.

We have the notion of a locally analytic function U — Q)" (coordinate-wise),
and the composition of two locally analytic functions is again locally analytic. A
locally analytic function is differentiable (obvious definition ...) and its differential
(taking values in Homg, (Qp, Q") =~ Q™) is again locally analytic.

Theorem B.1 (Inverse function theorem). Let U be an open subset of Qp and
xvo€U. Let f=(fi,...,[n) : U— Qp be a locally analytic function. Assume that
the differential of f at xy is invertible. Then up to replacing U by an open subset
containing xo, f(U) is open in Qp, f is injective and its inverse f(U) — U is also
locally analytic.

Proof. Using the usual reductions (translations so that zo = 0 and f(xy) = 0, post-
composing f with the inverse of its differential, pre- and post-composing f with
homotheties) we may assume that U = pZ, and each f; is a power series, i.e. for

x € U we have
filr) =z + Z a; 0"
laf>2

with a; o € Z,. Note that under this condition, f; converges on pZ; and maps pZ, to
itself. We look for g satisfying the same conditions: g;(y) =y; + >, b sy”. Solving
the equation of formal power series fog = Id, we see that there is a unique solution.
More precisely, by induction on || we see that b; g = Pjg(a;q, || < |5]) where P; g
is a polynomial with coefficients in Z,.

Reversing the role of f and g, we get that they are inverse maps of each other
pLy — pZy,. 0

This local theory allows to define p-adic manifolds, obtained by gluing open
subsets of Q) (or Z3) using locally analytic maps to change coordinates. More
precisely, if X is a topological space:

e a chart on X is an open subset U of X together with a homeomorphism
¢ : U — ¢(U) where ¢(U) is an open subset of Q7 for some n,
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e an atlas on X is a family of charts covering X which are pairwise compatible,
i.e. such that the transition maps ¢’o¢t : ¢(UNU’) — ¢'(UNU’) are locally
analytic (exchanging U and U’ we get that n =n' it UNU’ # 0).

We say that two atlases are compatible if their charts are pairwise compatible. This
is an equivalence relation, and we get the notion of a p-adic manifold: a topological
space X with an equivalence class of atlases on X, or equivalently a maximal atlas.
Note that the dimension n is a locally constant function on X. We will only consider
p-adic manifolds of constant dimension.

Clearly a p-adic manifold is locally compact (if one uses a definition of “locally
compact” that does not include “Hausdorff”). All examples that we will encounter
will also be Hausdorff and paracompact (i.e. every open cover has a refinement that
is locally finite; this condition holds if X is a countable union of compact subsets).

We have the obvious notion of morphism between p-adic manifolds: continu-
ous maps which are locally analytic in local coordinates given by charts. As in
the Archimedean case one can define tangent and cotangent bundles, and tensor,
symmetric and exterior powers of these bundles, for example differential k-forms.
The differential of a morphism is a morphism between tangent bundles. Fibers of a
submersion are also p-adic manifolds (use the inverse function theorem).

Example: for any smooth algebraic variety X over Q,, X(Q,) is naturally en-
dowed with the structure of a p-adic manifold. This is the case for G, B, T', N, and
the group structure is compatible, i.e. multiplication and inversion are morphisms
of p-adic manifolds, so these are p-adic Lie groups. Of course open subgroups of
these, in particular compact open subgroups, are also p-adic Lie groups.

One may also define submanifolds and quotients of manifolds as in the Archimedean
case. If an equivalence relation R C X x X is a submanifold and the first projection
pr; : R — X is a submersion then the quotient manifold exists (without assuming
that R is a submanifold, there is at most one manifold structure on the quotient
such that the projection X — X/R is a submersion).

It is easy to see that any compact open subset of @} is a disjoint union of balls,
which are isomorphic to Zj. With this observation and a little argument, one may
deduce the non-trivial direction in the following theorem, which is the analogue
of the existence of partitions of unity in the Archimedean setting, except much
stronger.

Theorem B.2. Let X be a p-adic manifold. Assume that X is Hausdorff. The
following are equivalent.

(1) X is paracompact.

(2) X isisomorphic to a disjoint union of balls, i.e. p-adic manifolds isomorphic
to Zy for some n.

Moreover in (2) the balls can be chosen to refine any given cover of X by open
subsets.

Proof. See | , Part II, Chapter 111, Appendix 2, Theorem 1]. O

Recall that partitions of unity are the essential technical tool to setup the theory
of integration of top degree differential forms on real manifolds. We want to mimic
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this theory in the non-Archimedean setting, but we are interested in integrating
complex-valued functions, whereas differential forms have p-adic coefficients. For
this we will consider the “norm” of differential forms, and so use complex-valued
partitions of unity. By Theorem B.2 for a Hausdorff paracompact p-adic mani-
folds we have (complex-valued) partitions of unity adapted to any given open cover,
consisting of characteristic functions of compact open subsets.

Give Q, the Haar measure such that vol(Z,) = 1, and give Q) the product
measure, that we denote |dzy|...|dx,|. If U is an open subset of Q) and w €
Q™(U), which can be written uniquely as ¢(x)dzy A - -+ A dx,, where 1 is a locally
analytic function, then we may consider the Radon measure |w|: for any continuous
compactly supported continuous function f: U — C,

/U fleo] = / @)@ 1da] .. |d].

We want to globalize this notion, to define [, flw| for any (nice enough) p-adic
manifold X of dimension n, w € Q*(X) and f € C.(X).

Lemma B.3. Let g € GL,(Qy), then vol(g(p°Z;)) = |det g|p~*".

Proof. We only sketch the proof. Use the Iwasawa decomposition for GL,(Q,) to
reduce to the case where ¢ is upper triangular, then use Fubini to compute the
volume. The invariance by translation of the Haar measure on @Q, implies that the
volume only depends on the diagonal of g. The case n = 1 is elementary. 0

Lemma B.4. Let w be a locally analytic differential form of degree n on Z. Let
a € Z, and let (¢; : p*Zy — 77 )icr be a decomposition of Zy into balls (i.e. each
@i is injective, locally analytic with everywhere invertible differential, and Z; =
|lic; 9i(p°Zy) ). For any continuous function f : Z; — C we have

(B.) RCEESSY IR

Proof. Write w = ¢(z)dxy A+ - - Adw, where ¢ is a locally function on Z7. Replacing
f by fl¥|, we can assume that we have w = dx A-- - Adw,. By density of C>°(Z}) in
C(Zy) we may assume that f is smooth. Note that I is finite because Z;, is compact.
For any ¢ € I and r € p"Z; there exists b > a such that we have:

e f is constant on ¢;(r + prZ),
e decomposing
/. bmn n
gbi,r P Zp — Zp
x+— ¢i(r + x)

as ¢i(r) + (de;), o ¢} ,, the function ¢, is given by a power series

@7

Oip(w) =a+ ) aaz”

a
|or|>2
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with a, € p!=Pel=bZr  As we saw in the proof of Theorem B.1, this
. . . . . b n b n . . . .
implies that ¢;, is an isomorphism p°Z; — p°Z;. This also easily implies
(d¢}.)z € 14 pMy(Zy) for any = € p’Z7. Moreover these two properties
continue to hold at any element of r + prZ.

By a compactness argument, for b > a large enough, for any set R of representatives
for the quotient of p*Z; by prZ, the above properties hold for any ¢« € I and r € R.
By linearity we may replace (¢;)icr by (¢, )icrrer. For any z € prZ we have
(67,) (dxy A=+ Nday), = (x)dzy A - -+ A di,, With

Y ()| = | det(dg7, ) (z)| = 1.
From this equality and the previous lemma applied to (d¢;), we deduce the formula

(B.2) vol(6f, (Z) = [ 16, (dra Ao nda)

Multiplying by f(¢;(r)) and summing over all (i,7) € I x R yields Formula (B.1). O

Proposition B.5. Let X be a Hausdorff and paracompact p-adic manifold of con-
stant dimension n. Letw be a differential form of degree n on X. Let (¢; : Z; — X);

and (¢; : Zyy — X); be two decompositions of X into balls. The two Radon measures
C.(X) — C,

fro 3 [ (Fosiiéinl  and

DN RIELACARY

are equal.
Proof. Decompose each ¢;(Z;) N ¢;(Zy) into (finitely many) balls (¢}, @ Z; —
¢i(Zy )N (Zy )y and apply the previous lemma to the decompositions (¢; o Fik)ik

and ((¢5)7" 0 &1 )ik- m

Definition B.6. Let X be a Hausdorff and paracompact p-adic manifold of constant
dimension n. Let w be a differential form of degree n on X. Recall that decompo-
sitions of X 1into balls exist by Theorem B.2. The Radon measure in the previous
proposition will be denoted f — [, flw|.

Essentially the same argument as in the proof of Proposition B.5 is used to prove
the following “change of variables integration formula”.

Theorem B.7. Let ¢ : X — Y be a morphism between Hausdorff and paracompact
p-adic manifolds of constant dimensions such that the differential of ¢ is everywhere
invertible (in particular, dim X = dim Y ). Assume that the fibers of ¢ have bounded
cardinality, and denote ¢y Y — Zso, y + card(¢™ ({y}). Then for any differential
form w on'Y and any function f :Y — C that is integrable with respect to |w|, we

have
[ rovtoel= [ res ol
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Proof. Left as an exercise, using the density of C.(Y') in L'(Y] |w]). O

Example B.8. On G = GL3(Q,), denoting x = (z;,)1<ij<2 € G, the differential
form w = det(x)* N\, j<, %ij (choose an arbitrary order to take wedges) is both
left- and right-invariant (exercise). This gives a “differential” definition of the Haar
measure on G, and shows that it is unimodular.
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APPENDIX C. PGLy AND SOs5

Let B be a commutative ring with unity, and denote S = Spec B. (The as-
sumption that S is affine is not necessary for what follows, but it simplifies the
formulation.) Recall that a scheme over S (also called a scheme over B) is a scheme
X together with a morphism of schemes X — S. A scheme X over S has an
associated functor

Fx : B — Alg — Sets
R — X(R) := Homgu/p(Spec R, X)

where B — Alg denotes the category of commutative algebras over B (with unity)
and Sets is the category of sets.

Lemma C.1. Let X be a scheme over S. The functor Fx associated to X is a sheaf
on the big affine Zariski site of S, i.e. for any commutative B-algebra R and any
family (f1, ..., fn) of elements of R generating its unit ideal, the map

n

X(R) — [[x(&5)

=1

identifies X (R) with the set of (s;)1<i<n such that for any 1 < i < j <n, the images
of s; and s; in X (Ry,y,) coincide.

Proof. Exercise. ([l

A morphism ¢ : X — Y of schemes over S induces a natural transformation
F¢ : FX — Fy.

Lemma C.2. Let X and Y be schemes over S. The map ¢ — F} is a bijection be-
tween the set of morphism of schemes X — Y and the set of natural transformations
FX — Fy.

Proof. 1f X is affine, say X ~ Spec A, this is formal using the point in X (A) corre-
sponding to the identity A — A (same proof as for Yoneda’s lemma).

In general there exists an open cover X = |J, U; where each U; is affine. A
morphism ¢ : X — Y amounts to a collection of morphisms (¢; : U; — Y'); such
that for any indices i, j the restrictions ¢;|y,nv; and ¢;|y,nu, coincide. Using the fact
that each U; NU; can also be covered by affine open subschemes, one can reduce to
the previous case. Details are left to the reader. [l

These two lemmas tell us that F' defines a fully faithful functor from the category
of schemes over S to the category of sheaves on the big affine Zariski site of S.
This functorial point of view on schemes has one advantage: one gets morphisms
of schemes “for free” from the previous lemma. This is especially convenient for
algebraic groups. Recall that an algebraic group over .S is a scheme G over S together
with morphisms of schemes e¢ : S — G (a section of G — 5), mg : G Xs G = G
and ig : G — @G, such that the usual diagrams are commutative (expressing the
facts that eq is neutral on both sides for mg, that ig is “inversion” with respect
to mq, and that mg is associative). Thanks to the above fully faithful embedding,
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this amounts to a functor B — Alg — Groups such that the composition with the
forgetful functor Groups — Sets is representable by a scheme. For example for n > 1
the algebraic group GL,, over Z is defined as the functor

7Z — Alg — Groups
R +— GL,(R).

This functor is representable by the scheme Spec A, where
A= Z[Y, Xi,j; 1 S ’l,j S n]/(Y det((Xi,j)i,j) — 1)

Our next goal is to define the algebraic group PGL,, over Z, which intuitively should
be the quotient of GL,, by its center GL; (diagonal matrices). Unfortunately the
functor R — GL,(R)/R* is not representable, in fact it is not even a sheaf. The Z-
algebra A has a natural grading obtained from the grading on Z[Y, X; ;,1 <',j < n]
for which deg X;; = 1 and degY = —n. Let A" be the degree zero subalgebra, and
define PGL,, = Spec A°. We could easily deduce the multiplication, neutral and
inversion maps for PGL,, from those for GL, to define a group scheme structure
on GL, (and even write these explicitly), but this will ultimately not be necessary
thanks to the functorial point of view. Denote ¢ : GL; — GL, the morphism of
schemes defined functorially as

GL1(R) = R* — GL,(R)
r +— diag(z, ..., x).

The morphism (of schemes) ( is clearly a morphism of group schemes and a closed
immersion.

Lemma C.3. Let R be a commutative ring. Denote r : GL,(R) — PGL,(R).

(1) If R is local then r is surjective.
(2) For any g € GL,(R) we have r='({r(g)}) = g{(R*).

Proof. (1) Let ¢ : A — R be a morphism of rings, i.e. an element of PGL,,(R).
We claim that there exists 1 < 4,5 < n such that qb(Xz?ij) is invertible. For
m a positive integer we write
1= det((Xw)w)mYm in AO.
For m >> 0 each monomial in the expansion of det((X;); ;)™ is divisible
by X7, for some pair (4, 7). This proves the claim because R is local (a sum

of non-invertible elements is not invertible). So we fix a pair (i, j) such that
¢(X7;Y) is invertible. For 1 < k,l < n define

S(X XpY)
P(X75Y)

T =

In particular z; ; = 1. We have

S(X VY™ det ((Xio)na))
P(XY™)

det((mk,l)k,l) = = qb(ngY)_l e R”
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and so (zy),; defines an element of GL,(R) that we denote ¢ : A — R,
which maps Xj; to xx; and Y to ¢(X7;Y). It remains to check that the
restriction of ¢’ to A is equal to ¢. It is clear that ¢ and ¢’ map Y and the
X{fj_le’lY to the same values in R. Let f € A°. For m >> 0 there exists a
polynomial P in n? variables with coefficients in Z such that we have

S (XTY)™ = P((X]5 XptY )
Applying ¢ and ¢ to this equality, we obtain ¢(f) = ¢'(f).

(2) The inclusion g¢(R*) C r~'({r(g)}) is easy and left to the reader.

To prove the other inclusion we first assume that R is local in order to use
the previous construction. Let g1, go € GL,(R). Denote ¢, ¢ : A — R the
corresponding morphisms of rings. Assume that we have r(g;) = r(g2), i.e.
that ¢; and ¢, have equal restriction ¢ to A°. As above we may choose a
pair (4,7) such that ¢(X;Y) is invertible in R, and construct ¢ : A — R
extending ¢, corresponding to g € GL,(R). It is clear on the definition that
for k € {1,2} we have gy = ((¢x(zi;))g in GL,(R). In particular gyg;"
belongs to ((R*). This concludes the proof under the assumption that R is
local.

For arbitrary R, let g1, g2 € GL, (R) mapping to the same element of PGL,,(R).

We know that for any maximal ideal m of R, the image of gig5* in GL,,(Ry)

belongs to ((RY). Since ( is a closed immersion this implies g;g,* € ¢((R).
0

Corollary C.4. The scheme PGL,,, seen as a sheaf on the big affine Zariski site of
Z, is the sheafification of the functor (presheaf)

7 — Alg —» Sets
R+— GL,(R)/R*

In particular PGL,, is naturally endowed with a group scheme structure.

Concretely this means that an element of PGL,(R) is given by two families
(fi,-.., fx) and (g1,-...,0x), where f; € R and g; € GL,(Ry,), satisfying:

o (fb"‘?fk) :R7
e for all 1 <7 < j <k the images of g; and g; in GLn(Rfif].)/szj coincide.

(Of course such a representation of an element of PGL,,(R) is not unique, and writing
down the equivalence relation is left to the reader.)
For any commutative ring R we have an exact sequence

1 — R* — GL,(R) — PGL,(R) — H;

Zar

(R,GLy) — H,, (R, GL,)

where H}, . is Cech cohomology for the Zariski topology. The group Hj (R, GL;)
is naturally isomorphic to the Picard group Pic(R) of R, i.e. the group of isomor-

phism classes of line bundles on Spec R (equivalently, finitely generated projective
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R-modules of constant rank 1). Similarly the set H} (R,GL,) parametrizes the

isomorphism classes of vector bundles of rank n on Spec R (idem with rank n).
Now we consider more closely the case where n = 2, and relate PGLy to the

special orthogonal group in 3 variables. Consider the quadratic form on V := Z3:

q:(z,y,2) — 2* +yz.

Note that this definition is universal, i.e. it makes sense with Z replaced by an arbi-
trary commutative ring. In fact ¢ comes from a unique element of Sym? Homz(V, Z),
where the symmetric product is defined as a quotient of the tensor product. For
any commutative ring R we have a natural identification

R ®z Sym® Homgz(V, Z) ~ Sym® Homg(R ®z V, R).

Denote (e, €2, e3) the standard basis of V. Let B, be the symmetric bilinear form
on V associated to ¢:

By(v,w) :=q(v+w) — q(v) — g(w).
We have

(By(ei ej)hi<ij<s =

O O N
_ o O
O = O

Let C(q) be the Clifford algebra associated to ¢, i.e. the quotient of the tensor
algebra of V' by the bilateral ideal generated by v ® v — ¢(v) for v € V. The tensor
algebra of V' is graded (by non-negative integers), inducing a Z/2Z grading on C(q).
Denote C(q)* (resp. C(q)~) the even (resp. odd) part. The Clifford algebra, like the
exterior algebra, also inherits a filtration from the grading on the tensor algebra.
The graded pieces of these filtrations are naturally isomorphic, and so lifting a basis
of the tensor algebra gives us a basis of the Clifford algebra. For example

Clq)T =7 ® Zejey ® Zeyez O Zeses and

C(q)” =Zeys © Zey ® Zes & Zeyeses.
In particular the canonical map V' — C(q)~ realizes V as a factor of C(¢q)~. We
have e? =1, €3 = e§ =0, exe; = —eq69, €361 = —eqe3 and egey = 1 — egez. We have
an anti-automorphism x — x* of C'(q), mapping v; ® - -+ @ v t0 v ® -+ - ® vy.

Lemma C.5. (1) We have an isomorphism of (non-commutative) Z algebras

a:C(q)t — My(Z)

€16y — 01
162 0 0
€9€3 — Lo
263 0 0

eje3 — 00

1 3 _1 O *
For any x € C(q)" we have a(z*) = a(z)*, where for y € My(Z) we also
denote y* =try —y.
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(2) The element A\ = 2e1eqe3—e1 of C(q)~ is central in C(q) and satisfies \> = 1
and \* = —\. In particular we have Z[\ = Z & Z\.

(3) The multiplication map
Z[N @z C(q)" — C(q)
1s an isomorphism of Z-algebras.

Proof. (1) The existence of a simply follows from the computation of the multi-
plication table of C(¢)". The fact that « is surjective is clear, and injectivity
follows from the equality of ranks as finite free Z-modules.

(2) Computation left to the reader.
(3) The fact that this is surjective is a simple computation:
e1 = AM(2e9e3 — 1), e = Aejey, e3 = —Aejes, e1ege3 = Aeges.

The fact that it is an isomorphism follows because it is a morphism between
finite free Z-modules of equal ranks.

O

Remark C.6. This is a special case of a general structure theorem for Clifford
algebra, see | , 89 n.d4| for the general result over a field (the proof can be
adapted to work over an arbitrary ring using the “right” definitions).

The first point implies that for any commutative ring R the map

R®zC(q)" — R®zC(q)"
[

takes values in R because a(zxz*) = a(zr)a(x)* = det a(x). This also shows that
a1 (GLy(R)) = (R®z C(q))* is the group of z € R ®z C(q)" satisfying zz* € R*.

The third point of the lemma elucidates the structure of C'(¢)~ as a bi-C(q)™"-
module: we have an isomorphism

B:C(q)~ — My(Z)
Ay — a(y)

which satisfies f(z1yzs) = a(z1)B(y)a(ze) for any z1,25 € C(q)" and y € C(q)~.
A simple computation shows that we have

B(V) = {X € My(Z)| tr X = 0}

In particular for any commutative ring R the sub-R-module R®7V of R®zC(q)~ is
stable under conjugation by (R®zC(q)")* = a~*(GLy(R)). We obtain a morphism

(R Rz C(q)+)X — GL(R X7z V)

and one can check that it takes values in SL(R ®z V') (more generally, it is well-
known that the conjugacy action of GL, on M, factors through the special linear
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group). This conjugation action preserves additional structure. For y € R®zC(q)~
we can write y = A\x with x € C(q)" and we have

*

yy* = —xx® = —det a(x) = — det B(y).
In particular for y € R ®z V we have

a(y) =y* = yy" = —det B(y).
Of course the quadratic form det o on R ®z V' (and on R® C(q)~) is preserved by

the conjugation action of (R ®z C(¢)")*. Let SO3 be the algebraic group over Z
defined as the functor

R—{geSLR®zV)|qog=q}.

We have just seen that the conjugation action (inside the Clifford algebra) gives us
a morphism

(R®z C(q)7)* — SOs(R)

which is clearly functorial in R. Composing with a~!|qr, gives us a morphism
of group schemes GLy; — SOz with kernel GL;, so it factors to give an injective
morphism 7 : PGLy — SO3.

Lemma C.7. The morphism w : PGLy — SOz is an isomorphism.

Proof. It remains to check surjectivity, i.e. that the initial morphism GLy — SOj3
is surjective (as sheaves on the big affine Zariski site of Z). Equivalently, we have
to show that for any commutative local ring R the morphism GLy(R) — SO3(R)
is surjective. Let m be the maximal ideal of R. First we check that GLy(R) acts
transitively on the set of v € R ®z V' which map to a non-zero vector in R/m ®z V'
and satisfy ¢(v) = 0 in R, or equivalently v* = 0 in R®z C(q). Write v = Az where
z € R®zC(q)". The matrix a(z) = f(v) € My(R) maps to a non-zero matrix 5(v)
in My(R/m) and satisfies 8(v)? = 0. There exists f, € (R/m)? such that 5(v)f # 0
(in (R/m)?). Let f, € R? be any lift of fo and let fi = B(v)fo. The family (fi, f2)
is a basis of (R/m)? so by Nakayama’s lemma (fi, f2) is a basis of R%. The matrix
of this basis gives g € GLy(R) such that

m(g)v = B! <(8 é)) =Xejea =ein RRzV C R®zC(q)".

It remains to show that the stabilizer of es in GLy(R) surjects onto the stabilizer of
ez in SO3(R). Consider h € SO3(R) fixing e;. Then h stabilizes the orthogonal of
ey for By, which is ey = Re; @ Rey, and h acts as the identity on R ®z V/ey. So in
the basis (eq, €1, e3) of R ®z V' the matrix of h takes the form

1 a c

0 d b

0 0 1
We have d = 1 because deth = 1. A simple computation shows that we have
a = —2b and ¢ = —b%. Another simple computation shows that we have

(o 1)
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Of course the use of Clifford algebras is not necessary to state and prove this
result: we could have simply considered the conjugation action of GL5 on the vector
bundle

sly: R— {X GMQ(R)’ tI'X:O},

observed that this action factors through the algebraic subgroup SL(slz) of GL(sly)
and preserves the quadratic form given by the determinant on sly, and proved that
the resulting morphism GLy — SOj is surjective (as a morphism of sheaves on the big
affine Zariski site of Z) and has kernel GL;. For this it is not even necessary to define
PGLs; first. However, the arguments above generalize in higher dimension, to define
(general) spin groups and prove that there is a surjective morphism GSpin,, , —
SOg,,+1 with kernel GL; for any n (although the proof of Lemma C.7 is particular to
the n = 1 case). More importantly for us, the fact that the constructions above are
universal, in the sense that they are multi-linear and compatible with any extension
of scalars Z — R, means that they can be generalized without much effort to forms
(in the sense of | , §II1.1]) of the algebra M, and the quadratic space (sls, det).



110 OLIVIER TAIBI

APPENDIX D. QUATERNION ALGEBRAS AN QUADRATIC FORMS IN DIMENSION 3

For simplicity we work over a field K of characteristic zero. Most of what follows
could be generalized over an arbitrary scheme instead of Spec K. A quaternion
algebra over K is a (non-commutative) K-algebra D such that there exists a finite
extension K’/K and an isomorphism K’ ®j D ~ My(K'). If D itself is isomorphic
to My(K) then we say that D is split. Recall that the group of automorphisms of
the K’'-algebra My(K') is PGLy(K') (via the adjoint action): to prove this, consider
the idempotents e = diag(1,0) and f = diag(0, 1) which satisfy ef = fe = 0, and
show that any pairs of non-zero idempotents satisfying this relation is conjugated

to (e, f).

Proposition D.1. Fiz an algebraic closure K of K. The pointed set H*(K,PGLy) =
lim_, HY(Gal(K'/K),PGLy(K")), where the direct limit is over the finite Galois ex-
tensions of K in K, and the transition maps are given by inflation and are injec-

tive, parametrizes quaternion algebras over K up to isomorphism, by associating to
c € ZNGal(K'/K),PGLy(K")) the algebra

(D.1) D ={X € My(K')|Vo € Gal(K'/K), Ad(c(0))(c(X)) = X}.

Proof. To check that (D.1) defines a quaternion algebra, it is enough to check
that the natural map K’ @ D — My(K’) is an isomorphism. This follows from
Hilbert’s theorem 90 (see | , Ch. X Proposition 3]), seeing Ad(c) as an element
of ZGal(K'/K), GL(My(K"))).

Conversely, let D be a quaternion algebra over K. There exists a finite extension
K'/K and an isomorphism 1 : My(K') ~ K’ @ D. We may assume that K’ is a
subextension of K and that it is Galois. For o € Gal(K'/K), o acts on K’ @ D
(in the natural way on K’ and trivially on D), and ¢(0) := ¢ oogot oo™ is an
automorphism of the K'-algebra My(K'), i.e. an element of PGLy(K’). We obtain
a l-cocycle ¢ : Gal(K'/K) — PGLy(K’), and it is easy to check that a different
choice of ¢ amounts to taking another representative in H'(Gal(K'/K), PGLy(K")).
Compatibility with inflation (taking a larger K’) is formal. The fact that the two
constructions are inverse of each other is left to the reader. O]

Remark D.2. If D is a K-algebra such that there exists a field extension K'/K
(not assumed to be finite or even algebraic) for which K' ®x D is isomorphic to
My(K'") then D is a quaternion algebra. See | , §II1.1 Proposition 2.

Because the trace and determinant maps on My (K') are Galois-equivariant and
invariant under conjugation, they descend to give trace and determinant maps on
D taking values in K and K*.

Let D be a quaternion algebra over K. Choose a finite Galois extension K'/K
and an isomorphism 1 : My(K') ~ K' @k D. Because the trace and determinant
maps on My(K') are Gal(K'/K)-equivariant and invariant under conjugation,

tro™ ' K' @ D — K' and detoyy™ : K @ D — K’

are also Gal(K’/K)-equivariant. Taking Gal(K’/K)-invariants, they restrict to
maps D — K which are respectively linear and homogeneous polynomial of de-
gree 2. It is easy to check that they do not depend on the choice of K’ and 1.
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We still denote these maps tr and det and call them trace and determinant. The
trace map gives us the conjugation map D — D, x — x* := trz — x which is an
anti-automorphism of D. For any x € D we have zz* = x*z = det x.

Lemma C.7 gives us an isomorphism

H'(K,PGLy) ~ H'(K,SO3)

and an argument similar to the proof of Proposition D.1 shows that H'(K,SO3)
parametrizes non-degenerate quadratic vector spaces over K of dimension 3 and
discriminant —1. In fact the construction in the previous section extend to forms,
and the correspondence between quaternion algebras and quadratic spaces admits
a natural description:

e If D is a quaternion algebra over K, the 3-dimensional subspace

V={XeD|trX =0}

is endowed with the non-degenerate quadratic form ¢ = — det, which has
discriminant —1 because in the above interpretation using Galois cohomol-
ogy, it is obtained from (sly, — det) by twisting using a cocycle taking values
in SO3 and not just Os.

If (V,q) is a non-degenerate quadratic vector space of dimension 3 and dis-
criminant —1 then we can form the Clifford algebra C'(¢) = C(¢)" @ C(q)~
and define D as its even part C'(¢q)*. One can check that D is a quater-
nion algebra (again using the Galois cohomology interpretation allows one
to reduce to the split case).

Lemma D.3. Let D be a non-split quaternion algebra over K.

(1)
(2)

(3)

Any non-zero element of D is invertible in D.

Let x € DNK. Then its characteristic polynomial, defined as X*—(tr x) X +
det x, does not split, i.e. it does not have a root in K.

For x € D\ K the subalgebra K[z| of D is a quadratic field extension of K.

Proof. Let K' be a finite extension of K such that K’ ® D is isomorphic to My(K').

(1)

If z € D~ {0} is not invertible then its image in My(K') admits 0 as an
eigenvalue.

If this image is semi-simple then trx is the other eigenvalue so it does not
vanish and we consider y = 2x/(trz) — 1. We have try = 0 and dety = —1,
so the quadratic space (V,q) corresponding to D has a vector y satisfying
q(y) = 1 and so it is split, a contradiction.

Otherwise we have trz = 0 and detz = 0 so z itself defines a vector in V'
satisfying ¢(z) = 0 and so (V, q) is split, a contradiction.

By the Cayley-Hamilton theorem applied in K/ ®x D ~ My(K’), the charac-
teristic polynomial of z kills . So if this polynomial is equal to (X —a)(X —f)
with a, 8 € K then x — a or x — (3 is not invertible in D, and so x is equal
to a or 3.
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(3) This follows from the previous point.
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APPENDIX E. QUADRATIC FORMS OVER @, IN DIMENSION < 3

For a,b € Q define the Hilbert symbol

(a,b) 1 if there exists z,y € Q, such that az?® + by* = 1,
a,b) = .
—1  otherwise.

It clearly factors through (Q,/ Q;’D)z, where Q;’D is the subgroup of squares in Q.

The Hilbert symbol can be computed explicitly (see [ , Ch. III Théoréme 1))
and on this explicit formula the following result is evident.
Theorem E.1 (| , Ch. IIT Théoreme 2|). The Hilbert symbol defines a non-

degenerate bilinear form on the Fy-vector space Q) /Q;’D.

Corollary E.2. The map
E— NE/QP(EX)

defines a bijection between the set of isomorphism classes of quadratic extensions of
Qy and the set of index 2 subgroups of Q.

Proof. Recall that quadratic extensions of Q, are parametrized by the non-trivial
elements in Q;/Q;’D, via b — Qp(\/g). For b € QF \ Q;’D, E = Qp(\/l;) and
a € Qy it is easy to see that a € Ng/q,(£*) if and only if (a,b) = 1. This shows
that Ng/q,(E£™) is a subgroup of Q; of index 2. Conversely any index 2 subgroup of
Q is the orthogonal for the Hilbert symbol of a unique b € QX /Q "\ {1} (observe
that any line in an Fy-vector space contains a unique non-zero vector!). 0

Theorem E.3. A non-degenerate two-dimensional quadratic space (V,q) over Q,
18 isomorphic to exactly one of the following:

e if it has discriminant —1 (in Q;/Q;’D), it is split, i.e. isomorphic to QZ
endowed with the quadratic form (z,y) — xy,

e if it has discriminant —b with b € Q) \ Qgg, denoting £ = Qp(\/g) then
(V. q) is either isomorphic to (E, Ngq,) or to (E, ANg/q,) where X € Q) ~
Ngjq,(E*) (the isomorphism class of this quadratic space does not depend
on the choice of such a \).

In particular the isomorphism class of (V,q) is determined by
S:={q)|veV ~{0}}:
e if 0 belongs to S then (V,q) is split,

e otherwise the subset SS™" = {xy™'|z,y € S} of Q) is an index two sub-
group of Q, which is equal to Ngjq,(E*) for a unique (up to isomorphism,)
quadratic extension E of Q,, and S is either Ngjq,(E*) or QX \ Ng/q,(E).

Proof. The case of discriminant —1 is well-known and not particular to Q,. It is also
well-known that if 0 € S then (V] q) is split. Otherwise let —b be the discriminant
of (V,q) and take A € S, then (V,q) is isomorphic to

( i, (z,y) — \o? — )\byz) ,
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i.e. to (K, A\Ng/q,). For any p € E* we have (E,A\Ng/q,) ~ (E, A\Ng/q,(1t)Ng/q,)-
Details are left to the reader. O]

Theorem E.4. There are up to isomorphism exactly two non-degenerate three-
dimensional quadratic spaces (V,q) over Q, of discriminant —1, distinguished by

S =A{q(v)[v eV ~{0}}:
e The space Q;; with quadratic form
(z,y,2) — 2° +yz.
In this case we have S = Q,.

e For a quadratic extension E = Qp(\/g) of Qp, the space Q, ® E with qua-
dratic form (x,t) = bx* + ANgq,(t) where X € QF \ N/, (E*). Up to
1somorphism this three-dimensional quadratic space does not depend on the
choice of E, and we have S = Q \ Q;’D.

Proof. Let (V,q) be a non-degenerate three-dimensional quadratic space over Q,,
and S the corresponding set of values. If 1 € S then (V ¢) is isomorphic to the direct
sum of (Q,,x — z?) and a two-dimensional non-degenerate quadratic space of dis-
criminant —1, which is then split. If 0 € S then (V] ¢) admits a split non-degenerate
two-dimensional quadratic space as a factor and we reach the same conclusion.

Otherwise pick b € S, in particular b € Q) \ @;’D. Denote E = Qp(\/g)
as usual. Then (V,q) is isomorphic to the direct sum of (Q,,x + bz?) and a two-
dimensional non-degenerate quadratic space of discriminant —b, which is isomorphic
to (E,ANg/g,) with A € Q. If X € Ng/q,(E*) then 1 € S, a contradiction. So we
have A € Q) \ Ngq,(E*) and it remains to check that S is equal to Q) \Q;’D. Let
a€Q Q. If a € bQ) then we already know that a belongs to S. Otherwise
the quadratic form on Qg

(z,y) — az® = by”

has discriminant —b = —ab which is neither equal to —1 nor to —b modulo Q;’D,
and so

S = {ax* — by* | (z,y) € Qﬁ ~{(0,0)}}

is a coset for Ng/q,(F*) where F' = Q, (V) is not isomorphic to E. In particular
S’ is not contained in Ngjq,(E*), and so there exists (z,y) € Q2 and t € E such
that we have

az® = by* + ANg/q, ().

We know that z cannot be equal to 0 (otherwise we would have 0 € S) and so
dividing by 2? we conclude a € S. O

Corollary E.5. Up to isomorphism there is a unique non-split quaternion algebra
D over Q,. For any quadratic extension E of Q, there exists an embedding of
Qp-algebras E — D.
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Proof. The first statement follows directly from the previous theorem and the re-
lation between quaternion algebras and quadratic spaces explained in the previous
section.

Let D be a non-split quaternion algebra over Q,, and let £ be a quadratic
extension of Q,. Choose z € E \ Q, such that b := z? belongs to Q,. In particular
b is not a square in Q, and £ = Q,(x). By the previous theorem there exists y € D
such that try = 0 and dety = —b, i.e.

y* = —yy* =0b.

There is thus a unique morphism of QQ,-algebras £ — D mapping x to y. 0J
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