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Partie 1
Introduction

Dans cette introduction destinée aux mathématiciens non spécialistes, nous expliquons
dans quel contexte s’inscrivent les résultats de cette thèse. Le titre annonce qu’il s’agit
d’arithmétique, ce qui n’est peut-être pas évident à la lecture du texte. L’un des buts de
cette branche des mathématiques est l’étude des équations diophantiennes, c’est-à-dire les
équations “à coefficients entiers” dont on cherche les solutions entières. Un problème for-
mulé aussi vaguement ne peut admettre de solution générale, et l’histoire de l’arithmétique
est jalonnée par les découvertes d’outils permettant d’étudier seulement certaines classes
d’équations diophantiennes. Citons deux outils fondamentaux pour l’étude des systèmes
d’équations polynomiales, c’est-à-dire de la forme

P1(x1, . . . , xm) = 0
...

Pn(x1, . . . , xm) = 0

où chaque Pi est un polynôme à coefficients entiers en les variables X1, . . . , Xm. Afin de
simplifier le problème, contentons-nous de travailler sur le corps Q des nombres rationnels
plutôt que sur son sous-anneau Z des nombres entiers.

Galois nous enseigne que les solutions rationnelles d’un tel système d’équations sont
les solutions (x1, . . . , xm) ∈ Qm, où Q désigne une clôture algébrique de Q, qui sont fixées
par Gal(Q/Q), le groupe de Galois absolu de Q qui agit sur Q. L’intérêt de ce point de
vue est que, comme souvent en mathématiques, il est plus aisé d’étudier les propriétés de
solutions dont l’existence est connue a priori que de s’attaquer directement au problème
d’existence. Plus généralement, il est naturel de voir un objet défini sur Q comme un
objet défini sur Q et muni d’une action de Gal(Q/Q). Notons toutefois que l’utilisation de
nombres algébriques sur Q remonte à Gauss qui introduisit en 1832 (avant la publication
des résultats de Galois) l’anneau des “entiers de Gauss” Z[i] = {a + ib | a, b ∈ Z} dans le
but de formuler la loi de réciprocité biquadratique.

Une autre approche consiste à compléter le corps Q pour une de ses valuations v.
D’après un théorème d’Ostrowski, à un exposant inessentiel près, v est soit la valuation
archimédienne usuelle, soit la valuation p-adique pour un nombre premier p. Dans le corps
complété Qv correspondant, on dispose d’outils analytiques (théorème des valeurs intermé-
diaires, lemme de Hensel . . .) simplifiant grandement la résolution du système d’équations.
Afin de prendre en compte toutes ces valuations (également appelées “places”) à la fois, on
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considère l’anneau des adèles

A =
∏
v

′
Qv = R×

∏
p premier

′
Qp

qui est le produit restreint de ces corps et qui contient Q comme sous-anneau, plongé dia-
gonalement. Ici on a noté Qp le complété Qv de Q pour la valuation p-adique v. L’existence
d’une solution à coefficients rationnels implique donc l’existence d’une solution à coefficients
adèliques. Toute la difficulté consiste à aller dans l’autre sens, c’est-à-dire à déterminer les
obstructions “globales” contrôlant l’existence d’une solution rationnelle lorsque l’on suppose
l’existence d’une solution adèlique. Par exemple le théorème de Hasse-Minkowski implique
que dans le cas d’une seule équation quadratique, il n’y a pas de telle obstruction. On peut
en déduire le théorème de Legendre affirmant qu’un entier est somme de trois carrés si et
seulement si il n’est pas de la forme 4a(8b+ 7) pour des entiers a et b.

Outre ces outils fondamentaux, la notion récurrente dans cette thèse est celle de re-
présentation automorphe, qui reformule et généralise celle de forme modulaire cuspidale
propre pour les opérateurs de Hecke.

1.1 Formes modulaires

Soit H = {z ∈ C | Im(z) > 0} le demi-plan de Poincaré. Le groupe d’automorphismes de
cette courbe complexe s’identifie à PSL2(R) = SL2(R)/{±1} via l’action définie par(

a b
c d

)
· z =

az + b

cz + d
pour

(
a b
c d

)
∈ SL2(R) et z ∈ H.

Soit Γ = SL2(Z) ; il s’agit d’un sous-groupe discret de SL2(R). Le quotient Γ\H a attiré
l’attention des mathématiciens car il paramètre les courbes elliptiques (définies analyti-
quement), via l’application qui à z ∈ H associe la courbe elliptique C/(Z ⊕ zZ). Nous ne
détaillerons pas davantage ce point de vue.

Definition 1.1.0.1. Soit k un entier. On dit qu’une fonction holomorphe f : H → C est
une forme modulaire de poids k si :

• Pour tout
(
a b
c d

)
∈ Γ et tout z ∈ H, on a f

(
az+b
cz+d

)
= (cz+ d)kf(z). En choisissant(

a b
c d

)
=

(
1 1
0 1

)
on constate que f est fonction de q = e2iπz, c’est-à-dire qu’il

existe une unique fonction holomorphe F : D(0, 1)r {0} → C telle que f(z) = F (q).

• La fonction F se prolonge en une fonction holomorphe sur D(0, 1). Cela revient à
demander que f soit bornée sur la bande {z ∈ C | |Re(z)| ≤ 1/2 et Im(z) ≥ 1}.

On note Mk(Γ) le C-espace vectoriel des formes modulaires de poids k.

Etant donnée une fonction holomorphe F sur D(0, 1), la fonction f : z 7→ F (e2iπz) est
une forme modulaire de poids k si et seulement si pour tout z ∈ H on a f(−1/z) = zkf(z).

Cela résulte du fait que le groupe Γ est engendré par
(

1 1
0 1

)
et
(

0 −1
1 0

)
. Dans cette
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définition il peut être utile de remplacer Γ par un sous-groupe convenable, mais nous
ne détaillerons pas les complications que cela entraîne. En interprétant Mk(Γ) comme
(un sous-espace de) l’espace vectoriel complexe des sections globales d’un fibré en droites
holomorphe sur une surface de Riemann compacte, on obtient que Mk(Γ) est de dimension
finie.

On peut aller plus loin et expliciter les espacesMk(Γ). Pour k > 2, la série d’Eisenstein

Gk(z) =
∑

(m,n)∈Z2r{(0,0)}

1

(m+ nz)k

converge uniformément sur tout compact de H, et il est formel de vérifier qu’il s’agit d’une
forme modulaire de poids k, non nulle si et seulement si k est pair. De plus il est possible
d’expliciter les coefficients de Gk vue comme fonction de q = e2iπz dans son développement
en série entière autour de 0. Il est remarquable qu’à un scalaire près, ces coefficients sont
entiers. La théorie des séries d’Eisenstein permet donc de produire des formes modulaires
tout à fait explicites.

D’autre part, la formule de Riemann-Roch ou la formule des traces permettent de
calculer la dimension de chaque Mk(Γ). Dans notre cas (Γ = SL2(Z)) on a formellement :∑

k

dimC (Mk(Γ)) tk =
1

(1− t4)(1− t6)

ce qui traduit le fait que la C-algèbre commutative graduée
⊕

kMk(Γ) est librement en-
gendrée par G4 et G6.

Cette approche concrète permet de démontrer des identités miraculeuses qui comptent
le nombre de solutions de certaines équations diophantiennes. Donnons un exemple simple
avec la fonction

r4(m) = card
{

(x1, . . . , x4) ∈ Z4 | x2
1 + · · ·+ x2

4 = m
}

qui compte le nombre de représentations de l’entier m comme somme de quatre carrés.
Introduisons la série génératrice

θ4(z) =
∑
m≥0

r4(m)qm =

(∑
n∈Z

qn
2

)4

où q = e2iπz, qui définit une fonction holomorphe sur H. Il est clair que θ4(z + 1) = θ4(z)

et grâce à la formule sommatoire de Poisson on a en outre

θ4(−1/4z) = −4z2θ4(z)

ce qui implique que θ4 est une forme modulaire de poids 2 pour le sous-groupe

Γ1(4) =

{(
a b
c d

)
∈ Γ, a ≡ d ≡ 1 (mod 4) et c ≡ 0 (mod 4)

}
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de Γ. D’autre part l’espace M2(Γ1(4)) est de dimension 2 et la comparaison de θ4 avec des
séries d’Eisenstein permet de démontrer la formule de Jacobi :

r4(m) =


8
∑
d|m

d si m est impair,

24
∑
d|m

d impair

d si m est pair.

Les formes modulaires, dont la définition a plutôt une saveur analytique, ont donc des
liens avec l’arithmétique. Loin d’être anecdotique, la méthode ci-dessus admet une vaste
généralisation (correspondance thêta) qui fait l’objet de recherches actuelles, mais dont il
ne sera pas question dans cette thèse.

1.2 Formes automorphes et représentations galoisiennes

En 1937 Hecke définit, pour chaque nombre premier p, un opérateur Tp : Mk(Γ)→Mk(Γ).
Ces opérateurs commutent entre eux et ont la propriété d’être auto-adjoints pour un pro-
duit scalaire hermitien convenable. Il est donc naturel de vouloir diagonaliser simultané-
ment ces opérateurs. Cela suggère que les formes modulaires propres pour les opérateurs
de Hecke (et s’annulant en q = 0, on dit d’une telle forme qu’elle est cuspidale) sont des
vecteurs bien particuliers dans des représentations irréductibles d’un groupe adèlique, qui
se trouve être GL2(A). Une représentation irréductible convenable de GL2(A) se décom-
pose en un produit tensoriel restreint

⊗′
v πv où πv est une représentation irréductible de

GL2(Qv), où v parcourt l’ensemble des valuations de Q. Cette décomposition généralise
le fait suivant : si G1 et G2 sont deux groupes finis, les représentations irréductibles de
G1 ×G2 sont exactement les produits tensoriels de représentations irréductibles de G1 et
G2. Les représentations de GL2(A) correspondant aux formes modulaires sont celles qui
interviennent dans l’espace de formes automorphes L2(GL2(Q)\GL2(A)) et telles que pour
la valuation archimédienne notée v, la représentation πv du groupe GL2(R) est “algébrique
et régulière”. Ce point de vue plus abstrait a au moins deux avantages : il permet d’utiliser
les techniques de la théorie des représentations, et il se généralise à d’autres groupes que
GL2 pour lesquels il n’y a pas toujours d’analogues aux formes modulaires.

Les opérateurs de Hecke entrent dans la description d’un lien profond entre formes
modulaires (ou plus généralement, représentations automorphes) et représentations galoi-
siennes. Afin de présenter ces dernières, revenons à un système d’équations polynomiales
à coefficients rationnels. Les solutions complexes d’un tel système d’équations forment une
variété complexe, qui possède éventuellement des singularités. On est habitué, pour étudier
la topologie d’une telle variété, à considérer ses groupes de cohomologie. On obtient ainsi
des invariants simples du système d’équations originel. Néanmoins le lien entre les solu-
tions rationnelles du système et ces invariants n’est pas évident, de plus ces considérations
“oublient” que le système de départ est à coefficients rationnels : on doit donc s’attendre à
une perte d’information importante. Grâce à la géométrie algébrique, on peut affiner cette
construction. Le système d’équations définit une variété algébrique X définie sur Q, que
l’on voit comme une variété algébrique XQ définie sur Q munie d’une action de Gal(Q/Q).
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Pour tout nombre premier `, on peut considérer les groupes de cohomologie étale `-adique
H i

ét(XQ,Q`) : ce sont des Q`-espaces vectoriels de dimension finie munis d’une action
continue et linéaire de Gal(Q/Q), c’est-à-dire des représentations galoisiennes `-adiques.
Celles-ci “linéarisent” la variété algébrique X, et on peut espérer que ces invariants sont
suffisamment fins pour permettre de retrouver des informations de nature arithmétique sur
le système de départ.

En 1967, dans une lettre adressée à Weil, Langlands imagine un lien entre certaines
représentations automorphes et les représentations galoisiennes se factorisant par le groupe
de Galois d’une extension finie de Q (on parle de représentation d’Artin), dans l’espoir
d’aboutir à des lois de réciprocité non-abéliennes, en termes des coefficients des formes
automorphes. Plus précisément, il demande si à chaque telle représentation galoisienne en
dimension n il est possible d’associer une représentation automorphe de GLn(A), selon une
“recette” explicite.

L’année suivante Deligne suit le chemin inverse en associant à tout forme modulaire
de poids k ≥ 2, cuspidale et propre pour les opérateurs de Hecke une représentation
galoisienne `-adique de dimension 2, caractérisée par les traces des Frobenius en p pour
tout nombre premier p 6= `, données par les valeurs propres pour les opérateurs Tp. Le cadre
est quelque peu différent de celui de la question posée par Langlands puisqu’aucune de ces
représentations n’est d’Artin. Le cas du poids k = 1, correspondant aux représentations
d’Artin, sera traité en 1974 par Deligne et Serre, en utilisant le résultat de Deligne.

Langlands et Tunnell démontrent un énoncé dans le sens de la question de Langlands
en 1980, en utilisant le changement de base pour le groupe GL2. Il s’agit de représenta-
tions d’Artin en dimension 2, d’images résolubles. Les travaux de Wiles et Taylor-Wiles
en 1995 démontrent pour la première fois un cas non résoluble. Soulignons qu’il s’agit de
représentations galoisiennes qui ne sont pas d’Artin. Plus précisément, ils établissent le
cas semistable de la conjecture de Taniyama-Shimura, qui affirme que la représentation
galoisienne de dimension 2 associée à une courbe elliptique provient d’une forme modulaire
de poids 2, cuspidale et propre pour les opérateurs de Hecke. Grâce aux travaux de Weil,
Hellegouarch, Frey, Serre et Ribet, cela entraîne le célèbre théorème de Fermat. Remar-
quons qu’ici encore, la toute dernière étape de la démonstration repose sur la connaissance
concrète des formes modulaires : le fait qu’il n’y a pas de forme modulaire cuspidale non
nulle en poids 2 et niveau 2 permet de conclure à l’absurdité de l’existence d’un triplet de
Fermat.

À la suite de cette percée, la correspondance de Langlands a connu des avancées im-
portantes dans les deux sens, notamment la preuve de la correspondance de Langlands
locale pour les groupes linéaires (Henniart et Harris-Taylor en 2001), la construction des
représentations galoisiennes `-adiques dans de nombreux cas (Chenevier, Clozel, Harris,
Kottwitz, Labesse, Shin, Taylor, . . .), et très récemment de nombreux cas d’automorphie
potentielle généralisant les travaux de Wiles et Taylor-Wiles (Barnet-Lamb-Gee-Geraghty-
Taylor, utilisant notamment des constructions de Kisin, et Patrikis-Taylor).

Il faut souligner que tous ces résultats concernent les représentations automorphes al-
gébriques et régulières ou “quasi-régulières” aux places archimédiennes, tandis que le pro-
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gramme de Langlands se veut plus général. Néanmoins les représentations automorphes
qui ne sont pas algébriques aux places archimédiennes ne correspondent pas conjecturale-
ment à des objets de nature arithmétique comme les représentations galoisiennes `-adiques
considérées ci-dessus.

1.3 Résultats obtenus dans cette thèse

Nous proposons deux applications arithmétiques des travaux récents de James Arthur sur
la classification endoscopique du spectre automorphe discret des groupes symplectiques et
orthogonaux.

La première consiste à ôter une hypothèse d’irréductibilité dans un résultat de Richard
Taylor décrivant l’image des conjugaisons complexes par les représentations galoisiennes
p-adiques associées aux représentations automorphes cuspidales algébriques régulières es-
sentiellement autoduales pour le groupe GL2n+1 sur un corps de nombres totalement réel.
Cet énoncé peut être vu comme une partie de la compatibilité entre correspondances de
Langlands locale et globale aux places archimédiennes, l’autre partie consistant à décrire
les poids de Hodge-Tate de la représentation galoisienne en fonction des paramètres de Lan-
glands aux places archimédiennes. Nous étendons également ce résultat au cas de GL2n,
sous une hypothèse de parité du caractère multiplicatif. Nous utilisons un résultat de défor-
mation p-adique de représentations automorphes. Plus précisément, nous montrons l’abon-
dance de points correspondant à des représentations galoisiennes (quasi-)irréductibles sur
les variétés de Hecke pour les groupes symplectiques et orthogonaux pairs. La classification
d’Arthur est utilisée à la fois pour définir les représentations galoisiennes et pour transférer
des représentations automorphes autoduales (pas nécessairement cuspidales) de groupes
linéaires aux groupes symplectiques et orthogonaux.

La deuxième application concerne le calcul explicite de dimensions d’espaces de formes
automorphes ou modulaires. Notre contribution principale est un algorithme calculant les
intégrales orbitales aux éléments de torsion des groupes classiques p-adiques non ramifiés,
pour l’unité de l’algèbre de Hecke non ramifiée. Cela permet le calcul du côté géométrique
de la formule des traces d’Arthur, et donc celui de la caractéristique d’Euler-Poincaré du
spectre discret en niveau trivial. La classification d’Arthur permet l’analyse fine de cette ca-
ractéristique d’Euler, jusqu’à en déduire les dimensions des espaces de formes automorphes.
De là il n’est pas difficile d’apporter une réponse à un problème plus classique : déterminer
les dimensions des espaces de formes modulaires de Siegel à valeurs vectorielles.
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Partie 2
Eigenvarieties for classical groups and complex conjugations
in Galois representations

2.1 Introduction

Let p be a prime. Let us choose once and for all algebraic closures Q,Qp,C and embeddings
ιp : Q ↪→ Qp, ι∞ : Q ↪→ C. Let F be a totally real number field. A regular, L-algebraic,
essentially self-dual, cuspidal (RLAESDC) representation of GLn(AF ) is a cuspidal auto-
morphic representation π together with an algebraic character η| · |q of A×F /F

× (η being
an Artin character, and q an integer) such that

• π∨ ' η| det |q ⊗ π,

• For any real place v of F , LL(πv)|WC ' ⊕i
(
z 7→ zav,i z̄bv,i

)
where LL is the local

Langlands correspondence, WC ' C× is the Weil group of C, and av,i, bv,i are
integers and av,i 6= av,j if i 6= j.

By definition, π is regular, L-algebraic, essentially self-dual, cuspidal (RLAESDC) if and
only if π ⊗ | det |(n−1)/2 is regular, algebraic (in the sense of Clozel), essentially self-dual,
cuspidal (RAESDC). The latter is the notion of “algebraic” usually found in the liter-
ature, and is called “C-algebraic” in [BG10]. Given a RLAESDC representation π of
GLn(AF ), there is (Theorem 2.4.1.2) a unique continuous, semisimple Galois represent-
ation ριp,ι∞(π) : GF → GLn(Qp) such that ριp,ι∞(π) is unramified at any finite place v of
F not lying above p for which πv is unramified, and ι∞ι−1

p Tr
(
ριp,ι∞(π)(Frobv)

)
is equal

to the trace of the Satake parameter of πv (contained in this assertion is the fact that this
trace is algebraic over Q). It is conjectured that for any real place v of F , if cv ∈ GF

is the conjugacy class of complex conjugations associated with v, the conjugacy class of
ριp,ι∞(π)(cv) is determined by LL(πv) (see [BG10][Lemma 2.3.2] for the case of an arbitrary
reductive group). In the present case, by Clozel’s purity lemma and by regularity, LL(πv)

is completely determined by its restriction to WC, and since det
(
ριp,ι∞(π)

)
is known, the

determination of ριp,ι∞(π)(cv) amounts to the following

Conjecture. Under the above hypotheses,
∣∣Tr
(
ριp,ι∞(π)(cv)

)∣∣ ≤ 1.

There are several cases for which this is known. By [Pat] for v an infinite place of F the
value of ηv(−1) ∈ {±1} does not depend on v, and we denote the common value η∞(−1).
When η∞(−1)(−1)q = −1 (this happens only if n is even, and by [BC11] this means
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that ριp,ι∞(π) together with the character ριp,ι∞(η| · |q) = (η ◦ rec)cycloq, is “symplectic”),
ριp,ι∞(π)(cv) is conjugate to −ριp,ι∞(π)(cv), so the trace is obviously zero.

In [Tay12], Richard Taylor proves the following

Theorem (Taylor). Let F be a totally real number field, n ≥ 1 an integer. Let π be a reg-
ular, L-algebraic, essentially self-dual, cuspidal automorphic representation of GL2n+1/F .
Assume that the attached Galois representation ριp,ι∞(π) : GF → GL2n+1(Qp) is irredu-
cible. Then for any real place v of F ,

Tr
(
ριp,ι∞(π)(cv)

)
= ±1.

Although one expects ριp,ι∞(π) to be always irreducible, this is not known in general.
However it is known when n ≤ 2 by [CG], and for arbitrary n but only for p in a set of
positive Dirichlet density by [PT].

In this paper, the following cases are proved:

Theorem A (Theorem 2.6.3.4). Let n ≥ 2, F a totally real number field, π a regu-
lar, L-algebraic, essentially self-dual, cuspidal representation of GLn(AF ), such that π∨ '
((η| · |q) ◦ det) ⊗ π, where η is an Artin character and q an integer. Suppose that one of
the following conditions holds

1. n is odd.

2. n is even, q is even, and η∞(−1) = 1.

Then for any complex conjugation c ∈ GF , |Tr(ριp,ι∞(π)(c))| ≤ 1.

This is achieved thanks to the result of Taylor, Arthur’s endoscopic transfer between
twisted general linear groups and symplectic or orthogonal groups, and using eigenvarieties
for these groups. Let us describe the natural strategy that one might consider to prove the
odd-dimensional case using these tools, to explain why it fails and how a detour through
the even-dimensional case allows to conclude.

Let π be a RLAESDC representation of GL2n+1(AF ). Up to a twist by an algeb-
raic character π is self-dual and has trivial central character. Conjecturally, there should
be an associated self-dual Langlands parameter φπ : LF → GL2n+1(C) where LF is the
conjectural Langlands group. Up to conjugation, φπ takes values in SO2n+1(C), and by
functoriality there should be a discrete automorphic representation Π of Sp2n(AF ) such
that LL(Πv) is equal to LL(πv) via the inclusion SO2n+1(C) ↪→ GL2n+1(C) for any place
of F which is either archimedean or such that πv is unramified. Arthur’s results in his
book [Art13] imply that this (in fact, much more) holds. To construct p-adic families of
automorphic representations (i.e. eigenvarieties) containing Π, it is preferable to work with
a group which is compact at the real places of F , and work with representations having
Iwahori-invariants at the p-adic places. A suitable solvable base change allows to assume
that [F : Q] is even and that πv has Iwahori-invariants for v|p. The last chapter of [Art13]
will allow to “transfer” π to an automorphic representation Π of G, the inner form of
Sp2n which is split at the finite places and compact at the real places of F . By [Loe11]
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(which generalizes [Che04]), the eigenvariety X for G is available. Thanks to [Art13],
one can associate p-adic Galois representations ριp,ι∞(·) to automorphic representations
of G, yielding a family of Galois representations on X , that is to say a continuous map
T : GF → O(X ) which specializes to Tr

(
ριp,ι∞(·)

)
at the points of X corresponding to

automorphic representations of G(AF ). One can then hope to prove a result similar to
[BC11, Lemma 3.3], i.e. show that one can “deform” Π (on X ) to reach a point correspond-
ing to an automorphic representation Π′ whose Galois representation is irreducible (even
when restricted to the decomposition group of a p-adic place of F ). Since ριp,ι∞(Π′) comes
from an automorphic representation π′ of GL2n+1, π′ is necessarily cuspidal and satisfies
the hypotheses of Taylor’s theorem. Since T (cv) is locally constant on X , we would be
done.

Unfortunately, it does not appear to be possible to reach a representation Π′ whose
Galois representation is irreducible by using local arguments on the eigenvariety. However
we will prove the following, which includes the case of some even-dimensional special
orthogonal groups as it will be needed later:

Theorem B (Theorem 2.4.2.2, Theorem 2.5.0.3). Let G be an inner form of Sp2n or SO4n

over a totally real number field, compact at the real places and split at the p-adic ones. Let
Π be an irreducible automorphic representation of G(AF ) having Iwahori invariants at all
the places of F above p, and having invariants under an open subgroup U of G(A(p)

F,f ). Let
ριp,ι∞(Π) denote the p-adic representation of the absolute Galois group GF of F associated
with Π and embeddings ιp : Q ↪→ Qp, ι∞ : Q ↪→ C. Let N be an integer. There exists an
automorphic representation Π′ of G(AF ) such that:

• Π′ is unramified at the places above p, and has invariants under U ;

• The restriction of ριp,ι∞(Π′) to the decomposition group at any place above p is either
irreducible or the sum of an Artin character and an irreducible representation of
dimension 2n (the latter occurring only in the symplectic case);

• For all g in GF , Tr(ριp,ι∞(Π′)(g)) ≡ Tr(ριp,ι∞(Π)(g)) mod pN .

The possible presence of an Artin character (in the case of inner forms of Sp2n) comes
from the fact that the “standard” representation of SO2n+1(C) in GL2n+1(C) is not minus-
cule: the set of characters of a torus T (C) of SO2n+1(C) in this representation has two
orbits under the Weyl group, one of which contains only the trivial character. The key
fact allowing to prove the above theorem is that classical points on the eigenvariety for
G correspond to automorphic representations Π of G(AF ) (say, unramified at the p-adic
places) and a refinement of each Πv, v|p, that is to say a particular element in T (C) in the
conjugacy class of the Satake parameter of Πv. The variation of the crystalline Frobenius
of ριp,ι∞(·) on the eigenvariety with respect to the weight and the freedom to change the
refinement (by the action of the Weyl group) are at the heart of the proof of Theorem B.

Although the strategy outlined above fails, Theorem A can be deduced from Theorem
B. Indeed the precise description of the discrete automorphic spectrum of symplectic and
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orthogonal groups by Arthur shows that formal sums of distinct cuspidal self-dual repres-
entations of general linear groups “contribute” to this spectrum. The even-dimensional case
in Theorem A will be proved by transferring π � π0, where π, π0 are regular, L-algebraic,
self-dual, cuspidal representations of GL2n(AF ) (resp. GL3(AF )) with distinct weights at
any real place of F , to an automorphic representation Π of an inner form G of Sp2n+2/F .
Since ριp,ι∞(π) ⊕ ριp,ι∞(π0) does not contain any Artin character (the zero Hodge-Tate
weights come from ριp,ι∞(π0), which is known to be irreducible), for big enough N any
representation Π′ as in B has an irreducible Galois representation.

To treat the original case of a regular, L-algebraic, self-dual, cuspidal representation of
GL2n+1(AF ) having trivial central character, we appeal to Theorem B for special ortho-
gonal groups. For example, if n is odd, π�π0, where π0 is the trivial character of A×F /F

×,
contributes to the automorphic spectrum of G, which is now the special orthogonal group
of a quadratic form on F 2n+2 which is definite at the real places and split at the finite
places of F . Note that π � π0 is not regular: the zero weight appears twice at each real
place of F . However the Langlands parameters of representations of the compact group
SO2n+2(R) are of the form

n+1⊕
i=1

IndWC
WR

(
z 7→ (z/z̄)ki

)
when composed with SO2n+2(C) ↪→ GL2n+2(C), with k1 > . . . > kn+1 ≥ 0. Moreover
LL ((π � π0)v) is of the above form, with kn+1 = 0. The rest of the proof is identical to
the even-dimensional case.

This fact also shows that some non-regular, L-algebraic, self-dual, cuspidal represent-
ations of GL2n(AF ) contribute to the automorphic spectrum of G. Consequently we can
also extend Taylor’s result to the Galois representations associated with these slightly non-
regular automorphic representations. These Galois representations were shown to exist by
Wushi Goldring [Gol14].

We now fix some notations for the rest of the article. The valuation vp of Qp is the one
sending p to 1, and | · | will denote the norm p−vp(·). All the number fields in the paper
will sit inside Q. We have chosen arbitrary embeddings ιp : Q ↪→ Qp, ι∞ : Q ↪→ C. In fact,
the constructions will only depend on the identification between the algebraic closures of
Q in Qp and C (informally, ιpι−1

∞ ). Observe that the choice of a p-adic place v of a number
field F and of an embedding Fv ↪→ Qp is equivalent, via ιp, to the choice of an embedding
F ↪→ Q. The same holds for the infinite places and ι∞. Thus if F is totally real, ιpι−1

∞
defines a bijection between the set of infinite places of F and the set of p-adic places v of
F together with an embedding Fv ↪→ Qp. The eigenvarieties will be rigid analytic spaces
(in the sense of Tate). If X is a rigid analytic space over a finite extension E of Qp, |X |
will denote its points.

2.2 Assumptions on forthcoming results of Arthur

As the results of this paper rely on [Art13][Theorem 9.5.3] (the analogue of [Art13, Theorem
1.5.2] in the case of inner forms of quasi-split classical groups), whose proof will only be
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given in [Art], we have stated some properties as assumptions: Assumptions 2.4.1.1, 2.6.1.2,
2.6.2.2 and 2.6.4.1. These will all be consequences of the main global theorem of [Art],
which will make more precise the statement of [Art13][Theorem 9.5.3].

The reason [Art13][Theorem 9.5.3] is not precisely stated is that at present it is not
known what global data should play the role of Whittaker data in the case of inner forms of
quasisplit groups. These data are needed to normalize the local Langlands correspondence,
via the normalization of endoscopic transfer factors. There is a satisfactory definition in
the local case: rigid inner forms as defined in [Kal]. A global analogue is necessary to
formulate [Art13][Theorem 9.5.3] precisely.

A subsequent version of this paper will have the assumptions replaced by actual pro-
positions or lemmas.

2.3 The eigenvariety for definite symplectic groups

In this section we recall the main result of [Loe11] in our particular case (existence of the
eigenvariety for symplectic groups), and show that the points corresponding to unramified,
“completely refinable” automorphic forms, with weight far from the walls, are “dense” in
this eigenvariety.

2.3.1 The eigenvariety

2.3.1.1 Symplectic groups compact at the archimedean places

Let F be a totally real number field of even degree over Q, and let D be a quaternion
algebra over F , unramified at all the finite places of F (Fv ⊗F D ' M2(Fv)), and definite
at all the real places of F . Such a D exists thanks to the exact sequence relation the
Brauer groups of F and the Fv. Let n be a positive integer, and let G be the algebraic
group over F defined by the equation M∗M = In for M ∈ Mn(D), where (M∗)i,j = M∗j,i,
and ·∗ denotes conjugation in D.

Then G (F ⊗Q R) is a compact Lie group, and for all finite places v of F , G×F Fv '
Sp2n/Fv.

Fix a prime p. We will apply the results of [Loe11] to the group G′ = ResFQG. Let E
be a finite and Galois extension of Qp, containing all the Fv (v over p).

2.3.1.2 The Atkin-Lehner algebra

The algebraic group G′ ×Q Qp =
∏
v|pG ×Q Fv (where v runs over the places of F )

is isomorphic to
∏
v|p ResFvQpSp2n/Fv, which is quasi-split but not split in general. The

algebraic group Sp2n is defined over Z by the equation tMJM = J in M2n, where J =(
0 Jn
−Jn 0

)
and Jn =

0 1

. .
.

1 0

. We define its algebraic subgroups Tv, Bv, B̄v,

Nv, N̄v of diagonal, upper triangular, lower triangular, unipotent upper triangular, and
unipotent lower triangular matrices of ResFvQpSp2n/Fv, and let T =

∏
v|pTv, B =

∏
v|pBv,
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and so on. In [Loe11, 2.4], only the action of the maximal split torus of G′ ×Q Qp is
considered. For our purpose, we will need to extend this and consider the action of a
maximal (non-split in general) torus, that is T, instead of a maximal split torus S ⊂ T.
The results in [Loe11] are easily extended to this bigger torus, essentially because T(Qp)/

S(Qp) is compact. Moreover, we let Iv be the compact subgroup of Sp2n (Ov) consisting
of matrices with invertible diagonal elements and elements of positive valuation below
the diagonal. Finally, following Loeffler’s notation, we let G0 =

∏
v|p Iv. It is an Iwahori

sugroup ofG′(Qp) having an Iwahori decomposition: G0 ' N̄0T0N0 where ∗0 = ∗(Qp)∩G0.
For each place v of F above p, let us choose a uniformizer $v of Fv. Let Σv be the

subgroup of Sp2n(Fv) consisting of diagonal matrices whose diagonal elements are powers
of $v, i.e. matrices of the form

$r1
v

. . .

$rn
v

$−rnv

. . .

$−r1v


Let Σ+

v be the submonoid of Σv whose elements satisfy r1 ≤ . . . ≤ rn ≤ 0, and Σ++
v the

one whose elements satisfy r1 < . . . < rn < 0. Naturally, we set Σ =
∏
v|p Σv, and similarly

for Σ+ and Σ++.
The Atkin-Lehner algebra H+

p is defined as the subalgebra of the Hecke-Iwahori algebra
H(G0\G′(Qp)/G0) (over Q) generated by the characteristic functions [G0uG0], for u ∈ Σ+.
Let Hp be the subalgebra of H(G0\G′(Qp)/G0) generated by the characteristic functions
[G0uG0] and their inverses, for u ∈ Σ+ (in [IM65], a presentation of the Hecke-Iwahori
algebra is given, which shows that [G0uG0] is invertible if p is invertible in the ring of
coefficients).

If Sp is a finite set of finite places of F not containing those over p, let HS be the Hecke
algebra (over Q) ⊗′

w/∈Sp∪Sp∪S∞

H(G(OFw)\G(Fw)/G(OFw))

where S∗ denotes the set of places above ∗. This Hecke algebra has unit eS . Let HpS be a
commutative subalgebra of

⊗
w∈Sp H(G(Fw)), with unit eSp .

Finally, we let H+ = H+
p ⊗HSp ⊗HS , H = Hp ⊗HSp ⊗HS and e = eG0 ⊗ eSp ⊗ eS .

2.3.1.3 p-adic automorphic forms

The construction in [Loe11] depends on the choice of a parabolic subgroup P of G′ and
a representation V of a compact subgroup of the Levi quotient M of P. The parabolic
subgroup we consider here is the Borel subgroup B, and thus, using Loeffler’s notation,
T = M is a maximal (non-split in general) torus contained in B. The representation V is
taken to be trivial.

15



The weight space W is the rigid space (over E, but it is well-defined over Qp) paramet-
rizing locally Qp-analytic (equivalently, continuous) characters of T0 '

(∏
v|pO×v

)n
. As

1 +$vOv is isomorphic to (µp∞ ∩ F×v )×Z[Fv :Qp]
p , W is the product of an open polydisc of

dimension n[F : Q] and a rigid space finite over E.
The construction in [Loe11] defines the k-analytic ((Gk)k≥0 being a filtration of G0)

parabolic induction from T0 toG0 of the “universal character” χ : T0 → O(W )×, denoted by
C(U , k) (k big enough such that χ is k-analytic on the open affinoid U ), which interpolates
p-adically the restriction to G′(Qp) of algebraic representations of G′(Qp). From there
one can define the spaces M(e,U , k) ([Loe11, Definition 3.7.1]) of p-adic automorphic
forms (or overconvergent automorphic forms, by analogy with the rigid-geometric case of
modular forms) above an open affinoid or a point U of W which are k-analytic and fixed
by the idempotent e. This space has an action of H+. By [Loe11, Corollary 3.7.3], when
considering p-adic automorphic forms which are eigenvectors for [G0uG0] for some u ∈ Σ++

and for a non-zero eigenvalue (“finite slope” p-adic eigenforms), one can forget about k,
and we will do so in the sequel.

2.3.1.4 Existence and properties of the eigenvariety

We choose the element

η =





$−nv
. . .

$−1
v

$v

. . .

$n
v




v

∈ Σ++

Theorem 2.3.1.1. There exists a reduced rigid space X over E, together with an E-
algebra morphism Ψ : H+ → O(X )× and a morphism of rigid spaces w : X → W such
that:

1. The morphism
(
w,Ψ([G0ηG0])−1

)
: X → W ×Gm is finite

2. For each point x of X , Ψ⊗ w\ : H+ ⊗E Ow(x) → Ox is surjective

3. For every finite extension E′/E, X (E′) is in bijection with the finite slope systems
of eigenvalues of H+ acting on the space of “overconvergent” automorphic forms, via
evaluation of the image of Ψ at a given point.

Moreover, for any point x ∈ |X |, there is an arbitrarily small open affinoid V containing
x and an open affinoid U of W such that V ⊂ w−1(U ), the morphism w|V : V → U is
finite, and surjective when restricted to any irreducible component of V .

Proof. This is [Loe11, Theorems 3.11.2 and 3.12.3], except for the last assertion. To prove
it, we need to go back to the construction of the eigenvariety in [Buz07]. Buzzard begins
by constructing the Fredholm hypersurface Z (encoding only the value of Ψ([G0ηG0])),
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together with a flat morphism Z → W , before defining the finite morphism X → Z . By
[Buz07, Theorem 4.6], Z can be admissibly covered by its open affinoids V0 such that w
restricted to V0 induces a finite, surjective morphism to an open affinoid U of W , and V0

is a connected component of the pullback of U . We can assume that U is connected, and
hence irreducible, since W is normal. The morphism V0 → U is both open (since it is flat:
[Bos09, Corollary 7.2]) and closed (since it is finite), so that any irreducible component of
V0 is mapped onto U . This can be seen more naturally by observing that the irreducible
components of V0 are also Fredholm hypersurfaces, by [Con99, Theorem 4.3.2].

By [Che04, Proposition 6.4.2], if V denotes the pullback to X of V0, each irreducible
component of V is mapped onto an irreducible component of V0 (more precisely, this is a
consequence of [Che04, Lemme 6.2.10]). To conclude, we only need to show that if x ∈ V ,
up to restricting U , the connected component of V containing x can be arbitrarily small.
This is a consequence of the following lemma.

Lemma 2.3.1.2. Let f : X1 → X2 be a finite morphism of rigid analytic spaces. Then
the connected components of f−1(U), for U admissible open of X2, form a basis for the
canonical topology on X1.

Proof. It is enough to consider the case X1 = SpA1, X2 = SpA2. Let x1 be a maximal
ideal of A1. Then f−1 ({f(x1)}) = {x1, . . . , xm}. We choose generators t1, . . . , tn of f(x1),
and r(i)

1 , . . . , r
(i)
ki

of xi. Using the maximum modulus principle, it is easily seen that Ωj,N :={
y ∈X2 | |tj(y)| ≥ p−N

}
j,N

is an admissible covering of the admissible open X2 \ {f(x)}

of X2. Let VM be the admissible open
{
x ∈X1 | ∀i,∃k, |r(i)

k (x)| ≥ p−M
}
, which is a finite

union of open affinoids, hence quasi-compact. Consequently, the admissible open sets

Uj,N := VM ∩ f−1 (Ωj,N )

=
{
x ∈X1 | ∀i,∃k, |r(i)

k (x)| ≥ p−M and |f \(tj)(x)| ≥ p−N
}
j,N

form an admissible covering of VM . Therefore there is an N big enough so that

VM =

r⋃
j=1

Uj,N

which implies that

f−1
({
y ∈X2 | |tj(y)| ≤ p−N−1

})
⊂
⋃
i

{
x ∈X1 | ∀k, |r(i)

k (x)| ≤ p−M
}

and when M goes to infinity, the right hand side is the disjoint union of arbitrarily small
affinoid neighbourhoods of the xi.

We define the algebraic points of W (E) to be the ones of the form

(xv,i)v,i 7→
∏
v,σ

σ

(
n∏
i=1

x
kv,σ,i
v,i

)
where kv,σ,i are integers, and such a point is called dominant if kv,σ,1 ≥ kv,σ,2 ≥ . . . ≥
kv,σ,n ≥ 0.
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Recall that a set S ⊂ |X | is said to accumulate at a point x ∈ |X | if x has a basis of
affinoid neighbourhoods in which S is Zariski dense.

Proposition 2.3.1.3. Let (φr)r be a finite family of linear forms on RA where A is
the set of triples (v, σ, i) for v a place of F above p, σ : Fv → E and 1 ≤ i ≤ n,
and let (cr)r be a family of elements in R≥0. Assume that the open affine cone C ={
y ∈ RA | ∀r, φr(y) > cr

}
is nonempty. Then the set of algebraic characters in C yields

a Zariski dense set in the weight space W , which accumulates at all the algebraic points.

Proof. [Che09, Lemma 2.7].

In particular the property of being dominant or “very regular” can be expressed in this
way.

By finiteness of G(F )\G(AF,f )/U for any open subgroup U of G(AF,f ), if Π is an auto-
morphic representation of G(AF ), the representation Πf is defined over ι∞(Q̄). Loeffler
defines ([Loe11, Definition 3.9.1]) the classical subspace of the space of p-adic automorphic
forms above an algebraic and dominant point w of the weight space. This subspace is
isomorphic to ιpι

−1
∞

(
e (C∞(G(F )\G(AF ))⊗W ∗)G(F⊗QR)

)
as H+-module, with W the

representation of G(F ⊗Q R) which is the restriction of the algebraic representation of
G′ ×Q C having highest weight ι−1

∞ ιp(w). The classical points of the eigenvariety are the
ones having eigenvectors in the classical subspace.

We need to give an interpretation of classical points on the eigenvariety X , in terms
of automorphic representations of G(AF ). Namely, there is a classical point x ∈ X (E′)

defining a character Ψx : H → E′ (here E ⊂ E′ ⊂ Qp) if and only if there is an automorphic
representation Π = ⊗′vΠv = Π∞ ⊗Πp ⊗Π

(p)
f of G(AF ) such that:

• ιpι−1
∞
(
⊗v|∞Πv

)
is the algebraic representation having highest weight w(x);

• ιp
(

(eS ⊗ eS)Π
(p)
f

)
contains a non-zero vector on which HS ⊗ HS acts according to

Ψx;

• ιp(eG0Πp) contains a non-zero vector on which Hp acts according to µw(x)Ψx, where
µw(x)([G0ξG0]) = w(x)(ξ) if ξ ∈ Σ+.

The twist by the character µw(x) is explained by the fact that the classical overconvergent
automorphic forms are constructed by induction of characters of the torus extended from
T0 (on which they are defined by w) to T trivially on Σ.

2.3.2 Unramified and “completely refinable” points

2.3.2.1 Small slope p-adic eigenforms are classical

The algebraic and dominant points of W are the ones of the form

(xv,i)v,i 7→
∏
v,σ

σ

(
n∏
i=1

x
kv,σ,i
v,i

)
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where kv,σ,1 ≥ kv,σ,2 ≥ . . . ≥ kv,σ,n ≥ 0 are integers. The proof of the criterion given
in [Loe11, Theorem 3.9.6] contains a minor error, because it “sees” only the restriction of
these characters to the maximal split torus S (over Qp), and the BGG resolution has to
be applied to split semi-simple Lie algebras.

We correct it in the case of quasi-split reductive groups (in particular the restriction to
a subfield of a quasi-split group remains quasi-split), and give a stronger criterion. This
criterion could be used on an eigenvariety for which only the weights corresponding to a
given p-adic place of F vary. For this purpose we use the “dual BGG resolution” given in
[Jon11]. The proof will be very close to that of [Loe11, Propositions 2.6.3-2.6.4]. In the
following G′ could be any quasi-split reductive group over Qp, and we could replace E/Qp

by any extension splitting G′.
Let B be a Borel subgroup of G′, S a maximal split torus in B, T the centralizer of S,

a maximal torus. This determines an opposite Borel subgroup B̄ such that B̄ ∩ B = T.
Let Φ+ (resp. ∆) be the set of positive (resp. simple) roots of G′ ×Qp E, with respect to
the maximal torus T of the Borel subgroup B. One can split ∆ = ti∆i where α, β belong
to the same ∆i if and only if α|S = β|S (equivalently, the ∆i are the Galois orbits of ∆).
Let Σ be a subgroup of T(Qp) supplementary to its maximal compact subgroup, and Σ+

the submonoid consisting of the z ∈ T(Qp) such that |α(z)| ≥ 1 for all α ∈ ∆. For each
i, define ηi to be the element of Σ+/ (Z(G′)(Qp) ∩ Σ) generating ∩j 6=i ker |αj(·)| (here αj
denotes any element of ∆j , and |αj(·)| does not depend on this choice).

Assume that G0 is a compact open subgroup of G′(Qp) having an Iwahori factorization
N̄0T0N0. Using a lattice in the Lie algebra of N and the exponential map, it is easily seen
that N0 admits a decreasing, exhaustive filtration by open subgroups (Nk)k≥1 having a
canonical rigid-analytic structure. Moreover any ordering of Φ+ endows the Banach space
of Qp-analytic functions on Nk taking values in E with an orthonormal basis consisting of
monomials on the weight spaces.

Let λ be an algebraic and dominant weight of T×Qp E. By [Jon11], there is an exact
sequence of E[I]-modules, where I = G0Σ+G0 = B̄0Σ+N0 is the monoid generated by G0

and Σ+:

0→ IndG
B̄(λ)⊗ sm-IndB̄0N0

B̄0
1→ la-IndB̄N0

B̄
(λ)→

⊕
α∈∆

la-IndB̄N0

B̄
(sα(λ+ ρ)− ρ) (2.3.2.1)

where 2ρ =
∑

α∈Φ+ α, “sm” stands for “smooth” and “la” for “locally analytic”. The relation
with Loeffler’s Ind(V )k is la-IndB̄N0

B̄
(λ)⊗ λ−1

sm = lim−→
k

Ind(Eλ)k, where λsm is the character

on T which is trivial on its maximal compact subgroup and agrees with λ on Σ. Naturally
IndG

B̄(λ)⊗ sm-IndB̄0N0

B̄0
1⊗ λ−1

sm = lim−→
k

Ind(Eλ)cl
k .

To prove a classicity criterion, we need to bound the action of ηi on the factors of the
RHS of (2.3.2.1) twisted by λ−1

sm . Let nα = α∨(λ) ∈ N for α ∈ ∆, then sα(λ+ ρ)−λ− ρ =

−(1+nα)α. The Banach space of k-analytic functions on N0 is the direct sum of the spaces
of analytic functions on xNk, x ∈ N0/Nk, and each of these spaces has an orthonormal
(with respect to the supremum norm) basis (vj,x)j∈J where J = NΦ+ (monomials on the
weights spaces). This basis depends on the choice of a representative x, but if we fix i and
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x0 ∈ N0, we can choose η−1
i x0ηi as a representative of its class. Then if φ =

∑
j ajvj,η−1

i x0ηi

(with aj → 0) is an element of la-IndB̄N0

B̄
(sα(λ+ ρ)− ρ)⊗ λ−1

sm , and ξ ∈ Nk,

(ηi · φ)(x0ξ) = η
−(1+nα)α
i

∑
j∈J

ajvj,η−1
i x0ηi

(η−1
i x0ξηi)

=
∑
j∈J

ajη
−(1+nα)α−s(j)
i vj,x0(x0ξ)

where s(j) =
∑

β∈Φ+ j(β)β. This shows that |ηi ·φ| ≤ |α(ηi)|−(1+nα)|φ|, and so the operator

ηi has norm less than or equal to |α(ηi)|−(1+nα) on la-IndB̄N0

B̄
(sα(λ+ ρ)− ρ)⊗ λ−1

sm .
We can then apply the exact functor which to an E[I]-module W associates the auto-

morphic forms taking values in W , and take the invariants under the idempotent e (this
functor is left exact). We obtain that M(e, Eλ)/M(e, Eλ)cl (the space of p-adic auto-
morphic forms modulo the classical automorphic forms) embeds in

⊕
α∈∆Mα where each

Mα is a Banach space on which the operator [G0ηiG0] has norm ≤ |α(ηi)|−(1+nα). The
following criterion follows:

Lemma 2.3.2.1. If an overconvergent eigenform f ∈M(e, Eλ) satisfies [G0ηiG0] f = µif

with µi 6= 0 and
vp(µi) < inf

α∈∆i

−(1 + nα)vp(α(ηi))

for all i, then f is classical.

In the case of the symplectic group G′, the family (ηi)i can be indexed by the couples
(v, i) where v is a place of F above p and 1 ≤ i ≤ n, and ∆v,i is indexed by the embeddings
Fv ↪→ E. Specifically, ηv,i is trivial at all the places except for v, where it equals

Diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 )

with xj =

{
$−1
v if j ≤ i

1 if j > i
.

The conditions in the previous lemma can be written{
vp(µv,i) <

1
ev

infσ(1 + kv,σ,i − kv,σ,i+1) for i < n

vp(µv,n) < 1
ev

infσ (2 + 2kv,σ,n) .

2.3.2.2 Representations having Iwahori-invariants and unramified principal
series

We recall results of Casselman showing that irreducible representations having Iwahori-
invariants appear in unramified principal series, and giving the Atkin-Lehner eigenvalues
in terms of the unramified character being induced.

In this subsection, we fix a place v of F above p. Recall Iv has an Iwahori decomposition
Iv = Nv,0Tv,0N̄v,0. As in [Cas], if (Π, V ) is a smooth representation of G(Fv), V (N̄v) is
the subspace of V spanned by the Π(n̄)(x) − x, n̄ ∈ N̄v, VN̄v = V/V (N̄v) and if N̄v,i is a

compact subgroup of N̄v, V (N̄v,i) =
{
v ∈ V |

∫
N̄v,i

Π(n̄)(v)dn̄ = 0
}
.
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Lemma 2.3.2.2. Let (Π, V ) be an admissible representation of G(Fv) over C. Then the
natural (vector space) morphism from V Iv to

(
VN̄v

)Tv,0 is an isomorphism, inducing a
Σ+
v -equivariant isomorphism

ΠIv ∼−→
(
ΠN̄v

)Tv,0 ⊗ δ−1
B̄v

where δB̄v denotes the modulus morphism of B̄v, and u ∈ Σ+
v acts on ΠIv by [IvuIv].

Proof. Let N̄v,1 be a compact subgroup of N̄v such that V Iv ∩ V (N̄v) ⊂ V (N̄v,1). There
is a u ∈ Σ+

v such that uN̄v,1u
−1 ⊂ N̄v,0. By [Cas, Prop. 4.1.4], and using the fact that

[IvuIv] is invertible in the Hecke-Iwahori algebra, the natural morphism from V Iv to V Tv,0
N̄

is an isomorphism (of vector spaces).
Lemmas 4.1.1 and 1.5.1 in [Cas] allow to compute the action of Σ+

v .

Corollary 2.3.2.3. Any smooth irreducible representation of G(Fv) over C having Iwahori
invariants is a subquotient of the parabolic induction (from B̄v) of a character of the torus
Tv, which is unique up to the action of W (Tv,G(Fv)), and unramified.

Proof. Π is a subquotient of the parabolic induction of a character of the torus Tv if and
only if ΠN̄v 6= 0, which is true by the previous lemma. The geometrical lemma [BZ77, 2.12]
shows that if χ is a smooth character of Tv,(

Ind
G(Fv)

B̄v
χ
)ss

N̄v
'

⊕
w∈W (Tv ,G(Fv))

χwδ
1/2

B̄v

Since ∗N̄ is left adjoint to non-normalized induction, the first argument in the proof
shows that Π is actually a subrepresentation of Ind

G(Fv)

B̄v
for at least one χ in the orbit

under W (Tv,G(Fv)). In that case we will say that (Π, χ) is a refinement of Π. Note that
up to the action of W (Tv,G(Fv)), there is a unique χ such that Π is a subquotient of
Ind

G(Fv)

B̄v
.

2.3.2.3 Most points of the eigenvariety arise from unramified, completely re-
finable representations

We will need a result of Tadić, characterizing the irreducible principal series. If χ1, . . . , χn

are characters of F×v , we denote simply by χ = (χ1, . . . , χn) the character of Tv which
maps 

x1

. . .

xn
x−1
n

. . .

x−1
1


to
∏n
i=1 χi(xi). Let ν be the unramified character of F×v such that ν($v) = |Fv|−1.
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Theorem 2.3.2.4. Let χ = (χ1, . . . , χn) be a character of Tv. Then Ind
Sp2n(Fv)

B̄v
χ is irre-

ducible if and only if the following conditions are satisfied

1. For all i, χi is not of order 2.

2. For all i, χi 6= ν±1.

3. For all distinct i, j, χiχ−1
j 6= ν±1 and χiχj 6= ν±1.

Proof. [Tad94, Theorem 7.1]

Definition 2.3.2.5. An irreducible representation Πv of G(Fv) is completely refinable if
it is isomorphic to Ind

Sp2n(Fv)

B̄v
χ for some unramified character χ.

An automorphic representation Π of G(AF ) is completely refinable if Πv is completely
refinable for any v|p.

Note that completely refinable representations are unramified (for any choice of hyper-
special subgroup). A representation Πv is completely refinable if and only if (Πv)

ss
N̄v

is the
sum of |W (Tv,G(Fv))| unramified characters.

Recall that classical points on the eigenvariety are determined by an automorphic rep-
resentation Π together with a refinement of each Πv, v|p. Completely refinable automorphic
representations are the ones giving the greatest number of points on the eigenvariety. When
one can associate Galois representations to automorphic representations, each refinement
of Π comes with a “p-adic family” of Galois representations going through the same one.

Proposition 2.3.2.6. Let f1, . . . , fr ∈ O(X )×. The set S of points corresponding to
completely refinable, unramified classical points at which

min
v,σ

min{kv,σ,1 − kv,σ,2, . . . , kv,σ,n−1 − kv,σ,n, kv,σ,n} ≥ max{vp(f1), . . . , vp(fn)} (2.3.2.2)

is Zariski dense and accumulates at all the algebraic points.

Compare [Che04, Proposition 6.4.7], [Loe11, Corollary 3.13.3].

Proof. The hypotheses in the classicality criterion 2.3.2.1 and the ones in Theorem 2.3.2.4
are implied by inequalities of the form 2.3.2.2. First we prove the accumulation property.
We can restrict to open affinoids V of the eigenvariety, and hence assume that the right
hand side of 2.3.2.2 is replaced by a constant. By Theorem 2.3.1.1, V can be an arbitrarily
small open affinoid containing an algebraic point x of X , such that there is open affinoid
U of W such that V ⊂ w−1(U ), the morphism w|V : V → U is finite, and surjective
when restricted to any irreducible component of V . By Proposition 2.3.1.3, the algebraic
weights satisfying 2.3.2.2 are Zariski dense in the weight space W and accumulate at all
the algebraic points of W . [Che04, Lemme 6.2.8] shows that S ∩ V is Zariski-dense in V .

Each irreducible component X ′ of X is mapped onto a Zariski-open subset of a con-
nected component of W , by [Che04, Corollaire 6.4.4] (which is a consequence of the decom-
position of a Fredholm series into a product of prime Fredholm series, [Con99, Corollary
4.2.3]), so X ′ contains at least one algebraic point (the algebraic weights intersect all the
connected components of W ), and hence the Zariski closure of S ∩X ′ contains an open
affinoid of X ′, which is Zariski dense in X ′.
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2.4 Galois representations associated with automorphic rep-
resentations of symplectic groups

2.4.1 A consequence of Arthur’s description of the discrete spectrum
for classical groups

2.4.1.1 Automorphic self-dual representations of GL2n+1 of orthogonal type

According to Arthur’s conjectural parametrization of discrete automorphic representations,
each such representation of G(AF ) should be part of an A-packet corresponding to a
discrete parameter, which is a representation

LF × SL2(C)→ SO2n+1(C)

such that (among other conditions) the commutant of the image is finite.
The standard embedding SO2n+1(C) ↪→ GL2n+1(C) “transfers” this parameter to a

parameter of GL2n+1/F , which is not discrete in general, and thus it corresponds to an
automorphic representation of GL2n+1(AF ). Here we define an automorphic representation
π of GLN (AF ) as a formal sum of discrete automorphic representations πi of GLni such
that

∑
i ni = N . We will write π = �iπi. By [MW89], each πi is the Langlands quotient

of the parabolic induction of twists of a single cuspidal representation by powers of |det |.
We will not need this generality, as we will force the representations πi to be cuspidal in
the sequel.

Since π comes from a self-dual parameter, it is self-dual: π∨ ' π. Even though π is not
discrete in general, the discreteness of the parameter which takes values in SO2n+1 implies
that the πi’s are self-dual.

If Π = ⊗vΠv is an automorphic representation of G(AF ), then for any archimedean
place v of F , the local Langlands parameter of Πv composed with SO2n+1(C) ↪→ GL2n+1(C)

is of the form:

LL(Πv) ' εn ⊕
n⊕
i=1

IndWR
WC

(z 7→ (z/z̄)ri)

where ε is the only non-trivial character of WC/WR, and the ri are integers, with rn >

rn−1 > . . . > r1 > 0. We define ASp2n
to be the set of automorphic representations such

that for each infinite place v of F , r1 ≥ 2 and ri+1 ≥ ri + 2. The equivalence above is
meant as representations of WR (i.e. morphisms WR → GL2n+1(C)), although LL(Πv) is
a parameter taking values in SO2n+1(C) (the two notions coincide).

Similarly, let AGL2n+1 be the set of formal sums of self-dual cuspidal representations
π = �iπi = ⊗vπv of GL2n+1(AF ) such that for each infinite place v of F ,

LL(πv) ' εn ⊕
n⊕
i=1

IndWR
WC

(z 7→ (z/z̄)ri)

where the ri’s are integers,such that r1 ≥ 2, ri+1 ≥ ri + 2, and such that the product of
the central characters of the πi’s is trivial.
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These inequalities are imposed to ensure that the corresponding global parameters are
trivial on Arthur’s SL2(C), to simplify the statements. That is why we take formal sums
of cuspidal (not discrete) representations.

Note that there is no non-zero alternate bilinear form preserved by such a parameter
(one could say that the parameter is “completely orthogonal”).

Assumption 2.4.1.1. For any Π ∈ ASp2n
, there is a π ∈ AGL2n+1, such that the local

Langlands parameters match at the infinite places, and for any finite place v of F , πv is
unramified if Πv is unramified, and in that case the local parameters match, by means of
the inclusion SO2n+1(C) ⊂ GL2n+1(C).

2.4.1.2 p-adic Galois representations associated with RLASDC representa-
tions of GLN

An automorphic cuspidal representation π of GLN (AF ) is said to be L-algebraic if for any
infinite place v of F , the restriction of LL(πv) to C× is of the form

z 7→ Diag
((
zav,i z̄bv,i

)
i

)
where ai, bi ∈ Z. By the “purity lemma” [Clo88, Lemme 4.9], av,i + bv,i does not depend
on v, i. We will say that π is L-algebraic regular if for any v as above, the av,i are distinct.
By purity, this implies that if v is real,

LL(πv)| · |−s =

ε
e ⊕i IndWR

WC

(
z 7→ (z/z̄)a

′
v,i

)
if N is odd, with e = 0, 1

⊕iIndWR
WC

(
z 7→ (z/z̄)a

′
v,i

)
if N is even

for some integer s, and integers 0 < a′v,1 < . . . < a′v,bN/2c.
As a special case of [CH13, Theorem 4.2] (which builds on previous work of Clozel,

Harris, Kottwitz, Labesse, Shin, Taylor), we have the following theorem.

Theorem 2.4.1.2. Let π be a regular L-algebraic, self-dual, cuspidal (RLASDC) rep-
resentation of GL2n+1(AF ). Then π is L-arithmetic, and there is a continuous Galois
representation

ριp,ι∞(π) : GF −→ GL2n+1(Qp)

such that if v is a finite place of F and πv is unramified,

1. if v is coprime to p, then ριp,ι∞(π)|GFv is unramified, and

det
(
T Id− ριp,ι∞(π)(Frobv)

)
= ιpι

−1
∞ det (T Id−A)

where A ∈ GLN (C) is associated with πv via the Satake isomorphism.

2. if v lies above p, ριp,ι∞(π)|GFv is crystalline. The associated filtered ϕ-module (over
Fv,0 ⊗Qp Qp) is such that

det Qp

(
T Id− ϕfv

)
= ιpι

−1
∞ det (T Id−A)fv

where A ∈ GLN (C) is associated with πv via the Satake isomorphism. For any
σ : Fv → Qp, the σ-Hodge-Tate weights are the aw,i, where w is the real place of F
defined by σ, ιp and ι∞.
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The power fv appearing at places above p may seem more natural to the reader (and
will actually disappear) after reading subsubsection 2.4.2.1.

Combining this theorem with the transfer detailed in the last section, we obtain

Corollary 2.4.1.3. Let Π be an automorphic representation of G(AF ), whose weights
kw,1 ≥ kw,2 ≥ . . . kw,n ≥ 0 at the real places w are far from the walls (Π ∈ ASp2n

is
enough), and unramified at the places above p. There exists a continuous semisimple Galois
representation

ριp,ι∞(Π) : GF −→ GL2n+1(Qp)

such that for any finite place v of F such that Πv is unramified

1. if v is coprime to p, then ριp,ι∞(Π)|GFv is unramified, and

det
(
T Id− ριp,ι∞(Π)(Frobv)

)
= ιpι

−1
∞ det (T Id−A)

where A ∈ GLN (C) is associated with Πv via the Satake isomorphism.

2. if v lies above p, ριp,ι∞(Π)|GFv is crystalline. The associated filtered ϕ-module is such
that

det Qp

(
T Id− ϕfv

)
= ιpι

−1
∞ det (T Id−A)fv

where A ∈ SO2n+1(C) ⊂ GL2n+1(C) is associated with Πv via the Satake isomorph-
ism. For any σ : Fv → Qp, the σ-Hodge-Tate weights are kw,1 + n > kw,2 + n− 1 >

. . . > kw,1 + 1 > 0 > −kw,1 − 1 > . . . > −kw,1 − n, where w is the real place of F
defined by σ, ιp and ι∞.

Proof. There is an automorphic representation π = �iπi of GL2n+1(AF ) corresponding to
Π by Assumption 2.4.1.1, obtained by induction from distinct cuspidal representations πi.
Let ριp,ι∞(Π) = ⊕iριp,ι∞(πi).

Note that in that case, since Π∞ is C-algebraic, Π is obviously C-arithmetic (which is
equivalent to L-arithmetic in the case of Sp2n), and thus the coefficients of the polynomials
appearing in the corollary lie in a finite extension of Q.

2.4.1.3 The Galois pseudocharacter on the eigenvariety

To study families of representations, it is convenient to use pseudorepresentations (or
pseudocharacters), which are simply the traces of semi-simple representations when the
coefficient ring is an algebraically closed field of characteristic zero. We refer to [Tay91]
for the definition, and [Tay91, Theorem 1] is the “converse theorem” we will need.

On O(X ), we put the topology of uniform convergence on open affinoids.
The Zariski-density of the classical points at which we can define an attached Galois

representation implies the following

Proposition 2.4.1.4. There is a continuous pseudocharacter T : GF → O(X ), such that
at every classical unramified point of the eigenvariety having weight far from the walls, T
specializes to the character of the Galois representation associated with the automorphic
representation by Corollary 2.4.1.3.
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Proof. This is identical to the unitary case, and thus is a consequence of [Che04, Proposi-
tion 7.1.1], by Proposition 2.3.2.6.

Thus at any (classical or not) point of the eigenvariety, there is an attached Galois
representation.

2.4.2 Galois representations stemming from symplectic forms are gen-
erically almost irreducible

2.4.2.1 Crystalline representations over Qp

We fix a finite extension K of Qp, and denote K0 the maximal unramified subextension,
e = [K : K0], f = [K0 : Qp]. Let ρ : GK → GL(V ) be a continuous representation of the
absolute Galois group of K, where V is a finite dimensional vector space over L, a finite
Galois extension of Qp. We will take L to be big enough so as to be able to assume in many
situations that L = Qp. For example, we can assume that L is an extension of K, and
that ρ has a composition series 0 = V1 ⊂ . . . ⊂ Vr = V such that each quotient Vi+1/Vi is
absolutely irreducible.

For any such ρ, we denote Dcris(V ) =
(
Bcris ⊗Qp V

)GK . From now on we assume that
ρ is a crystalline representation, which means that dimK0 Dcris(V ) = dimQp V . It is well-
known that Dcris(V ) is a filtered ϕ-module over K, and since V is a vector space over L,
Dcris(V ) is a ϕ-module over K0 ⊗Qp L, and DdR(V ) = K ⊗K0 Dcris(V ) is a module over
K ⊗Qp L with a filtration by projective submodules.

We have a natural decompositionK0⊗QpL '
∏
σ0∈Υ0

Lσ0 with Υ0 = HomQp−alg.(K0, L)

and Lσ0 ' L, given by the morphisms σ0 ⊗ IdL. Similarly, K ⊗Qp L '
∏
σ∈Υ Lσ with

Υ = HomQp−alg.(K,L).
Hence we have decompositions

Dcris(V ) =
∏

σ0∈Υ0

Dcris(V )σ0 , DdR(V ) =
∏
σ∈Υ

DdR(V )σ.

The operator ϕ restricts as linear isomorphisms from Dcris(V )σ0 to Dcris(V )σ0◦ϕ−1 , and so
ϕf is a Lσ0-linear automorphism on each Dcris(V )σ0 , which are isomorphic as vector spaces
over L equipped with the linear automorphism ϕf .

Each DdR(V )σ comes with a filtration, and hence defines dimL V = N Hodge-Tate
weights kσ,1 ≤ . . . ≤ kσ,N (the jumps of the filtration).

Although we will not use it, it should be noted that by [BM02, Proposition 3.1.1.5],
to verify the weak admissibility of a filtered ϕ-module D over K with an action of L
commuting with ϕ and leaving the filtration stable, it is enough to check the inequality
tN (D′) ≥ tH(D′) for sub-K0 ⊗ L-modules stable under ϕ.

If ϕf has eigenvalues ϕ1, . . . , ϕN , with vp(ϕ1) ≤ . . . ≤ vp(ϕn), we can in particular
choose D′ = ⊕i≤j ker(ϕf − ϕi) (if the eigenvalues are distinct, but even if they are not,
we can choose D′ such that ϕf |D′ has eigenvalues ϕ1, . . . , ϕj , counted with multiplicities).
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The worst case for the filtration yields the inequalities

vp(ϕ1) ≥ 1

e

∑
σ

kσ,1

vp(ϕ1ϕ2) ≥ 1

e

∑
σ

kσ,1 + kσ,2

...

In the sequel, we will only use these inequalities, and we will not be concerned with the
subtleties of the filtrations.

2.4.2.2 Variation of the crystalline Frobenius on the eigenvariety

In this section we explicit the formulas relating the eigenvalues of the crystalline Frobenius
at classical, unramified points of the eigenvariety and the eigenvalues of the Hecke-Iwahori
operators acting on p-adic automorphic forms. Let x be a classical point on the eigen-
variety. There is an automorphic representation Π of G(AF ) such that ιpι−1

∞ (Π∞) is the
representation having highest weight w(x). Assume that Πp is unramified. The point
x defines a refinement of Πp, that is an unramified character χx : T0 → C× such that
Πp ↪→ Ind

G′(Qp)

B̄
χx, or equivalently the character δ1/2

B̄
χx appearing in (Πp)N̄ . By 2.3.2.2,

for any u ∈ Σ+, µw(x)Ψx|Hp = (ιp ◦ ι−1
∞ ◦ χx)δ

1/2
B .

The diagonal torus in SO2n+1(C) and the identification of it with the dual of the diag-
onal torus of Sp2n/Fv being fixed, the character χx is mapped by the unramified Langlands
correspondence for tori to y = (yv)v|p with yv = Diag(y1,v, . . . , yn,v, 1, y

−1
n,v, . . . , y

−1
1,v), and

yv,i = χx(Diag(1, . . . , $v, . . . , 1, 1, . . . , $
−1
v , . . . , 1)) ($v being the i-th element). Thus the

linearization of the crystalline Frobenius ϕfv on Dcris(ριp,ι∞(π)|GFv )σ0 (for any choice of
σ0 : Fv → E in Υ0,v) has eigenvalues

ιpι
−1
∞ (yv,i) = qn+1−i

v φv,n+1−i(x)
∏
σ∈Υv

σ($v)
kv,σ,i

and their inverses, together with the eigenvalue 1. Here φv,n+1−i ∈ O(X ) is defined by

φv,n+1−i =
Ψ ([G0ui−1G0])

Ψ ([G0uiG0])

with ui = Diag($−1
v , . . . , $−1

v , 1, . . . , 1, $v, . . . , $v) (the last $−1
v is the i-th element), and

kv,σ,i the integers defining the weight w(x).
Assume furthermore that Πp admits another refinement χx′ = χax for some a = (av)v|p

in the Weyl group W (G′(Qp),T(Qp)) =
∏
vW (G(Fv), Tv). Each W (G(Fv), Tv) can be

identified with the group of permutations av : {−n, . . . , n} → {−n, . . . , n} such that
av(−i) = −av(i) for all i, acting by

av(Diag(x1, . . . , xn, x
−1
n , . . . , x−1

1 )) = Diag(xa−1
v (1), . . . , xa−1

v (n), xa−1
v (−n), . . . , xa−1

v (1))

on Tv, where for commodity we set x−i = x−1
i for i < 0. Similarly we define kv,σ,−i = −kv,σ,i

and φv,−i = φ−1
v,i . We also set kv,σ,0 = 0, φv,0 = 1. The equality χx′ = χax can also be
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written

q(n+1)sign(w(i))−w(i)
v φv,n+1−w(i)(x)

∏
σ∈Υv

σ($v)
kv,σ,w(i) = qn+1−i

v φv,n+1−i(x
′)
∏
σ∈Υv

σ($v)
kv,σ,i

which is valid for any −n ≤ i ≤ n if we set sign(i) = −1 (resp. 0, 1) if i is negative (resp.
zero, positive), and equivalent to

φv,n+1−i(x
′) = φv,n+1−w(i)(x)qi−w(i)+(n+1)(sign(i)−sign(w(i)))

v

∏
σ∈Υv

σ($v)
kv,σ,w(i)−kv,σ,i .

This last formula will be useful in the proof of the main result.

2.4.2.3 Main result

Lemma 2.4.2.1. Let K be a finite extension of Qp, and let ρ : GK → GLN (Qp) be a
crystalline representation. Let (D,ϕ,FiliD⊗K0 K) be the associated filtered ϕ-module. Let
κσ,1 ≤ . . . ≤ κσ,N be the Hodge-Tate weights associated with the embedding σ : K ↪→ Qp.
Let ϕ1, . . . , ϕN be the eigenvalues of the linear operator ϕf (on any of the Dσ0, σ0 ∈ Υ0),
and suppose they are distinct. Finally, assume that for some τ ∈ Υ, for all i,∣∣∣∣∣vp(ϕi)− 1

e

∑
σ∈Υ

κσ,i

∣∣∣∣∣ ≤ 1

eN
min

1≤j≤N−1
κτ,j+1 − κτ,j .

Then if D′ ⊂ D is an admissible sub-ϕ-module over K0 ⊗Qp Qp (corresponding to a sub-
representation), there is a subset I of {1, . . . , N} such that D′ has ϕf -eigenvalues (ϕi)i∈I
and τ -Hodge-Tate weights (κσ,i)i∈I .

Proof. Since the eigenvalues of ϕf are distinct, and D′ is stable under ϕ, there is a subset
I of {1, . . . , N} such that D′ = ker

∏
i∈I
(
ϕf − ϕi

)
. There are unique increasing functions

θ1,σ : I → {1, . . . , N} such that the σ-weights of D′ are the κσ,θ1,σ(i), for i ∈ I. By ordering
similarly the weights of D/D′, we define increasing functions θ2,σ : {1, . . . , N} \ I →
{1, . . . , N}, and we can glue the θ·,σ to get bijective maps θσ : {1, . . . , N} → {1, . . . , N}.
We will show that θτ = Id.

We now write the admissibility condition for D′ and D/D′. Let i1 be the smallest
element of I. Then ker

(
ϕf − ϕi1

)
is a sub-ϕ-module of D′. Its induced σ-weight is one

of the κσ,θσ(i) for i ∈ I, thus it is greater than or equal to κσ,θσ(i1). This implies that
vp(ϕi1) ≥ 1/e

∑
σ∈Υ κσ,θσ(i1). We can proceed similarly for the submodules

ker
((
ϕf − ϕi1

)
. . .
(
ϕf − ϕir

))
(where the i· are the ordered elements of I), to get the inequality∑

1≤x≤r
vp(ϕix) ≥ 1

e

∑
1≤x≤r

∑
σ∈Υ

κσ,θσ(ix)

The same applies to D/D′, and by adding both inequalities, we finally get∑
1≤i≤s

vp(ϕi) ≥
1

e

∑
1≤i≤s

∑
σ∈Υ

κσ,θσ(i)
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We now isolate τ , using the fact that
∑

1≤i≤s κσ,θσ(i) ≥
∑

1≤i≤s κσ,i for σ 6= τ , and obtain
the inequality ∑

1≤i≤s
vp(ϕi)−

1

e

∑
1≤i≤s

∑
σ∈Υ

κσ,i ≥
1

e

∑
1≤i≤s

κτ,θτ (i) − κτ,i

Let r be minimal such that θτ (s) 6= s (if no such s exists, we are done). In that case, we
necessarily have θτ (s) ≥ s+ 1, and the previous inequality yields∑

1≤i≤s
vp(ϕi)−

1

e

∑
1≤i≤s

∑
σ∈Υ

κσ,i ≥
κτ,s+1 − κτ,s

e

but the hypothesis implies that the left hand side is less than minj (κτ,j+1 − κτ,j) /e, and
we get a contradiction.

Theorem 2.4.2.2. Let Π be an irreducible automorphic representation of G(AF ) having
Iwahori invariants at all the places of F above p, and having invariants under an open
subgroup U of G(A(p)

F,f ). Let N be an integer. There exists an automorphic representation
Π′ of G(AF ) such that:

• Π′ is unramified at the places above p, and has invariants under U ;

• The restriction of ριp,ι∞(Π′) to the decomposition group at any place above p is either
irreducible or the sum of an Artin character and an irreducible representation of
dimension 2n;

• For all g in GF , Tr(ριp,ι∞(Π′)(g)) ≡ Tr(ριp,ι∞(Π)(g)) mod pN .

Proof. We will write Π′ ≡ Π mod pN for the last property.
Recall that for v a place of F above p, there are elements φv,1, . . . , φv,n ∈ O(X )× such

that for any unramified classical point x ∈X (Qp) refining an automorphic representation
Π, the filtered ϕ-module associated with the crystalline representation ριp,ι∞(Π)|GFv has
ϕfv -eigenvalues(

φv,−n(x)q−nv
∏
σ

σ($v)
kv,σ,−1 , . . . , φv,−1(x)q−1

v

∏
σ

σ($v)
kv,σ,−n , 1,

φv,1(x)qv
∏
σ

σ($v)
kv,σ,n , . . . , φv,n(x)qnv

∏
σ

σ($v)
kv,σ,1

)

and σ-Hodge-Tate weights

kv,σ,−1 − n, . . . , kv,σ,−n − 1, 0, kv,σ,n + 1, . . . , kv,σ,1 + n

In the following if xb or x′b is a classical point, k(b)
v,σ,i will be the weights defining w(xb).

The representation Π corresponds to at least one point x of the eigenvariety X for G′ and
the idempotent eU ⊗ eG0 . By Proposition 2.3.2.6, and since GF is compact, there exists
a point x1 ∈ X (E′) (near x, and for some finite extension E′ of E) corresponding to an
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unramified, completely refinable automorphic representation Π1 and a refinement χ, such
that for any v,

2

ev

n∑
i=1

∑
σ

k
(1)
v,σ,i > −vp (φv,1(x1) . . . φv,n(x1)) + 3n(n+ 1)fv

and Π1 ≡ Π mod pN . Since Π1 is completely refinable, there is a point x′1 ∈ X (E′)

associated with the representation Π1 and the character χa, where a is the element of the
Weyl group acting as −Id on the roots. Specifically, Ψx1 |HS⊗HS⊗eG0

= Ψx′1
|HS⊗HS⊗eG0

,
but

φv,n+1−i(x
′
1) = φv,−n−1+i(x1)q2i+(2n+2)

v

∏
σ

σ($v)
−2k

(1)
v,σ,i

for i = 1, . . . , n, and all places v. There exists a point x2 ∈ X (E′) (near x′1, and up to
enlarging E′) corresponding to an unramified, completely refinable automorphic represent-
ation Π2 and a refinement, such that for any v and any j < 0,

1

ev

∑
σ

k
(2)
v,σ,n+j − k

(2)
v,σ,n+j+1 > −vp(φv,−j+1(x2))− fv

and Π2 ≡ Π1 ≡ Π mod pN . Like before, since Π2 is completely refinable, there is a point
x′2 ∈X (E′) such that Ψx2 |HS⊗HS⊗eG0

= Ψx′2
|HS⊗HS⊗eG0

, and

φv,n(x′2) = φv,1(x2)q1−n
v

∏
σ

σ($v)
k

(2)
v,σ,n−k

(2)
v,σ,1

φv,i(x
′
2) = φv,i+1(x2)qv

∏
σ

σ($v)
k

(2)
v,σ,n−i−k

(2)
v,σ,n−i+1 for i = 1, . . . , n− 1.

Here we used the element of the Weyl group corresponding (at each v) to the permutation(
−n −n+ 1 . . . −2 −1 1 . . . n
−n+ 1 −n+ 2 . . . −1 −n n . . . n− 1

)
.

Again, we can choose a point x3 ∈X (E′) (near x′1, and up to enlarging E′) corresponding
to an unramified automorphic representation Π3 and a refinement, such that for any v and
any τ ∈ Υ,

1

ev(2n+ 1)
min

{
k

(3)
v,τ,1 − k

(3)
v,τ,2, . . . , k

(3)
v,τ,n−1 − k

(3)
v,τ,n, k

(3)
v,τ,n

}
>

max {0, |vp(φv,τ,1(x3))|, . . . , |vp(φv,τ,n(x3))|}

and Π3 ≡ Π mod pN . We show that Π3 has the desired properties. First we apply the
previous lemma to the local Galois representations associated with Π3, at the places above
p, which are crystalline. Since the differences vp(ϕi) − 1

e

∑
σ∈Υ κσ,i in the hypotheses of

the lemma are equal in our case to

−vp(φv,n(x3)), . . . ,−vp(φv,1(x3)), 0, vp(φv,1(x3)), . . . , vp(φv,n(x3)),
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the hypotheses of the lemma are satisfied for all τ ∈ Υ. Thus if ριp,ι∞(π3)|GFv is not
irreducible, there is a subset ∅ ( I ( {−n, . . . , n} such that if i1 < . . . < ir are the
elements of I and j1 < . . . < j2n+1−r those of J = {−n, . . . , n} \ I,

vp(φv,i1(x3)) ≥ 0

vp(φv,i1(x3)) + vp(φv,i2(x3)) ≥ 0

...

vp(φv,i1(x3)) + . . .+ vp(φv,ir(x3)) = 0

vp(φv,j1(x3)) ≥ 0

vp(φv,j1(x3)) + vp(φv,j2(x3)) ≥ 0

...

vp(φv,j1(x3)) + . . .+ vp(φv,j2n+1−r(x3)) = 0

by the admissibility of the corresponding filtered ϕ-modules. For all i, vp(φv,i(x′2)) =

vp(φv,i(x3)), so all these conditions hold also at x′2. Up to exchanging I and J , we can
assume that i1 = −n. If j1 < 0,

vp(φv,j1(x′2)) = −vp(φv,−j1(x′2)) = −vp(φv,−j1+1(x2))− fv −
1

ev

∑
σ

k
(2)
v,σ,n+j1

− k(2)
v,σ,n+j1+1

and x2 was chosen to ensure that this quantity is negative, so we are facing a contradiction.
Thus J has only nonnegative elements, and {−n, . . . ,−1} ⊂ I. If we do not assume that
i1 = −n, we have in general that {−n, . . . ,−1} is contained in I or J . Similarly, suppose
ir = n. If j2n+1−r > 0,

vp(φv,j2n+1−r(x
′
2)) = vp(φv,j2n+1−r(x

′
2))

= vp(φv,j2n+1−r(x2)) + fv +
1

ev

∑
σ

k
(2)
v,σ,n−j2n+1−r

− k(2)
v,σ,n−j2n+1−r+1

is positive, another contradiction. Therefore {1, . . . , n} is contained in I or J .
Assume for example that {−n, . . . ,−1} ⊂ I and {1, . . . , n} ⊂ J . In that case

vp(φv,j1(x3) . . . φv,j2n+1−r(x3)) = vp(φv,1(x2) . . . φv,n(x2))

= vp(φv,1(x′1) . . . φv,n(x′1))

= −vp(φv,1(x1) . . . φv,n(x1)) + 3n(n+ 1)fv

− 2

ev

n∑
i=1

∑
σ

k
(1)
v,σ,i

is negative, which is yet another contradiction.
As a consequence, we can conclude that I or J is equal to {0}, and this shows that at

each place v of F above p, the semisimplification of ριp,ι∞(Π3)|GFv is either irreducible or the
sum of an Artin character and an irreducible representation of dimension 2n. Consequently
Π3 has the required properties.
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2.5 Similar results for even orthogonal groups

In this section we explain (very) briefly how the same method as in the previous sections
applies to orthogonal groups.

Let F be a totally real number field of even degree over Q. Then F has an even number
of 2-adic places of odd degree over Q2, and as these are the only finite places of F at which
(−1,−1)v = −1 (where (·, ·)v denotes the Hilbert symbol), we have

∏
v(−1,−1)v = 1 where

the product ranges over the finite places of F . Consequently, there is a unique quadratic
form on F 4 which is positive definite at the real places of F , and split (isomorphic to
(x, y, z, t) 7→ xy + zt) at the finite places. It has Hasse invariant (−1,−1)v at each finite
place v of F , and its discriminant is 1. As a consequence, for any integer n ≥ 1, there
is a connected reductive group G over F which is compact (and connected) at the real
places (isomorphic to SO4n/R) and split at all the finite places (isomorphic to the split
SO4n). As before, we let G′ = ResFQG. The proofs of the existence and properties of the
attached eigenvariety X → W are identical to the symplectic case. We could not find
a result as precise as Theorem 2.3.2.4 in the literature, however by [Cas80, Proposition
3.5] unramified principal series are irreducible on an explicit Zariski-open subset of the
unramified characters. Specifically, if SO4n(Fv) =

{
M ∈ M4n(Fv) | tMJ4nM = J4n

}
,

T =





x1

. . .

xn
x−1
n

. . .

x−1
1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xi ∈ F×v


and P is any parabolic subgroup containing T , then for an unramified character χ =

(χ1, . . . , χn) of T (χi is a character of the variable xi), Ind
SO4n(Fv)
P χ is irreducible if

χi($v)
2 6= 1 for all i and χi($v)χj($v)

±1 6= 1, qv, q
−1
v for all i < j. Note that this is

not an equivalence.
The existence of Galois representations ριp,ι∞(Π) attached to automorphic represent-

ations Π of G(AF ) is identical to Assumption 2.4.1.1. We now state the main result for
orthogonal groups.

Theorem 2.5.0.3. Let Π be an irreducible automorphic representation of G(AF ) having
Iwahori invariants at all the places of F above p, and having invariants under an open
subgroup U of G(A(p)

F,f ). Let N be an integer. There exists an automorphic representation
Π′ of G(AF ) such that:

• Π′ is unramified at the places above p, and has invariants under U ;

• The restriction of ριp,ι∞(Π′) to the decomposition group at any place above p is irre-
ducible;

• For all g in GF , Tr(ριp,ι∞(Π′)(g)) ≡ Tr(ριp,ι∞(Π)(g)) mod pN .
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Proof. The proof is nearly identical to that of Theorem 2.4.2.2. In the orthogonal case
the Weyl group is a bit smaller: it is the semi-direct product of S2n and a hyperplane
of (Z/2Z)2n. Alternatively, it is the group of permutations w of {−2n, . . . ,−1, 1, . . . , 2n}
such that w(−i) = −w(i) for all i and

∏2n
i=1w(i) > 0. The two elements of the Weyl

group used in the proof of Theorem 2.4.2.2 have natural counterparts in this Weyl group.
The only difference lies in the fact that there is no Hodge-Tate weight equal to 0 in the
orthogonal case, hence the simpler conclusion “ριp,ι∞(Π′)|GFv is irreducible for v|p”.

2.6 The image of complex conjugation: relaxing hypotheses
in Taylor’s theorem

Let us apply the previous results to the determination of the image of the complex conjuga-
tions under the p-adic Galois representations associated with regular, algebraic, essentially
self-dual, cuspidal automorphic representations of GLn(AF ), F totally real. Recall that
these representations are constructed by “patching” representations of Galois groups of CM
extensions of F , on Shimura varieties for unitary groups. The complex conjugations are
lost when we restrict to CM fields. In [Tay12], Taylor proves that the image of any com-
plex conjugation is given by (the “discrete” part of) the local Langlands parameter at the
corresponding real place, assuming n is odd and the Galois representation is irreducible,
by constructing the complex conjugation on the Shimura datum. Of course the Galois
representation associated with a cuspidal representation of GLn is conjectured to be irre-
ducible, but unfortunately this is (at the time of writing) still out of reach in the general
case (however, see [CG] for n ≤ 5; [BLGGT14, Theorem D] for a “density one” result for
arbitrary n but under the assumption that F is CM and the automorphic representation
is “extremely regular” at the archimedean places; and [PT] for a “positive density” result
for arbitrary n and without these assumptions).

The results of the first part of this paper allow to remove the irreducibility hypothesis
in Taylor’s theorem, and to extend it to some (“half”) cases of even n, using Arthur’s
endoscopic transfer. Unfortunately some even-dimensional cases are out of reach using
this method, because odd-dimensional essentially self-dual cuspidal representations are
(up to a twist) self-dual, whereas some even-dimensional ones are not.

Since the proof is not direct, let us outline the strategy. First we deduce the even-
dimensional self-dual case from Taylor’s theorem by adding a cuspidal self-dual (with
appropriate weights) representation of GL3, we get an automorphic self-dual representation
of GL2n+3 which (up to base change) can be “transferred” to a discrete representation of
the symplectic group in dimension 2n. Since the associated Galois representation contains
no Artin character, it can be deformed irreducibly, and Taylor’s theorem applies. Then
the general odd-dimensional case is deduced from the even-dimensional one, by essentially
the same method, using the eigenvariety for orthogonal groups.

Finally we prove a supplementary, non-regular case, thanks to the fact that discrete
Langlands parameters for the group SO2n/R are not always discrete when seen as para-
meters for GL2n, i.e. can correspond to a non-regular representation of GL2n/R.
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2.6.1 Regular, L-algebraic, self-dual, cuspidal representations of GL2n(AF )
having Iwahori-invariants

In this subsection G will denote the symplectic group in dimension 2n+2 defined in section
2.3.

The following lemma is due to C. Mœglin and J.-L. Waldspurger.

Lemma 2.6.1.1. Let K be a finite extension of Qp. Let φ : WK × SU(2) → SO2n+3(C)

be a Langlands parameter (equivalently, a generic Arthur parameter). Assume that the
subgroup I × {1} (I being the inertia subgroup of WK) is contained in the kernel of φ.

Then the A-packet associated with φ contains a representation having a non-zero vector
fixed under the Iwahori subgroup of Sp2n+2(K).

Proof. Let {Π1, . . . ,Πk} denote the A-packet. Since Arthur’s construction of the Πi’s is
inductive for parameters trivial on the supplementary SL2(C), and subquotients of para-
bolic inductions of representations having Iwahori-invariants have too, it is enough to
prove the result when φ is discrete. Let τ be the irreducible smooth representation of
GL2n+3(K) having parameter φ, then τ ' Ind

GL2n+3

L σ, where σ is the tensor product of
(square-integrable) Steinberg representations St(χi, ni) of GLni(K) (i ∈ {1, . . . , r}), χi are
unramified, auto-dual characters of K× (thus χi = 1 or (−1)v(·)), and the couples (χi, ni)

are distinct. Here L denotes the standard parabolic associated with the decomposition
2n + 3 =

∑
i ni. Since φ is self-dual, τ can be extended (not uniquely, but this will not

matter for our purpose) to a representation of G̃L
+

2n+3 = GL2n+3 o {1, θ}, where

θ(g) =


1

−1

. .
.

1

 tg−1


1

−1

. .
.

1


Let also G̃L2n+3 = GL2n+3 o θ.

Let N0 be the number of i such that ni is odd, and for j ≥ 1 let Nj be the number of i
such that ni ≥ 2j. Then N0 + 2

∑
j≥1Nj = 2n+ 3, and if s is maximal such that Ns > 0,

we let
M = GLNs × . . .×GLN1 ×GLN0 ×GLN1 × . . .×GLNs

which is a θ-stable Levi subgroup of GL2n+3, allowing us to define M̃+ and M̃ . Since the
standard (block upper triangular) parabolic containingM is also stable under θ, τM is nat-
urally a representation of M̃+, denoted by τ

M̃
. The constituents of the semi-simplification

of τ
M̃

either stay irreducible when restricted to M , in which case they are of the form
σ1 ⊗ σ0 ⊗ θ(σ1) where σ1 is a representation of GLNs × . . .×GLN1 and σ0 is a represent-
ation of G̃LN0 ; or they are induced from M to M̃+, and the restriction of their character
to M̃ is zero. Since we are precisely interested in that character, we can forget about the
second case. By the geometrical lemma,

τ ss
M '

⊕
w∈WL,M

IndMM∩w(L)w (σL∩w−1M )
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where WL,M is the set of w ∈ S2n+3 such that w is increasing on I1 = {1, . . . , n1},
I2 = {n1 + 1, . . . , n1 + n2}, etc. and w−1 is increasing on J−s = {1, . . . , Ns}, J−s+1 =

{Ns + 1, . . . , Ns +Ns−1}, etc. Fix the irreducible representation of GLNs × . . .×GLN1

σ1 =
s⊗
j=1

Ind
GLNj
Tj

⊗
i | ni≥2j

χi| · |j−νi

where Tj is the standard maximal torus of GLNj , νi =

{
0 ni odd
1/2 ni even

.

There is a unique w such that IndMM∩w(L)w (σL∩w−1M ) admits a subquotient of the form
σ1 ⊗ σ0 ⊗ θ(σ1) as above, moreover IndMM∩w(L)w (σL∩w−1M ) is irreducible, and

σ0 = Ind
GLN0
T0

⊗
i | ni odd

χi

Specifically, w maps the first element of Ii in J−b(ni+1)/2c, the second in J−b(ni+1)/2c + 1,
. . . , the central element (if ni is odd) in J0, etc.

Let M ′ be the parabolic subgroup of Sp2n+2/K corresponding to M , i.e.

M ′ = GLNs × . . .×GLN1 × SpN0−1

By [Art13, 2.2.6],
∑

i TrΠi is a stable transfer of TrGL+
2n+3

τ . By [MW06, Lemme 4.2.1]
(more accurately, the proof of the lemma),∑

i

Tr ((Πi)
ss
M ′ [σ1])

is a stable transfer of Tr
(
τ ss
M̃

[σ1]
)

(where ·[·] denotes the isotypical component on the
factor GLNs × . . .×GLN1).

Since τ ss
M̃

[σ1] = σ1 ⊗ σ0 ⊗ θ(σ1), the stable transfer of Tr
(
τ ss
M̃

[σ1]
)

is equal to the
product of Tr(σ1) and

∑
l TrΠ′l where the Π′l are the elements of the A-packet associated

with the parameter ⊕
i | ni odd

χi

At least one representation Π′l is unramified for some hyperspecial compact subgroup of
SpN0−1(K), and so a Jacquet module of a Πi contains a nonzero vector fixed by an Iwahori
subgroup. This proves that at least one of the Πi has Iwahori-invariants.

Assumption 2.6.1.2. Let F0 be a totally real field, and let π be a regular, L-algebraic,
self-dual, cuspidal (RLASDC) representation of GL2n(AF0). Assume that for any place v|p
of F0, πv has vectors fixed under an Iwahori subgroup of GL2n(AF0,v). Then there exists
a RLASDC representation π0 of GL3(AF0), a totally real extension F/F0 which is trivial,
quadratic or quartic, and an automorphic representation Π of G(AF ) such that

1. For any place v|p of F0, π0,v is unramified.

2. BCF/F0
(π) and BCF/F0

(π0) remain cuspidal.
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3. For any place v of F above p, Πv has invariants under the action of the Iwahori
subgroup G0 of G(Fv).

4. For any finite place v of F such that BCF/F0
(π)v and BCF/F0

(π0)v are unramified, Πv

is unramified, and via the inclusion SO2n+3(C) ↪→ GL2n+3(C), the Satake parameter
of Πv is equal to the direct sum of those of BCF/F0

(π)v and BCF/F0
(π0)v.

Let us comment briefly on the proof to come. First we construct π0. Let δ be a cuspidal
automorphic representation of PGL2/F0 which is unramified at the p-adic places, Steinberg
at the `-adic places for some arbitrary prime ` 6= p, and whose local langlands parameters
at the real places are of the form IndWR

WC
(z 7→ (z/z̄)a) where a is a half-integer big enough

with respects to their analogues appearing in the local Langlands parameters of π. Such
a representation exists thanks to [Clo86, Theorem 1B]. Let π0 be the automorphic repres-
entation of GL3/F0 obtained by functoriality from δ through the adjoint representation of
P̂GL2(C) = SL2(C) on its Lie algebra. The representation π0 exists and is cuspidal by
[GJ78, Theorem 9.3]. The condition at the `-adic places ensures that no nontrivial twist
of δ (seen as a representation of GL2/F0) is isomorphic to δ, and the cuspidality of π0

follows. We can twist π0 by the central character of π, to ensure that π ⊕ π0 has trivial
central character. Clearly π0 is a RLASDC representation of GL3/F0.

Note that for BCF/F0
(π) and BCF/F0

(π0) to remain cuspidal, it is enough for F/F0

to be totally ramified above a finite place of F0 at which π and π0 are unramified. To
begin with one can choose such a quadratic extension of F0, in order to define G. The
automorphic representation Ψ := BCF/F0

(π)⊕BCF/F0
(π0) can be seen as a global, ortho-

gonal parameter. This determines a global packet PΨ of representations of G(AF ), and
Arthur’s results shall attach to each Π ∈ PΨ a character of SΨ ' Z/2Z, and characterize
the automorphic Π’s as the ones whose character is trivial. We can choose the components
Πv at the finite places of F not lying above p to be associated with a trivial character of
SΨv , and taking a quadratic extension split above the p-adic and real places of F (at which
Πv is imposed) allows to “double” the contribution of the characters, thus yielding a trivial
global character.

Proposition 2.6.1.3. Let F be a totally real field, and let π be a regular, L-algebraic,
self-dual, cuspidal representation of GL2n(AF ). Suppose that for any place v of F above p,
πv has invariants under an Iwahori subgroup. Then for any complex conjugation c ∈ GF ,
Tr(ριp,ι∞(π)(c)) = 0.

Proof. By the previous assumption, up to a (solvable) base change to a totally real exten-
sion (which only restricts the Galois representation to this totally real field, so that we get
even more complex conjugations), we can take a RLASDC representation π0 of GL3(AF )

and transfer π ⊕ π0 to an automorphic representation Π of G(AF ). The representation
Π defines (at least) one point x of the eigenvariety X defined by G (and by an open
subgroup U of G(A(p)

F,f )). Of course, by the Čebotarev density theorem and the compat-
ibility of the transfer at the unramified places, the representation associated with Π is
equal to ριp,ι∞(π)⊕ριp,ι∞(π0). Since the Hodge-Tate weights of ριp,ι∞(π)|GFv are non-zero
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for any place v|p, ριp,ι∞(π) does not contain an Artin character. By [BR92], ριp,ι∞(π0) is
irreducible and thus does not contain any character. There are only finitely many Artin
characters taking values in {±1} and unramified at all the finite places at which Π is un-
ramified. For any such character η, the pseudocharacter T on the eigenvariety is such that
Tx − η is not a pseudocharacter, hence we can find gη,1, . . . , gη,2n+3 such that

tη :=
∑

σ∈S2n+3

(Tx − η)σ(gη,1, . . . , gη,2n+3) 6= 0

Let us choose N greater than all the vp(tη) and such that pN > 2n + 4. Let Π′ be an
automorphic representation of G(AF ) satisfying the requirements of Theorem 2.4.2.2 for
this choice of N . Then the Tr(ριp,ι∞(Π′)) − η are not pseudocharacters, thus ριp,ι∞(Π′)

does not contain an Artin character and by Theorem 2.4.2.2 it is irreducible. This Galois
representation is (by construction in the proof of Corollary 2.4.1.3) the direct sum of
representations associated with cuspidal representations. Since it is irreducible, there is
only one of them, and it has the property that its associated Galois representations is
irreducible, so that the theorem of [Tay12] can be applied: for any complex conjugation
c ∈ GF , Tr(ριp,ι∞(Π′)(c)) = ±1. Since det ριp,ι∞(Π′) = 1, Tr(ριp,ι∞(Π′)(c)) = (−1)n+1.

As pN > 2n+4 and |Tr(ριp,ι∞(Π)(c))−Tr(ριp,ι∞(Π′)(c))| ≤ 2n+4, we can conclude that
Tr(ριp,ι∞(Π)(c)) = (−1)n+1, and hence that Tr(ριp,ι∞(π)(c))+Tr(ριp,ι∞(π0)(c)) = (−1)n+1.
We also know that det ριp,ι∞(π0) = det ριp,ι∞(π)(c) = (−1)n, and that Tr(ριp,ι∞(π0)(c)) =

±1 by Taylor’s theorem, from which we can conclude that Tr(ριp,ι∞(π0)(c)) = (−1)n+1.
Thus Tr(ριp,ι∞(π)(c)) = 0.

2.6.2 Regular, L-algebraic, self-dual, cuspidal representations of GL2n+1(AF )
having Iwahori-invariants

In this subsection, G is the orthogonal reductive group defined in section 2.5, of dimension
2n+ 2 if n is odd, 2n+ 4 if n is even.

Lemma 2.6.2.1. Let K be a finite extension of Qp. Let φ : WK × SU(2) → SO2m(C) be
a Langlands parameter. Assume that the subgroup I ×{1} (I being the inertia subgroup of
WK) is contained in the kernel of φ.

Then the packet of representations of the split group SO2m(K) associated with φ by
Arthur contains a representation having a non-zero vector fixed under the Iwahori subgroup.

Proof. Of course this result is very similar to 2.6.1.1. However Mœglin and Waldspurger
have not put their lemma in writing in this case, and the transfer factors are no longer
trivial, so that one needs to modify the definition of “stable transfer”. For this one needs
to use the transfer factors ∆

G̃L2m,SO2m
(·, ·) defined in [KS99]. They depend in general on

the choice of an inner class of inner twistings [KS99, 1.2] (in our case an inner class of
isomorphisms between GL2m/K and its quasi-split inner form defined over K̄, which we
just take to be the identity), and a Whittaker datum of the quasi-split inner form. Arthur
chooses the standard splitting of GL2m and an arbitrary character K → C×, but this
will not matter to us since both GL2m and SO2m are split, so that the factor 〈zJ , sJ〉 of
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[KS99, 4.2] (by which the transfer factors are multiplied when another splitting is chosen)
is trivial. Indeed to compute this factor we can choose the split torus TH of SO2m/K,
which is a norm group (see [KS99, Lemma 3.3B]) for the split torus T of GL2m/K, and
thus, using the notations of [KS99, 4.2], T x is split and H1(K,T x) is trivial, so that z′ = 1

(zJ is the image of z′ in H1(K,J), so that it is trivial). Since both groups are split the
ε-factor of [KS99, 5.3] is also trivial, so the transfer factors are canonical.

Let H = SO2m(K), τ̃ the representation of G̃L
+

2m associated with φ, and τH the sum
of the elements of the packet associated with φ by Arthur. Note that by construction,
this packet is only a finite set of orbits under O2m(K)/SO2m(K) ' Z/2Z of irreducible,
square-integrable representations of SO2m(K). Each orbit has either one or two elements.
In the latter case where the orbit is (say) {τ1, τ2} one can still define a “partial” character
(in the sense of Harish-Chandra):

Θτ1(h) + Θτ1(h′) = Θτ2(h) + Θτ2(h′) := Θτ1(h) + Θτ2(h)

whenever h is regular semisimple conjugacy class in SO2m(K) and h′ is the complement of
h in its conjugacy class under O2m(K). Although the individual terms on the left cannot
be distinguished, their sum does not depend on the choice of a particular element (e.g.
τ1) in the orbit. In that setting, Arthur shows ([Art13, 8.3]) that the following character
identity holds: ∑

h

|DH(h)|1/2ΘτH (h)∆(h, g) = |D
G̃L2m

(g)|1/2Θτ̃ (g) (2.6.2.1)

where the sum on the left runs over the the stable conjugacy classes h in SO2m(K) which
are norms of the conjugacy class g in G̃L2m(K), both assumed to be strongly G̃L

+

2m-regular.
There are two such stable conjugacy classes h, they are conjugate under O2m(K) and the
two transfer factors on the left are equal (this can be seen either by going back to the
definition of Kottwitz and Shelstad, or by Waldspurger’s formulas recalled below). This
fact together with the stability of the “partial” distribution ΘτH (which is part of Arthur’s
results) imply that the expression on the left is well-defined. Note that as in [MW06]
and [Art13], the term ∆IV is not included in the product defining the transfer factor ∆.
Contrary to the case of symplectic and odd orthogonal groups treated in [MW06], the
transfer factors are not trivial, and the terms |DH(h)|1/2 and |D

G̃L2m
(g)|1/2 are not equal.

However the latter play no particular role in the proof. This character identity 2.6.2.1 is
the natural generalization of the notion of “stable transfer” of [MW06].

Let
M = GLNs × . . .×GLN1 ×GLN0 ×GLN1 × . . .×GLNs

be a θ-stable Levi subgroup of GL2m, and M ′ = GLNs × . . . × GLN1 × SON0 the cor-
responding parabolic subgroup of SO2m. To mimic the proof of 2.6.1.1, we only need to
show that Tr

(
τHM ′
)
is a stable transfer of Tr

M̃

(
τ
M̃

)
, where “stable transfer” has the above

meaning, that is the character identity 2.6.2.1 involving transfer factors. Note that M̃+

has a factor GLm−N0/2×GLm−N0/2 together with the automorphism θ(a, b) = (θ(b), θ(a)),
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for which the theory of endoscopy is trivial: θ-conjugacy classes are in bijection with con-
jugacy classes in GLm−N0/2 (overK or K̄) via (a, b) 7→ aθ(b) and the θ-invariant irreducible
representations are the ones of the form σ ⊗ θ(σ).

So we need to check that if g = (g1, g0) is a strongly regular GL2m(K)-conjugacy class in
G̃L2m(K) determined by a conjugacy class g1 in GLm−N0/2(K) and a GLN0(K)-conjugacy
class g0 in G̃LN0(K), and if h0 is the O2m(K̄)-conjugacy class in SO2m(K) corresponding
to g0, then

∆
G̃LN0

,SON0
(h0, g0) = ∆

G̃L2m,SO2m
((g1, h0), (g1, g0)).

Although this is most likely known by the experts (even in a general setting) we will check it.
Fortunately the transfer factors have been computed by Waldspurger in [Wal10]. We recall
his notations and formulas. The conjugacy class g1, being regular enough, is parametrized
by a finite set I1, a collection of finite extensions K±i of K for i ∈ I1, and (regular enough,
i.e. generating K±i over K) elements xi,1 ∈ K±i. As in [Wal10], g0 is parametrized by
a finite set I0, finite extensions K±i of K, K±i-algebras Ki, and xi ∈ Ki. Each Ki is
either a quadratic field extension of K±i or K±i ×K±i, and xi is determined only modulo
NKi/K±iK

×
i . Then g is parametrized by I = I1tI0, withKi = K±i×K±i and xi = (xi,1, 1)

for i ∈ I1, and the same data for I0. Let τi be the non-trivial K±i-automorphism of Ki,
and yi = −xi/τi(xi). Let I∗ be the set of i ∈ I such that Ki is a field (so I∗ ⊂ I0). For any
i ∈ I, let Φi be the set of K-morphisms Ki → K̄, and let PI(T ) =

∏
i∈I
∏
φ∈Φi

(T −φ(yi)).
Define PI0 similarly. For i ∈ I∗ (resp. I∗0 ), let Ci = x−1

i P ′I(yi)PI(−1)y1−m
i (1 + yi) (resp.

Ci,0 = x−1
i P ′I0(yi)PI0(−1)y1−m

i (1 + yi)). We have dropped the factor η of [Wal10, 1.10],
because as remarked above, the transfer factors do not depend on the chosen splitting.
Observe also that the factors computed by Waldspurger are really the factors ∆0/∆IV of
[KS99, 5.3], but the ε factor is trivial so they are complete.

Waldspurger shows that

∆
G̃L2m,SO2m

((g1, h0), (g1, g0)) =
∏
i∈I∗

signKi/K±i(Ci)

where signKi/K±i is the nontrivial character of K×±i/NKi/K±iK
×
i . We are left to show that∏

i∈I∗ signKi/K±i(Ci/Ci,0) = 1.

Ci/Ci,0 = y
N0/2−m
i

∏
j∈I1

∏
φ∈Φj

(yi − φ(yj))(−1− φ(yj))

=
∏
j∈I1

∏
φ∈Φ±j

y−1
i (yi + φ(xj,1))

(
yi + φ(xj,1)−1

)
(φ(xj,1)− 1)

(
φ(xj,1)−1 − 1

)

= (−1)m−N0/2NKi/K±i

∏
j∈I1

∏
φ∈Φ±j

(yi + φ(xj,1))(φ(xj,1)−1 − 1)


where Φ±j is the set of K-morphisms K±j → K̄. Thus∏

i∈I∗
signKi/K±i(Ci/Ci,0) =

∏
i∈I∗

signKi/K±i |K×
(

(−1)m−N0/2
)

= 1
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since
∏
i∈I∗ signKi/K±i |K× is easily checked to be equal to the Hilbert symbol with the

discriminant of our special orthogonal group, which is 1 (this is the condition for g0 to
have a norm in the special orthogonal group).

Assumption 2.6.2.2. Let F0 be a totally real field, and let π be a regular, L-algebraic,
self-dual, cuspidal representation of GL2n+1(AF0). Assume that for any place v|p of F0,
πv has vectors fixed under the Iwahori. Then there exists a RLASDC representation π0 of
GL1(AF0) if n is odd (resp. GL3(AF0) if n is even), a totally real extension F/F0 which is
trivial or quadratic, and an automorphic representation Π of G(AF ) such that

1. For any place v|p of F0, π0,v is unramified.

2. BCF/F0
(π) and BCF/F0

(π0) remain cuspidal.

3. For any place v of F above p, Πv has invariants under the action of the Iwahori
subgroup of G(Fv).

4. For any finite place v of F such that BCF/F0
(π)v and BCF/F0

(π0)v are unramified, Πv

is unramified, and via the inclusion SO2n+2(C) ↪→ GL2n+2(C) (resp. SO2n+4(C) ↪→
GL2n+2(C)), the Satake parameter of Πv is equal to the direct sum of those of
BCF/F0

(π)v and BCF/F0
(π0)v.

This is very similar to Assumption 2.6.1.2. In fact in this case the group SΨ is trivial,
which explains why it is enough to take a quadratic extension of F0. This is only necessary
to be able to define the group G. The crucial observation is that the local Langlands
parameters of BCF/F0

(π)⊕BCF/F0
(π0) at the infinite places correspond to parameters for

the compact groups SO2n+2/R (resp. SO2n+4). These parameters are of the form

εn ⊕
n⊕
i=1

IndWC
WR

(z 7→ (z/z̄)ri)

(r1 > . . . > rn > 0) for BCF/F0
(π), and{

1 if n is odd
ε⊕ IndWC

WR
(z 7→ (z/z̄)r) if n is even

so that the direct sum of the two is always of the form

1⊕ ε⊕
k−1⊕
i=1

IndWC
WR

(z 7→ (z/z̄)ri)

for distinct, positive ri. This is the Langlands parameter corresponding to the representa-
tion of SO2k(R) having highest weight

∑k
i=1(ri−(k− i))ei with rk = 0, where the root sys-

tem consists of the ±ei±ej (i 6= j) and the simple roots are e1−e2, . . . , ek−1−ek, ek−1 +ek.
Note that, contrary to the symplectic case, there is one outer automorphism of the

even orthogonal group, and so there may be two choices for the Satake parameters of Πv,
mapping to the same conjugacy class in the general linear group. Fortunately we only need
the existence.
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Proposition 2.6.2.3. Let F be a totally real field, and let π be an L-algebraic, self-dual,
cuspidal representation of GL2n+1(AF ). Suppose that for any place v of F above p, πv has
invariants under an Iwahori. Then for any complex conjugation c ∈ GF , Tr(ριp,ι∞(π)(c)) =

±1.

Proof. The proof is similar to that of Proposition 2.6.1.3. We use the previous assumption
to be able to assume (after base change) that there is a representation π0 (of GL1(AF ) if n
is odd, GL3(AF ) if n is even) such that π⊕π0 transfers to an automorphic representation Π

of G(AF ), with compatibility at the unramified places. The representation Π has Iwahori-
invariants at the p-adic places of F , and thus it defines a point of the eigenvariety X

associated with G (and an idempotent defined by an open subgroup of G(A(p)
F,f )). By

Theorem 2.5.0.3, Π is congruent (at all the complex conjugations, and modulo arbirarily big
powers of p) to another automorphic representation Π′ of G, and ριp,ι∞(Π′) is irreducible.
Hence ριp,ι∞(Π′) = ριp,ι∞(π′) for some RLASDC π′ of GL2k(AF ), which is unramified at
all the p-adic places of F , and we can apply Proposition 2.6.1.3 to π′. This proves that
Tr(ριp,ι∞(π)(c)) = −Tr(ριp,ι∞(π0)(c)) = ±1.

2.6.3 Almost general case

We will now remove the hypothesis of being Iwahori-spherical at p, and allow more general
similitude characters, using Arthur and Clozel’s base change.

Lemma 2.6.3.1. Let E be a number field, S a finite set of (possibly infinite) places of
E, and for each v ∈ S, let K(v) be a finite abelian extension of Ev. There is an abelian
extension F of E such that for any v ∈ S and any place w of F above v, the extension
Fv/Ev is isomorphic to K(v)/Ev.

Proof. After translation to local and global class field theory, this is a consequence of
[Che51, Théorème 1].

Before proving the last theorem, we need to reformulate the statement, in order to
make the induction argument more natural. Let π be a regular, L-algebraic, cuspidal
representation of GL2n+1(AF ). At a real place v of F , the Langlands parameter of πv is
of the form

εe ⊕
⊕
i

IndWC
WR
z 7→ (z/z̄)ni

and according to the recipe given in [BG10, Lemma 2.3.2], ριp,ι∞(π)(cv) should be in the
same conjugacy class as 

(−1)e

0 1
1 0

. . .

0 1
1 0
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Since it is known that det ριp,ι∞(π)(cv) = (−1)e+n, ριp,ι∞(π)(cv) ∼ LL(πv)(j) if and only
if |Trριp,ι∞(π)(cv)| = 1. Similarly, in the even-dimensional case, ριp,ι∞(π)(cv) ∼ LL(πv)(j)

if and only if Trριp,ι∞(π)(cv) = 0.

Theorem 2.6.3.2. Let n ≥ 2, F a totally real number field, π a regular, L-algebraic,
essentially self-dual, cuspidal representation of GLn(AF ), such that π∨ ' ((η| · |q) ◦ det)⊗
π, where η is an Artin character. Suppose that one of the following conditions holds

1. n is odd.

2. n is even, q is even, and η∞(−1) = 1.

Then for any complex conjugation c ∈ GF , |Tr(ριp,ι∞(π)(c))| ≤ 1.

Proof. We can twist π by an algebraic character, thus multiplying the similitude character
η| · |q by the square of an algebraic character. If n is odd, this allows to assume η = 1, q = 0

(by comparing central characters, we see that η| · |q is a square). If n is even, we can
assume that q = 0 (we could also assume that the order of η is a power of 2, but this is not
helpful). The Artin character η defines a cyclic, totally real extension F ′/F . Since local
Galois groups are pro-solvable, the preceding lemma shows that there is a totally real,
solvable extension F ′′/F ′ such that BCF ′′/F (π) has Iwahori invariants at all the places
of F ′′ above p. In general BCF ′′/F (π) is not cuspidal, but only induced by cuspidals:
BCF ′′/F (π) = π1�. . .�πk. However it is self-dual, and the particular form of the Langlands
parameters at the infinite places imposes that all πi be self-dual. We can then apply
Propositions 2.6.1.3 and 2.6.2.3 to the πi, and conclude by induction that for any complex
conjugation c ∈ GF , the conjugacy class of ριp,ι∞(π)(c) is given by the recipe found in
[BG10, Lemma 2.3.2], that is to say

∣∣Trριp,ι∞(π)(c)
∣∣ ≤ 1.

Remark 2.6.3.3. The case n even, η∞(−1) = (−1)q+1 is trivial. The case n even, q odd
and η∞(−1) = −1 remains open.

For the sake of clarity, we state the theorem using the more common normalization of
C-algebraic representations.

Theorem 2.6.3.4. Let n ≥ 2, F a totally real number field, π a regular, algebraic, essen-
tially self-dual, cuspidal representation of GLn(AF ), such that π∨ ' η|det |qπ, where η is
an Artin character. Suppose that one of the following conditions holds

1. n is odd.

2. n is even, q is odd, and η∞(−1) = 1.

Then for any complex conjugation c ∈ GF , |Tr(rιp,ι∞(π)(c))| ≤ 1.

Proof. Apply the previous theorem to π| det |(n−1)/2.
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2.6.4 A supplementary, non-regular case

In this subsection G is the orthogonal group of section 2.5.

Assumption 2.6.4.1. Let F0 be a totally real field, and let π be an L-algebraic, self-dual,
cuspidal representation of GL2n(AF0). Assume that for any place v|p of F0, πv has vectors
fixed under the Iwahori, and that for any real place v of F0,

LL(πv) '
n⊕
i=1

IndWC
WR

(z 7→ (z/z̄)ri)

where rn > . . . > r1 ≥ 0 are integers (note that π is not regular if r1 = 0). Then
there exists a totally real extension F/F0 which is trivial or quadratic, and an automorphic
representation Π of G(AF ) such that

1. BCF/F0
(π) remains cuspidal.

2. For any place v of F above p, Πv has invariants under the action of the Iwahori
subgroup of G(Fv).

3. For any finite place v of F such that BCF/F0
(π)v is unramified, Πv is unramified,

and via the inclusion SO2n+2(C) ↪→ GL2n(C), the Satake parameter of Πv is equal
to the one of BCF/F0

(π)v.

Of course this is very similar to Assumptions 2.6.1.2 and 2.6.2.2, and as in the latter
case the group SΨ is trivial.

For L-algebraic, self-dual, cuspidal automorphic representations of GL2n having “almost
regular” Langlands parameter at the archimedean places as above, the corresponding p-adic
Galois representation is known to exist by [Gol14]. Exactly as in the previous subsection,
we have the following:

Theorem 2.6.4.2. Let n ≥ 2, F a totally real number field, π an L-algebraic, essentially
self-dual, cuspidal representation of GL2n(AF ), such that π∨ ' ηπ, where η is an Artin
character. Assume that at any real place v of F , ηv(−1) = 1 and

LL(πv) '
n⊕
i=1

IndWC
WR

(z 7→ (z/z̄)ri)

where rn > . . . > r1 ≥ 0 are integers. Then for any complex conjugation c ∈ GF ,
Tr(ριp,ι∞(π)(c)) = 0.

Proof. Identical to that of Theorem 2.6.3.2.

Proposition 2.6.4.3. Let π be as in the previous theorem. Then for any place v of F
above p, ριp,ι∞(π)|GFv is Hodge-Tate. If σ : Fv → Qp is a Qp-embedding, the σ-Hodge-
Tate weights of ριp,ι∞(π)|GFv are the ±rσ,i (if rσ,1 = 0, it has multiplicity two), where
rσ,n > . . . > rσ,1 ≥ 0 are the integers appearing in LL(πw) as in the previous theorem
(where w is the real place of F determined by σ and ιp, ι∞).
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Proof. First observe that by totally real and solvable base change and Assumption 2.6.4.1,
we can assume that π corresponds to an automorphic representation Π of G(AF ) having
Iwahori-fixed vectors at all the p-adic places, and thus corresponds to a point on the
eigenvariety X /E. Let ρ := ριp,ι∞(π), and let V denote the E-vector space underlying
this representation (as usual E is a “big enough” p-adic field).

Recall that for any p-adic place v of F , DSen(V ) is a free E⊗QpFv(µp∞)-module of rank
dimE V , together with a linear operator Θ. As in 2.4.2.1 we can write E ⊗Qp Fv(µp∞) '∏
σ Eσ ⊗Fv Fv(µp∞) and thus DSen(V ) =

∏
σDSen,σ(V ) (σ runs over the embeddings

Fv ↪→ Qp and Eσ is just a copy of E). The operator Θ is just a collection of operators Θσ

on each DSen,σ(V ). Moreover Θσ comes from the infinitesimal action of Gal(Fv(µp∞)/Fv)

on DSen,σ(V ), hence its characteristic polynomial has coefficients in Eσ. Therefore Θσ can
be defined over Eσ = Eσ ⊗Fv Fv ⊂ Eσ ⊗Fv Fv(µp∞), but since the result is not functorial,
we will not directly use it. Note that if we write Eσ ⊗Fv Fv(µp∞) as a product of fields
(algebraic extensions of Eσ), Θσ can be concretely described as a collection of matrices
over these fields, all being similar to a single matrix over Eσ, so that the semisimplicity of
Θσ is equivalent to the semisimplicity of any of these matrices. For this reason in the rest
of the proof we will treat Θσ as an endomorphism of a vector space over Qp.

The proposition is a small improvement of [BC09][Lemma 7.5.12]. By this Lemma,
which states the analyticity of the Sen polynomial, we know that the characteristic poly-
nomial of Θσ is

n∏
i=1

(T 2 − r2
σ,i)

as expected. We need to show that the Sen operator Θσ is semisimple. It is enough
to show that ker Θσ = ker Θ2

σ in the case r1,σ = 0. This is in turn implied by the fact
that ρ is orthogonal, because then by functoriality DSen,σ(V ) admits a non-degenerate
quadratic form for which Θσ is infinitesimally orthogonal, i.e. antisymmetric, and since
ker(Θ2

σ− r2
i ) is non-degenerate if i > 1, the orthogonal of these eigenspaces, that is ker Θ2

σ,
is non-degenerate too. Finally, all the elements of so2 are semisimple.

Let us show that ρ is indeed orthogonal, that is that V admits a GF -invariant non-
degenerate quadratic form. Note that for automorphic RLASDC representations of GL2n/F ,
it is known that the associated Galois representation is orthogonal by the main result of
[BC11]. By the analogue of Assumption 2.4.1.1 for the special orthogonal group G, all
classical points having weight “far enough from the walls” come from such representations.
We will use a deformation argument similar to [BC11][Proposition 2.4].

First we replace X by a curve. Of course we want this curve to contain a given
classical point z ∈ |X | corresponding to Π. We also want to ensure that there are “many”
classical points on Y , that is to say we want Proposition 2.3.2.6 to hold. Let Y be an open
affinoid of X ×W W ′ containing z, where W ′ is the one-dimensional reduced subspace of
W parameterizing weights of the form

(xv,i)v|p,i=1..n 7→ γ

(∏
v

n∏
i=1

NFv/Qp(x
n−i
v,i )

)
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times w(z), for γ a continuous character of Z×p . By [BC09][Lemma 7.8.11], there is a
smooth connected affinoid curve Y ′ and a finite morphism f : Y ′ → Y whose image is an
irreducible component of Y containing z, such that the 2n-dimensional pseudocharacter
f ] ◦ T is the sum of the traces of continuous representations

Rj : GF → GLO(Y ′)(Mj)

for sheaves Mj locally free of rank nj (
∑

j nj = 2n), and such that Rj ⊗O(Y ′) k(y) is
absolutely irreducible for y in a Zariski-open subset of Y ′.

We now work with Y ′, and still denote by z any point of Y ′ above z ∈ Y . Note that(
R⊗O(Y ′) k(z)

)ss
' ρ. The points y of Y ′ at which the semisimplification of⊕

j

Rj ⊗O(Y ′) k(y)

comes from an automorphic RLASDC representation of GL2n are still Zariski-dense, and
by consideration of the Hodge-Tate weights, the representations Rj are pairwise non-
isomorphic on a Zariski-open subset of Y ′. Since T (g) = T (g−1) for all g ∈ GF , each
Rj is either “self-dual” (in the sense that Tr(Rj(g

−1)) = Tr(Rj(g)) for all g ∈ GF ), or part
of a pair (Rj , Rj′) (j 6= j′) where Tr(Rj(g

−1)) = Tr(Rj′(g)) for all g ∈ GF , and thus(
Rj ⊗O(Y ′) k(y)

)ss,∨
'
(
Rj′ ⊗O(Y ′) k(y)

)ss

for any point y of Y ′.
To prove the orthogonality of ρ, it is enough to prove that for each “self-dual” Rj ,(

R⊗O(Y ′) k(z)
)ss

is orthogonal. We can now work locally, and simply consider Rj as a
representation

Rj : GF → GLnj (Oz)

where Oz is the local ring of Y ′ at z, a (henselian) discrete valuation ring. We conclude
using the following lemma.

Lemma 2.6.4.4. Let A be a discrete valuation ring, let K be its fraction field and k its
residue field, and assume that char(k) 6= 2. Let R : G → GLn(A) a representation such
that R⊗A K is absolutely irreducible and orthogonal. Then (R⊗A k)ss is also orthogonal.

Proof. We first remark that the semisimplification of an orthogonal representation is again
orthogonal. Denote by$ a uniformizer of A. Let V = Kn be theK-vector space underlying
the representation R. By assumption V admits a GF -stable lattice L = An. Fix a GF -
invariant, non-degenerate symmetric bilinear form 〈·, ·〉 on V n. Replacing L by $kL for
some integer k ≥ 0 if necessary, we can assume that

L∨ := {v ∈ V | ∀u ∈ L, 〈u, v〉 ∈ A}

contains L. We wish to find a lattice L′ such that L ⊂ L′ ⊂ L∨ and (L′)∨ = L′. This
would endow L′/$L′ with a GF -invariant non-degenerate symmetric bilinear form, and
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it is well-known that (L′/$L′)ss ' (R⊗A k)ss. Even though this will not be possible in
general, by attempting to do so we will show that (R⊗A k)ss is orthogonal.

The A-module L∨/L is torsion and of finite type. Let n be the smallest integer such
that $nL∨ ⊂ L. If n > 1, replace L by L+$n−1L∨, which strictly contains L and is still
integral with respect to 〈·, ·〉. After a finite number of iterations of this procedure, we are
left with a lattice L such that

L ⊂ L∨ ⊂ $−1L.

Therefore
(L/$L)ss '

(
L∨/L

)ss ⊕ (L/$L∨)ss
and it is straightforward to check that 〈·, ·〉 induces on both factors a GF -invariant non-
degenerate symmetric bilinear form.
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Partie 3
Dimensions of spaces of level one automorphic forms for split
classical groups using the trace formula

3.1 Introduction

Let G be a Chevalley reductive group over Z admitting discrete series at the real place, i.e.
one of SO2n+1, Sp2n or SO4n for n ≥ 1. We give an algorithm to compute the geometric
side in Arthur’s “simple” trace formula in [Art89a] (see also [GKM97]) for G and the trivial
Hecke operator in level one at the finite places, that is the characteristic function of G(Ẑ).
There are essentially three steps to compute the geometric side of the trace formula:

1. for any prime p, compute the local orbital integrals of the characteristic function
of G(Zp) at torsion elements γp in G(Qp) (with respect to a Haar measure on the
connected centraliser of γp),

2. for any semisimple elliptic and torsion conjugacy class γ ∈ G(Q) with connected cent-
raliser I, use the Smith-Minkowski-Siegel mass formula to compute Vol(I(Q)\I(A)),

3. analyse the character of stable (averaged) discrete series on arbitrary maximal tori
of G(R) to express the parabolic terms using elliptic terms for groups of lower
semisimple rank.

We explain how to compute local orbital orbitals for special orthogonal groups (resp.
symplectic groups) in sections 3.3.2.2 and 3.3.2.3, using quadratic and hermitian (resp.
alternate and antihermitian) lattices. To compute the volumes appearing in local orbital
integrals we rely on the local density formulae for such lattices given in [GY00], [Choa]
and [Chob]. We choose a formulation similar to [Gro97] for the local and global volumes
(see section 3.3.2.4). For the last step we follow [GKM97], and we only add that for the
trivial Hecke operator the general formula for the archimedean factor of each parabolic
term simplifies significantly (Proposition 3.3.3.2). Long but straightforward calculations
lead to explicit formulae for the parabolic terms (see section 3.3.3.4).

Thus for any irreducible algebraic representation Vλ of GC characterised by its highest
weight λ, we can compute the spectral side of the trace formula, which we now describe. Let
K∞ be a maximal compact subgroup of G(R) and let g = C⊗R g0 where g0 = Lie(G(R)).
For an irreducible (g,K∞)-module π∞, consider the Euler-Poincaré characteristic

EP(π∞ ⊗ V ∗λ ) =
∑
i

(−1)i dimH i ((g,K∞), π∞ ⊗ V ∗λ )
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where Vλ is seen as a representation ofG(R). Let Πdisc(G) be the set of isomorphism classes
of irreducible (g,K∞) ×G(Af )-modules occurring in the discrete automorphic spectrum
of G. For π ∈ Πdisc(G) denote by mπ ∈ Z≥1 the corresponding multiplicity. Let Πunr

disc(G)

be the set of π ∈ Πdisc(G) which are unramified at all the finite places of Q. For any
dominant weight λ the set of π ∈ Πunr

disc(G) such that H•((g,K∞), π∞ ⊗ V ∗λ ) 6= 0 is finite.
The spectral side of Arthur’s trace formula in [Art89a] for our choice of function at the
finite places is ∑

π∈Πunr
disc(G)

mπEP(π∞ ⊗ V ∗λ ). (3.1.0.1)

This integer is interesting but it is only an alternate sum. To obtain subtler informa-
tion, e.g. the sum of mπ for π∞ isomorphic to a given (g,K∞)-module, we use Arthur’s
endoscopic classification of the discrete automorphic spectrum for symplectic and special
orthogonal groups [Art13]. Arthur’s work allows to parametrise the representations π con-
tributing to the spectral side 3.1.0.1 using self-dual automorphic representations for general
linear groups. Denote WR the Weil group of R and εC/R the character of WR having kernel
WC ' C×. For w ∈ 1

2Z define the bounded Langlands parameter Iw : WR → GL2(C) as

IndWR
WC

(
z 7→ (z/|z|)2w

)
so that I0 ' 1⊕ εC/R. The three families that we are led to consider are the following.

1. For n ≥ 1 and w1, . . . , wn ∈ 1
2ZrZ such that w1 > · · · > wn > 0, define S(w1, . . . , wn)

as the set of self-dual automorphic cuspidal representations of GL2n/Q which are
unramified at all the finite places and with Langlands parameter at the real place

Iw1 ⊕ · · · ⊕ Iwn .

Equivalently we could replace the last condition by “with infinitesimal character hav-
ing eigenvalues {±w1, . . . ,±wn}”. Here S stands for “symplectic”, as the conjectural
Langlands parameter of such a representation should be symplectic.

2. For n ≥ 1 and integers w1 > · · · > wn > 0 define Oo(w1, . . . , wn) as the set of
self-dual automorphic cuspidal representations of GL2n+1/Q which are everywhere
unramified and with Langlands parameter at the real place

Iw1 ⊕ · · · ⊕ Iwn ⊕ εnC/R.

Equivalently we could replace the last condition by “with infinitesimal character
having eigenvalues {±w1, . . . ,±wn, 0}”. Here Oo stands for “odd orthogonal”.

3. For n ≥ 1 and integers w1 > · · · > w2n−1 > w2n ≥ 0 define Oe(w1, . . . , w2n) as the set
of self-dual automorphic cuspidal representations of GL4n/Q which are everywhere
unramified and with Langlands parameter at the real place

Iw1 ⊕ · · · ⊕ Iw2n .

In this case also we could replace the last condition by “with infinitesimal character
having eigenvalues {±w1, . . . ,±w2n}”, even in the slightly singular case where w2n =

0. Here Oe stands for “even orthogonal”.
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Following Arthur using these three families we can define, for any G and λ as above, a set
Ψ(G)unr,λ of “formal Arthur-Langlands parameters” which parametrises the representations
π ∈ Πunr

disc(G) contributing to 3.1.0.1. We stress that for a given G all three families take
part in these formal parameters. Among these formal parameters, one can distinguish a
subset Ψ(G)unr,λ

sim of “simple” parameters, that is the tempered and non-endoscopic ones.
When G = SO2n+1 (resp. Sp2n, resp. SO4n), this set is exactly S(w1, . . . , wn) (resp.
Oo(w1, . . . , wn), resp. Oo(w1, . . . , w2n)) where (wi)i is determined by λ. The contribution
of any element of Ψ(G)unr,λ

sim to the spectral side 3.1.0.1 is a non-zero number depending only
on G(R). Therefore it is natural to attempt to compute the cardinalities of the sets S(·),
Oo(·) and Oe(·) inductively, the induction being on the dimension of G. More precisely
we have to compute the contribution of Ψ(G)unr,λ r Ψ(G)unr,λ

sim to 3.1.0.1 to deduce the
cardinality of Ψ(G)unr,λ

sim .
When the highest weight λ is regular, any element of Ψ(G)unr,λ is tempered and con-

sequently any π ∈ Πunr
disc(G) contributing to the spectral side is such that π∞ is a discrete

series representation having same infinitesimal character as Vλ. Thanks to the work of
Shelstad on real endoscopy and using Arthur’s multiplicity formula it is not difficult to
compute the contribution of Ψ(G)unr,λrΨ(G)unr,λ

sim to the Euler-Poincaré characteristic on
the spectral side in this case (see section 3.4.2.1). The general case is more interesting be-
cause we have to consider non-tempered representations π∞. Since Arthur’s construction
of non-tempered Arthur packets at the real place in [Art13] is rather abstract, we have to
make an assumption (see Assumption 3.4.2.4) in order to be able to compute explicitly
the non-tempered contributions to the Euler-Poincaré characteristic. This assumption is
slightly weaker than the widely believed Assumption 3.4.2.3, which states that the relevant
real non-tempered Arthur packets at the real place coincide with those constructed long
ago by Adams and Johnson in [AJ87].

Thus we obtain an algorithm to compute the cardinalities of the sets S(w1, . . . , wn),
Oo(w1, . . . , wn) and Oe(w1, . . . , w2n), under assumption 3.4.2.4 when λ is singular. For
the computer the hard work consists in computing local orbital integrals. Our current
implementation, using Sage [S+14], allows to compute them at least for rank(G) ≤ 6. See
section 3.7.2 for some values.

Once these cardinalities are known we can count the number of π ∈ Πunr
disc(G) such

that π∞ is isomorphic to a given (g,K∞)-module having same infinitesimal character as
Vλ for some highest weight λ. A classical application is to compute dimensions of spaces
of (vector-valued) Siegel cusp forms. For a genus n ≥ 1 and m1 ≥ · · · ≥ mn ≥ n +

1, let r be the holomorphic (equivalently, algebraic) finite-dimensional representation of
GLn(C) with highest weight (m1, . . . ,mn). Let Γn = Sp2n(Z). The dimension of the
space Sr(Γn) of level one vector-valued cuspidal Siegel modular forms of weight r can then
be computed using Arthur’s endoscopic classification of the discrete spectrum for Sp2n.
We emphasise that this formula depends on Assumption 3.4.2.3 when the mk’s are not
pairwise distinct, in particular when considering scalar-valued Siegel cusp forms, of weight
m1 = · · · = mn. Our current implementation yields a dimension formula for dimSr(Γn)

for any n ≤ 7 and any r as above, although for n ≥ 3 it would be absurd to print this
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huge formula. See the table in section 3.5.4 for some values in the scalar case. The case
n = 1 is well-known:

⊕
m≥0Mm(Γ1) = C[E4, E6] where the Eisenstein series E4, E6 are

algebraically independant over C, and the dimension formula for Sm(Γ1) follows. Igusa
[Igu62] determined the ring of scalar Siegel modular forms and its ideal of cusp forms
when n = 2, which again gives a dimension formula. Tsushima [Tsu83], [Tsu84] gave a
formula for the dimension of Sr(Γ2) for almost all representations r as above (that is for
m1 > m2 ≥ 5 or m1 = m2 ≥ 4) using the Riemann-Roch-Hirzebruch formula along with a
vanishing theorem. It follows from Arthur’s classification that Tsushima’s formula holds for
any (m1,m2) such that m1 > m2 ≥ 3. In genus n = 3 Tsuyumine [Tsu86] determined the
structure of the ring of scalar Siegel modular forms and its ideal of cusp forms. Recently
Bergström, Faber and van der Geer [BFvdG14] studied the cohomology of certain local
systems on the moduli space A3 of principally polarised abelian threefolds, and conjectured
a formula for the Euler-Poincaré characteristic of this cohomology (as a motive) in terms of
Siegel modular forms. They are able to derive a conjectural dimension formula for spaces of
Siegel modular cusp forms in genus three. Our computations corroborate their conjecture,
although at the moment we have only compared values and not the formulae.

Of course the present work is not the first one to attempt to use the trace formula
to obtain spectral information, and we have particularly benefited from the influence of
[GP05] and [CR14]. In [GP05] Gross and Pollack use a simpler version of the trace for-
mula, with hypotheses at a finite set S of places of Q containing the real place and at least
one finite place. This trace formula has only elliptic terms. They use the Euler-Poincaré
function defined by Kottwitz in [Kot88] at the finite places in S. These functions have the
advantage that their orbital integrals were computed conceptually by Kottwitz. At the
other finite places, they compute the stable orbital integrals indirectly, using computations
of Lansky and Pollack [LP02] for inner forms which are compact at the real place. They
do so for the groups SL2, Sp4 and G2. Without Arthur’s endoscopic classification it was
not possible to deduce the number of automorphic representations of a given type from the
Euler-Poincaré characteristic on the spectral side, even for a regular highest weight λ. The
condition card(S) ≥ 2 forbids the study of level one automorphic representations. More re-
cently, Chenevier and Renard [CR14] computed dimensions of spaces of level one algebraic
automorphic forms in the sense of [Gro99], for the inner forms of the groups SO7, SO8 and
SO9 which are split at the finite places and compact at the real place. They used Arthur’s
classification to deduce the cardinalities of the sets S(w1, w2, w3) and S(w1, w2, w3, w4)

and, using the conjectural dimension formula of [BFvdG14], Oe(w1, w2, w3, w4). Unfortu-
nately the symplectic groups do not have such inner forms, nor do the special orthogonal
groups SOn when n mod 8 6∈ {−1, 0, 1}. Thus our main contribution is thus the direct
computation of local orbital integrals.

3.2 Notations and definitions

Let us precise some notations. Let Af denote the finite adèles
∏′
pQp and A = R×Af . We

will use boldface letters to denote linear algebraic groups, for example G. For schemes we
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denote base change using simply a subscript, for example GQp instead of G×Q Qp where
G is defined over Q. For a reductive group G we abusively call “Levi subgroup of G” any
Levi subgroup of a parabolic subgroup of G, i.e. the centraliser of a split torus. Rings are
unital. If R is a ring and Λ a finite free R-module, rkR(Λ) denotes its rank. If G is a finite
abelian group G∧ will denote its group of characters.

Let us define the reductive groups that we will use. For n ≥ 1, let qn be the quadratic
form on Zn defined by

qn(x) =

b(n+1)/2c∑
i=1

xixn+1−i.

Let On be the algebraic group over Z representing the functor

Category of commutative rings→ Category of groups

A 7→ {g ∈ GLn(A) | qn ◦ g = qn} .

For n odd define SOn as the kernel of det : On → µ2. For n even, det : On → µ2 factors
through the Dickson morphism Di : On → Z/2Z (constant group scheme over Z) and the
morphism Z/2Z→ µ2 “mapping 1 ∈ Z/2Z to −1 ∈ µ2”. In that case SOn is defined as the
kernel of Di. For any n ≥ 1, SOn → Spec(Z) is reductive in the sense of [SGA70][Exposé
XIX, Définition 2.7]. It is semisimple if n ≥ 3.

For n ≥ 1 the subgroup Sp2n of GL2n/Z defined as the stabiliser of the alternate form

(x, y) 7→
n∑
i=1

xiy2n+1−i − x2n+1−iyi

is also semisimple over Z in the sense of [SGA70][Exposé XIX, Définition 2.7].
If G is one of SO2n+1 (n ≥ 1), Sp2n (n ≥ 1) or SO2n (n ≥ 2), the diagonal matrices

form a split maximal torus T, and the upper-triangular matrices form a Borel subgroup
B. We will simply denote by t = (t1, . . . , tn) the element of T(A) (A a commutative ring)
whose first n diagonal entries are t1, . . . , tn. For i ∈ {1, . . . , n}, let ei ∈ X∗(T) be the
character t 7→ ti. The simple roots corresponding to B are

e1 − e2, . . . , en−1 − en, en if G = SO2n+1,

e1 − e2, . . . , en−1 − en, 2en if G = Sp2n,

e1 − e2, . . . , en−1 − en, en−1 + en if G = SO2n.

In the first two cases (resp. third case), the dominant weights in X∗(T) are the k =∑n
i=1 kiei with k1 ≥ · · · ≥ kn ≥ 0 (resp. k1 ≥ · · · ≥ kn−1 ≥ |kn|).

3.3 Computation of the geometric side of Arthur’s trace for-
mula

Arthur’s invariant trace formula [Art88] for a reductive group G/Q simplifies and becomes
more explicit when G(R) has discrete series and a “nice” smooth compactly supported dis-
tribution f∞(g∞)dg∞ is used at the real place, as shown in [Art89a] (see also [GKM97] for a
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topological proof). In section 3.3.1 we recall the elliptic terms Tell

(
f∞(g∞)dg∞

∏
p fp(gp)dgp

)
on the geometric side of this trace formula, where

∏
p fp(gp)dgp is a smooth compactly sup-

ported distribution on G(Af ). Then (section 3.3.2) we give an algorithm to compute these
elliptic terms when G is a split classical group and for any prime p, fp(gp)dgp is the trivial
element of the unramified Hecke algebra. Finally (section 3.3.3) we give explicit formulae
for the parabolic terms using the elliptic terms for groups of lower semisimple rank.

3.3.1 Elliptic terms

3.3.1.1 Euler-Poincaré measures and functions

Let G be a reductive group over R. Thanks to [Ser71], we have a canonical signed Haar
measure on G(R), called the Euler-Poincaré measure. It is non-zero if and only if G(R)

has discrete series, that is if and only if G has a maximal torus defined over R which is
anisotropic.

So assume that G(R) has discrete series. Let K be a maximal compact subgroup of
G(R), g0 = Lie(G(R)) and g = C⊗R g0. Let Vλ be an irreducible algebraic representation
of GC, parametrised by its highest weight λ. We can see Vλ as an irreducible finite-
dimensional representation of G(R), or as an irreducible (g,K)-module. If π is a (g,K)-
module of finite length, consider

EP(π, λ) :=
∑
i

(−1)i dimH i ((g,K), π ⊗ V ∗λ ) .

Clozel and Delorme [CD90][Théorème 3] show that there is a smooth, compactly supported
distribution fλ(g)dg on G(R) such that for any π as above,

Tr (π (fλ(g)dg)) = EP(π, λ).

If π is irreducible and belongs to the L-packet Πdisc(λ) of discrete series having the same
infinitesimal character as Vλ, this number is equal to (−1)q(G(R)) where 2q(G(R)) =

dimG(R) − dimK. If π is irreducible and tempered but does not belong to Πdisc(λ)

it is zero.
These nice spectral properties of fλ allow Arthur to derive nice geometric properties,

similarly to the p-adic case in [Kot88]. If γ ∈ G(R), the orbital integral Oγ(fλ(g)dg)

vanishes unless γ is elliptic semisimple, in which case, letting I denote the connected
centraliser of γ in G:

Oγ(fλ(g)dg) = Tr (γ|Vλ)µEP,I(R).

In fact [Art89a][Theorem 5.1] computes more generally the invariant distributions IM(γ, fλ)

occurring in the trace formula (here M is a Levi subgroup of G), and the orbital integrals
above are just the special case M = G. These more general invariant distributions will be
used in the parabolic terms.

3.3.1.2 Orbital integrals for p-adic groups

We recall more precisely the definition of orbital integrals for the p-adic groups. Let p be
a prime and G a reductive group over Qp. Let K be a compact open subgroup of G(Qp),
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γ ∈ G(Qp) a semisimple element, and I its connected centraliser inG. Lemma 19 of [HC70]
implies that for any double coset KcK in G(Qp), the set X of [g] ∈ K\G(Qp)/I(Qp) such
that gγg−1 ∈ KcK is finite. Let µ (resp. ν) be a Haar measure on G(Qp) (resp. I(Qp)).
Then the orbital integral at γ of the characteristic function of KcK

Oγ(1KcK , µ, ν) =

∫
G(Qp)/I(Qp)

1KcK
(
gγg−1

) dµ
dν

(g)

is equal to ∑
[g]∈X

µ(K)

ν (g−1Kg ∩ I(Qp))
.

The Haar measure Oγ(1KcK , µ, ν)ν is canonical, i.e. it does not depend on the choice of
ν. Thus Oγ canonically maps the space of smooth compactly supported complex valued
distributions on G(Qp) (i.e. linear combinations of distributions of the form 1KcK(g)dµ(g))
to the one-dimensional space of complex Haar measures on I(Qp).

Remark 3.3.1.1. Note that any automorphism of the algebraic group I preserves ν, and
thus if I and ν are fixed, for any algebraic group I′ isomorphic to I, there is a well-defined
corresponding Haar measure on I′.

3.3.1.3 Definition of the elliptic terms

Let G be a reductive group over Q such that G(R) has discrete series. Let λ be a highest
weight for the group GC. Choose a Haar measure dg∞ on G(R), and let f∞ be a smooth
compactly supported function on G(R) such that the distribution f∞,λ(g∞)dg∞ computes
the Euler-Poincaré characteristic with respect to Vλ as in 3.3.1.1. Let

∏
p fp(gp)dgp be

a smooth compactly supported distribution on G(Af ). For almost all primes p, GQp is
unramified, fp = 1Kp and

∫
Kp
dgp = 1 where Kp is a hyperspecial maximal compact

subgroup in G(Qp). Let C be the set of semisimple conjugacy classes cl(γ) in G(Q) such
that γ belongs to an anisotropic maximal torus in G(R). For cl(γ) ∈ C, denote by I the
connected centraliser of γ in G. Given such a γ, for almost all primes p, IQp is unramified
and Oγ(fp(gp)dgp) is the Haar measure giving measure one to a hyperspecial maximal
compact subgroup of I(Qp) (see [Kot86, Corollary 7.3]). Thus

∏
pOγ(fp(gp)dgp) is a well-

defined complex Haar measure on I(Af ). Let f(g)dg = f∞,λ(g∞)dg∞
∏
p fp(gp)dgp. The

elliptic part of the geometric side of Arthur’s trace formula is

Tell(f(g)dg) =
∑

cl(γ)∈C

Vol(I(Q)\I(A))

card (Cent(γ,G(Q))/I(Q))
Tr(γ |Vλ) (3.3.1.1)

where I(R) is endowed with the Euler-Poincaré measure, I(Af ) the complex Haar measure∏
pOγ(fp(gp)dgp) and I(Q) the counting measure. The set of cl(γ) ∈ C such that for any

prime p, γ is conjugate in G(Qp) to an element belonging to the support of fp is finite, so
that the sum has only a finite number of nonzero terms.
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3.3.2 Computation of the elliptic terms in the trace formula

Our first task is to explicitly compute Tell(f(g)dg) when G is one of SO2n+1, Sp2n or SO4n

and moreover for any prime p, fp = 1G(Zp) and
∫
G(Zp) dgp = 1. In this case any γ ∈ G(Q)

whose contribution to Tell(f(g)dg) is nonzero is torsion (γr = 1 for some integer r > 0),
since γ is compact in G(Qv) for any place v. Here “compact” means that the smallest
closed subgroup of G(Qv) containing γ is compact, and it is equivalent to the fact that
the eigenvalues of γ in any faithful algebraic representation of GQv have norm one.

First we describe the semisimple conjugacy classes in G(Q) and their centralisers, a
necessary first step to compute the set C and the groups I. Then we explain how to
enumerate the conjugacy classes of torsion elements in the group G(Zp). To be precise we
can compute a collection of subsets (Ys)s of G(Zp) such that

{g ∈ G(Zp) | ∃r > 0, gr = 1} =
⊔
s

{xyx−1 | y ∈ Ys, x ∈ G(Zp)}.

Note that this leaves the possibility that for a fixed s, there exist distinct y, y′ ∈ Ys which
are conjugated under G(Zp). Thus it seems that to compute local orbital integrals we
should check for such cases and throw away redundant elements in each Ys, and then
compute the measures of the centralisers of y in G(Zp). This would be a computational
nightmare. Instead we will show in section 3.3.2.3 that the fact that such orbital integrals
are masses (as in “mass formula”) implies that we only need to compute the cardinality of
each Yc. Finally the Smith-Minkowski-Siegel mass formulae of [GY00] provide a means to
compute the global volumes.

3.3.2.1 Semisimple conjugacy classes in classical groups

Let us describe the absolutely semisimple conjugacy classes in classical groups over a field,
along with their centralisers. It is certainly well-known, but we could not find a reference.
We explain in detail the case of quadratic forms (orthogonal groups). The case of alternate
forms (symplectic groups) is similar but simpler since characteristic 2 is not “special” and
symplectic automorphisms have determinant 1. The case of (anti-)hermitian forms (unitary
groups) is even simpler but it will not be used hereafter.

Let V be a vector space of finite dimension over a (commutative) fieldK, equipped with
a regular (“ordinaire” in the sense of [SGA73, Exposé XII]) quadratic form q. Let γ ∈ O(q)

be absolutely semisimple, i.e. γ ∈ EndK(V ) preserves q and the finite commutative K-
algebra K[γ] is étale. Since γ preserves q, the K-automorphism τ of K[γ] sending γ to
γ−1 is well-defined: if dimK V is even or 2 6= 0 in K, τ is the restriction to K[γ] of the
antiautomorphism of EndK(V ) mapping an endomorphism to its adjoint with respect to the
bilinear formBq corresponding to q, defined by the formulaBq(x, y) := q(x+y)−q(x)−q(y).

In characteristic 2 and odd dimension, (V, q) is the direct orthogonal sum of its γ-stable
subspaces V ′ = ker(γ−1) and V ′′ = kerP (γ) where (X−1)P (X) ∈ K[X]\{0} is separable
and annihilates γ. If V ′′ were odd-dimensional, the kernel of Bq|V ′′×V ′′ would be a γ-stable
line Kx with q(x) 6= 0, which imposes γ(x) = x, in contradiction with P (1) 6= 0. Thus
K[γ] = K [γ|V ′′ ]×K if V ′′ 6= 0, and τ is again well-defined.
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Thanks to τ we have a natural decomposition as a finite product:

(K[γ], γ) =
∏
i

(Ai, γi)

where for any i, Ai is a finite étale K-algebra generated by γi such that γi 7→ γ−1
i is a

well-defined K-involution τi of Ai and Fi = {x ∈ Ai | τi(x) = x} is a field. Moreover the
minimal polynomials Pi of γi are pairwise coprime. For any i, either:

• γ2
i = 1 and Ai = K,

• γ2
i 6= 1 and Ai is a separable quadratic extension of Fi, Gal(Ai/Fi) = {1, τi},

• γ2
i 6= 1, Ai ' Fi × Fi and τi swaps the two factors.

Let Itriv, Ifield and Isplit be the corresponding sets of indices. There is a corresponding
orthogonal decomposition of V :

V =
⊕
i

Vi

where Vi is a projective Ai-module of constant finite rank.

Lemma 3.3.2.1. For any i, there is a unique τi-hermitian (if τi is trivial, this simply
means quadratic) form hi : Vi → Fi such that for any v ∈ Vi, q(v) = TrFi/K (hi(v)).

Proof. If i ∈ Itriv this is obvious, so we can assume that dimFi Ai = 2. Let us show that
the K-linear map

T : {τi-hermitian forms on Vi} −→ {K-quadratic forms on Vi preserved by γi}

hi 7→
(
v 7→ TrFi/Khi(v)

)
is injective. If hi is a τi-hermitian form on Vi, denote by Bhi the unique τi-sesquilinear map
Vi × Vi → Ai such that for any v, w ∈ Vi, hi(v + w) − hi(v) − hi(w) = TrAi/FiBhi(v, w),
so that in particular hi(v) = Bhi(v, v). Moreover for any v, w ∈ Vi, BT (hi)(v, w) =

TrAi/KBhi(v, w). If hi ∈ kerT , then BT (hi) = 0 and by non-degeneracy of TrAi/K we
have Bhi = 0 and thus hi = 0.

To conclude we have to show that the two K-vector spaces above have the same dimen-
sion. Let d = dimK Fi and n = dimAi Vi, then dimK{τi-hermitian forms on Vi} = dn2. To
compute the dimension of the vector space on the right hand side, we can tensor over K
with a finite separable extension K ′/K such that γi is diagonalizable over K ′. Since γ2

i 6= 1

the eigenvalues of 1⊗ γi on K ′ ⊗K Vi are t1, t−1
1 , . . . , td, t

−1
d where the t±1

k are distinct and
6= 1. Furthermore each eigenspace U+

k := ker(1⊗ γi − tk ⊗ 1), U−k := ker(1⊗ γi − t−1
k ⊗ 1)

has dimension n over K ′. If q′ is a K ′-quadratic form on K ′ ⊗K Vi preserved by 1 ⊗ γi,
then:

• for any k, q′|U±k = 0 since t2k 6= 1,

• for any k 6= l, Bq′ |U±k ×U±l = 0 since tk/tl, tktl 6= 1.

55



Hence q′ is determined by the restrictions of Bq′ to U+
k × U

−
k , and conversely any family

of K ′-bilinear forms U+
k × U

−
k → K ′ (k ∈ {1, . . . , d}) give rise to a K ′-quadratic form on

K ′ ⊗K Vi preserved by 1⊗ γi, and we conclude that the dimension is again dn2.

The regularity of q implies that of hi (when γ2
i 6= 1, regularity means non-degeneracy

of Bhi). In the split case, Vi can be more concretely described as a pair (Wi,W
′
i ) of vector

spaces over Fi having the same dimension, hi identifies W ′i with the dual W ∗i of Wi over
Fi, and thus the pair (Vi, hi) is isomorphic to ((Wi,W

∗
i ), (w, f) 7→ f(w)).

If instead of q we consider a non-degenerate alternate form 〈·, ·〉, we have the same
kind of decomposition for (K[γ], γ). Moreover the above lemma still holds if instead of
considering hermitian forms hi we consider τi-sesquilinear forms Bi : Vi × Vi → Ai such
that for any v ∈ Vi, TrAi/Fi(Bi(v, v)) = 0.

Proposition 3.3.2.2. Two absolutely semisimple elements γ, γ′ of O(V, q) are conjugate
if and only if there is a bijection σ between their respective sets of indices I and I ′ and
compatible isomorphisms (Ai, γi) '

(
A′σ(i), γ

′
σ(i)

)
and (Vi, hi) '

(
V ′σ(i), h

′
σ(i)

)
. Moreover

the algebraic group Cent(γ,O(V, q)) is naturally isomorphic to∏
i∈Itriv

O(Vi, hi)×
∏

i∈Ifield

ResFi/KU(Vi, hi)×
∏

i∈Isplit

ResFi/KGL(Wi).

If dimK V is odd O(V, q) = SO(V, q)×µ2, so this proposition easily yields a description
of absolutely semisimple conjugacy classes in SO(V, q) = SO(V, q)(K) and their central-
isers. If dimK V is even the proposition still holds if we replace O(V, q) by SO(V, q) and∏
i∈Itriv O(Vi, hi) by S

(∏
i∈Itriv O(Vi, hi)

)
and add the assumption Itriv 6= ∅. If dimK V

is even and Itriv = ∅, the datum (Ai, γi, Vi, hi)i∈I determines two conjugacy classes in
SO(V, q).

In the symplectic case there is a similar proposition, but now the indices i ∈ Itriv yield
symplectic groups.

Note that if K is a local or global field in which 2 6= 0, the simple and explicit invari-
ants in the local case and the theorem of Hasse-Minkowski (and its simpler analogue for
hermitian forms, see [Jac40]) in the global case allow to classify the semisimple conjugacy
classes explicitly. For example if K = Q, given M > 0 one can enumerate the semisimple
conjugacy classes in SO(V, q) annihilated by a non-zero polynomial having integer coeffi-
cients bounded by M .

3.3.2.2 Semisimple conjugacy classes in hyperspecial maximal compact sub-
groups

To compute orbital integrals in the simplest case of the unit in the unramified Hecke
algebra of a split classical group over a p-adic field, it would be ideal to have a similar
description of conjugacy classes and centralisers valid over Zp. It is straightforward to
adapt the above description over any ring (or any base scheme). However, it is not very
useful as the conjugacy classes for which we would like to compute orbital integrals are
not all “semisimple over Zp”, i.e. Zp[γ] is not always an étale Zp-algebra. Note that the
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“semisimple over Zp” case is covered by [Kot86, Corollary 7.3] (with the natural choice
of Haar measures, the orbital integral is equal to 1). Nevertheless using the tools of the
previous section, we give in this section a method to exhaust the isomorphism classes of
triples (Λ, q, γ) where Λ is a finite free Zp-module, q is a regular quadratic form on Λ

and γ ∈ SO(Λ, q). The symplectic case is similar. This means that we will be able to
enumerate them, but a priori we will obtain some isomorphism classes several times. In
the next section we will nonetheless see that the results of this section can be used to
compute the orbital integrals, without checking for isomorphisms.

Let Λ be a free Zp-module of finite rank endowed with a regular quadratic form q,
and let γ ∈ AutZp(Λ) preserving q and semisimple over Qp. We apply the notations and
considerations of section 3.3.2.1 to the isometry γ of Qp ⊗Zp Λ, to obtain quadratic or
hermitian spaces

(
Qp ⊗Zp Λ

)
i
. Consider the lattices

Λi := Λ ∩
(
Qp ⊗Zp Λ

)
i

= ker (Pi(γ) | Λ) .

Let N ≥ 0 be such that pN belongs to the ideal of Zp[X] generated by the
∏
j 6=i Pj for all

i. Then Λ/ (⊕iΛi) is annihilated by pN , so this group is finite. Since Λi is saturated in Λ

and q is regular, for any v ∈ Λi r pΛi,{
pN ∈ B(v,Λi) if p ≥ 3 or rkZpΛi is even,
pN ∈ B(v,Λi) or q(v) ∈ Z×2 if p = 2 and rkZpΛi is odd.

(3.3.2.1)

The Zp[γi]-module Λi is endowed with a hermitian (quadratic if γ2
i = 1) form hi taking

values in Fi. The sesquilinear (bilinear if γ2
i = 1) form Bi : Λi × Λi → Ai associated with

hi has the property that for all v, w ∈ Λi,

B(v, w) = TrAi/Qp (Bi(v, w)) .

From now on we assume for simplicity that Zp[γi] is normal (i.e. either it is the integer ring
of an extension of Qp, or the product of two copies of such an integer ring), as it will be the
case in our global situation which imposes that the γi’s be roots of unity. The structure
of quadratic or hermitian modules over such rings is known: see [O’M00] for the quadratic
case, [Jac62] for the hermitian case. The “split” case amounts to the comparison of two
lattices in a common vector space (isomorphism classes of such pairs are parametrised by
“invariant factors”). Choose a uniformiser $i of Zp[γi] (by definition, in the split case $i

is a uniformiser of OFi). In all cases, there is a (non-canonical) orthogonal decomposition
Λi =

⊕
r∈Z Λ

(r)
i such that $−ri Bi|Λ(r)

i ×Λ
(r)
i

is integral and non-degenerate. If ($di
i ) is the

different of Zp[γi]/Zp and (p) = ($ei
i ), condition 3.3.2.1 imposes (but in general stays

stronger than) the following:{
Λ

(r)
i = 0 unless − di ≤ r ≤ −di +Nei if p ≥ 3 or rkZpΛi is even,

Λ
(r)
i = 0 unless 0 ≤ r ≤ max(1, N) if p = 2 and rkZpΛi is odd.

(3.3.2.2)

Note that in the second case γ2
i = 1 and hi is a quadratic form over Z2. These conditions

provide an explicit version of the finiteness result in section 3.3.1.2, since for any i and r
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there is a finite number of possible isomorphism classes for Λ
(r)
i , and when the Λi’s are

fixed, there is only a finite number of possible γ-stable q-regular Λ’s since⊕
i

Λi ⊂ Λ ⊂ p−max(1,N)
⊕
i

Λi.

For efficiency it is useful to sharpen these conditions. Denote by o an orbit of Z/2Z×
Gal

(
Fp/Fp

)
acting on Fp

×, where the non-trivial element of Z/2Z acts by x 7→ x−1.
Concretely, o is an orbit in the set of primitive m-th roots of unity (m coprime to p) under
the subgroup 〈p,−1〉 of (Z/mZ)×. Let Io be the set of indices i such that γi modulo some
(at most two possibilities) maximal ideal of Zp[γi] belongs to o. Then for o 6= o′,

∏
i∈Io Pi

and
∏
i∈Io′

Pi generate the unit ideal in Zp[X], thus Λ =
⊕

o ΛIo where

ΛIo = SatΛ

(⊕
i∈Io

Λi

)
= ker

(∏
i∈Io

Pi(γ) | Λ

)
.

Here SatΛ(Λ′), the saturation of Λ′ in Λ, is defined as Λ ∩ (QpΛ
′). Our task is now to

enumerate the γ-stable q-regular lattices containing
⊕

i∈Io Λi in which each Λi is saturated.
For i ∈ Io, there is a canonical (“Jordan-Chevalley over Zp”) decomposition γi = αiβi where
Φm(αi) = 0 (m associated with o as above) and

βp
n

i −−−−−→n→+∞
1.

Since we assumed that Zp[γi] = Zp[αi][βi] is normal, either βi ∈ Zp[αi] or over each factor
of Qp[αi], Qp[γi] is a non-trivial totally ramified field extension and βi− 1 is a uniformiser.
In any case, define h′i := TrFi/Qp[αi+α

−1
i ](hi), a quadratic or hermitian (with respect to

τi : αi 7→ α−1
i ) form on the Zp[αi]-module Λi. On ΛIo , γ = αIoβIo as above, the restriction

of αIo to Λi (i ∈ Io) is αi, and the minimal polynomial of αi over Qp does not depend
on i ∈ Io. Thus we can see the Λi, i ∈ Io as finite free quadratic or hermitian modules
over the same ring Zp [αIo ], each of these modules being endowed with an automorphism
βi satisfying β

pn

i → 1. Moreover since Zp [αIo ] is an étale Zp-algebra, the regularity of q
(restricted to ΛIo) is equivalent to the regularity of h′ = ⊕ih′i on ΛIo . Knowing the Λi’s,
finding the possible ΛIo ’s amounts to finding the β-stable h′-regular lattices containing⊕

i∈Io Λi in which each Λi is saturated, where β = ⊕iβi.
Let us now specialise to the case where each γi is a root of unity, i.e. βp

n

i = 1 for some
n ≥ 0. Denote by Φr the r-th cyclotomic polynomial.

Lemma 3.3.2.3. Let m ≥ 1 be coprime to p. In Zp[X], for any k ≥ 1, p belongs to the
ideal generated by Φpkm(X) and Φm

(
Xpk−1

)
.

Proof. For k = 1, since Φm(Xp) = Φpm(X)Φm(X), by derivating we obtain the following
equality in the finite étale Zp-algebra Zp[X]/Φm(X):

Φpm(X) = pXp−1Φ′m(Xp)/Φ′m(X) = p× unit.

Hence there exists U, V ∈ Zp[X] such that Φpm(X)U(X) + Φm(X)V (X) = p. For any
k ≥ 1 we have Φpkm(X) = Φpm

(
Xpk−1

)
, and the general case follows.
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Having chosen quadratic or hermitian lattices (Λi)i∈Io , there is a natural order in which
to proceed to enumerate the possible ΛIo . Let us focus on one orbit o. To lighten notation
name the indices Io = {1, . . . , s} in such a way that for 1 ≤ t ≤ s, Pt|Φmpkt where
0 ≤ k1 < . . . < ks. Having fixed o we also drop the indices Io from our notations. The
lemma tells us that for any 1 ≤ t < s, p annihilates

SatΛ (Λ1 ⊕ . . .⊕ Λt+1) / (SatΛ (Λ1 ⊕ . . .⊕ Λt)⊕ Λt+1)

and thus we also have that ps−t annihilates

Λ/ (SatΛ (Λ1 ⊕ . . .⊕ Λt)⊕ Λt+1 ⊕ . . .Λs) .

This will provide a sharper version of condition 3.3.2.1. Let B′ be the sesquilinear (bi-
linear if α2 = 1) form on Λ associated with h′. For any i ∈ Io there is an orthogonal
decomposition with respect to B′: Λi =

⊕
r L

(r)
i where each L

(r)
i is pr-modular for B′,

i.e. p−rB′|
L

(r)
i ×L

(r)
i

takes values in Zp[α] and is non-degenerate. For 1 ≤ t ≤ s denote
Mt = SatΛ (Λ1 ⊕ . . .⊕ Λt), which can similarly be decomposed orthogonally with respect
to B′: Mt =

⊕
rM

(r)
t . Note thatM1 = Λ1. Analogously to condition 3.3.2.1, for 1 ≤ t < s

we have
L

(r)
t+1 = M

(r)
t = 0 unless 0 ≤ r ≤ s− t. (3.3.2.3)

and if s = 1 we simply have that the hermitian (or quadratic) module (Λ1, h
′) over Zp[α]

is regular. We can deduce a sharper version of condition 3.3.2.2. If s > 1 then

Λ
(r)
1 = 0 unless − d1 ≤ r ≤ −d1 + (s− 1)e1 (3.3.2.4)

for 1 < t ≤ s, Λ
(r)
t = 0 unless − dt ≤ r ≤ −dt + (s− t+ 1)et. (3.3.2.5)

while for s = 1:{
Λ

(r)
1 = 0 if r 6= −d1 if p ≥ 3 or m > 1,

Λ1 is a regular quadratic Z2-module if p = 2 and m = 1.
(3.3.2.6)

Let us recapitulate the algorithm thus obtained to enumerate non-uniquely the iso-
morphism classes of triples (Λ, q, γ) such that (Λ, q) is regular and γ is torsion. Begin with
a datum (Ai, γi)i∈I , i.e. fix the characteristic polynomial of γ. For any orbit o for which
s = card(Io) > 1:

1. For any i ∈ Io, enumerate the isomorphism classes of quadratic or hermitian Zp[αi]-
modules Λi subject to conditions 3.3.2.4 and 3.3.2.5, compute B′ on Λi × Λi and
throw away those which do not satisfy condition 3.3.2.3.

2. For any such family (Λi)i∈Io , enumerate inductively the possible SatΛ (Λ1 ⊕ . . .⊕ Λt).
At each step t = 1, . . . , s, given a candidate Mt for SatΛ (Λ1 ⊕ . . .⊕ Λt), we have to
enumerate the candidates Mt+1 for SatΛ (Λ1 ⊕ . . .⊕ Λt), i.e. the β-stable lattices
containing Mt ⊕ Λt+1 such that

(a) h′ is integral on Mt+1,
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(b) both Mt and Λt+1 are saturated in Mt+1,

(c) if t < s− 1, Mt+1 satisfies condition 3.3.2.3,

(d) if t = s− 1, Mt+1 (a candidate for Λ) is regular for h′.

Remark 3.3.2.4. The first step can be refined, since already over Qp there are obstructions
to the existence of a regular lattice. These obstructions exist only when h′ = q is a quadratic
form, i.e. α2

Io
= 1, so let us make this assumption for a moment. Consider its discriminant

D = disc(q) ∈ Q×p /squares(Q×p ). If rkZpΛ = 2n is even, then Qp[X]/(X2 − (−1)nD) is
unramified over Qp. If rkZpΛ is odd, the valuation of disc(q)/2 is even. Moreover in any
case, once we fix the discriminant, the Hasse-Witt invariant of q is determined. We do
not go into more detail. A subtler obstruction is given by the spinor norm of γ. Assume
that N = rkZpΛ is at least 3, and for simplicity assume also that det(γ) = 1. The regular
lattice (Λ, q) defines a reductive group SO(q) over Zp. The fppf exact sequence of groups
over Zp

1→ µ2 → Spin(q)→ SO(q)→ 1

yields for any Zp-algebra R the spinor norm SO(q)(R)→ H1
fppf(R,µ2) whose kernel is the

image of Spin(q)(R). Moreover if Pic(R) = 1 (which is the case if R = Qp or Zp) we
have H1

fppf(R,µ2) = R×/squares(R×). Thus another obstruction is that the spinor norm
of γ must have even valuation. We can compute the spinor norm of each γi easily. If
γi = −1 its spinor norm is simply the discriminant of the quadratic form hi. If i 6∈ Itriv

a straightforward computation shows that the spinor norm of γi is NAi/Qp(1 + γi)
dimAi

Vi .
Note that it does not depend on the isomorphism class of the hermitian form hi.

Let us elaborate on the second step of the algorithm. For an orbit o for which s = 1,
we simply have to enumerate the modules Λ1 satisfying 3.3.2.6 and such that the resulting
quadratic form q (equivalently, h′) is regular.

We have not given an optimal method for the case s > 1. A very crude one consists in
enumerating all the free Fp[α]-submodules in p−1Zp/Zp ⊗Zp (Mt ⊕Λt+1) and keeping only
the relevant ones. The following example illustrates that one can do much better in many
cases.

Example 3.3.2.5. Consider the “second simplest” case s = 2. Assume for simplicity that
p > 2 or m > 1. Then condition 3.3.2.3 shows that for any pair ((Λ1, h1), (Λ2, h2)) found
at the first step of the algorithm, we have

Λ1 = L
(0)
1 ⊕ L

(1)
1 and Λ2 = L

(0)
2 ⊕ L

(1)
2

where each L
(r)
i is pr-modular. Moreover for any i ∈ {1, 2} the topologically unipotent

automorphism βi stabilises

pL
(0)
i ⊕ L

(1)
i = {v ∈ Λi | ∀w ∈ Λi, B

′
i(v, w) ∈ pZp[α]}

and thus βi induces a unipotent automorphism βi of (Vi, ηi) where Vi = L
(1)
i /pL

(1)
i and

ηi is a the non-degenerate quadratic or hermitian form p−1h′i mod p on Vi. It is easy to
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check that any relevant Λ ⊃ Λ1 ⊕ Λ2 is such that

pΛ/(pΛ1 ⊕ pΛ2) = {v1 ⊕ f(v1) | v1 ∈ V1}

for a unique isomorphism f : (V1, η1, β1)→ (V2,−η2, β2). Conversely such an isomorphism
yields a relevant Λ.

For p = 2 and m = 1 there is a similar but a bit more complicated description of the
relevant lattices Λ ⊃ Λ1 ⊕ Λ2. In that case each form ηi is a “quadratic form modulo 4”,
i.e. x 7→ 〈x, x〉 mod 4 where 〈·, ·〉 is a symmetric bilinear form on a free Z2-module N .
Note that 〈x, x〉 mod 4 only depends on the class of x in F2 ⊗N . A further complication
comes into play when rkZ2(Λ1) + rkZ2(Λ2) is odd, but we do not go into more detail.

In the case of an arbitrary s > 1, the observation made in example 3.3.2.5 still applies
at the last step t = s−1, replacing (Λ1,Λ2) with (Ms−1,Λs). We do not go into the details
of our implementation of the previous steps (t < s−1). We merely indicate that in general
pMt+1/(Mt⊕Λt+1) is still described using an isomorphism f between a β-stable subspace
of
⊕

r≥1M
(r)
t mod p and a β-stable subspace of

⊕
r≥1 L

(r)
t mod p.

Remark 3.3.2.6. Regarding all the results of this section, the symplectic case is similar,
replacing “quadratic” by “symplectic” and “hermitian” by “antihermitian”, and even simpler
because the prime 2 is “less exceptional”. More precisely, the classification of hermitian
modules for e.g. the quadratic extension Zp[ζpk ]/Zp[ζpk + ζ−1

pk
] is more involved for p = 2

than for the other primes (see [Jac62]), but once we have enumerated the possible iso-
morphism classes of Λi’s, the enumeration of the relevant Λ ⊃ ⊕iΛi can be done uniformly
in p.

3.3.2.3 Orbital integrals for the unit in the unramified Hecke algebra of a
p-adic classical group

In this section we show that thanks to the fact that orbital integrals are formally sums of
masses (where “mass” takes the same meaning as in “mass formula”, or in overly fancy terms,
the “measure of a groupoid”), they can be computed by counting instead of enumerating
and checking isomorphisms. As before we focus on the case of special orthogonal groups,
the case of symplectic groups being easier.

Let Λ0 be a free Zp-module of finite rank endowed with a regular quadratic form q0 and
consider the algebraic group G = SO(Λ0, q0) which is reductive over Zp. Let f = 1G(Zp)

be the characteristic function of G(Zp) and fix the Haar measure on G(Qp) such that∫
G(Zp) dg = 1. Let γ0 ∈ G(Qp) be semisimple (for now we do not assume that it is
torsion), and let I0 be its connected centraliser in GQp . Fix a Haar measure ν on I0(Qp).
Consider the isomorphism classes of triples (Λ, q, γ) such that

• Λ is a free Zp-module of finite rank endowed with a regular quadratic form q,

• γ ∈ SO(Λ, q),

• there exists an isomorphism between (Qp ⊗Zp Λ, q, γ) and (Qp ⊗Zp Λ0, q0, γ0).
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We apply the previous section’s notations and results to such (Λ, q, γ). The last condition
can be expressed simply using the classical invariants of quadratic (over Qp) or hermitian
(over Qp[γi]) forms, as in Proposition 3.3.2.2. It implies that I0 and the connected cent-
raliser I of γ in SO(Qp ⊗Zp Λ, q) are isomorphic, and by Remark 3.3.1.1 we can see ν as a
Haar measure on I(Qp). Then

Oγ0(f(g)dg) =

 ∑
(Λ,q,γ)

ν (I(Qp) ∩ SO(Λ, q))−1

 ν

where the sum ranges over isomorphism classes as above. Note that I(Qp) ∩ SO(Λ, q)

stabilises each Λi, so that it is a subgroup of
∏
i Γi ⊂ I(Qp) where

Γi =

{
SO(Λi, hi) if i ∈ Itriv

U(Λi, hi) if i ∈ Ifield ∪ Isplit.

In fact I(Qp)∩SO(Λ, q) is the stabiliser of Λ/
⊕

i Λi for the action of
∏
i Γi on (Qp/Zp)⊗Zp

(
⊕

i Λi). Grouping the terms in the above sum according to the isomorphism classes of
the quadratic or hermitian modules Λi, we obtain

Oγ0(f(g)dg) =

 ∑
(Λi,hi)i∈I

ext ((Λi, hi)i)

ν (
∏
i Γi)

 ν. (3.3.2.7)

Now the sum ranges over the isomorphism classes of quadratic or hermitian lattices (Λi, hi)

over Zp[γi], which become isomorphic to the corresponding datum for (Qp ⊗Zp Λ0, q0, γ0)

when p is inverted, and

ext ((Λi, hi)i) := card

{
q-regular (⊕iγi)-stable Λ ⊃

⊕
i

Λi | ∀i, Λi saturated in Λ

}
.

We will study the volumes appearing at the denominator below, but for the moment we
consider these numerators. Motivated by the global case, assume from now on that γ0 is
torsion as in the end of the previous section. It is harmless to restrict our attention to a
single orbit o, and assume I = Io. For the computation of orbital integrals, the benefit
resulting from the transformation above is that instead of enumerating the possible Mt+1

knowing Mt at the last step t = s − 1, we only have to count them. Let us discuss the
various cases that can occur, beginning with the simplest ones.

The unramified case corresponds to s = 1 and A1 = Qp[γ1] = Qp[α], and in that case
there is a unique relevant isomorphism class (Λ1, h1). It is easy to check that we recover
Kottwitz’s result [Kot86][Corollary 7.3] that the orbital integral equals 1 for the natural
choice of Haar measures.

The case where s = 1 but Qp[γ1]/Qp[α] can be non-trivial (i.e. ramified) is not much
harder: the algorithm given in the previous section identifies the relevant isomorphism
classes (Λ1, h1) appearing below the sum, and ext(Λ1, h1) = 1. In this case we have
reduced the problem of computing the orbital integral by that of computing the volume of
the stabilisers of some lattices. When G = Sp2 = SL2 it is the worst that can happen.
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The first interesting case is s = 2. Assume for simplicity that p > 2 orm > 1, and let us
look back at example 3.3.2.5, using the same notations. Then ext((Λ1, h1), (Λ2, h2)) = 0

unless (V1, η1, β1) ' (V2,−η2, β2), in which case ext((Λi, hi)i) = card (Aut(V1, η1, β1)).
This group is the centraliser of a unipotent element in a classical group over a finite field.
Results of Wall [Wal63] give the invariants of such conjugacy classes as well as formulae
for their centralisers. In many cases (e.g. if rkZp(Λ) < p2 − 1) the automorphism β1 of
V1 is trivial, and thus we do not need the general results of Wall, but merely the simple
cardinality formulae of finite classical groups. For G = Sp4 or SO4 we have s ≤ 2 and
β1|V1 = 1 at worst.

When s > 2 the situation is of course more complicated, and it seems that we cannot
avoid the enumeration of successive lattices Mt+1 ⊃Mt ⊕Λt+1 for t < s− 1, although the
last step t = s− 1 is identical to the above case. Note however that these “very ramified”
cases are rare in low rank. More precisely rkZpΛ ≥ ps−1, e.g. in rank less than 25 it can
happen that s > 2 only for p = 2, 3. Thus the “worst cases” have p = 2. This is fortunate
because for fixed k and n the number of k-dimensional subspaces in an n-dimensional
vector space over a finite field with q elements increases dramatically with q.

Remark 3.3.2.7. In the case where G is an even special orthogonal group, some of the
semisimple conjugacy classes in G(Qp) were parametrised only up to outer conjugation.
Since G(Zp) is invariant by an outer automorphism of G, for any γ0, γ

′
0 ∈ G(Qp) which

are conjugate by an outer automorphism of GQp , the orbital integrals for f(gp)dgp at γ0

and γ′0 are equal. Of course the above formula for the orbital integral is valid for both.

3.3.2.4 Local densities and global volumes

To complete the computation of adèlic orbital integrals we still have to evaluate the de-
nominators in formula 3.3.2.7 and the global volumes. Formulae for local densities and
Smith-Minkowski-Siegel mass formulae are just what we need. But we will use the point of
view suggested by [Gro97] and used in [GP05], i.e. fix canonical Haar measures to see local
orbital integrals as numbers. For this we need to work in a slightly more general setting
than cyclotomic fields.

If k is a number field or a p-adic field, denote by Ok its ring of integers. If k is a number
field Ak = k ⊗Q A will denote the adèles of k.

Let k be a number field or a local field of characteristic zero, and let K be a finite
commutative étale k-algebra such that dimkK ≤ 2, i.e. K = k or k×k or K is a quadratic
field extension of k. Let τ be such that Autk(K) = {IdK , τ}. This determines τ . Let V
be a vector space over K of dimension r ≥ 0. Let α ∈ {1,−1}, and assume that α = 1 if
dimkK = 2. Assume that V is endowed with a non-degenerate τ -sesquilinear form 〈·, ·〉
such that for any v1, v2 ∈ V we have 〈v2, v1〉 = ατ (〈v1, v2〉). Let G = Aut(V, 〈·, ·〉)0 be
the connected reductive group over k associated with this datum. Then G is a special
orthogonal (K = k and α = 1), symplectic (K = k and α = −1), unitary (K/k is a
quadratic field extension and α = 1) or general linear (K = k × k and α = 1) group.

If k is a number field, by Weil [Wei82] the Tamagawa number τ(G) equals 2 (resp. 1)
in the orthogonal case if r ≥ 2 and V is not a hyperbolic plane (resp. if r = 1 or V is
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a hyperbolic plane), 1 in the symplectic case, 2 in the unitary case if r > 0 and 1 in the
general linear case.

If k is a p-adic field, consider a lattice N in V , i.e. a finite free OK-module N ⊂ V such
that V = KN . Denote N∨ = {v ∈ V | ∀w ∈ N, 〈v, w〉 ∈ OK}. If 〈·, ·〉|N×N takes values in
OK then N∨ ⊃ N and we can consider [N∨ : N ], i.e. the cardinality of the finite abelian
group N∨/N . In general define [N∨ : N ] as [N∨ : N∨ ∩ N ]/[N : N∨ ∩ N ]. Recall also
[GY00][Definition 3.5] the density βN associated with (N, 〈·, ·〉).

In [Gro97] Gross associates a motive M of Artin-Tate type to any reductive group over
a field. For the groups G defined above, letting n be the rank of G, we have

M =


⊕n

x=1 Q(1− 2x) orthogonal case with r odd and symplectic case,
χQ(1− n)⊕

⊕n−1
x=1 Q(1− 2x) orthogonal case with r > 0 even,⊕n

x=1 χ
xQ(1− x) unitary and general linear cases.

In the orthogonal case with r > 0 even let (−1)nD be the discriminant of (V, 〈·, ·〉) (i.e.
the determinant of the Gram matrix), then χ is defined as the character Gal(k(

√
D)/k)→

{±1} which is non-trivial if D is not a square in k. In the general linear case χ is trivial,
and in the unitary case χ is the non-trivial character of Gal(K/k). For L-functions and
ε-factors we will use the same notations as [Gro97].

If k is a number field Dk will denote the absolute value of its discriminant. For K = k

or K = k × k denote DK/k = 1, whereas for a quadratic field extension K of k we denote
DK/k = |NK/Q(DK/k)| where DK/k is the different ideal of K/k and the absolute value of
the ideal mZ of Z is m if m ≥ 1. There are obvious analogues over any p-adic field, and
Dk (resp. DK/k) is the product of Dkv (resp. DKv/kv where Kv = kv ⊗k K) over the finite
places v of k.

For (k,K, α, V 〈·, ·〉) (local or global) as above define as in [GY00]

n(V ) =

{
r + α if K = k,

r if dimkK = 2

and

µ =


2r in the orthogonal case with r even,
2(r+1)/2 in the orthogonal case with r odd,
1 in the symplectic, unitary and general linear cases.

Finally, consider the case where k = R and G(R) has discrete series, i.e. the Euler-Poincaré
measure on G(R) is non-zero, i.e. G has a maximal torus T which is anisotropic. Re-
call Kottwitz’s sign e(G) = (−1)q(G) and the positive rational number c(G) defined in
[Gro97][§8]. Explicitly,

c(G) =


1 in the symplectic case,
2n/
(

n
ba/2c

)
in the orthogonal case with signature (a, b), b even,

2n/
(
n
a

)
in the unitary case with signature (a, b).

The following theorem is a reformulation of the mass formula [GY00][Theorem 10.20]
in our special cases.
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Theorem 3.3.2.8. Let k be a totally real number field and let K, α, (V, 〈·, ·〉) and G be as
above. Let M denote the Gross motive of G. Assume that for any real place v of k, G(kv)

has discrete series. Define a signed Haar measure ν =
∏
v νv on G(Ak) as follows. For

any real place v of k, νv is the Euler-Poincaré measure on G(kv). For any finite place v of
k, νv is the canonical measure Lv(M∨(1))|ωGkv

| on G(kv) (see [Gro97][§4]). In particular,
for any finite place v such that Gkv is unramified, the measure of a hyperspecial compact
subgroup of G(kv) is one. Then for any OK-lattice N in V ,∫

G(k)\G(Ak)
ν = τ(G)× L(M)×

D
dimG/2
k D

r(r+1)/4
K/k

ε(M)
×
∏
v|∞

(−1)q(Gkv )

c(Gkv)

× µdimQ k
∏

v finite

[N∨v : Nv]
n(V )/2 × νv (G(kv) ∩GL(Nv))

Lv(M∨(1))βNv

Proof. To get this formula from [GY00][Theorem 10.20], use the comparison of measure at
real places [Gro97][Proposition 7.6], the fact that Lv(M∨(1))βNv = 1 for almost all finite
places of k, and the functional equation Λ(M) = ε(M)Λ(M∨(1)) (see [Gro97][9.7]).

Note that the choice of ν at the finite places does not play any role. This choice was
made to compare with the very simple formula [Gro97][Theorem 9.9]:∫

G(k)\G(Ak)
ν = τ(G)× L(M)×

∏
v|∞

(−1)q(Gkv )

c(Gkv)
. (3.3.2.8)

We obtain that under the hypotheses of the theorem,∏
v finite

νv (G(kv) ∩GL(Nv)) =
ε(M)µ− dimQ k

D
dimG/2
k D

r(r+1)/4
K/k

∏
v finite

Lv(M
∨(1))βNv

[N∨v : Nv]n(V )/2
. (3.3.2.9)

We can compute explicitely

ε(M)

D
dimG/2
k D

r(r+1)/4
K/k

=


D
−n/2
K/k in the unitary case if r = n is even,∣∣Nk/Q(δ)

∣∣n−1/2 in the orthogonal case if r is even,
1 otherwise,

where in the second case (−1)nD is the discriminant of 〈·, ·〉 and δ is the discriminant of
k(
√
D)/k. As the proof of the following proposition shows, the factor µ− dimQ k, which is

nontrivial only in the orthogonal cases, is local at the dyadic places.

Proposition 3.3.2.9. Let p be a prime. Let k0 be a p-adic field and let (K0, α, V0, 〈·, ·〉0)

and G0 be as above. Let ν0 be the canonical Haar measure L(M∨(1))|ωG0 | on G0(k0).
If p = 2, K0 = k0 and α = 1, let x0 = µ− dimQ2

k0, otherwise let x0 = 1. Then for any
OK0-lattice N0 in V0,

ν0 (G0(k0) ∩GL(N0)) = L(M∨(1))× x0 × βN0 × [N∨0 : N0]−n(V0)/2

×


D
−n/2
K0/k0

in the unitary case if r = n is even,∣∣Nk0/Qp(δ0)
∣∣n−1/2 in the orthogonal case if r is even,

1 otherwise,
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where in the second case (−1)nD0 is the discriminant of 〈·, ·〉0 and δ0 is the discriminant
of k0(

√
D0)/k0.

Proof. We apologise for giving a global proof of this local statement. We only give details
for the hardest case of orthogonal groups.

When p > 2 and the symmetric bilinear form 〈·, ·〉0|N0×N0 is integer-valued and non-
degenerate, G0 is the generic fiber of a reductive group overOk0 and the equality is obvious.
Note that this does not apply for p = 2, even assuming further that the quadratic form
v 7→ 〈v, v〉0/2 is integer-valued on N0, because the local density βN0 is defined using the
bilinear form 〈·, ·〉0, not the quadratic form v 7→ 〈v, v〉0/2.

Next consider the case p = 2 and N0 arbitrary. By Krasner’s lemma there ex-
ists a totally real number field k and a quadratic vector space (V, 〈·, ·〉) which is posit-
ive definite at the real places of k and such that k has a unique dyadic place v0 and
(k0, V0, 〈·, ·〉0) ' (kv0 , kv0 ⊗k V, 〈·, ·〉). Let S be the finite set of finite places v 6= v0 of k
such that (kv ⊗k V, 〈·, ·〉) is ramified, i.e. does not admit an integer-valued non-degenerate
Okv -lattice. For any v ∈ S there is a finite extension E(v) of kv over which (kv ⊗k V, 〈·, ·〉)
becomes unramified. By Krasner’s lemma again there exists a finite extension k′ of k
which is totally split over the real places of k and over v0 and such that for any v ∈ S, the
kv-algebra kv⊗k k′ is isomorphic to a product of copies of E(v). Let S0 be the set of dyadic
places of k′, i.e. the set of places of k′ above v0. There exists a lattice N ′ in k′ ⊗k V such
that for any finite v 6∈ S0 the symmetric bilinear form 〈·, ·〉|N ′v×N ′v is integer-valued and
non-degenerate, and for any v ∈ S0 we have 〈·, ·〉N ′v×N ′v ' 〈·, ·〉0|N0×N0 . Applying formula
3.3.2.9 we obtain the desired equality to the power card(S0), which is enough because all
the terms are positive real numbers. Having established the dyadic case, the general case
can be established similarly.

The unitary case is similar but simpler, because the dyadic places are no longer excep-
tional and it is sufficient to take a quadratic extension k′/k in the global argument. The
symplectic and general linear cases are even simpler.

Remark 3.3.2.10. 1. In this formula, one can check case by case that the product of
[N∨0 : N0]−n(V0)/2 and the last term is always rational, as expected since all other
terms are rational by definition.

2. We did not consider the case where α = −1 and K/k is a quadratic field extension,
i.e. the case of antihermitian forms, although this case is needed to compute orbital
integrals for symplectic groups. If y ∈ K× is such that τ(y) = −y, multiplication by
y induces a bijection between hermitian and antihermitian forms, and of course the
automorphism groups are equal.

3. There are other types of classical groups considered in [GY00] and which we left
aside. For a central simple algebra K over k with dimkK = 4 (i.e. K = M2(k) or
K is a quaternion algebra over k) they also consider hermitian (resp. antihermitian)
forms over a K-vector space. The resulting automorphism groups are inner forms
of symplectic (resp. even orthogonal) groups. Using the same method as in the proof
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of the proposition leads to a formula relating the local density βN0 to the canonical
measure of Aut(N0) in these cases as well.

We use the canonical measure defined by Gross (called νv above) when computing local
orbital integrals. In the previous section we explained how to compute the numerators in
formula 3.3.2.7 for the local orbital integrals. Proposition 3.3.2.9 reduces the computation
of the denominators to that of local densities. Using an elegant method of explicitly
constructing smooth models, Gan and Yu [GY00] give a formula for βN0 for p > 2 in
general and for p = 2 only in the case of symplectic and general linear groups and in the
case of unitary groups if K0/k0 is unramified. Using a similar method Cho [Choa] gives
a formula in the case of special orthogonal groups when p = 2 and k0/Q2 is unramified.
This is enough for our computations since we only need the case k0 = Q2. For m ≥ 1

and ζ = ζm the quadratic extension Q(ζ)/Q(ζ + ζ−1) is ramified over a dyadic place if
and only if m is a power of 2. In this case the different DQ2(ζ)/Q2(ζ+ζ−1) is generated by
a uniformiser of Q2(ζ + ζ−1), which is the minimal ramification that one can expect from
a ramified quadratic extension in residue characteristic 2. Cho [Chob][Case 1] also proved
an explicit formula for the local density in this case. To be honest [Chob] only asserts it
in the case where k0 is unramified over Q2. Nevertheless the proof in “Case 1” does not
use this assumption. This completes the algorithm to compute the local orbital integrals
in all cyclotomic cases over Q. Note that the result is rational and the computations are
exact (i.e. no floating point numbers are used).

Finally, the global volume is evaluated using Gross’ formula 3.3.2.8. The value of L(M)

is known to be rational and computable by [Sie69]. However, we only need the values of
L(M) for M which is a direct sum of Tate twists of cyclotomic Artin motives (concretely,
representations of Gal(E/F ) where E is contained in a cyclotomic extension of Q). Thus
we only need the values of Dirichlet L-functions at non-negative integers, i.e. the values of
generalised Bernoulli numbers (see e.g. [Was97]).

Remark 3.3.2.11. Formally it is not necessary to use the results of [Gro97] to com-
pute the factors Vol(I(Q)\I(A)) in formula 3.3.1.1, the mass formula in [GY00] along
with the formulae for the local densities βN0 would suffice. Apart from the fact that it is
less confusing and more elegant to clearly separate local and global measures, using Gross’
canonical measure, which is compatible between inner forms by definition, allows to com-
pute κ-orbital integrals once we have computed orbital integrals. The fundamental lemma
gives a meaningful way to check the results of computations of orbital integrals. More pre-
cisely we need the formulation of the fundamental lemma for semisimple singular elements
[Kot86][Conjecture 5.5] which has been reduced to the semisimple regular case by [Kot88][§3]
and [LS90][Lemma 2.4.A]. For an unramified endoscopic group the fundamental lemma for
the unit of the unramified Hecke algebra at regular semisimple elements is a consequence
of the work of Hales, Waldspurger and Ngô. The case of a ramified endoscopic group is
[Kot86][Proposition 7.5]: the κ-orbital integral simply vanishes.
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3.3.2.5 Short description of the global algorithm

Let G be one of SO2n+1 or Sp2n or SO4n over Z, let
∏
p fp be the characteristic function

of G(Ẑ) and
∏
p dgp the Haar measure on G(Af ) such that G(Ẑ) has measure one. Let λ

be a dominant weight for GC and let f∞,λ(g∞)dg∞ be the distribution on G(R) defined
in section 3.3.1.1. Denote f(g)dg = f∞,λ(g∞)dg∞

∏
p fp(gp)dgp. We give a short summary

of the algorithm computing Tell(f(g)dg) for a family of dominant weights λ, by outlining
the main steps. Realise G as SO(Λ, q) (resp. Sp(Λ, a)) where Λ is a finite free Z-module
endowed with a regular quadratic form q (resp. nondegenerate alternate form a). Denote
N = rankZ(Λ).

1. Enumerate the possible characteristic polynomials in the standard representation of
G for γ ∈ C(G(Q)). That is, enumerate the polynomials P ∈ Q[X] unitary of degree
d such that all the roots of P are roots of unity, and the multiplicity of −1 as root
of P is even.

2. For each such P , and for any prime number p, in Qp[X] write P =
∏
i Pi as in section

3.3.2.1. For any i, enumerate the finite set of isomorphism classes of quadratic or
hermitian (resp. alternate or antihermitian) lattices (Λi, hi) as in section 3.3.2.2. For
almost all primes p, the minimal polynomial rad(P ) = P/gcd(P, P ′) is separable
modulo p, there is a unique isomorphism class (Λi, hi) to consider and hi is non-
degenerate. Thus we only need to consider a finite set of primes.

3. The combinations of these potential local data determine a finite set of conjugacy
classes in G(Q).

4. For any such conjugacy class over Q, compute the local orbital integrals using section
3.3.2.3 and Proposition 3.3.2.9. Compute the global volumes using Gross’ formula
3.3.2.8.

5. Let C ′ be the set of G(Q)-conjugacy classes in C(G(Q)). For c ∈ C ′ define the
“mass” of c

mc =
∑

cl(γ)∈c

Vol(I(Q)\I(A))

card(Cent(γ,G(Q))/I(Q)))

so that
Tell(f(g)dg) =

∑
c∈C′

mcTr(c |Vλ).

Using Weyl’s character formula, we can finally compute Tell(f(g)dg) for the dom-
inant weights λ we are interested in. Some conjugacy classes c ∈ C ′ are singular,
so that a refinement of Weyl’s formula is needed: see [CC09][Proposition 1.9] and
[CR14][Proposition 2.3].

We give tables of the masses mc in section 3.7.1, for the groups of rank ≤ 4. Our
current implementation allows to compute these masses at least up to rank 6 (and for
Sp14 also), but starting with rank 5 they no longer fit on a single page.
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Remark 3.3.2.12. In the orthogonal case the group G is not simply connected and thus in
G(Q) there is a distinction between stable conjugacy and conjugacy in G(Q). However, if
γ, γ′ ∈ C(G(Q)) both contribute non-trivially to Tell(f(g)dg) and are conjugated in G(Q),
then they are stably conjugate. Indeed their spinor norms have even valuation at every
finite prime, and are trivial at the archimedean place since they each belong to a compact
connected torus, therefore their spinor norms are both trivial. This implies that they lift to
elements γ̃, γ̃′ in the spin group Gsc(Q), and moreover we can assume that γ̃ and γ̃′ are
conjugated in Gsc(Q), which means that they are stably conjugate.

This observation allows to avoid unnecessary computations: if the spinor norm of γ is
not equal to 1, the global orbital integral Oγ(f(g)dg) vanishes.

3.3.3 Computation of the parabolic terms using elliptic terms for groups
of lower semisimple rank

In the previous sections we gave an algorithm to compute the elliptic terms in Arthur’s trace
formula in [Art89a]. After recalling the complete geometric side of the trace formula, i.e.
the parabolic terms, we explain how the archimedean contributions to these terms simplify
in our situation where the functions fp at the finite places have support contained in a
compact subgroup. The result is that we can express the parabolic terms very explicitely
(perhaps too explicitely) using elliptic terms for groups of lower semisimple rank in section
3.3.3.4.

3.3.3.1 Parabolic terms

Let us recall the geometric side of the trace formula given in [Art89a][§6]. We will slightly
change the formulation by using Euler-Poincaré measures on real groups instead of trans-
ferring Haar measures to compact inner forms. The translation is straightforward using
[Kot88][Theorem 1]. Let G be one of SO2n+1, Sp2n or SO4n. Of course the following
notions and Arthur’s trace formula apply to more general groups.

First we recall the definition of the constant term at the finite places. Let p be a
finite prime, and denote K = G(Zp). Let P = MN be a parabolic subgroup of G

having unipotent radical N admitting M as a Levi subgroup. Since K is a hyperspecial
maximal compact subgroup of G(Qp) it is “good”: there is an Iwasawa decomposition
G(Qp) = KP(Qp). When p is not ambiguous write δP(m) = |det(m |Lie(N))|p. In
formulae we require the Haar measures on the unimodular groups G(Qp), M(Qp) and
N(Qp) to be compatible in the sense that for any continuous h : G(Qp) → C having
compact support,∫

G(Qp)
h(g)dg =

∫
K×N(Qp)×M(Qp)

h(knm) dk dn dm =

∫
K×N(Qp)×M(Qp)

h(kmn)δP(m) dk dn dm.

If fp(g)dg is a smooth compactly supported distribution on G(Qp), the formula

fp,M(m) = δP(m)1/2

∫
K

∫
N(Qp)

fp(kmnk
−1)dndk
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defines a smooth compactly supported distribution fp,M(m)dm on M(Qp). Although
it seems to depend on the choice of N and the good compact subgroup K, the or-
bital integrals of fp,M(m)dm at semisimple G-regular elements of M(Qp) only depend
on fp (see [vD72][Lemma 9]). The case of arbitrary semisimple elements follows us-
ing [Kaz86][Theorem 0]. When fp is the characteristic function 1G(Zp) of G(Zp) (and
vol(G(Zp)) = 1), the fact that T0 is defined over Zp and the choice K = G(Zp) imply that
for any choice of N, fp,M = 1M(Zp) (if vol(M(Zp)) = 1).

We can now define the factors appearing on the geometric side of the trace formula.
As for elliptic terms, consider a smooth compactly supported distribution

∏
p fp(gp)dgp

on G(Af ). Fix a split maximal torus T0 of G (over Z). The geometric side is a sum
over Levi subgroups M containing T0, they are also defined over Z. For such M, denote
by AM the connected center of M and let C(M(Q)) be the set of semisimple conjugacy
classes of elements γ ∈M(Q) which belong to a maximal torus of MR which is anisotropic
modulo (AM)R = AMR . If γ is (a representative of) an element of C(M(Q)), let I denote
the connected centraliser of γ in M. Define ιM(γ) = |Cent(γ,M(Q))/I(Q)|. For any
finite prime p, to fp(gp)dgp we associate the complex Haar measure Oγ(fp,M) on I(Qp).
For p outside a finite set (containing the primes at which I is ramified), the measure of a
hyperspecial maximal compact subgroup of I(Qp) is 1. Define a complex Haar measure on
I(A)/AM(A) as follows:

• Give I(R)/AM(R) its Euler-Poincaré measure. It is nonzero by our assumption on
γ.

• Give AM(Qp) its Haar measure such that its maximal compact subgroup (in the
case at hand AM(Zp)) has measure 1, and endow I(Qp)/AM(Qp) with the quotient
measure.

Now fix a dominant weight λ forG and denote τ = λ+ρ (where 2ρ is the sum of the pos-
itive roots) the associated infinitesimal character. For f(g)dg = f∞,λ(g∞)dg∞

∏
p fp(gp)dgp,

the last ingredient occurring in Tgeom(f(g)dg) is the continuous function γ 7→ ΦM(γ, τ)

defined for semisimple γ ∈ M(R) which belong to a maximal torus of MR which is an-
isotropic modulo (AM)R. This function will be defined in terms of characters of discrete
series and studied at compact elements γ in section 3.3.3.3. If γ does not satisfy these
properties define ΦM(γ, τ) = 0.

The geometric side Tgeom(f(g)dg) of the trace formula is

∑
M⊃T0

(
−1

2

)dimAM |W (T0,M)|
|W (T0,G)|

∑
γ∈C(M(Q))

vol (I(Q)\I(A)/AM(A))

card (Cent(γ,M(Q))/I(Q))
ΦM(γ, τ).

(3.3.3.1)
After the definition of the function ΦM it will be clear that the term corresponding to
M = G is Tell(f(g)dg).
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3.3.3.2 Sums of averaged discrete series constants

Harish-Chandra gave a formula for the character of discrete series representations of a
real reductive group at regular elements of any maximal torus. This formula is similar
to Weyl’s character formula but it also includes certain integers which can be computed
inductively. In the case of averaged discrete series this induction is particularly simple. We
recall the characterisation of these integers given in [GKM97][§3] and compute their sum
and alternate sum. When the support of

∏
p fp(gp)dgp is contained in a compact subgroup

of G(Af ), in the trace formula only these alternate sums need to be computed, not the
individual constants.

Let X be a real finite-dimensional vector space and R a reduced root system in X∗.
Assume that −Id ∈W (R), i.e. any irreducible component of R is of type A1, Bn (n ≥ 2),
Cn (n ≥ 3), D2n (n ≥ 2), E7, E8, F4 or G2. If R1 is a subsystem of R having the
same property, letting R2 be the subsystem of R consisting of roots orthogonal to all
the roots in R1, −IdRR2 ∈ W (R2) by [Bou68][ch. V, §3, Proposition 2], and rank(R) =

rank(R1)+rank(R2). In particular for α ∈ R, Rα := {β ∈ R | α(β∨) = 0} is a root system
in Y ∗ where Y = kerα.

Recall that Xreg := {x ∈ X | ∀α ∈ R, α(x) 6= 0}, and define X∗reg similarly with respect
to R∨. For x ∈ Xreg we denote by ∆x the basis of simple roots of R associated with the
chamber containing x. There is a unique collection of functions c̄R : Xreg ×X∗reg → Z for
root systems R as above such that:

1. c̄∅(0, 0) = 1,

2. for all (x, λ) ∈ Xreg ×X∗reg such that λ(x) > 0, c̄R(x, λ) = 0,

3. for all (x, λ) ∈ Xreg×X∗reg and α ∈ ∆x, c̄R(x, λ)+ c̄R(sα(x), λ) = 2c̄Rα(y, λ|Y ) where
Y = kerα and y = (x+ sα(x))/2.

In the third property note that for any β ∈ R r {±α} such that β(x) > 0, β(y) > 0:
writing β =

∑
γ∈∆x

nγγ with nγ ≥ 0, we have

β(y) = β(x)− α(x)β(α∨)

2
=

∑
γ∈∆xr{α}

nγ

(
γ(x)− γ(α∨)α(x)

2

)
> 0. (3.3.3.2)

In the second property we could replace “λ(x) > 0” by the stronger condition that R 6= ∅
and x and λ define the same order: {α ∈ R | α(x) > 0} = {α ∈ R | λ(α∨) > 0}. By
induction c̄R is locally constant, and W (R)-invariant for the diagonal action of W (R) on
Xreg ×X∗reg.

The existence of these functions follows from Harish-Chandra’s formulae and the ex-
istence of discrete series for the split semisimple groups over R having a root system as
above. However, [GKM97] give a direct construction.

Let x0 ∈ Xreg and λ0 ∈ X∗reg define the same order. For w ∈ W (R) define d(w) =

c̄R(x0, w(λ0)) = c̄R(w−1(x0), λ0).
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Proposition 3.3.3.1. Let R be a root system as above, and denote by q(R) the integer
(|R|/2 + rank(R)) /2. Then∑

w∈W (R)

d(w) = |W (R)| and
∑

w∈W (R)

ε(w)d(w) = (−1)q(R)|W (R)|.

Proof. The two formulae are equivalent by [GKM97][Theorem 3.2] so let us prove the first
one by induction on the rank of R. The case of R = ∅ is trivial. Assume that R is
not empty and that the formula holds in lower rank. Denote W = W (R). For α ∈ R

let Cα = {x ∈ Wx0 | α ∈ ∆x} and Dα the orthogonal projection of Cα on Y = kerα.
Geometrically, Cα represents the chambers adjacent to the wall Y on the side determined
by α. For x ∈ Cα, by a computation similar to 3.3.3.2, orthogonal projection on Y maps the
chamber containing x onto a connected component of Y r

⋃
β∈R\{±α} kerβ, i.e. a chamber

in Y relative to R. Thus the projection Cα → Dα is bijective and in any Rα-chamber of Y
there is the same number |Dα|/|W (Rα)| of elements in Dα.

rank(R)
∑
w∈W

d(w) =
∑

x∈Wx0

∑
α∈∆x

c̄R(x, λ0)

=
1

2

∑
α∈R

∑
x∈Cα

c̄R(x, λ0) + c̄R(sα(x), λ0)

=
∑
α∈R

∑
y∈Dα

c̄Rα(y, λ0|Y )

=
∑
α∈R

|Dα| =
∑

x∈Wx0

|∆x| = rank(R)|W |.

At the second line we used the permutation α 7→ −α of R and the fact that x ∈ Cα ⇔
sα(x) ∈ C−α.

3.3.3.3 Character of averaged discrete series on non-compact tori

In this section we consider a reductive group G over R which has discrete series. To
simplify notations we assume that G is semisimple, as it is the case for the symplectic and
special orthogonal groups. Fix a dominant weight λ for GC, and let τ = λ + ρ where 2ρ

is the sum of the positive roots. Let M be a Levi subgroup of G and denote by AM the
biggest split central torus in M. If γ ∈ M(R) is semisimple, G-regular and belongs to a
maximal torus anisotropic modulo AM, define

ΦM(γ, τ) := (−1)q(G(R))
∣∣DG

M(γ)
∣∣1/2 ∑

π∞∈Πdisc(τ)

Θπ∞(γ)

where DG
M(γ) = det (Id−Ad(γ) | g/m). Note that for γ ∈ G(R) semisimple elliptic reg-

ular, ΦG(γ, τ)µEP,I(R) = Tr (γ|Vλ)µEP,I(R) = Oγ (fλ(g)dg) where fλ(g)dg is the smooth
compactly supported distribution of section 3.3.1.1.

When M×QR admits a maximal torus T anisotropic modulo AM×QR, Arthur shows
that ΦM(·, τ) extends continuously to T(R) (beware that the statement [Art89a][(4.7)] is
erroneous: in general ΦM(γ, τ) is not identically zero outside the connected components
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that intersect the center of G). Following [GKM97][§4], to which we refer for details, let
us write the restriction of ΦM(·, τ) to any connected component of T(R)G−reg as a linear
combination of traces in algebraic representations of M.

Let R be the set of roots of T on G (over C). Let RM be the set of roots of T on
M. Let γ ∈ T(R) be G-regular, and let Γ be the connected component of γ in T(R). Let
RΓ be the set of real roots α ∈ R such that α(γ) > 0. As the notation suggests, it only
depends on Γ. Moreover RΓ and RM are orthogonal sub-root systems of R: the coroots of
RM factor through T∩Mder which is anisotropic, while the roots in RΓ factor through the
biggest split quotient of T. Finally ΦM(γ, τ) = 0 unless γ belongs to the image of Gsc(R),
and in that case the Weyl group W (RΓ) of RΓ contains −Id and rk(RΓ) = dimAM. In
the following we assume that γ ∈ Im(Gsc(R)→ G(R)).

Since γ is G-regular, it defines a set of positive roots R+
γ = {α ∈ Rγ | α(γ) > 1} in RΓ.

Choose a parabolic subgroup P = MN with unipotent radical N such that R+
γ is included

in the set of roots of T on N. In general this choice is not unique. Choose any set of
positive roots R+

M for RM. There is a unique Borel subgroup B ⊂ P of G containing T

such that the set of roots of T on B ∩M is R+
M. Let R+ be the set of positive roots in R

corresponding to B.
There is a unique xγ ∈ (RRΓ)∗ = R ⊗Z X∗(AM) such that for any α ∈ RΓ, α(xγ) =

α(γ). Then xγ is RΓ-regular and the chamber in which xγ lies only depends on the
connected component of γ in T(R)G−reg. Denote by pr the orthogonal projection R ⊗Z

X∗(T) → RRΓ. When we identify RRΓ with R ⊗Z X
∗(AM), pr is simply “restriction to

AM”. By [GKM97][proof of Lemma 4.1 and end of §4] we have

ΦM(γ, τ) =
δP(γ)1/2∏

α∈R+
M

(1− α(γ)−1)

∑
w∈W (R)

ε(w)c̄RΓ
(xγ ,pr(w(τB))) [w(τB)− ρB] (γ)

where
δP(γ) = |det (γ |Lie(N))| =

∏
α∈R+−R+

M

|α(γ)| .

Since ρB−ρB∩M is invariant underW (RM), in the above sum we can combine terms in the
same orbit underW (RM) to identify Weyl’s character formula for algebraic representations
of M. Let E =

{
w ∈W (R) | ∀α ∈ R+

γ ∪R+
M, w

−1(α) ∈ R+
}
, a set of representatives

for the action of W (RΓ) × W (RM) on the left of W (R). Denoting VM,λ′ the algebraic
representation of M with highest weight λ′, we obtain

ΦM(γ, τ) = δP(γ)1/2
∑
w0∈E

∑
w1∈W (RΓ)

ε(w1w0)d(w1)Tr
(
γ|VM,w1w0(τB)−ρB

)
Furthermore w1w0(τB)−w0(τB) ∈ ZRΓ is invariant under W (RM), hence in the above

sum
Tr
(
γ|VM,w1w0(τB)−ρB

)
= [w1w0(τB)− w0(τB)] (γ)× Tr

(
γ|VM,w0(τB)−ρB

)
and [w1w0(τB)− w0(τB)] (γ) is a positive real number, which does not really depend on γ
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but only on the coset (T ∩Mder)(R)γ (equivalently, on xγ). Finally we obtain

ΦM(γ, τ) = δP(γ)1/2
∑
w0∈E

ε(w0)

[ ∑
w1∈W (RΓ)

ε(w1)d(w1) [w1w0(τB)− w0(τB)] (γ)

× Tr
(
γ|VM,w0(τB)−ρB

)]
.

This formula is valid for γ in the closure (in T(R)) of a connected component of T(R)G−reg.

Proposition 3.3.3.2. If γ is compact, i.e. the smallest closed subgroup of G(R) containing
γ is compact, then we have

ΦM(γ, τ) = (−1)q(RΓ)|W (RΓ)|
∑
w0∈E

ε(w0)Tr
(
γ|VM,w0(τB)−ρB

)
.

Proof. This formula follows from [w1w0(τB)− w0(τB)] (γ) = 1 and Proposition 3.3.3.1.

3.3.3.4 Explicit formulae for the parabolic terms

Let G be one of SO2n+1 or Sp2n or SO4n over Z, let
∏
p fp be the characteristic function

of G(Ẑ) and
∏
p dgp the Haar measure on G(Af ) such that G(Ẑ) has measure one. Let λ

be a dominant weight for GC and let f∞,λ(g∞)dg∞ be the distribution on G(R) defined
in section 3.3.1.1. Denote f(g)dg = f∞,λ(g∞)dg∞

∏
p fp(gp)dgp. Using Proposition 3.3.3.2

and tedious computations, we obtain explicit formulae for the geometric side Tgeom(f(g)dg)

of Arthur’s trace formula defined in section 3.3.3.1. For a dominant weight λ = k1e1 +

· · ·+knen it will be convenient to write Tgeom(G, k) for Tgeom(f(g)dg) to precise the group
G, and similarly for Tell. If G is trivial (SO0 or SO1 or Sp0) then Tell is of course simply
equal to 1.

Any Levi subgroup M of G is isomorphic to
∏
iGLni×G′ where G′ is of the same type

as G. Note that M(R) has essentially discrete series (i.e. ΦM(·, ·) is not identically zero)
if and only if for all i, ni ≤ 2 and in case G is even orthogonal, G′ has even rank. Thus
the Levi subgroups M whose contribution to Tgeom (that is formula 3.3.3.1) is nonzero are
isomorphic to GLa1 ×GLc2 ×G′ for some integers a, c.

Since PGL2 ' SO3, for k ∈ Z≥0 we denote Tell(PGL2, k) = Tell(SO3, k). For non-
negative k ∈ 1/2ZrZ it is convenient to define Tell(PGL2, k) = 0, so that for any k ∈ Z≥0

we have Tell(PGL2, k/2) = Tell(Sp2, k)/2.
For a, c, d ∈ Z≥0, let Ξa,c,d be the set of σ in the symmetric group Sa+2c+d such that

• σ(1) < · · · < σ(a),

• σ(a+ 1) < σ(a+ 3) < · · · < σ(a+ 2c− 1),

• for any 1 ≤ i ≤ c, σ(a+ 2i− 1) < σ(a+ 2i),

• σ(a+ 2c+ 1) < · · · < σ(n).
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For a ≥ 0 and x ∈ {0, . . . , a}, define

η(B)(a, x) =
(−1)a(a−1)/2

2a

ba/2c∑
b=0

(−1)b
2b∑
r=0

(
x

r

)(
a− x
2b− r

)
(−1)r.

It is easy to check that

η(B)(a, x) =
(−1)a(a−1)/2

2a+1
TrQ(

√
−1)/Q

(
(1 +

√
−1)a−x(1−

√
−1)x

)
∈ 1

2b(a+1)/2cZ.

For n ≥ a, σ ∈ Sn and k = (k1, . . . , kn) ∈ Zn, let

η(B)(a, k, σ) = η(B)
(
a, card{i ∈ {1, . . . , a} | kσ(i) + σ(i) + i = 1 (mod 2)}

)
.

Theorem 3.3.3.3 (Parabolic terms for G = SO2n+1). Let a, c, d ∈ Z≥0 not all zero and
n = a+2c+d. The sum of the contributions to Tgeom(SO2n+1, k) in formula 3.3.3.1 of the
Levi subgroups M in the orbit of GLa1 ×GLc2 × SO2d+1 under the Weyl group W (T0,G)

is ∑
σ∈Ξa,c,d

η(B)(a, k, σ)

×
c∏
i=1

[
Tell

(
PGL2, (kσ(a+2i−1) − kσ(a+2i) + σ(a+ 2i)− σ(a+ 2i− 1)− 1)/2

)
−Tell(PGL2, (kσ(a+2i−1) + kσ(a+2i) − σ(a+ 2i)− σ(a+ 2i− 1) + 2n)/2)

]
×Tell(SO2d+1, (kσ(n−d+1) + n− d+ 1− σ(n− d+ 1), . . . , kσ(n) + n− σ(n))).

We have a similar formula for the symplectic group. For a ≥ 0 and x ∈ {0, . . . , a},
define

η(C)(a, x) =
(−1)a(a−1)/2

2a

a∑
b=0

(−1)b(a−b)
b∑

r=0

(
x

r

)(
a− x
b− r

)
(−1)r.

Then we have

η(C)(a, x) =


(−1)a/2 if a is even and x = a,

(−1)(a−1)/2 if a is odd and x = 0,

0 otherwise.

For n ≥ a, σ ∈ Sn and k = (k1, . . . , kn) ∈ Zn, let

η(C)(a, k, σ) = η(C)
(
a, card{i ∈ {1, . . . , a} | kσ(i) + σ(i) + i = 1 (mod 2)}

)
.

Theorem 3.3.3.4 (Parabolic terms for G = Sp2n). Let a, c, d ∈ Z≥0 not all zero and
n = a + 2c + d. The sum of the contributions to Tgeom(Sp2n, k) in formula 3.3.3.1 of the
Levi subgroups M in the orbit of GLa1 ×GLc2 × Sp2d under the Weyl group W (T0,G) is∑

σ∈Ξa,c,d

η(C)(a, k, σ)

×
c∏
i=1

[
Tell

(
PGL2, (kσ(a+2i−1) − kσ(a+2i) + σ(a+ 2i)− σ(a+ 2i− 1)− 1)/2

)
−Tell(PGL2, (kσ(a+2i−1) + kσ(a+2i) − σ(a+ 2i)− σ(a+ 2i− 1) + 2n+ 1)/2)

]
×Tell(Sp2d, (kσ(n−d+1) + n− d+ 1− σ(n− d+ 1), . . . , kσ(n) + n− σ(n)))
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For a ≥ 0 and x ∈ {0, . . . , 2a}, define

η(D)(a, x) =
1

22a

a∑
b=0

2b∑
r=0

(
x

r

)(
2a− x
2b− r

)
(−1)r.

We have

η(D)(a, x) =


1 if a = 0,

1/2 if a > 0 and x(2a− x) = 0,

0 otherwise.

For n ≥ a, σ ∈ S2n and k = (k1, . . . , k2n) ∈ Z2n, let

η(D)(a, k, σ) = η(D)
(
a, card{i ∈ {1, . . . , 2a} | kσ(i) + σ(i) + i = 1 (mod 2)}

)
.

For the group SO4n, we need only consider dominant weights k with k2n ≥ 0 (i.e.
the same inequalities as for the other two infinite families) since the end result is invari-
ant under the outer automorphism of SO4n, that is Tgeom(SO4n, (k1, . . . , k2n−1,−k2n)) =

Tgeom(SO4n, (k1, . . . , k2n−1, k2n)).

Theorem 3.3.3.5 (Parabolic terms for G = SO4n). Let a, c, d ∈ Z≥0 not all zero and
n = a + c + d. The sum of the contributions to Tgeom(SO4n, k) in formula 3.3.3.1 of the
Levi subgroups M in the orbit of GL2a

1 ×GLc2 × SO4d under the Weyl group W (T0,G) is∑
σ∈Ξ2a,c,2d

η(D)(a, k, σ)

×
c∏
i=1

[
Tell

(
PGL2, (kσ(2a+2i−1) − kσ(2a+2i) + σ(2a+ 2i)− σ(2a+ 2i− 1)− 1)/2

)
+Tell(PGL2, (kσ(2a+2i−1) + kσ(2a+2i) − σ(2a+ 2i)− σ(2a+ 2i− 1) + 4n− 1)/2)

]
×Tell(SO4d, (kσ(2n−2d+1) + 2n− 2d+ 1− σ(2n− 2d+ 1), . . . , kσ(2n) + 2n− σ(2n))).

3.4 Endoscopic decomposition of the spectral side

3.4.1 The spectral side of the trace formula

The previous sections give an algorithm to compute the geometric side of Arthur’s trace
formula in [Art89a]. Let us recall the spectral side of this version of the trace formula.
As before G denotes one of the reductive groups SO2n+1, Sp2n or SO4n over Z. Let
K∞ be a maximal compact subgroup of G(R) and denote g = C ⊗R Lie(G(R)). Let
Adisc(G(Q)\G(A)) be the space of K∞ ×G(Ẑ)-finite and Z(U(g))-finite functions in the
discrete spectrum L2

disc(G(Q)\G(A)). It is also the space of automorphic forms in the
sense of [BJ79] which are square-integrable. There is an orthogonal decomposition

Adisc(G(Q)\G(A)) =
⊕

π∈Πdisc(G)

mππ

where Πdisc(G) is a countable set of distinct isomorphism classes of unitary (g,K∞) ×
G(Af )-modules and mπ ∈ Z≥1. Denote Πunr

disc(G) ⊂ Πdisc(G) the set of π such that for
any prime number p the representation πp is unramified, i.e. πG(Zp)

p 6= 0.
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Let λ be a dominant weight for GC, and denote Vλ the corresponding algebraic rep-
resentation of G(C), which by restriction to G(R) we see as a (g,K∞)-module. If X is an
admissible (g,K∞)-module, define its Euler-Poincaré characteristic with respect to Vλ

EP(X ⊗ V ∗λ ) =
∑
i≥0

(−1)i dimH i((g,K∞), X ⊗ V ∗λ ).

We refer to [BW00] for definitions and essential properties of (g,K∞)-cohomology. By
[BW00][Chapter I, Corollary 4.2] for any irreducible (g,K∞)-module X, we have that
H•((g,K∞), X ⊗ V ∗λ ) = 0 unless X has the same infinitesimal character as Vλ.

For our particular choice of function on G(Af ) the spectral side of Arthur’s trace
formula in [Art89a] is ∑

π∈Πunr
disc(G)

mπEP(π∞ ⊗ V ∗λ ). (3.4.1.1)

By [HC68][Theorem 1] there is only a finite number of nonzero terms. Vogan and Zuck-
erman [VZ84] (see also [BW00][Chapter VI, §5]) have classified the irreducible unitary
(g,K∞)-modules having cohomology with respect to Vλ, and computed this cohomo-
logy. However, the integer 3.4.1.1 alone is not enough to recover the number m(X) of
π ∈ Πunr

disc(G) such that π∞ is isomorphic to a given irreducible unitary (g,K∞)-module X
having the same infinitesimal character as Vλ.

Arthur’s endoscopic classification of the discrete automorphic spectrum of G [Art13]
allows to express m(X) using numbers of certain self-dual cuspidal automorphic repres-
entations of general linear groups. Conversely these numbers can be obtained from the
Euler-Poincaré characteristic 3.4.1.1 for various groups G and weights λ. For explicit com-
putations we will have to make Assumption 3.4.2.4 that relates the rather abstract Arthur
packets at the real place with the ones previously defined by Adams and Johnson in [AJ87].

Note that it will not be necessary to use [VZ84] since the Euler-Poincaré characteristic
is a much simpler invariant than the whole cohomology.

3.4.1.1 Arthur’s endoscopic classification

Let us review how Arthur’s very general results in [Art13] specialise in our particular
situation: level one and regular infinitesimal character. We are brief since this was done
in [CR14][§3], though with a slightly different formulation. We refer to [Bor79] for the
definition of L-groups. For G a reductive group over F we will denote Ĝ the connected
component of the neutral element in LG (which Borel denotes LG0).

Let F be a local field of characteristic zero. The Weil-Deligne group of F is denoted
by W ′F : if F is archimedean W ′F = WF , whereas in the p-adic case W ′F = WF × SU(2).
Consider a quasisplit special orthogonal or symplectic group G over F . Let ψ : W ′F ×
SL2(C)→ LG be a local Arthur parameter, i.e. ψ|W ′F is a continuous semisimple splitting
of LG → W ′F with bounded image and ψ|SL2(C) is algebraic. If ψ|SL2(C) is trivial then ψ
is a tempered Langlands parameter. The general case is considered for global purposes,
which we will discuss later. Consider the group Cψ = Cent(ψ, Ĝ) and the finite group

Sψ = Cψ/C
0
ψZ(Ĝ)Gal(F/F ).
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For the groups G considered here the group Sψ is isomorphic to a product of copies of
{±1}. Arthur [Art13][Theorem 1.5.1] associates with ψ a finite multiset Πψ of irreducible
unitary representations of G(F ), along with a character 〈·, π〉 of Sψ for any π ∈ Πψ. In
the even orthogonal case this is not exactly true: instead of actual representations, Πψ is
comprised of orbits of the group Out(G) ' Z/2Z of outer automorphisms of G on the
set of isomorphism classes of irreducible representations of G(F ). These orbits can be
described as modules over the Out(G)-invariants of the Hecke algebra H(G(F )) of G(F ),
which we denote H′(G(F )). Here we have fixed a splitting Out(G)→ Aut(G) defined over
F . Note that if F is p-adic, G is unramified and K is a hyperspecial subgroup of G(F )

we can choose a splitting Out(G) → Aut(G) that preserves K. If F is archimedean and
K is a maximal compact subgroup of G(F ), we can also choose a splitting that preserves
K, and H′(G(F )) is the algebra of left and right K-finite Out(G)-invariant distributions
on G(F ) with support in K. Note that the choice of splitting does not matter when one
considers invariant objects, such as orbital integrals or traces in representations.

Denote Std : LG→ GLN (C) the standard representation, where

N =


2n if GF̄ ' (SO2n+1)F̄ , i.e. Ĝ ' Sp2n(C),

2n+ 1 if GF̄ ' (Sp2n)F̄ , i.e. Ĝ ' SO2n+1(C),

2n if GF̄ ' (SO2n)F̄ , i.e. Ĝ ' SO2n(C).

In the first two cases det ◦ Std is trivial, whereas in the third case it takes values in {±1}
and factors through a character Gal(F/F ) → {±1}, which by local class field theory we
can also see as a character ηG : F× → {±1}. If Ĝ = Sp2n(C) (resp. Ĝ = SO2n+1(C)),
the standard representation Std induces a bijection from the set of conjugacy classes of
Arthur parameters ψ : W ′F × SL2(C) → Ĝ to the set of conjugacy classes of Arthur
parameters ψ′ : W ′F × SL2(C) → GLN (C) such that det ◦ψ′ is trivial and there exists a
non-degenerate alternate (resp. symmetric) bilinear form on CN preserved by Im(ψ′). The
third case, where G is an even special orthogonal group, induces a small complication.
Composing with Std still induces a surjective map from the set of conjugacy classes of
Arthur parameters ψ : W ′F × SL2(C) → LG to the set of conjugacy classes of Arthur
parameters ψ′ : W ′F × SL2(C) → GLN (C) having determinant ηG and such that there
exists a non-degenerate bilinear form on CN preserved by Im(ψ′). However, the fibers
of this map can have cardinality one or two, the latter case occurring if and only if all
the self-dual irreducible constituents of ψ′ have even dimension. The Arthur packet Πψ

along with the characters 〈·, π〉 of Sψ are characterised [Art13][Theorem 2.2.1] using the
representation of GLN (F ) associated with Std ◦ψ by the local Langlands correspondence,
and twisted and ordinary endoscopic character identities. The characters (〈·, π〉)π∈Πψ of
Sψ are well-defined only once we have fixed an equivalence class of Whittaker datum for G,
since this choice has to be made to normalise the transfer factors involved in the ordinary
endoscopic character identities.

In the p-adic case, we will mainly be interested in unramified Arthur parameters ψ, i.e.
such that ψ|W ′F is trivial on the inertia subgroup and on SU(2). Of course these exist only
if G is unramified, so let us make this assumption. We refer to [CS80] for the definition
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of unramified Whittaker data with respect to a choice of hyperspecial maximal compact
subgroup. Note that several conjugacy classes of Whittaker data can correspond to the
same conjugacy class of hyperspecial subgroups, and that Gad(F ) acts transitively on both
sets of conjugacy classes.

The following lemma is implicit in [Art13]. Note that a weak version of it is needed to
make sense of the main global theorem [Art13][Theorem 1.5.2].

Lemma 3.4.1.1. Let ψ : W ′F × SL2(C)→ LG be an Arthur parameter for the p-adic field
F . Then Πψ contains an unramified representation if and only if ψ is unramified. In that
case, Πψ contains a unique unramified representation π, which satisfies 〈·, π〉 = 1.

Proof. This is a consequence of the proof of [Art13][Lemma 7.3.4]. We borrow Arthur’s
notations for this (sketch of) proof. Let f̃ be the characteristic function of GLN (OF )oθ ⊂
G̃LN (F ). Arthur shows that f̃N (ψ) = 1 if ψ is unramified. If ψ is ramified, the represent-
ation of GLN (F ) associated with Std ◦ ψ is ramified, thus f̃N (ψ) = 0. The statement of
the lemma follows easily from these two identities, the characterization [Art13][Theorem
2.2.1] of the local Arthur packets by endoscopic character relations, and the twisted funda-
mental lemma (which applies even when the residual characteristic of F is small!) proved
in [Art13][Lemma 7.3.4].

To state Arthur’s global theorem we only consider the split groups SO2n+1, Sp2n and
SO2n over Q. From now on G denotes one of these groups. By [Art13][Theorem 1.4.1],
any self-dual cuspidal automorphic representation π of GLM over a number field has a
sign s(π) ∈ {±1}, which intuitively is the type of the conjectural Langlands parameter of
π: s(π) = 1 (resp. −1) if this parameter is orthogonal (resp. symplectic). Unsurprisingly
if M is odd then s(π) = 1, and if M is even and s(π) = −1 then the central character
χπ of π is trivial. Moreover Arthur characterises s(π) using Sym2 and

∧2 L-functions
[Art13][Theorem 1.5.3]. This partition of the set of self-dual cuspidal automorphic repres-
entations of general linear groups allows to define substitutes for discrete Arthur-Langlands
parameters for the group G. Define s(G) = −1 in the first case (Ĝ = Sp2n(C)) and
s(G) = 1 in the last two cases (Ĝ = SO2n+1(C) or SO2n(C)). Define Ψ(G) as the set of
formal sums ψ = �i∈Iπi[di] where

1. for all i ∈ I, πi is a self-dual cuspidal automorphic representation of GLni/Q,

2. for all i ∈ I, di ∈ Z≥1 is such that s(πi)(−1)di−1 = s(G),

3. N =
∑

i∈I nidi,

4. the pairs (πi, di) are distinct,

5.
∏
i∈I χ

di
πi = 1, where χπi is the central character of πi.

The last condition is automatically satisfied if Ĝ = Sp2n(C). The notation πi[di] sug-
gests taking the tensor product of the putative Langlands parameter of πi with the di-
dimensional algebraic representation of SL2(C). Each factor πi[di] corresponds to a discrete
automorphic representation of GLnidi over Q by [MW89].
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Let v denote a place of Q. Thanks to the local Langlands correspondence for general
linear groups applied to the (πi)v’s, for ψ ∈ Ψ(G), ψ specialises into a local Arthur
parameter ψv : W ′Qv × SL2(C) → GLN (C). By [Art13][Theorem 1.4.2] we can see ψv as a
genuine local Arthur parameterW ′Qv×SL2(C)→ LG, but in the even orthogonal case ψv is
well-defined only up to outer automorphism. To be honest it is not known in general that
ψv(W

′
Qv) is bounded (this would be the Ramanujan-Petersson conjecture), but we will not

comment more on this technicality and refer to the discussion preceding [Art13][Theorem
1.5.2] for details. Thus we have a finite multiset Πψv of irreducible unitary representations
of G(Qv), each of these representations being well-defined only up to outer conjugacy in
the even orthogonal case.

As in the local case we want to define Cψ = Cent(ψ, Ĝ) and

Sψ = Cψ/C
0
ψZ(Ĝ)Gal(Q/Q) = Cψ/Z(Ĝ).

Observe that this can be done formally for ψ = �i∈Iπi[di]. An element s of Cψ is described
by J ⊂ I such that

∑
i∈J nidi is even, and s corresponds formally to −Id on the space

of �i∈Jπi[di] and Id on the space of �i∈IrJπi[di]. Thus one can define a finite 2-group
Sψ along with a natural morphism Sψ → Sψv for any place v of Q. The last ingredient
in Arthur’s global theorem is the character εψ of Sψ. It is defined in terms of the root
numbers ε(πi × πj , 1/2) just after [Art13][Theorem 1.5.2]. If all the di’s are equal to 1, in
which case we say that ψ is formally tempered, then εψ = 1.

Fix a global Whittaker datum for G, inducing a family of Whittaker data for GQv
where v ranges over the places of Q. Our reductive group is defined over Z, and the global
Whittaker datum can be chosen so that for any prime number p it induces an unramified
Whittaker datum on G(Qp) with respect to the hyperspecial subgroup G(Zp). Let K∞ be
a maximal compact subgroup of G(R), and denote g = C⊗RLie(G(R)). The following is a
specialization of the general theorem [Art13][Theorem 1.5.2] to the “everywhere unramified”
case, using Lemma 3.4.1.1.

Theorem 3.4.1.2. Recall that Adisc(G(Q)\G(A)) is the space of K∞ ×G(Ẑ)-finite and
Z(U(g))-finite functions in the discrete spectrum L2

disc(G(Q)\G(A)). Let Ψ(G)unr be the
set of ψ = �iπi[di] ∈ Ψ(G) such that for any i, πi is unramified at every prime. There is
a H′(G(R))-equivariant isomorphism

Adisc(G(Q)\G(A))G(Ẑ) '
⊕

ψ∈Ψ(G)unr

⊕
π∞∈Πψ∞
〈·,π∞〉=εψ

mψπ∞

where mψ = 1 except if G is even orthogonal and for all i nidi is even, in which case
mψ = 2.

For π∞ ∈ Πψ∞ the character 〈·, π∞〉 of Sψ∞ induces a character of Sψ using the morph-
ism Sψ → Sψ∞, and the inner direct sum ranges over the π∞’s such that this character of
Sψ is equal to εψ.

In the even orthogonal case, π∞ is only an Out(GR)-orbit of irreducible representations,
and it does not seem possible to resolve this ambiguity at the moment. Nevertheless
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it disappears in the global setting. There is a splitting Out(G) → Aut(G) such that
Out(G) preserves G(Ẑ), and thus if {X1, X2} is an Out(GR)-orbit of isomorphism classes
of irreducible unitary (g,K∞)-modules, then X1 and X2 have the same multiplicity in
Adisc(G(Q)\G(A))G(Ẑ).

3.4.1.2 The spectral side from an endoscopic perspective

We keep the notations from the previous section. Suppose now that G(R) has discrete
series, i.e. G is not SO2n with n odd. Let λ be a dominant weight for GC. Using Theorem
3.4.1.2 we can write the spectral side of the trace formula 3.4.1.1 as∑

ψ∈Ψ(G)unr

∑
π∞∈Πψ∞
〈·,π∞〉=εψ

mψEP(π∞ ⊗ V ∗λ ). (3.4.1.2)

We need to be cautious here since EP(π∞⊗V ∗λ ) is not well-defined in the even orthogonal
case. If π∞ is the restriction to H′(G(R)) of two non-isomorphic (g,K∞)-modules π(1)

∞

and π(2)
∞ , we define

EP(π∞ ⊗ V ∗λ ) =
1

2
EP
(

(π(1)
∞ ⊕ π(2)

∞ )⊗ V ∗λ
)
.

In 3.4.1.2 we can restrict the sum to π∞’s whose infinitesimal character equals that of Vλ (up
to outer automorphism in the even orthogonal case), which is λ+ ρ via Harish-Chandra’s
isomorphism, where 2ρ is the sum of the positive roots. Thanks to the work of Mezo,
we can identify the infinitesimal character of the elements of Πψ∞ . To lighten notation,
we drop the subscript ∞ temporarily and consider an archimedean Arthur parameter
ψ : WR × SL2(C) → LG. Recall that WC = C×, WR = WC t jWC where j2 = −1 ∈ WC

and for any z ∈ WC, jzj−1 = z̄. Define a Langlands parameter ϕψ by composing ψ with
WR →WR × SL2(C) mapping w ∈WR to(

w,

(
||w||1/2 0

0 ||w||−1/2

))
where || · || : WR → R>0 is the unique morphism mapping z ∈ WC to zz̄. Let T be a
maximal torus in Ĝ. Conjugating by an element of Ĝ if necessary, we can assume that
ϕψ(WC) ⊂ T and write ϕψ(z) = µ1(z)µ2(z̄) for z ∈ WC, where µ1, µ2 ∈ C ⊗Z X∗(T ) are
such that µ1−µ2 ∈ X∗(T ). The conjugacy class of (µ1, µ2) under the Weyl groupW (T , Ĝ)

is well-defined. Note that for any maximal torus T of GC we can see µ1, µ2 as elements of
C⊗Z X

∗(T), again canonically up to the action of the Weyl group.

Lemma 3.4.1.3. The Weyl group orbit of µ1 is the infinitesimal character of any element
of Πψ.

Proof. Recall [Art13][Theorem 2.2.1] that the packet Πψ is characterised by twisted and
standard endoscopic character identities involving the representation of GLN (R) having
Langlands parameter Std ◦ ϕψ. The lemma follows from [Mez13][Lemma 24] (see also
[Wal][Corollaire 2.8]), which establishes the equivariance of twisted endoscopic transfer for
the actions of the centers of the enveloping algebras.
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Attached to λ is a unique (up to Ĝ-conjugacy) discrete parameter ϕλ : WR → LG

having infinitesimal character λ+ρ. We explicit the GLN (C)-conjugacy class of Std◦ϕλ in
each case. For w ∈ 1

2Z≥0 it is convenient to denote the Langlands parameterWR → GL2(C)

Iw = IndWR
WC

(
z 7→ (z/|z|)2w

)
: z ∈WC 7→

(
(z/|z|)2w 0

0 (z/|z|)−2w

)
, j 7→

(
0 (−1)2w

1 0

)
.

Note that this was denoted I2w in [CR14] to emphasise motivic weight in a global setting.
We choose to emphasise Hodge weights, i.e. eigenvalues of the infinitesimal character:
our Iw has Hodge weights w and −w. Let εC/R be the non-trivial continuous character
WR → {±1}, so that I0 = 1 ⊕ εC/R. If G = SO2n+1, we can write λ = k1e1 + · · · + knen

where k1 ≥ · · · ≥ kn ≥ 0 are integers, and ρ = (n − 1
2)e1 + (n − 3

2)e2 + · · · + 1
2en. In this

case Std ◦ ϕλ is
n⊕
r=1

Ikr+n+1/2−r.

If G = Sp2n, we can write λ = k1e1 + · · · + knen where k1 ≥ · · · ≥ kn ≥ 0 are integers,
and ρ = ne1 + (n− 1)e2 + · · ·+ en. Then Std ◦ ϕλ is

εnC/R ⊕
n⊕
r=1

Ikr+n+1−r.

Finally, if G = SO4n, we can write λ = k1e1 + · · ·+ k2ne2n where k1 ≥ · · · ≥ k2n−1 ≥ |k2n|
are integers, and ρ = (2n− 1)e1 + (2n− 2)e2 + · · ·+ e2n−1. Then Std ◦ ϕλ is

2n⊕
r=1

Ikr+2n−r.

Replacing (k1, . . . , k2n−1, k2n) with (k1, . . . , k2n−1,−k2n) yields the same conjugacy class
under GLN (C).

From this explicit description one can deduce several restrictions on the global paramet-
ers ψ ∈ Ψ(G)unr contributing non-trivially to the spectral side 3.4.1.2. These observations
were already made in [CR14], using a different formulation. We define Ψ(G)λ as the subset
of Ψ(G) consisting of ψ such that the infinitesimal character of ψ∞ is equal to λ+ρ. Define
also Ψ(G)unr,λ = Ψ(G)unr ∩Ψ(G)λ.

1. In the first two cases (G = SO2n+1 of Sp2n) the infinitesimal character of Std◦ϕλ is
algebraic and regular in the sense of Clozel [Clo88]. Clozel’s definition of “algebraic”
is “C-algebraic” in the sense of [BG10], and we will also use the term “C-algebraic” to
avoid confusion. In the third case (G = SO4n) we have that || · ||1/2 ⊗ (Std ◦ ϕλ) is
C-algebraic, but not always regular. It is regular if and only if k2n 6= 0. In all cases,
Clozel’s purity lemma [Clo88][Lemme 4.9] implies that if ψ = �iπi[di] ∈ Ψ(G)λ, then
for all i the self-dual cuspidal automorphic representation πi of GLni/Q is tempered
at the real place. Equivalently, ψ∞(WR) is bounded.

2. Let Ψ(G)sim be the set of simple formal Arthur parameters in Ψ(G), i.e. those
ψ = �i∈Iπi[di] such that I = {i0} and di0 = 1. Denote Ψ(G)λsim = Ψ(G)sim∩Ψ(G)λ.
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Then Ψ(G)λsim is the set of self-dual cuspidal automorphic representations of GLN/Q
such that the central character of π is trivial and the local Langlands parameter of
π∞ is Std ◦ ϕλ. Indeed in all three cases Std ◦ ϕλ is either orthogonal or symplectic,
and thus π∞ determines s(π).

3. Letm ≥ 1 and consider a self-dual cuspidal automorphic representation π ofGL2m/Q
such that | det |1/2 ⊗ π is C-algebraic regular. Self-duality implies that the central
character χπ of π is quadratic, i.e. χπ : A×/Q× → {±1}. Since |det |1/2 ⊗ π is
C-algebraic and regular, there are unique integers w1 > · · · > wm > 0 such that the
local Langlands parameter of π∞ is

m⊕
r=1

Iwr ,

which implies that χπ|R×(−1) = (−1)m. If moreover we assume that π is everywhere
unramified, then χπ is trivial on

∏
p Z×p . Since A× = Q×R>0

∏
p Z×p , this implies

that χπ is trivial, and thus m must be even.

4. The previous point has the following important consequence for our inductive com-
putations. Let G be a split symplectic or special orthogonal group admitting discrete
series at the real place, and λ a dominant weight forG. Let ψ = �iπi[di] ∈ Ψ(G)unr,λ.
Then for any i, there is a split symplectic or special orthogonal group G′ ad-
mitting discrete series at the real place and a dominant weight λ′ for G′ such
that πi ∈ Ψ(G′)unr,λ′

sim . We emphasise that this holds even if G = SO4n and
λ = k1e1 + · · ·+ k2ne2n with k2n = 0. To be precise, we have the following classific-
ation:

(a) G = SO2n+1 and thus Ĝ = Sp2n(C). For a dominant weight λ and ψ =

�i∈Iπi[di] ∈ Ψ(G)unr,λ, there is a canonical decomposition I = I1 t I2 t I3

where

i. for all i ∈ I1, di is odd, ni is even and πi ∈ Ψ(SOni+1)unr,λ′

sim ,

ii. for all i ∈ I2, di is even, ni is divisible by 4 and πi ∈ Ψ(SOni)
unr,λ′

sim ,

iii. card(I3) ∈ {0, 1} and if I3 = {i}, di is even, ni is odd and πi ∈ Ψ(Spni−1)unr,λ′

sim .

(b) G = Sp2n and thus Ĝ = SO2n+1(C). For a dominant weight λ and ψ =

�i∈Iπi[di] ∈ Ψ(G)unr,λ, there is a canonical decomposition I = I1 t I2 t I3

where

i. I1 = {j}, dj is odd, nj is odd and πj ∈ Ψ(Spnj−1)unr,λ′

sim ,

ii. for all i ∈ I2, di is odd, ni is divisible by 4 and πi ∈ Ψ(SOni)
unr,λ′

sim ,

iii. for all i ∈ I3, di is even, ni is even and πi ∈ Ψ(SOni+1)unr,λ′

sim .

Note that njdj = 2n+ 1 mod 4.

(c) G = SO4n and thus Ĝ = SO4n(C). For a dominant weight λ and ψ =

�i∈Iπi[di] ∈ Ψ(G)unr,λ, there is a canonical decomposition I = I1 t I2 t I3

where
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i. for all i ∈ I1, di is odd, ni is divisible by 4 and πi ∈ Ψ(SOni)
unr,λ′

sim ,
ii. for all i ∈ I2, di is even, ni is even and πi ∈ Ψ(SOni+1)unr,λ′

sim ,
iii. card(I3) ∈ {0, 2}. If I3 = {i, j} and up to exchanging i and j, di = 1

and dj is odd, ni and nj are odd, and πi ∈ Ψ(Spni−1)unr,λ′

sim and πj ∈
Ψ(Spnj−1)unr,λ′

sim .

Note that in all three cases, if λ is regular then for any ψ = �i∈Iπi[di] ∈ Ψ(G)unr,λ

we have that ψ∞ = ϕλ and thus all di’s are equal to 1 (i.e. ψ is formally tempered)
and moreover in the third case I3 = ∅.

As in the introduction, it will be convenient to have a more concrete notation for the sets
Ψ(G)unr,λ

sim .

1. For n ≥ 1, the dominant weights for G = SO2n+1 are the characters λ = k1e1 +

· · · + knen such that k1 ≥ · · · ≥ kn ≥ 0. Then λ + ρ = w1e1 + · · · + wnen where
wr = kr + n + 1

2 − r, so that w1 > · · · > wn > 0 belong to 1
2Z r Z. Define

S(w1, . . . , wn) = Ψ(SO2n+1)unr,λ
sim , that is the set of self-dual automorphic cuspidal

representations of GL2n/Q which are everywhere unramified and with Langlands
parameter at the real place

Iw1 ⊕ · · · ⊕ Iwn .

Equivalently we could replace the last condition by “with infinitesimal character hav-
ing eigenvalues {±w1, . . . ,±wn}”. Here S stands for “symplectic”, as Ĝ = Sp2n(C).

2. For n ≥ 1, the dominant weights forG = Sp2n are the characters λ = k1e1+· · ·+knen
such that k1 ≥ · · · ≥ kn ≥ 0. Then λ+ρ = w1e1+· · ·+wnen where wr = kr+n+1−r,
so that w1 > · · · > wn > 0 are integers. Define Oo(w1, . . . , wn) = Ψ(Sp2n)unr,λ

sim , that
is the set of self-dual automorphic cuspidal representations of GL2n+1/Q which are
everywhere unramified and with Langlands parameter at the real place

Iw1 ⊕ · · · ⊕ Iwn ⊕ εnC/R.

Equivalently we could replace the last condition by “with infinitesimal character
having eigenvalues {±w1, . . . ,±wn, 0}”. Here Oo stands for “odd orthogonal”, as
Ĝ = SO2n+1(C).

3. For n ≥ 1, the dominant weights for G = SO4n are the characters λ = k1e1 + · · ·+
k2ne2n such that k1 ≥ · · · ≥ k2n−1 ≥ |k2n|. Since we only consider quantities invariant
under outer conjugation we assume k2n ≥ 0. Then λ+ρ = w1e1 + · · ·+w2ne2n where
wr = kr + n − r, so that w1 > · · · > w2n−1 > w2n ≥ 0 are integers. Define
Oe(w1, . . . , w2n) = Ψ(SO4n)unr,λ

sim , that is the set of self-dual automorphic cuspidal
representations of GL4n/Q which are everywhere unramified and with Langlands
parameter at the real place

Iw1 ⊕ · · · ⊕ Iw2n .

In this case also we could replace the last condition by “with infinitesimal character
having eigenvalues {±w1, . . . ,±w2n}”, even when k2n = 0. Here Oe stands for “even
orthogonal”, as Ĝ = SO4n(C).
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It is now natural to try to compute the cardinality of Ψ(G)unr,λ
sim , inductively on the

dimension of G. Observe that for ψ ∈ Ψ(G)sim, the group Sψ is trivial. Thus the contri-
bution of any ψ ∈ Ψ(G)unr,λ

sim to the spectral side 3.4.1.2 is simply∑
π∞∈Πψ∞

EP (π∞ ⊗ V ∗λ ) .

Recall that for such a ψ, the local Arthur parameter ψ∞ is ϕλ. In that case Arthur defines
Πϕλ as the L-packet that Langlands [Lan89] associates with ϕλ. In the next section we
will review these packets in more detail, in particular Shelstad’s definition of 〈·, π∞〉 for
π∞ ∈ Πϕλ , but since Sψ is trivial all that matters for now is that card(Πϕλ) is positive (and
easily computed) and that all the representations in Πϕλ are discrete series. By [BW00][ch.
III, Thm. 5.1] for any π∞ ∈ Πϕλ ,

EP (π∞ ⊗ V ∗λ ) = (−1)q(G(R))

and thus to compute the cardinality of Ψ(G)unr,λ
sim we want to compute the contribution of

Ψ(G)unr,λ r Ψ(G)unr,λ
sim to the spectral side 3.4.1.2.

This is particularly easy if λ is regular, since as we observed above in that case any
ψ ∈ Ψ(G)unr,λ is “formally tempered” or “formally of Ramanujan type”, i.e. ψ∞ = ϕλ.
Moreover εψ is trivial. Shelstad’s results reviewed in the next section allow the explicit
determination of the number of π∞ ∈ Πϕλ such that 〈·, π∞〉 is equal to a given character
of Sψ∞ .

The general case is more interesting. The determination of εψ in the “conductor one”
case was done in [CR14], and the result is simple since it involves only epsilon factors at
the real place of Q. In all three cases, for any ψ = �i∈Iπi[di] ∈ Ψ(G)unr,λ the abelian
2-group Sψ is generated by (si)i∈J where J = {i ∈ I |nidi is even} and si ∈ Cψ is formally
−Id on the space of πi[di] and Id on the space of πj [dj ] for j 6= i. By [CR14][(3.10)]

εψ(si) =
∏

j∈Ir{i}

ε(πi × πj)min(di,dj)

and since πi and πj are everywhere unramified ε(πi × πj) can be computed easily from
the tensor product of the local Langlands parameters of (πi)∞ and (πj)∞. Note that by
[Art13][Theorem 1.5.3] ε(πi× πj) = 1 if s(πi)s(πj) = 1. The explicit computation of Πψ∞ ,
along with the map Πψ∞ → S∧ψ∞ , does not follow directly from Arthur’s work, even in our
special case where the infinitesimal character of ψ∞ is that of an algebraic representation
Vλ. We will need to make an assumption (Assumption 3.4.2.4) relating Arthur’s packet
Πψ∞ to the packets constructed by Adams and Johnson in [AJ87]. The latter predate
Arthur’s recent work, in fact [AJ87] has corroborated Arthur’s general conjectures: see
[Art89b][§5]. Under this assumption, we will also be able to compute the Euler-Poincaré
characteristic of any element of Πψ∞ in section 3.4.2.2.

Remark 3.4.1.4. Our original goal was to compute, for a given group G/Q as above,
dominant weight λ and simple (g,K∞)-module module X with infinitesimal character λ+ρ,
the multiplicity of X in Adisc(G(Q)\G(A))G(Ẑ). This is possible once the cardinalities of
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Ψ(G′)unr,λ′

sim are computed, under Assumption 3.4.2.3 if we do not assume that λ is regular.
However, Arthur’s endoscopic classification shows that computing card

(
Ψ(G′)unr,λ′

sim

)
is a

more interesting problem from an arithmetic perspective, since conjecturally we are counting
the number of self-dual motives over Q with conductor 1 and given Hodge weights.

Remark 3.4.1.5. Except in the even orthogonal case with λ = k1e1 + · · · + k2ne2n and
k2n = 0, it is known that any ψ ∈ Ψ(G)unr,λ

sim is tempered also at the finite places by [Clo13].

Remark 3.4.1.6. If G is symplectic or even orthogonal, it has non-trivial center Z iso-
morphic to µ2. Thus Z(R) ⊂ Z(Q)Z(Ẑ), and Z(R) acts trivially on Adisc(G(Q)\G(A))G(Ẑ).
This implies that Ψ(G)unr,λ

sim is empty if λ|Z(R) is not trivial, since Z(R) acts by λ on any
discrete series representation with infinitesimal character λ + ρ. Using the concrete de-
scription above, it is elementary to deduce that in fact Ψ(G)unr,λ is empty if λ|Z(R) is not
trivial.

3.4.2 Euler-Poincaré characteristic of cohomological archimedean Ar-
thur packets

3.4.2.1 Tempered case: Shelstad’s parametrization of L-packets

For archimedean local fields in the tempered case the A-packets Πψ in [Art13] are not
defined abstractly using the global twisted trace formula. Rather, Arthur defines Πϕλ as
the L-packet that Langlands [Lan89] associates with ϕλ, and the map Πϕλ → S∧ϕλ , π 7→
〈·, π〉 is defined by Shelstad’s work, which we review below. Mezo [Mez] has shown
that these Langlands-Shelstad L-packets satisfy the twisted endoscopic character relation
[Art13][Theorem 2.2.1 (a)], and Shelstad’s work contains the “standard” endoscopic char-
acter relations [Art13][Theorem 2.2.1 (b)].

In this section we will only be concerned with the local field R and thus we drop the
subscripts ∞, and we denote Gal(C/R) = {1, σ}. Let G be a reductive group over R, and
denote by AG the biggest split torus in the connected center ZG of G. Let us assume that
G has a maximal torus (defined over R) which is anisotropic modulo AG, i.e. G(R) has
essentially discrete series. Consider a dominant weight λ0 for (Gder)C defining an algebraic
representation Vλ0 of Gder(C) and a continuous character χ0 : ZG(R)→ C× such that χ0

and λ0 coincide on ZG(R) ∩ Gder(C). Let Πdisc(λ0, χ0) be the finite set of essentially
discrete series representations π of G(R) such that

• π|Gder(R) has the same infinitesimal character as Vλ0 |Gder(R),

• π|ZG(R) = χ0.

Harish-Chandra has shown that inside this L-packet of essentially discrete series, the rep-
resentations are parameterised by the conjugacy classes (under G(R)) of pairs (B,T)

where T is a maximal torus of G anisotropic modulo AG and B is a Borel subgroup of
GC containing TC. For such a pair (B,T), χ0 and the character λ0 of Tder(R) which is
dominant for B extend uniquely to a character λB of T(R). If we fix such a pair (B,T),
the pairs (B′,T) which are in the same conjugacy class form an orbit under the subgroup
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Wc := W (G(R),T(R)) of W := W (G(C),T(C)). Concretely, if π ∈ Πdisc(λ0, χ0) is the
representation associated with this conjugacy class, then for any γ ∈ T(R)G−reg,

Θπ(γ) = (−1)q(G)
∑
w∈Wc

λwBw−1(γ)

∆wBw−1(γ)

where Θπ is Harish-Chandra’s character for π, and ∆B(γ) =
∏
α∈R(T,B)(1 − α(γ)−1).

Therefore the choice of (B,T) as a base point identifies the set of conjugacy classes with
Wc\W , by g ∈ N(G(C),T(C)) 7→ (gBg−1,T).

Langlands [Lan89] and Shelstad [She08a], [She10], [She08b] gave another formulation
for the parameterisation inside an L-packet, more suitable for writing endoscopic character
relations. By definition of the L-group we have a splitting (B, T , (Xα)α∈∆) of Ĝ which
defines a section of Aut(Ĝ)→ Out(Ĝ) and LG = ĜoWR. Let (B,T) be as above. Thanks
to B we have a canonical isomorphism T̂→ T , which can be extended into an embedding
of L-groups ι : LT → LG as follows. For z ∈ WC, define ι(z) =

∏
α∈RB α

∨(z/|z|) o z

where RB is the set of roots of T in B. Define ι(j) = n0 o j where n0 ∈ N(Ĝ, T ) ∩ Ĝder

represents the longest element of the Weyl group W (Ĝ, T ) for the order defined by B.
Then ι is well-defined thanks to [Lan89][Lemma 3.2]. Since conjugation by n0 o j acts
by t 7→ t−1 on T ∩ Ĝder, the conjugacy class of ι does not depend on the choice of n0.
The character λB of T(R) corresponds to a Langlands parameter ϕλB : WR → LT. If
G is semisimple, λB is the restriction to T(R) of an element of X∗(T) = X∗(T ) and for
any z ∈ WC, ϕλB(z) = λB(z/|z|). Composing ϕλB with ι we get a Langlands parameter
ϕ : WR → LG, whose conjugacy class under Ĝ does not depend on the choice of (B,T).
Langlands has shown that the map (λ0, χ0) 7→ ϕ is a bijection onto the set of conjugacy
classes of discrete Langlands parameters, i.e. Langlands parameters ϕ such that Sϕ :=

Cent(ϕ, Ĝ)/Z(Ĝ)Gal(C/R) is finite.
Consider a discrete Langlands parameter ϕ, and denote by Πϕ = Π(λ0, χ0) the corres-

ponding L-packet. Assume that G is quasisplit and fix a Whittaker datum (see [Kal] for
the general case). Then Shelstad defines an injective map Πϕ → S∧ϕ , π 7→ 〈·, π〉. It has the
property that 〈·, π〉 is trivial if π is the unique generic (for the given Whittaker datum)
representation in the L-packet.

Recall the relation between these two parametrizations of the discrete L-packets. Let
(B,T) be as above, defining an embedding ι : LT→ LG and recall that W and Wc denote
the complex and real Weyl groups. Let Cϕ = Cent(ϕ, Ĝ), so that Sϕ = Cϕ/Z(Ĝ)Gal(C/R).
Using ι we have an isomorphism between H1(R,T) and π0(Cϕ)∧. We have a bijection

Wc\W → ker
(
H1(R,T)→ H1(R,G)

)
mapping g ∈ NG(C)(T(C)) to (σ 7→ g−1σ(g)). Kottwitz [Kot86] has defined a natural

morphism H1(R,G) → π0

(
Z(Ĝ)Gal(C/R)

)∧
and thus the above bijection yields an injec-

tion η : Wc\W → S∧ϕ . If π ∈ Πϕ corresponds to (the conjugacy class of) (B,T) and
π′ ∈ Πϕ corresponds to (gBg−1,T), then for any s ∈ Sϕ,

〈s, π〉
〈s, π′〉

= η(g)(s).
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Finally, the generic representation in Πϕ corresponds to a pair (B,T) as above such that
all the simple roots for B are noncompact. This is a consequence of [Kos78][Theorem 3.9]
and [Vog78][Theorem 6.2]. In particular there exists such a pair (B,T). We will make use
of the converse in the non-tempered case.

Lemma 3.4.2.1. Let H be a reductive group over R. Assume that T is a maximal torus of
H which is anisotropic modulo AH, and assume that there exists a Borel subgroup B ⊃ TC

of HC such that all the simple roots of T in B are non-compact. Then H is quasisplit.

Proof. We can assume thatH is semisimple. We use the “R-opp splittings” of [She08b][§12].
Let ∆ be the set of simple roots of T in B. For any α ∈ ∆ we can choose an sl2-triple
(Hα, Xα, Yα) in h = C⊗R Lie(H(R)). The pair (Xα, Yα) is not unique: it could be replaced
by (xXα, x

−1Yα) for any x ∈ C×. Since σ(α) = −α, σ(Xα) = yYα for some y ∈ C×,
and y ∈ R× because σ is an involution. The sign of y does not depend on the choice of
(Xα, Yα), and making some other choice if necessary, we can assume that y = ±1. It is
easy to check that α is non-compact if and only if y > 0. Thus the hypotheses imply the
existence of an R-opp splitting, that is a splitting (Xα)α∈∆ such that σ(Xα) = Yα for any
α. Note that this splitting is unique up to the action of T(R).

Let H′ be the quasisplit reductive group over R such that H′ admits an anisotropic
maximal torus and HC ' H′C. We know that H′ admits a pair (B′,T′) where T′ is an
anisotropic maximal torus and all the simple roots of B′ are non-compact. Therefore there
exists an R-opp splitting (X ′α)α′∈∆′ for (B′,T′).

There is a unique isomorphism f : HC → H′C identifying (B,TC, (Xα)α∈∆) with
(B′,T′C, (X

′
α)α∈∆′) and to conclude we only have to show that it is defined over R, i.e.

that it is Galois-equivariant. It is obviously the case on T, since any automorphism of TC

is defined over R. Moreover by construction f(σ(Xα)) = σ(X ′f(α)) for any α ∈ ∆. Since
TC and the one-dimensional unipotent groups corresponding to ±α for α ∈ ∆ generate
HC, f is σ-equivariant.

There are as many conjugacy classes of such pairs (B,T) such that all the simple roots
are non-compact as there are conjugacy classes of Whittaker datum. For the adjoint group
SO2n+1 there is a single conjugacy class, whereas for G = Sp2n or SO4n there are two.
However, for our purposes it will fortunately not be necessary to precise which pair (B,T)

corresponds to each conjugacy class of Whittaker datum.
For the quasi-split group G = SO(V, q) where dimV ≥ 3 and disc(q) > 0, T is the

stabiliser of a direct orthogonal sum

P1 ⊕ · · · ⊕ Pn

where each Pi is a definite plane and n = bdimV/2c. Let I+ (resp. I−) be the set of
i ∈ {1, . . . , n} such that Pi is positive (resp. negative), V− =

⊕
i∈I− Pi and V+ = V ⊥− . The

group K of real points of
S (O(V+, q)×O(V−, q))
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is the maximal compact subgroup of G(R) containing T(R). For each i, choose an iso-
morphism ei : SO(Pi, q)C → Gm arbitrarily. For dimV even, the roots e1− e2, . . . , en−1−
en, en−1 + en are all noncompact if and only if

{I+, I−} = {{1, 3, 5, . . .}, {2, 4, . . .}}

and modulo conjugation by Wc = N(K,T(R))/T(R) there are two Borel subgroups B ⊃
TC whose simple roots are all noncompact. For dimV odd the roots e1−e2, . . . , en−1−en, en
are all noncompact if and only if

I− = {n, n− 2, n− 4, . . .} and I+ = {n− 1, n− 3, . . .}

and there is just one conjugacy class of such Borel subgroups. In both cases

ker
(
H1(R,T)→ H1(R,G)

)
is isomorphic to the set of (εi)1≤i≤n where εi ∈ {±1} and

card{i ∈ I+ | εi = −1} = card{i ∈ I− | εi = −1}.

For the symplectic group G = Sp(V, a) (where a is a non-degenerate alternate form)
H1(R,G) is trivial, so that the set of 〈π, ·〉 (π ∈ Πϕ) is simply the whole group S∧ϕ .
However, for the non-tempered case and for the application to Siegel modular forms it will
be necessary to have an explicit description of the pairs (B,T) as for the special orthogonal
groups. There exists J ∈ G(R) such that J2 = −Id and for any v ∈ V r {0}, a(Jv, v) > 0.
Then J is a complex structure on V and

h(v1, v2) := a(Jv1, v2) + ia(v1, v2)

defines a positive definite hermitian form h on V . Choose an orthogonal (for h) de-
composition V =

⊕n
i=1 Pi where each Pi is a complex line, then we can define T as the

stabiliser of this decomposition. The maximal compact subgroup of G(R) containing T(R)

is K = U(V, h)(R), and Wc ' Sn. Thanks to the complex structure there are canonical
isomorphisms ei : U(Pi, h)→ U1 (for i ∈ {1, . . . , n}). Modulo conjugation by Wc, the two
Borel subgroups containing TC and having non-compact simple roots correspond to the
sets of simple roots

{e1 + e2,−e2 − e3, . . . , (−1)n(en−1 + en), (−1)n+12en},

{−e1 − e2, e2 + e3, . . . , (−1)n−1(en−1 + en), (−1)n2en}.

3.4.2.2 Adams-Johnson packets and Euler-Poincaré characteristics

Let us now consider the general case, which as we observed above is necessary only when
the dominant weight λ is not regular. For a quasisplit special orthogonal or symplectic
group G and an Arthur parameter ψ : WR × SL2(C)→ LG having infinitesimal character
λ + ρ, we would like to describe explicitly the multiset Πψ along with the map Πψ →
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S∧ψ . We would also like to compute the Euler-Poincaré characteristic EP(π ⊗ V ∗λ ) for any
π ∈ Πψ. Unfortunately it does not seem possible to achieve these tasks directly from
Arthur’s characterisation [Art13][Theorem 2.2.1]. We will review Adams and Johnson’s
construction of packets ΠAJ

ψ using Arthur’s formulation, which will lead us naturally to
Assumption 3.4.2.4 relating Arthur’s Πψ with ΠAJ

ψ . This review was done in [Art89b],
[Kot90] and [CR14] but we need to recall Adams and Johnson’s results precisely in order
to compute Euler-Poincaré characteristics. Moreover we will uncover a minor problem in
[Art89b][§5]. Finally, [AJ87] was written before Shahidi’s conjecture [Sha90][Conjecture
9.4] was formulated, and thus we need to adress the issue of normalization of transfer
factors by Whittaker datum. This is necessary to get a precise and explicit formulation of
[AJ87] in our setting, which is a prerequisite for writing an algorithm.

As in the previous section G could be any reductive algebraic group over R such that
G(R) has essentially discrete series. To simplify notations we assume that G is semisimple.
To begin with, we consider general Arthur parameters ψ : WR × SL2(C) → LG, i.e.
continuous morphisms such that

• composing with LG→WR, we get IdWR ,

• ψ|WC is semisimple and bounded,

• ψ|SL2(C) is algebraic.

As before we fix a Gal(C/R)-invariant splitting (B, T , (Xα)α∈∆) in Ĝ. Assume that ψ is
pure, i.e. the restriction of ψ to R>0 ⊂WC is trivial. Otherwise ψ would factor through a
Levi subgroup of LG. After conjugating by an element of Ĝ we have a B-dominant τ0 ∈
1
2X∗(T ) such that for any z ∈WC, ψ(z) = (2τ0)(z/|z|). The set of roots α ∈ R(T , Ĝ) such
that 〈τ0, α〉 ≥ 0 defines a parabolic subgroup Q = LU of Ĝ with Levi L = Cent(ψ(WC), Ĝ)

and ψ(SL2(C)) ⊂ Lder. After conjugating we can assume that

z ∈ C× 7→ ψ

((
z 0
0 z−1

)
∈ SL2(C)

)
takes values in T ∩ Lder and is dominant with respect to B ∩ Lder. Let us restrict our
attention to parameters ψ such that ψ|SL2(C) : SL2(C) → Lder is the principal morphism.
After conjugating we can assume that

d
(
ψ|SL2(C)

)((0 1
0 0

)
∈ sl2

)
=
∑
α∈∆L

Xα.

We claim that ψ(j) ∈ Ĝo {j} is now determined modulo left multiplication by Z(L).
Let n : W (Ĝ, T )oWR → N(LG, T ) = N(Ĝ, T )oWR be the set-theoretic section defined
in [LS87][§2.1]. Let w0 ∈W (Ĝ, T ) be the longest element in the Weyl group (with respect
to B). Since G has an anisotropic maximal torus, conjugation by (any representative of)
w0 o j acts by t 7→ t−1 on T . Let w1 be the longest element of the Weyl group W (L, T ).
Then w1w0 o j preserves ∆L and acts by t 7→ t−1 on Z(L). By [Spr98][Proposition 9.3.5]
n(w1w0 o j) = n(w1w0) o j preserves the splitting (Xα)α∈∆L , and thus commutes with
ψ(SL2(C)). The following lemma relates ψ(j) and n(w1w0 o j).
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Lemma 3.4.2.2. There is a unique element a ∈ Z(L)\
(
Ĝo {j}

)
commuting with ψ(SL2(C))

and such that for any z ∈WC, aψ(z)a−1 = ψ(z−1).

Proof. If a and b are two such elements, ab−1 ∈ Ĝ commutes with ψ(WC), thus ab−1 ∈ L.
Furthermore ab commutes with ψ(SL2(C)), hence ab−1 ∈ Z(L).

Since n(w1w0 o j) and ψ(j) satisfy these two conditions, they coincide modulo Z(L).
In particular conjugation by ψ(j) acts by t 7→ t−1 on Z(L), and thus the group

Cψ := Cent(ψ, Ĝ) = {t ∈ Z(L) | t2 = 1}

is finite, and so is Sψ := Cψ/Z(Ĝ)Gal(C/R). In addition, (2τ0)(−1) = ψ(j)2 = n(w1w0 o j)2

only depends on L. By [LS87][Lemma 2.1.A], n(w1w0 o j)2 =
∏
α∈RQ α

∨(−1) where RQ
is the set of roots of T occurring in the unipotent radical U of Q. Thus

τ0 ∈ X∗(Z(L)0) +
1

2

∑
α∈RQ

α∨.

Conversely, using the element n(w1w0oj) we see that for any standard parabolic subgroup
Q = LU ⊃ B of Ĝ and any strictly dominant (for RQ) τ0 ∈ X∗(Z(L)0) + 1

2

∑
α∈RQ α

∨,

there is at least one Arthur parameter mapping z ∈ WC to (2τ0)(z/|z|) and
(

0 1
0 0

)
∈ sl2

to
∑

α∈∆L
Xα. Finally, for any u ∈ Z(L), we can form another Arthur parameter ψ′ by im-

posing ψ′|WC×SL2(C) = ψ|WC×SL2(C) and ψ′(j) = uψ(j). It follows that the set of conjugacy
classes of Arthur parameters ψ′ such that ψ′|WC×SL2(C) is conjugated to ψ|WC×SL2(C) is a
torsor under

Z(L)/{t2 | t ∈ Z(L)} = H1(Gal(C/R), Z(L)) where σ acts by w1w0 o j on Z(L).

Recall the norm || · || : WR → R>0 which maps j to 1 and z ∈WC to zz̄, which is used
to define the morphism WR →WR × SL2(C) mapping w to(

w,

(
||w||1/2 0

0 ||w||−1/2

))
.

Composing ψ with this morphism we get a Langlands parameter ϕψ : WR → LG which
is not tempered in general. For z ∈ WC, ϕψ(z) = (τ − τ ′)(z/|z|)(τ + τ ′)(|z|) (formally
τ(z)τ ′(z̄)) where

τ = τ0 +
1

2

∑
α∈RB∩L

α∨ and τ ′ = −τ0 +
1

2

∑
α∈RB∩L

α∨.

Then τ ∈ 1
2

∑
α∈RB α

∨ +X∗(T ) and the following are equivalent:

1. τ is regular,

2. τ − 1
2

∑
α∈RB α

∨ is dominant with respect to RB,

3. τ0 − 1
2

∑
α∈RQ α

∨ is dominant with respect to RQ.
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In fact for any pure Arthur parameter ψ, without assuming a priori that ψ|SL2(C) → L is
principal, if the holomorphic part τ of ϕψ|WC is regular, then ψ|SL2(C) → L is principal.
The orbit of τ under the Weyl group is the infinitesimal character associated with ψ, and
we have seen that it is the infinitesimal character of any representation in the packet Πψ

associated with ψ (Lemma 3.4.1.3). For quasisplit special orthogonal or symplectic groups
we checked this (up to outer conjugacy in the even orthogonal case) in Lemma 3.4.1.3.

From now on we also assume that the infinitesimal character τ of ψ is regular. Note
that τ is then the infinitesimal character of the restriction to G(R) of the irreducible algeb-
raic representation Vλ of GC, where τ = λ+ ρ. Let us describe the set of representations
ΠAJ
ψ that Adams and Johnson associate with ψ as well as the pairing Πψ → S∧ψ . To be

honest Adams and Johnson do not consider parameters ψ, they only work with repres-
entations, but [Art89b][§5] interpreted their construction in terms of parameters. We will
only add details concerning Whittaker normalisation. As in the tempered case we begin
by considering pairs (B,T) where T is an anisotropic maximal torus of G and B a Borel
subgroup of GC containing TC. We have a canonical isomorphism between the based root
data

(X∗(TC),∆B, X∗(TC),∆∨B) and (X∗(T ),∆∨B, X
∗(T ),∆B)

and we can associate with (Q,L) a parabolic subgroup Q ⊃ B of GC and a Levi subgroup
LC ⊃ TC of GC. As the notation suggests LC is defined over R (for any root α of TC in
GC, σ(α) = −α), and we denote this real subgroup of G by L. Consider the set ΣQ of
conjugacy classes of pairs (Q,L) (Q a parabolic subgroup of GC and L a real subgroup of
G such that LC is a Levi subgroup of Q) obtained this way. The finite set ΣB of conjugacy
classes of pairs (B,T) surjects to ΣQ. If we fix a base point (B,T), we have seen that ΣB

is identified with Wc\W . This base point allows to identify ΣQ with Wc\W/WL where
WL = W (L(C),T(C)), and

Wc\W/WL ' ker
(
H1(R,L)→ H1(R,G)

)
.

For any cl(Q,L) ∈ ΣQ there is a canonical isomorphism L̂ ' L identifying the splittings.
Given another cl(Q′,L′) ∈ ΣQ, there is a unique g ∈ G(C)/L(C) conjugating (Q,L) into
(Q′,L′), yielding a canonical isomorphism of L-groups LL ' LL′. As in the tempered
case we want to extend L̂ ' L into an embedding ι : LL → LG as follows. For z ∈ WC,
define ι(z) =

∏
α∈RQ α

∨(z/|z|) o z. Define ι(j) = n(w1w0 o j). We have computed
n(w1w0o j)2 =

∏
α∈RQ α

∨(−1) above and thus ι is well-defined. Note that contrary to the
tempered case, there are other choices for ι(j) even up to conjugation by Z(L): we could
replace ι(j) by uι(j) where u ∈ Z(L), and it can happen that u is not a square in Z(L).
This issue seems to have been overlooked in [Art89b][§5]. We will not try to determine
whether n(w1w0 o j) is the correct choice here and we will consider this problem in a
separate note, since for our present purpose this choice does not matter.

For any class cl(Q,L) ∈ ΣQ there is a unique Arthur parameter

ψQ,L : WR × SL2(C)→ LL
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such that up to conjugation by Ĝ, ψ = ι ◦ ψQ,L. Now ψQ,L|SL2(C) : SL2(C) → L̂ is the
principal morphism. Thus ψQ,L|WR takes values in Z(L̂)oWR, and the conjugacy class of
ψQ,L is determined by the resulting element of H1(WR, Z(L̂)), which has compact image.

Recall that for any real reductive group H there is a natural morphism

νH : H1(WR, Z(Ĥ))→ Homcont(H(R),C×)

which is surjective and maps cocyles with compact image to unitary characters of H(R).
To define this morphism we can use the same arguments as [Kot86][§1]. If H is simply
connected, then Ĥ is adjoint and H(R) is connected. More generally, if Hder is simply
connected then the torus C = H/Hder is such that Z(Ĥ) = Ĉ and

H(R)ab = ker
(
C(R)→ H1(R,Hder)

)
.

Finally ifH is arbitrary there exists a z-extensionC ↪→ H̃ � H whereC is an induced torus
and H̃der is simply connected. Then H1(Gal(C/R),C(C)) is trivial, thus H̃(R) � H(R)

and
Homcont(H(R),C×) = ker

(
Homcont(H̃(R),C×)→ Homcont(C(R),C×)

)
.

Parallelly, ĈWR is connected so that ĈWR → H1(WR, Z(Ĥ)) is trivial and thus

H1(WR, Z(Ĥ)) = ker

(
H1(WR, Z(

̂̃
H))→ H1(WR, Ĉ)

)
.

As in [Kot86][§1] the morphism νH obtained this way does not depend on the choice of a
z-extension. Note that when H is quasi-split, νH is an isomorphism, by reduction to the
case where Hder is simply connected and using the fact that a maximally split maximal
torus in a simply connected quasi-split group is an induced torus. It is not injective in
general, e.g. when H is the group of invertible quaternions.

Hence ψQ,L defines a one-dimensional unitary representation π0
ψ,Q,L of L(R), and ap-

plying cohomological induction as defined by Zuckerman, Adams and Johnson define the
representation πψ,Q,L = Riq(π

0
ψ,Q,L) of G(R), where q = Lie(Q) and i = q(G) − q(L).

Vogan has shown that this representation is unitary. They define the set ΠAJ
ψ in bijection

with ΣQ:
ΠAJ
ψ = {πψ,Q,L | cl(Q,L) ∈ ΣQ} .

The endoscopic character relations that they prove [AJ87][Theorem 2.21] allow to identify
the map Πψ → S∧ψ , as Arthur did in [Art89b][§5]. Assume that G is quasisplit (this is
probably unnecessary as in the tempered case using the constructions of [Kal]), and fix a
Whittaker datum for G. Then any cl(B,T) ∈ ΣB determines an element of S∧ϕ (here ϕ
could be any discrete parameter, the group Sϕ is described in terms of B, T independently).
It is easy to check that if (B,T) and (B′,T′) give rise to pairs (Q,L) and (Q′,L′) which
are conjugated under G(R), then the restrictions to Sψ of the characters of Sϕ associated
with (B,T) and (B′,T′) coincide. We get a map ΠAJ

ψ → S∧ψ which is not injective in
general.
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Adams and Johnson ([AJ87][Theorem 8.2], reformulating the main result of [Joh84])
give a resolution of πψ,Q,L by direct sums of standard modules

0→ πψ,Q,L → Xq(L) → · · · → X0 → 0. (3.4.2.1)

Recall that a standard module is a parabolic induction of an essentially tempered rep-
resentation of a Levi subgroup of G, with a certain positivity condition on its central
character. Johnson’s convention is opposite to that of Langlands, so that πψ,Q,L embeds in
a standard module. Apart from its length, the only two properties of this resolution that
we need are

1. X0 is the direct sum of the discrete series representations ofG(R) having infinitesimal
character τ and corresponding to the cl(B,T) ∈ ΣB mapping to cl(Q,L) ∈ ΣQ,

2. for any i > 0, Xi is a direct sum of standard modules induced from proper parabolic
subgroups of G, therefore EP(Xi ⊗ V ∗λ ) = 0.

Thus we have the simple formula

EP(πψ,Q,L ⊗ V ∗λ ) = (−1)q(G)−q(L)card (fiber of cl(Q,L) by ΣB → ΣQ) .

Note that πψ,Q,L is a discrete series representation if and only if L is anisotropic.
Let us be more precise about the endoscopic character relations afforded by Adams-

Johnson representations, since Shahidi’s conjecture was only formulated after both [AJ87]
and [Art89b]. Let sψ be the image by ψ of −1 ∈ SL2(C), which we will see as an ele-
ment of Sψ. Arthur and Kottwitz have shown that for cl(Q,L), cl(Q′,L′) ∈ ΣQ, we have
〈sψ, πψ,Q,L〉 = (−1)q(L)−q(L′)〈sψ, πψ,Q′,L′〉. Let (B0,T0) be a pair in G corresponding to
the base point (i.e. the generic representation for our fixed Whittaker datum) for any dis-
crete L-packet. It determines a pair (Q0,L0) such that cl(Q0,L0) ∈ ΣQ. The simple roots
of B0 are all non-compact and thus the same holds for the Borel subgroup B0 ∩ (L0)C of
(L0)C. By Lemma 3.4.2.1 the group L0 is quasisplit. Thus for any cl(Q,L) ∈ ΣQ we have
〈sψ, πψ,Q,L〉 = (−1)q(L0)−q(L). Note that if (B1,T1) corresponds to the generic element
in tempered L-packets for another Whittaker datum, the pair (L1,Q1) that it determines
also has the property that L1 is quasisplit. Since L0 and L1 are inner forms of each other,
they are isomorphic and q(L0) = q(L1). This shows that the map

f(g)dg 7→
∑
π∈ΠAJ

ψ

〈sψ, π〉Tr (π(f(g)dg)) ,

defined on smooth compactly supported distributions on G(R), is canonical: it does not
depend on the choice of a Whittaker datum for the quasisplit group G. By [AJ87][Theorem
2.13] it is stable, i.e. it vanishes if all the stable orbital integrals of f(g)dg vanish. Consider
an arbitrary element x ∈ Sψ. It determines an endoscopic group H of G and an Arthur
parameter ψH : WR × SL2(C) → LH whose infinitesimal character is regular. Thanks to
the choice of a Whittaker datum we have a well-defined transfer map f(g)dg 7→ fH(h)dh

from smooth compactly supported distributions on G(R) to smooth compactly supported
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distributions on H(R). Adams and Johnson have proved [AJ87][Theorem 2.21] that there
is some t ∈ C× such that∑

π∈ΠAJ
ψ

〈sψx, π〉Tr (π(f(g)dg)) = t
∑

π∈ΠAJ
ψH

〈sψ, π〉Tr
(
π(fH(h)dh)

)
(3.4.2.2)

for any smooth compactly supported distribution f(g)dg on G(R). We check that t = 1.
Let ϕ : WR → LG be the discrete Langlands parameter having infinitesimal character τ .
Conjugating if necessary, we can assume that the holomorphic parts of ϕ|WC and ϕψ|WC

are equal and not just conjugated. In this way we see Sψ as a subgroup of Sϕ. We restrict
to distributions f(g)dg whose support is contained in the set of semisimple regular elliptic
elements of G(R). In that case by Johnson’s resolution 3.4.2.1∑

π∈ΠAJ
ψ

〈sψx, π〉Tr (π(f(g)dg)) = (−1)q(L0)
∑
π∈Πϕ

〈x, π〉Tr (π(f(g)dg))

= (−1)q(L0)
∑

π∈ΠϕH

Tr
(
π(fH(h)dh)

)
where the second equality is the endoscopic character relation for (ϕ, x). Let (BH

0 ,T
H
0 )

be a pair for H such that the simple roots of BH
0 are all non-compact. Then the pair

(QH
0 ,L

H
0 ) that it determines is such that LH

0 is quasisplit and has same Langlands dual
group as L0, thus LH

0 ' L0. In particular q(LH
0 ) = q(L0) and

(−1)q(L0)
∑

π∈ΠϕH

Tr
(
π(fH(h)dh)

)
=

∑
π∈ΠAJ

ψH

〈sψ, π〉Tr
(
π(fH(h)dh)

)
.

Therefore the endoscopic character relation 3.4.2.2 holds with t = 1 for such distributions
f(g)dg. By choosing f(g)dg positive with small support around a well-chosen semisimple
regular elliptic element we can ensure that both sides do not vanish, so that t = 1.

This concludes the precise determination of the map π 7→ 〈·, π〉, normalised using Whit-
taker datum as in the tempered case. Note that this normalised version of [AJ87][Theorem
2.21] is completely analogous to [Art13][Theorem 2.2.1(b)]. We are led to make the follow-
ing assumption.

Assumption 3.4.2.3. Let G be a quasisplit special orthogonal or symplectic group over
R having discrete series. Fix a Whittaker datum for G. Let ψ be an Arthur parameter for
G with regular infinitesimal character τ = λ+ ρ. Then for any χ ∈ S∧ψ ,⊕

π∈ΠAJ
ψ

〈·,π〉=χ

π '
⊕
π∈Πψ
〈·,π〉=χ

π. (3.4.2.3)

Note that in the even orthogonal case, this only assumes an isomorphism of H′(G(R))-
modules.

To compute Euler-Poincaré characteristics we only need the character of the direct sum
appearing in Assumption 3.4.2.3 on an anisotropic maximal torus. This follows from the
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fact that the standard modules form a basis of the Grothendieck group of finite length
(g,K)-modules. Using also the fact that Arthur and Adams-Johnson packets satisfy the
same endoscopic relations, we can formulate a weaker assumption which is enough to
compute the Euler-Poincaré characteristic of the right hand side of 3.4.2.3 for any χ ∈ S∧ψ .

Assumption 3.4.2.4. Let G be a quasisplit special orthogonal or symplectic group over
R having discrete series. Let ψ be an Arthur parameter for G with regular infinitesimal
character τ = λ + ρ, and let T be a maximal torus of G which is anisotropic. Let L0

denote the quasisplit reductive group defined in the discussion above. If G is symplectic or
odd orthogonal, the assumption is that for any γ ∈ Treg(R),∑

π∈Πψ

〈sψ, π〉Θπ(γ) = (−1)q(G)−q(L0)Tr(γ|Vλ).

In the even orthogonal case, this identity takes the following meaning. Let γ ∈ Treg(R) and
consider a γ′ ∈ G(R) outer conjugated to γ. For π in Πψ, which is only an Out(G)-orbit
of representations, we still denote by π any element of this orbit. The assumption is∑

π∈Πψ

〈sψ, π〉
(
Θπ(γ) + Θπ(γ′)

)
= (−1)q(G)−q(L0)

(
Tr(γ|Vλ) + Tr(γ′|Vλ)

)
.

Of course it does not depend on the choice made in each orbit.

Thus under this assumption we have an algorithm to compute inductively the cardin-
ality of each Ψ(G)unr,λ

sim .

Remark 3.4.2.5. For this algorithm it is not necessary to enumerate the sets

Wc\W/WL ' ker
(
H1(R,L)→ H1(R,G)

)
parametrizing the elements of each Πψ. It is enough to compute, for each discrete series
π represented by a collection of signs as in the previous section, the restriction of 〈·, π〉 to
Sψ and the sign (−1)q(L).

See the tables in section 3.7.2 for some values for card
(

Ψ(G)unr,λ
sim

)
in low weight λ

ordered lexicographically.

3.5 Application to vector-valued Siegel modular forms

Let us give a classical application of the previous results, to the computation of dimensions
of spaces Sr(Γn) of vector-valued Siegel cusp forms in genus n ≥ 1, weight r and level one.
It is certainly well-known that, under a natural assumption on the weight r, this dimension
is equal to the multiplicity in L2

disc(PGSp2n(Q)\PGSp2n(A)/PGSp2n(Ẑ)) of the holo-
morphic discrete series representation corresponding to r. Although [AS01] contains “half”
of the argument, we could not find a complete reference for the full statement. To set our
mind at rest we give details for the other half. We begin with a review of holomorphic
discrete series. We do so even though it is redundant with [Kna86] and [AS01], in order to
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give precise references, to set up notation and to identify the holomorphic discrete series
in Shelstad’s parametrisation.

Note that it is rather artificial to restrict our attention to symplectic groups. For any
n ≥ 3 such that n 6= 2 mod 4, the split group G = SOn has an inner form H which is
split at all the finite places of Q and such that

• if n = −1, 0, 1 mod 8, H(R) is compact,

• if n = 3, 4, 5 mod 8, H(R) ' SO(n− 2, 2).

In the second case H(R) has holomorphic discrete series which can be realised on a her-
mitian symmetric space of complex dimension n− 2. In the first case H(R) also has holo-
morphic discrete series which can be realised on a zero-dimensional hermitian symmetric
space.

3.5.1 Bounded symmetric domains of symplectic type and holomorphic
discrete series

Let us recall Harish-Chandra’s point of view on bounded symmetric domains and his
construction of holomorphic discrete series (see [Bru59], [HC55], [HC56a], [HC56b]) in the
case of symplectic groups. Let n ≥ 1 and G = Sp2n, over R in this section, and denote
G = G(R), g0 = Lie(G) and g = C ⊗R g0. Then G is the stabiliser of a non-degenerate
alternate form a on a 2n-dimensional real vector space V . As before choose J ∈ G such
that J2 = −1 and for any v ∈ V r {0}, a(Jv, v) > 0, which endows V with a complex
structure and realises a as the imaginary part of the positive definite hermitian form h

defined by
h(v1, v2) = a(Jv1, v2) + ia(v1, v2).

Then K = U(V, h) is a reductive subgroup of G, and K = K(R) is a maximal compact
subgroup of G. Note that both G and K are connected. The center ZK of K is one-
dimensional and anisotropic, and the complex structure J yields a canonical isomorphism
ZK ' U1. Let u+ (resp. u−) be the subspace of g such that the adjoint action of z ∈ ZK(R)

on u+ (resp. u−) is by multiplication by z2 (resp. z−2). Then g = u+ ⊕ k ⊕ u− and
[u+, u+] = [u−, u−] = 0. Moreover u+ ⊕ u− = C ⊗R p0 where p0 is the subspace of
g0 = Lie(G) on which J acts by −1, i.e. g0 = p0 ⊕ k0 is the Cartan decomposition of g0

for the Cartan involution θ = Ad(J). There are unipotent abelian subgroups U+,U− of
GC associated with u+, u−, and the subgroups KCU+ and KCU− are opposite parabolic
subgroups of GC with common Levi subgroup KC. It follows that the multiplication map
U+ × KC × U− → GC is an open immersion. Furthermore G ⊂ U+(C)K(C)U−(C).
For g ∈ G, we can thus write g = g+g0g− where (g+, g0, g−) ∈ U+(C) ×K(C) ×U−(C),
and Harish-Chandra showed that g 7→ log(g+) identifies G/K with a bounded domain
D ⊂ u+. This endows G/K with a structure of complex manifold, and for any g ∈ G, left
multiplication by g yields a holomorphic map G/K → G/K.

Remark 3.5.1.1. Let us compare this point of view with the classical one. Let V = R2n

and choose the alternate form a(·, ·) having matrix A =

(
0 1n
−1n 0

)
, that is a(v1, v2) =

97



tv1Av2. The complex structure J whose matrix is also A satisfies the above conditions,
and the resulting maximal compact subgroup K is the stabiliser of i1n for the usual action
of G on the Siegel upper half plane Hg = {τ ∈ Mn(C) | tτ = τ and Im(τ) > 0}: for

a, b, c, d ∈ Mn(R) such that g =

(
a b
c d

)
∈ G and τ ∈ Hg, g(τ) = (aτ + b)(cτ + d)−1.

We now have two identifications of G/K with domains, D and Hn, and they differ by the
Cayley transform Hn → D, τ 7→ (τ − i1n)(τ + i1n)−1.

Observe that GK(C)U−(C) = exp(D)K(C)U−(C) is open in G(C). Consider an irre-
ducible unitary representation r : K → GL(W ), i.e. an irreducible algebraic representation
of KC endowed with a K-invariant positive definite hermitian form. Harish-Chandra con-
sidered the space of holomorphic functions f : GK(C)U−(C)→W such that

1. for any (s, k, n) ∈ GK(C)U−(C)×K(C)×U−(C), f(skn) = r(k)−1f(s),

2.
∫
G ||f(g)||2dg <∞.

It has an action of G defined by (g · f)(s) = f(g−1s), and we get a unitary representation
of G on a Hilbert space Hr. Since G/K ' GK(C)U−(C)/K(C)U−(C), Hr is isomorphic
to the space of f ∈ L2(G,W ) such that

1. for any (g, k) ∈ G×K, f(gk) = r(k)−1f(g),

2. the function G/K →W, g 7→ r(g0)f(g) is holomorphic.

Harish-Chandra proved that Hr is zero or irreducible, by observing that in any closed
invariant subspace, there is an f such that G/K → W, g 7→ r(g0)f(g) is constant and
nonzero. Actually this a special case of [HC56a][Lemma 12, p. 20]). Hence when Hr 6= 0,
there is a K-equivariant embedding φ : W → Hr, and any vector in its image is u+-
invariant. More generally, using the simple action of ZK(R) on U+ we see that when
Hr 6= 0 the K-finite vectors of Hr are exactly the polynomial functions on D. Note that
when Hr 6= 0 it is square-integrable by definition, i.e. it belongs to the discrete series of G.

Harish-Chandra determined necessary and sufficient conditions for Hr 6= 0. Let T be a
maximal torus of K, and choose an order on the roots of T in K. This determines a unique
order on the roots of T in G such that the parabolic subgroup KCU+ is standard, i.e.
contains the Borel subgroup B of GC such that the positive roots are the ones occurring
in B. To be explicit in the symplectic case, T is determined by a decomposition of V as
an orthogonal (for the hermitian form h) direct sum V = V1 ⊕ · · · ⊕ Vn where each Vk is
a line over C. For any k we have a canonical isomorphism ek : U(Vk, h) ' U1. We can
choose the order on the roots so that the simple roots are e1− e2, . . . , en−1− en, 2en. Note
that among these simple roots, only 2en is noncompact. Let λ = m1e1 + · · · + mnen be
the highest weight of r, so that m1 ≥ · · · ≥ mn. This means that up to multiplication by
a scalar there is a unique highest weight vector v ∈ W r {0}, that is such that for any
b ∈ K(C) ∩ B(C), r(b)v = λ(b)v. Let ρ = ne1 + · · · + en be half the sum of the positive
roots of T in G. Then Hr 6= 0 if and only if for any root α of T in U+, 〈α∨, λ + ρ〉 < 0

(see [HC56b][Lemma 29, p. 608]). In our case this condition is equivalent to m1 + n < 0.
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Assume that Hr 6= 0. Note that φ(v) is a highest weight in the g-module (Hr)K−fin,
i.e. the Lie algebra of the unipotent radical of B cancels φ(v). Since Hr is irreducible
and unitary, (Hr)K−fin is a simple g-module whose isomorphism class determines that of
Hr (see [Kna86][chapter VIII]), and thus it is the unique simple quotient of the Verma
module defined by B and λ. In particular, λ + ρ is a representative for the infinitesimal
character of Hr. One can show that (Hr)K−fin = U(g)⊗U(k⊕u+) W , where W is seen as a
k⊕ u+-module by letting u+ act trivially.

Remark 3.5.1.2. Before Harish-Chandra realised these holomorphic discrete series con-
cretely, in [HC55] he considered the simple quotient of the Verma module defined by λ and
B, for λ an arbitrary dominant weight for KC ∩B. He determined a necessary condition
for this g-module to be unitarisable [HC55][Corollary 1 p.768]: for any root α of T in U+,
〈α∨, λ〉 ≤ 0 (in our case this is equivalent to m1 ≤ 0). He also determined a sufficient con-
dition [HC55][Theorem 3 p.770]: for any root α of T in U+, 〈α∨, λ+ ρ〉 ≤ 0 (in our case
this is equivalent to m1 + n ≤ 0). For classical groups Enright and Parthasarathy [EP81]
gave a necessary and sufficient condition for unitarisability. In our symplectic case, this
condition is

−m1 ≥ min
1≤j≤n

n− i+
∑

2≤j≤i

m1 −mj

2

 .

It would be interesting to determine whether all these unitary representations are globally
relevant, i.e. belong to some Arthur packet.

The character of Hr was computed explicitely in [Sch75], [Mar75] and [Hec76]. There
exists a unique Borel subgroup B′ ⊃ TCU− of GC such that B′ ∩KC = B ∩KC. The
order on the roots defined by B′ is such that λ + ρ is strictly dominant, i.e. for any root
α occurring in B′, 〈α∨, λ + ρ〉 > 0. Let Wc = W (T(R), G) = W (T(R),K). Then among
the discrete series of G with infinitesimal character λ + ρ, Hr is determined by the G-
conjugacy class of the pair (B′,T) (see section 3.4.2.1). In our case the simple roots for
B′ are e1 − e2, . . . , en−1 − en and −2e1.

Remark 3.5.1.3. This characterisation of the holomorphic discrete series in their L-packet
is enough to determine which Adams-Johnson representations are holomorphic discrete
series. Using the notations of section 3.4.2.2, the representation πψ,Q,L is a holomorphic
discrete series if and only if Q ⊃ B′ and L is anisotropic. By [CR14][Lemma 9.4] the
packet ΠAJ

ψ contains a holomorphic discrete series representation if and only if Std◦ψ does
not contain [d] or εC/R[d] as a factor for some d > 1 (necessarily odd).

We have made an arbitrary choice between U+ and U−. We could have also identified
G/K with a bounded domain D′ ⊂ u−:

G/K ⊂ U−(C)K(C)U+(C)/K(C)U+(C) ' U−(C).

The resulting isomorphism of manifolds D ' D′ is antiholomorphic. Given an infinitesimal
character τ which occurs in a finite-dimensional representation of G, we have a discrete
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series representations of G in the L-packet associated with τ , πhol
τ,+ := (Hr)K−fin (resp.

πhol
τ,−). It is characterised among irreducible unitary representations having infinitesimal

character τ by the fact that it has a nonzero K-finite vector cancelled by u+ (resp. u−).
Since K stabilises u+ and u−, πhol

τ,+ 6' πhol
τ,−.

Let us now define holomorphic discrete series for the group G′ = PGSp(V, a). Assume
that

∑n
k=1mk is even, i.e. the center of G acts trivially in πhol

τ,+ (and πhol
τ,−). The image of G

in G′ has index two, and there is an element of G′ normalizing K and exchanging U+ and
U−. Thus if τ is such that the kernel of πhol

τ,± contains the center of G, πhol
τ := IndG

′
G

(
πhol
τ,+

)
is irreducible and isomorphic to IndG

′
G

(
πhol
τ,−
)
. Among irreducible unitary representations

having infinitesimal character τ , πhol
τ is characterised by the fact that it has a nonzero

K-finite vector cancelled by u+. Of course we could replace u+ by u−.

3.5.2 Siegel modular forms and automorphic forms

Let us recall the link between Siegel modular forms and automorphic cuspidal representa-
tions for the group PGSp. Almost all that we will need is contained in [AS01], in which
the authors construct an isometric Hecke-equivariant map from the space of cuspidal Siegel
modular forms to a certain space of cuspidal automorphic forms. We will simply add a
characterisation of the image of this map.

For the definitions and first properties of Siegel modular forms, see [BvdGHZ08] or
[Fre83]. We will use the classical conventions and consider the alternate form a on Z2n

whose matrix is A =

(
0 1n
−1n 0

)
∈ M2n(Z) for some integer n ≥ 1. Let µ : GSp(A) →

GL1 be the multiplier, defined by the relation a(g(v1), g(v2)) = µ(g)a(v1, v2). Let G =

Sp(A) = ker(µ) and G′ = PGSp(A) = Gad, both reductive over Z.

Recall the automorphy factor j(g, τ) = cτ +d ∈ GLn(C) for g =

(
a b
c d

)
∈ GSp(A,R)

and τ ∈ Hn. As in the previous section denote by K the stabiliser of i1n ∈ Hn under the
action of G(R). Let K ′ be the maximal compact subgroup of G′(R) containing the image

of K by the natural morphism G(R) → G′(R). Observe that the map k =

(
a b
−b a

)
∈

K 7→ j(k, i1n) = a − ib is an isomorphism between K and the unitary group U(1n).
In the previous section, using the complex structure J whose matrix is equal to A, we
have identified K with the unitary group U(h) for a positive definite hermitian form h

on R2n with the complex structure J . We emphasise that the the resulting isomorphism
U(1n) ' U(h) is not induced by an isomorphism between the hermitian spaces: one has
to compose with the outer automorphism x 7→ tx−1 on one side.

Let (V, r) be an algebraic representation of GLn. We can see the highest weight of r as
(m1, . . . ,mg) where m1 ≥ . . .mg are integers. The representation k ∈ K 7→ r(j(k, i1n)) is
the restriction to K of an algebraic representation r′ of KC. As in the previous section we
choose a Borel pair (Bc,T) in K and denote by e1 − e2, . . . , en−1 − en the corresponding
simple roots. Then the highest weight of r′ is −mne1 − · · · −m1en.

Let Γn = Sp(A,Z), and denote by Sr(Γn) the space of vector-valued Siegel modular
forms of weight r. When m1 = · · · = mg, that is when r is one-dimensional, this is the
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space of scalar Siegel modular forms of weight m1. Asgari and Schmidt associate with any
f ∈ Sr(Γn) a function Φ̃f ∈ L2(G′(Q)\G′(A), V ) such that

1. Φ̃f is right G′(Ẑ)-invariant,

2. for any g ∈ G′(A), the function G′(R)→W,h 7→ Φ̃f (gh) is smooth,

3. for any X ∈ u− and any g ∈ G′(A), (X · Φ̃f )(g) = 0,

4. for any g ∈ G′(A) and any k ∈ K, Φ̃f (gk) = r(j(k, i1n))Φ̃f (g),

5. Φ̃f is cuspidal.

The third condition translates the Cauchy-Riemann equation for the holomorphy of f into
a condition on Φ̃f . If the measures are suitably normalised, f 7→ Φ̃f is isometric for the
Petersson hermitian product on Sr(Γn). Finally, f 7→ Φ̃f is equivariant for the action of
the unramified Hecke algebra at each finite place.

Let Nc be the unipotent radical of Bc, let nc be its Lie algebra and let h0 be the
Lie algebra of T. The representation r′ allows to see V as a simple k-module, and ncV

has codimension one in V . Let L be a linear form on V such that ker(L) = ncV . We
can see X∗(T) as a lattice in HomR(h0, iR) ⊂ h∗. Let λ = m1e1 + · · · + mnen which
we can see as an element of (h ⊕ nc ⊕ u−)∗ trivial on nc ⊕ u−. For any v ∈ V and any
X ∈ h ⊕ nc ⊕ u−, L(−r(X)v) = λ(X). For g ∈ G′(A), define Φf (g) = L(Φ̃f (g)). Then
Φf ∈ L2(G′(Q)\G′(A)) satisfies the following properties

1. Φf is right G′(Ẑ)-invariant and right K ′-finite,

2. for any g ∈ G′(A), the function G′(R)→W,h 7→ Φf (gh) is smooth,

3. for any X ∈ h⊕ nc ⊕ u− and any g ∈ G′(A), (X · Φf )(g) = λ(X)Φf (g),

4. Φf is cuspidal.

Again f 7→ Φf is equivariant for the action of the unramified Hecke algebras at the finite
places, and is isometric (up to a scalar). The third condition implies that Φf is an eigen-
vector for Z(U(g)) and the infinitesimal character λ+ρnc⊕u− = (m1−1)e1+· · ·+(mn−n)en.
In particular Φf is a cuspidal automorphic form in the sense of [BJ79], which we denote
by Φf ∈ Acusp(G′(Q)\G′(A)).

Lemma 3.5.2.1. Any Φ ∈ Acusp(G′(Q)\G′(A)) satisfying the four conditions above is
equal to Φf for a unique f ∈ Sr(Γn).

Proof. Since Φ is K ′-finite and transforms under h ⊕ nc according to λ, Φ = L(Φ̃) for a
unique function Φ̃ : G′(Q)\G′(A) → V such that for k ∈ K, Φ̃(gk) = r(j(k, i1n))−1Φ̃(g).
It is completely formal to check that there is a unique f ∈Mr(Γn) such that Φ̃ = Φ̃f , and
thanks to the Koecher principle we only need to use that Φ has moderate growth when
n = 1. We are left to show that f is cuspidal. Write f(τ) =

∑
s∈Symn

c(s)e2iπTr(sτ) where
cs ∈ V and the sum ranges over the set Symn of symmetric half-integral semi-positive
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definite n× n. We need to show that for any s′ ∈ Symn−1, c
((

0 0
0 s′

))
= 0. We use the

cuspidality condition on Φ for the parabolic subgroup P of G defined over Z by

P =




1 n− 1 1 n− 1

1 ∗ ∗ ∗ ∗
n− 1 0 ∗ ∗ ∗
1 0 0 ∗ 0

n− 1 0 ∗ ∗ ∗

 ∈ G


.

Denote N the unipotent radical of P, and observe that N = N0 oN1 where

N0 =




1 0 t1 t2
0 1n−1

tt2 0
0 0 1 0
0 0 0 1n−1


 and N1 =




1 t3 0 0
0 1n−1 0 0
0 0 1 0
0 0 −tt3 1n−1




are vector groups. Moreover N0(Q)\N0(A) ' N0(Z)\N0(R) and similarly for N1. There-
fore for any g ∈ G(R),∫

N1(Z)\N1(R)

∫
N0(Z)\N0(R)

Φ̃(n0n1g)dn0dn1 = 0.

By definition of Φ̃·, for some m ∈ R depending only on r,

Φ̃(n0n1g) = µ(g)mr(j(n0n1g, i1n))−1f(n0n1g(i1n)).

Fix τ ∈ Hn of the form
(
iT 0
0 τ ′

)
where T ∈ R>0 and τ ′ ∈ Hn−1, and let g ∈ G(R) be

such that τ = g(i1n). We will evaluate the inner integral first. Fix n1 ∈ N1(R) determined
by t3 ∈ Rn−1 as above. For any n0 ∈ N(R) determined by (t1, t2) ∈ R × Rn−1 as above,
j(n0n1g, i1n) = j(n1g, i1n) and we have the Fourier expansion

Φ̃(n0n1g) = µ(g)mr(j(n1g, i1n))−1
∑

s1∈Z,s2∈1/2Zn−1

 ∑
s′∈Symn−1

c

((
s1 s2
ts2 s′

))
e2iπTr(s′τ ′)


× exp

(
2iπ(s1(t3τ

′tt3 + iT + t1) + 2s2(τ ′tt3
tt2))

)
and thus∫

N0(Z)\N0(R)
Φ̃(n0n1g)dn0 = µ(g)mr(j(n1g, i1n))−1

∑
s′∈Symn−1

c

((
0 0
0 s′

))
e2iπTr(s′τ ′)

= µ(g)mr(j(g, i1n))−1
∑

s′∈Symn−1

c

((
0 0
0 s′

))
e2iπTr(s′τ ′)

does not depend on n1. Note that to get the last expression we used

r(j(n1, τ))−1c

((
0 0
0 s′

))
= c

((
1 0
tt3 1

)(
0 0
0 s′

)(
1 t3
0 1

))
= c

((
0 0
0 s′

))
.

Hence we can conclude that for any s′ ∈ Symn−1, c
((

0 0
0 s′

))
= 0.
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Assume that mn ≥ n + 1, i.e. that λ + ρnc⊕u− is the infinitesimal character of an L-
packet of discrete series for G′(R). Assume also that

∑n
k=1mk is even, since otherwise

Sr(Γn) = 0. By the theorem of Gelfand, Graev and Piatetski-Shapiro

Acusp(G′(Q)\G′(A)) '
⊕

π∈Πcusp(G′)

mππ

where Πcusp(G′) is the set of isomorphism classes of irreducible admissible (g,K ′)×G′(Af )-
modules occurring in Acusp(G′(Q)\G′(A)) and mπ ∈ Z≥1. Consider a π ∈ Πcusp(G′). For
any prime p, πG

′(Zp)
p 6= 0 if and only if πp is unramified, and in that case dimC π

G′(Zp)
p = 1.

Since π∞ is unitary, it has a highest weight vector for (λ, nc ⊕ u−) if and only if π∞ is
the holomorphic discrete series with infinitesimal character (m1− 1)e1 + · · ·+ (mn−n)en,
and in that case the space of highest weight vectors has dimension one. Thus dimSr(Γn)

is equal the sum of the mπ for π = ⊗′vπv ∈ Πcusp(G′) such that π∞ is a holomorphic
discrete series with infinitesimal character (m1−1)e1 + · · ·+ (mn−n)en and for any prime
number p, πp is unramified. By [Wal84] any π ∈ Πdisc(G

′) r Πcusp(G′) is such that π∞
is not tempered. Therefore dimSr(Γn) is equal to the sum of the multiplicities mπ for
π ∈ Πdisc(G

′) such that

• for any prime number p, πp is unramified,

• π∞ is the holomorphic discrete series representation πhol
τ with infinitesimal character

τ = (m1 − 1)e1 + · · ·+ (mn − n)en.

Recall that G = Sp2n. Thanks to [CR14][Proposition 4.7] we have that dimSr(Γn) is
also equal to the sum of the multiplicities mπ for π ∈ Πdisc(G) such that π is unramified
everywhere and π∞ ' πhol

τ,+.

Remark 3.5.2.2. For any central isogeny G → G′ between semisimple Chevalley groups
over Z, the integer denoted [π∞, π

′
∞] in [CR14][Proposition 4.7] is always equal to 1. This

follows from the fact that G′(R)/G(R) is a finite abelian group.

Thus we have an algorithm to compute dimSr(Γn) from the cardinalities of S(·), Oo(·)
and Oe(·), under Assumption 3.4.2.3 if m1, . . . ,mn are not distinct. Note that since the
Adams-Johnson packets ΠAJ

ψ have multiplicity one, under Assumption 3.4.2.3 the multi-
plicites mπ for π as above are all equal to 1, and thus Siegel eigenforms in level one and
weight r satisfying mn ≥ n + 1 have multiplicity one: up to a scalar they are determined
by their Hecke eigenvalues at primes in a set of density one. This was already observed in
[CR14][Corollary 4.10].

Remark 3.5.2.3. Without assuming that mn ≥ n + 1, the construction in [AS01] shows
that f 7→ Φf is an isometry from the space of square-integrable modular forms (for the
Petersson scalar product) to the space of square-integrable automorphic forms which are
λ-equivariant under nc ⊕ u− and G′(Z)-invariant.

In fact for mn ≥ n+1 (even mn ≥ n) we could avoid using [Wal84] and Lemma 3.5.2.1
and use the fact [Wei83][Satz 3] that for mn ≥ n square-integrable Siegel modular forms
are cusp forms.

103



3.5.3 Example: genus 4

Let us give more details in case n = 4, which is interesting because there an endoscopic
contribution from the group SO8 (the formal parameterOe(w1, w2, w3, w4)�1 below) which
cannot be explained using lower genus Siegel eigenforms. First we list the possible Arthur
parameters for the group Sp8 in terms of the sets S(w1, . . . ), Oo(w1, . . . ) and Oe(w1, . . . ).
The non-tempered ones only occur when λ′ = (m1 − n − 1)e1 + · · · + (mn − n − 1)en is
orthogonal to a non-empty subset of the simple coroots {e∗1 − e∗2, . . . , e∗n−1 − e∗n, e∗n}. The
convention in the following table is that the weights wi ∈ 1

2Z≥0 are decreasing with i. For
example S(w3)[2] �Oo(w1, w2) occurs only if m3 = m4, and if this is the case then

(m1,m2,m3,m4) =

(
w1 + 1, w2 + 2, w3 +

7

2
, w3 +

7

2

)
.

Table 3.1: Unramified cohomological Arthur parameters for Sp8

Oo(w1, w2, w3, w4) Oe(w1, w2, w3, w4) � 1 Oe(w1, w4) �Oe(w2, w3) � 1

Oe(w2, w3) �Oo(w1, w4) Oe(w1, w4) �Oo(w2, w3) Oe(w1, w3) �Oe(w2, w4) � 1

Oe(w2, w4) �Oo(w1, w3) Oe(w1, w3) �Oo(w2, w4) Oe(w1, w2) �Oe(w3, w4) � 1

Oe(w3, w4) �Oo(w1, w2) Oe(w1, w2) �Oo(w3, w4) Oe(w1, w2) � S(w3)[2] � 1

S(w3)[2] �Oo(w1, w2) Oe(w1, w4) � S(w2)[2] � 1 S(w2)[2] �Oo(w1, w4)

Oe(w3, w4) � S(w1)[2] � 1 S(w1)[2] �Oo(w3, w4) S(w1, w3)[2] � 1

S(w1)[2] � S(w3)[2] � 1 S(w1)[4] � 1 S(w1)[2] � [5]

Oe(w1, w2) � [5] Oo(w1)[3] [9]

Among these 24 types for ψ ∈ Ψ(Sp8)unr,λ′ , some never yield Siegel modular forms. In
the last four cases (S(w1)[2]�[5], Oe(w1, w2)�[5], Oo(w1)[3] and [9]), Πψ∞ does not contain
the holomorphic discrete series. In the other 20 cases, Πψ∞ contains the holomorphic
discrete series representation πhol

τ,+ but it can happen that 〈·, πhol
τ,+〉|Sψ never equals εψ. For

example if ψ is tempered (the first 11 cases) εψ is always trivial, whereas 〈·, πhol
τ,+〉|Sψ is

trivial if and only if ψ does not contain Oe(w1, w2) or Oe(w1, w4) or Oe(w2, w3) as a factor.
In the following table we list the 11 types that yield Siegel modular forms for some

dominant weight λ′ for Sp8. In the last column we give a necessary and sufficient condition
on the weights for having 〈·, πhol

τ,+〉|Sψ = εψ.
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Table 3.2: The 11 possible Arthur parameters of Siegel eigenforms for Γ4

Type (m1,m2,m3,m4) Occurs iff

Oo(w1, w2, w3, w4) (w1 + 1, w2 + 2, w3 + 3, w4 + 4) always

Oe(w1, w2, w3, w4) � 1 (w1 + 1, w2 + 2, w3 + 3, w4 + 4) always

Oe(w1, w3) �Oe(w2, w4) � 1 (w1 + 1, w2 + 2, w3 + 3, w4 + 4) always

Oe(w2, w4) �Oo(w1, w3) (w1 + 1, w2 + 2, w3 + 3, w4 + 4) always

Oe(w1, w3) �Oo(w2, w4) (w1 + 1, w2 + 2, w3 + 3, w4 + 4) always

S(w3)[2] �Oo(w1, w2) (w1 + 1, w2 + 2, w3 + 7
2 , w3 + 7

2) w3 + 1
2 is odd

S(w2)[2] �Oe(w1, w4) � 1 (w1 + 1, w2 + 5
2 , w2 + 5

2 , w4 + 4) w2 + 1
2 is even

S(w2)[2] �Oo(w1, w4) (w1 + 1, w2 + 5
2 , w2 + 5

2 , w4 + 4) w2 + 1
2 is even

S(w1)[2] �Oo(w3, w4) (w1 + 3
2 , w1 + 3

2 , w3 + 3, w4 + 4) w1 + 1
2 is odd

S(w1, w3)[2] � 1 (w1 + 3
2 , w1 + 3

2 , w3 + 7
2 , w3 + 7

2) w1 + w3 is odd

S(w1)[4] � 1 (w1 + 3
2 , w1 + 3

2 , w1 + 3
2 , w1 + 3

2) w1 + 1
2 is even

3.5.4 Some dimensions in the scalar case

In genus n greater than 4 the enumeration of the possible Arthur parameters of Siegel
eigenforms is best left to a computer. Our implementation currently allows to compute
dimSr(Γn) for n ≤ 7 and any algebraic representation r of GLn such that its highest
weight m1 ≥ · · · ≥ mn satisfies mn ≥ n+ 1.

Table 3.3 displays the dimensions of some spaces of scalar Siegel cusp forms. Note
that our method does not allow to compute dimSk(Γn) when k ≤ n (question marks in
the bottom left corner), and that for scalar weights is is necessary to make Assumption
3.4.2.3. We do not include the values dimSk(Γn) when n + 1 ≤ k ≤ 7 because they all
vanish. The question marks on the right side could be obtained simply by computing more
traces in algebraic representations (Tr(γ |Vλ) in the geometric side of the trace formula).
For more data see http://www.math.ens.fr/~taibi/dimtrace/. For n ≥ 8 we have not
(yet) managed to compute the masses for Sp2n. Nevertheless we can enumerate some
endoscopic parameters, and thus give lower bounds for dimSk(Γn): these are the starred
numbers.
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Table 3.3: Dimensions of spaces of scalar Siegel cusp forms
k 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

dimSk(Γ1) 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1
dimSk(Γ2) 0 0 1 0 1 0 1 0 2 0 2 0 3 0 4
dimSk(Γ3) 0 0 0 0 1 0 1 0 3 0 4 0 6 0 9
dimSk(Γ4) 1 0 1 0 2 0 3 0 7 0 12 1 22 1 38
dimSk(Γ5) 0 0 0 0 2 0 3 0 13 0 28 0 76 0 186
dimSk(Γ6) 0 0 1 0 3 0 9 0 33 0 117 1 486 ? ?
dimSk(Γ7) 0 0 0 0 3 0 9 0 83 0 ? 0 ? 0 ?
dimSk(Γ8) ? 0∗ 1∗ 0∗ 4∗ 1∗ 23∗ 2∗ 234∗

dimSk(Γ9) ? ? 0∗ 0∗ 2∗ 0∗ 25∗ 0∗ 843∗

dimSk(Γ10) ? ? ? 0∗ 2∗ 0∗ 43∗ 1∗ 1591∗

dimSk(Γ11) ? ? ? ? 1∗ 0∗ 32∗ 0∗ 6478∗

In principle for n ≤ 7 one can compute the generating series
∑

k≥n+1 (dimSk(Γn))T k.
We have not attempted to do so for n ≥ 4.

3.6 Reliability

The complete algorithm computing the three families of numbers

• card (S(w1, . . . , wn)) for n ≥ 1, wi ∈ 1
2Z r Z and w1 > · · · > wn > 0,

• card (Oo(w1, . . . , wn)) for n ≥ 1, wi ∈ Z and w1 > · · · > wn > 0,

• card (Oe(w1, . . . , w2n)) for n ≥ 1, wi ∈ Z and w1 > · · · > w2n ≥ 0,

is long and complicated. Our implementation consists of more than 5000 lines of source
code (mainly in Python, using Sage [S+14]), therefore it certainly contains errors. There
are several mathematically meaningful checks suggesting that the tables produced by our
program are valid:

1. When computing the geometric side of the trace formula we obviously always find
a rational number. The trace formula asserts that it is equal to the spectral side,
which is an integer, being an Euler-Poincaré characteristic. The first check that our
tables pass is thus that the geometric sides are indeed integral.

2. With a one-line modification, our algorithm can be used to compute global orbital
integrals for special orthogonal groups G/Q which are split at every finite place and
such that G(R) is compact. On a space of dimension d such a group exists if and
only d = −1, 0, 1 mod 8. Recall that for d ∈ {7, 8, 9}, up to isomorphism there is a
unique regular and definite positive quadratic form q : Zd → Z. These are the lattices
E7, E8 and E8 ⊕ A1. Each one of these three lattices defines a reductive group G

over Z such that GQ is as above, and their uniqueness is equivalent to the fact that
the arithmetic genus G(Af )/G(Ẑ) has one element. Chenevier and Renard [CR14]
computed the geometric side of the trace formula, which is elementary and does not
depend on Arthur’s work in the anisotropic case, to count level one automorphic
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representations for these groups. This is possible because G(Z) is closely related to
the Weyl groups of the root systems E7 and E8, for which Carter [Car72] described
the conjugacy classes and their orders. We checked that we obtain the same “masses”
(see section 3.3.2.5).

3. The numbers card (S(w1, . . . , wn)), card (Oo(w1, . . . , wn)) and card (Oe(w1, . . . , w2n))

belong to Z≥0. Our tables pass this check.

4. In low rank there are exceptional isogenies between the groups that we consider:
PGSp2 ' SO3, PGSp4 ' SO5, (SO4)sc ' SL2×SL2, which by [CR14][Proposition
4.7] imply:

(a) For any odd w1 ∈ Z>0, card (S(w1/2)) = card (Oo(w1)). Note that card (Oo(w1)) =

0 if w1 is even.

(b) For any integers w1 > w2 > 0 such that w1 + w2 is odd,

card

(
S

(
w1 + w2

2
,
w1 − w2

2

))
= card (Oo(w1, w2)) .

Note that card (Oo(w1, w2)) = 0 if w1 + w2 is even.

(c) For any integers w1 > w2 > 0 such that w1 + w2 is odd,

card

(
S

(
w1 + w2

2

))
× card

(
S

(
w1 − w2

2

))
= card (Oe(w1, w2)) ,

and for any odd integer w > 0,(
card

(
S(w2 )

)
2

)
= Oe(w, 0).

Note that card (Oe(w1, w2)) = 0 if w1 + w2 is even.

5. By results of Mestre [Mes86], Fermigier [Fer96] and Miller [Mil02], in low motivic
weight (that is 2w1) some of the cardinalities of S(w1, . . . ), Oo(w1, . . . ) andOe(w1, . . . )

are known to vanish. In forthcoming work, Chenevier and Lannes improve their
method to show that if n ≥ 1 and π is a self-dual cuspidal automorphic representa-
tion of GLn/Q such that

• for any prime number p, πp is unramified,

• the local Langlands parameter ϕ of π∞ is either

– a direct sum of copies of 1, εC/R and Ir for integers 1 ≤ r ≤ 10, or

– a direct sum of copies of Ir for r ∈ 1
2Z r Z and 1

2 ≤ r ≤
19
2 .

then ϕ belongs to the following list:

• 1,

• I11/2, I15/2, I17/2, I19/2,

• εC/R ⊕ I10, εC/R ⊕ I9,
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• Ir/2 ⊕ I19/2 with r ∈ {5, 7, 9, 11, 13},

• I4 ⊕ I9, Ir ⊕ I10 with r ∈ {2, 3, 4, 5, 6, 7},

• 1⊕ I6 ⊕ I10, 1⊕ I7 ⊕ I10.

Note that they make no regularity assumption. This implies the vanishing of 2521

values in our tables for groups of rank ≤ 6. In our tables, the only non-vanishing
card (S(w1, . . . )), card (Oo(w1, . . . )) or card (Oe(w1, . . . )) with w1 ≤ 10 are the fol-
lowing.

• For w1 ∈
{

11
2 ,

15
2 ,

17
2 ,

19
2

}
, card (S(w1)) = 1. These are the well-known modular

forms.

• card
(
S
(

19
2 ,

7
2

))
= 1.

6. Finally, we can compare the values that we obtain for the dimensions of spaces of
Siegel modular forms with known ones. Our formulae coincide with those given in
[Igu62] (genus two, scalar) and [Tsu83] and [Tsu84] (genus two, vector-valued). Tsuy-
umine [Tsu86] gave a dimension formula in the scalar case in genus 3. There seems
to be a typographical error in the formula on page 832 of [Tsu86], the denominator
should be

(1− T 4)(1− T 12)2(1− T 14)(1− T 18)(1− T 20)(1− T 30)

instead of

(1− T 4)(1− T 12)3(1− T 14)(1− T 18)(1− T 20)(1− T 30).

With this correction we find the same formula as Tsuyumine. In [BFvdG14] Bergström,
Faber and van der Geer conjecture a formula for the cohomology of local systems on
the moduli space A3 in terms of motives conjecturally associated with Siegel cusp
forms. As a corollary they obtain a conjectural formula for dimSr(Γ3) where r is an
algebraic representation of GL3 of highest weight m1 ≥ m2 ≥ m3 ≥ 4. For m1 ≤ 24

(1771 values) we have checked that our values coincide. We have also checked that
our tables agree with Nebe and Venkov’s theorem and conjecture in weight 12 [NV01]
and Poor and Yuen’s results in low weight [PY07].

3.7 Tables

3.7.1 Masses

Table 3.4: Masses for the group SO3

Char. pol. mass Char. pol. mass Char. pol. mass
Φ3

1 −1/12 Φ1Φ2
2 1/4 Φ1Φ3 1/3
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Table 3.5: Masses for the group SO5

Char. pol. mass Char. pol. mass Char. pol. mass Char. pol. mass
Φ5

1 −1/1440 Φ3
1Φ2

2 −1/48 Φ1Φ4
2 7/288 Φ1Φ2

2Φ4 1/4

Φ1Φ2
4 −1/24 Φ3

1Φ3 −1/36 Φ1Φ2
2Φ3 1/12 Φ1Φ2

3 −1/36

Φ1Φ2
2Φ6 2/9 Φ1Φ2

6 −1/36 Φ1Φ12 1/6 Φ1Φ5 2/5

Table 3.6: Masses for the group SO7

Char. pol. mass Char. pol. mass Char. pol. mass
Φ7

1 1/483840 Φ5
1Φ2

2 −19/23040 Φ3
1Φ4

2 −331/13824

Φ1Φ6
2 1/7680 Φ3

1Φ2
2Φ4 −11/192 Φ1Φ4

2Φ4 1/64

Φ3
1Φ2

4 25/1152 Φ1Φ2
2Φ2

4 −7/384 Φ1Φ2
2Φ8 3/16

Φ1Φ4Φ8 3/16 Φ5
1Φ3 −1/1440 Φ3

1Φ2
2Φ3 −1/36

Φ1Φ4
2Φ3 7/864 Φ1Φ2

2Φ3Φ4 1/24 Φ1Φ3Φ2
4 −1/72

Φ3
1Φ2

3 7/144 Φ1Φ2
2Φ2

3 −1/144 Φ1Φ3
3 1/216

Φ3
1Φ2

2Φ6 −23/432 Φ1Φ4
2Φ6 1/48 Φ1Φ2

2Φ4Φ6 1/8

Φ1Φ2
2Φ3Φ6 5/27 Φ3

1Φ2
6 1/432 Φ1Φ2

2Φ2
6 1/48

Φ1Φ3Φ2
6 1/216 Φ3

1Φ12 −1/72 Φ1Φ2
2Φ12 1/24

Φ1Φ3Φ12 5/36 Φ1Φ9 1/3 Φ3
1Φ5 −1/15

Φ1Φ2
2Φ5 1/10 Φ1Φ3Φ5 1/15 Φ1Φ2

2Φ10 3/10

Φ1Φ7 3/7
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Table 3.7: Masses for the group SO9

Char. pol. mass Char. pol. mass Char. pol. mass
Φ9

1 1/116121600 Φ7
1Φ2

2 1/1935360 Φ5
1Φ4

2 −4963/1658880

Φ3
1Φ6

2 −31/92160 Φ1Φ8
2 121/116121600 Φ5

1Φ2
2Φ4 −67/23040

Φ3
1Φ4

2Φ4 −7/768 Φ1Φ6
2Φ4 1/2560 Φ5

1Φ2
4 109/138240

Φ3
1Φ2

2Φ2
4 37/4608 Φ1Φ4

2Φ2
4 −331/27648 Φ1Φ2

2Φ3
4 1/128

Φ1Φ4
4 1/7680 Φ3

1Φ2
2Φ8 −1/64 Φ1Φ4

2Φ8 1/64

Φ3
1Φ4Φ8 −1/64 Φ1Φ2

2Φ4Φ8 21/64 Φ1Φ2
8 1/32

Φ7
1Φ3 1/1451520 Φ5

1Φ2
2Φ3 −49/23040 Φ3

1Φ4
2Φ3 −331/41472

Φ1Φ6
2Φ3 1/23040 Φ3

1Φ2
2Φ3Φ4 5/576 Φ1Φ4

2Φ3Φ4 1/192

Φ3
1Φ3Φ2

4 25/3456 Φ1Φ2
2Φ3Φ2

4 −7/1152 Φ1Φ2
2Φ3Φ8 1/16

Φ1Φ3Φ4Φ8 1/16 Φ5
1Φ2

3 67/17280 Φ3
1Φ2

2Φ2
3 7/576

Φ1Φ4
2Φ2

3 −7/10368 Φ1Φ2
2Φ2

3Φ4 −1/144 Φ1Φ2
3Φ2

4 1/864

Φ3
1Φ3

3 −25/2592 Φ1Φ2
2Φ3

3 1/864 Φ1Φ4
3 1/25920

Φ5
1Φ2

2Φ6 −83/51840 Φ3
1Φ4

2Φ6 −7/576 Φ1Φ6
2Φ6 37/51840

Φ3
1Φ2

2Φ4Φ6 −1/96 Φ1Φ4
2Φ4Φ6 1/32 Φ1Φ2

2Φ2
4Φ6 −23/864

Φ1Φ2
2Φ6Φ8 1/8 Φ3

1Φ2
2Φ3Φ6 −11/324 Φ1Φ4

2Φ3Φ6 1/36

Φ1Φ2
2Φ3Φ4Φ6 1/6 Φ1Φ2

2Φ2
3Φ6 1/324 Φ5

1Φ2
6 1/51840

Φ3
1Φ2

2Φ2
6 −1/576 Φ1Φ4

2Φ2
6 −133/3456 Φ1Φ2

2Φ4Φ2
6 −1/16

Φ1Φ2
4Φ2

6 1/864 Φ3
1Φ3Φ2

6 −1/2592 Φ1Φ2
2Φ3Φ2

6 −13/288

Φ1Φ2
3Φ2

6 41/2592 Φ1Φ2
2Φ3

6 1/324 Φ1Φ4
6 1/25920

Φ5
1Φ12 −1/8640 Φ3

1Φ2
2Φ12 −1/288 Φ1Φ4

2Φ12 7/1728

Φ1Φ2
2Φ4Φ12 1/8 Φ1Φ2

4Φ12 1/48 Φ3
1Φ3Φ12 −5/432

Φ1Φ2
2Φ3Φ12 5/144 Φ1Φ2

3Φ12 1/432 Φ1Φ2
2Φ6Φ12 5/54

Φ1Φ2
6Φ12 1/432 Φ1Φ2

12 1/48 Φ1Φ24 1/4

Φ3
1Φ9 −1/36 Φ1Φ2

2Φ9 1/12 Φ1Φ3Φ9 4/9

Φ1Φ2
2Φ18 2/9 Φ1Φ6Φ18 1/9 Φ5

1Φ5 −7/3600

Φ3
1Φ2

2Φ5 −1/60 Φ1Φ4
2Φ5 7/720 Φ1Φ2

2Φ4Φ5 1/20

Φ1Φ2
4Φ5 −1/60 Φ3

1Φ3Φ5 1/180 Φ1Φ2
2Φ3Φ5 1/60

Φ1Φ2
3Φ5 −1/90 Φ1Φ2

2Φ5Φ6 4/45 Φ1Φ5Φ2
6 −1/90

Φ1Φ5Φ12 1/15 Φ1Φ2
5 1/100 Φ3

1Φ2
2Φ10 −1/40

Φ1Φ4
2Φ10 11/200 Φ1Φ2

2Φ4Φ10 3/20 Φ1Φ2
2Φ3Φ10 1/10

Φ1Φ2
2Φ6Φ10 1/5 Φ1Φ2

10 1/100 Φ1Φ20 3/10

Φ1Φ15 1/5 Φ1Φ30 1/5 Φ3
1Φ7 −1/28

Φ1Φ2
2Φ7 3/28 Φ1Φ3Φ7 1/7 Φ1Φ2

2Φ14 3/7

Table 3.8: Masses for the group Sp2

Char. pol. mass Char. pol. mass Char. pol. mass
Φ2

1 −1/12 Φ2
2 −1/12 Φ4 1/2

Φ3 1/3 Φ6 1/3
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Table 3.9: Masses for the group Sp4

Char. pol. mass Char. pol. mass Char. pol. mass Char. pol. mass
Φ4

1 −1/1440 Φ2
1Φ2

2 7/144 Φ4
2 −1/1440 Φ2

1Φ4 −1/24

Φ2
2Φ4 −1/24 Φ2

4 −1/24 Φ8 1/2 Φ2
1Φ3 −1/36

Φ2
2Φ3 −1/36 Φ3Φ4 1/6 Φ2

3 −1/36 Φ2
1Φ6 −1/36

Φ2
2Φ6 −1/36 Φ4Φ6 1/6 Φ3Φ6 4/9 Φ2

6 −1/36

Φ12 1/6 Φ5 2/5 Φ10 2/5

Table 3.10: Masses for the group Sp6

Char. pol. mass Char. pol. mass Char. pol. mass
Φ6

1 1/362880 Φ4
1Φ2

2 31/17280 Φ2
1Φ4

2 31/17280

Φ6
2 1/362880 Φ4

1Φ4 −1/2880 Φ2
1Φ2

2Φ4 7/288

Φ4
2Φ4 −1/2880 Φ2

1Φ2
4 7/288 Φ2

2Φ2
4 7/288

Φ3
4 1/48 Φ2

1Φ8 −1/24 Φ2
2Φ8 −1/24

Φ4Φ8 3/4 Φ4
1Φ3 −1/4320 Φ2

1Φ2
2Φ3 7/432

Φ4
2Φ3 −1/4320 Φ2

1Φ3Φ4 −1/72 Φ2
2Φ3Φ4 −1/72

Φ3Φ2
4 −1/72 Φ3Φ8 1/6 Φ2

1Φ2
3 25/432

Φ2
2Φ2

3 1/432 Φ2
3Φ4 −1/72 Φ3

3 1/162

Φ4
1Φ6 −1/4320 Φ2

1Φ2
2Φ6 7/432 Φ4

2Φ6 −1/4320

Φ2
1Φ4Φ6 −1/72 Φ2

2Φ4Φ6 −1/72 Φ2
4Φ6 −1/72

Φ6Φ8 1/6 Φ2
1Φ3Φ6 −1/27 Φ2

2Φ3Φ6 −1/27

Φ3Φ4Φ6 2/9 Φ2
3Φ6 1/54 Φ2

1Φ2
6 1/432

Φ2
2Φ2

6 25/432 Φ4Φ2
6 −1/72 Φ3Φ2

6 1/54

Φ3
6 1/162 Φ2

1Φ12 −1/72 Φ2
2Φ12 −1/72

Φ4Φ12 5/12 Φ3Φ12 2/9 Φ6Φ12 2/9

Φ9 4/9 Φ18 4/9 Φ2
1Φ5 −1/30

Φ2
2Φ5 −1/30 Φ4Φ5 1/5 Φ3Φ5 2/15

Φ5Φ6 2/15 Φ2
1Φ10 −1/30 Φ2

2Φ10 −1/30

Φ4Φ10 1/5 Φ3Φ10 2/15 Φ6Φ10 2/15

Φ7 4/7 Φ14 4/7
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Table 3.11: Masses for the group Sp8

Char. pol. mass Char. pol. mass Char. pol. mass Char. pol. mass
Φ8

1 1/87091200 Φ6
1Φ2

2 −127/4354560 Φ4
1Φ4

2 871/2073600 Φ2
1Φ6

2 −127/4354560

Φ8
2 1/87091200 Φ6

1Φ4 1/725760 Φ4
1Φ2

2Φ4 31/34560 Φ2
1Φ4

2Φ4 31/34560

Φ6
2Φ4 1/725760 Φ4

1Φ2
4 31/34560 Φ2

1Φ2
2Φ2

4 −361/3456 Φ4
2Φ2

4 31/34560

Φ2
1Φ3

4 −7/576 Φ2
2Φ3

4 −7/576 Φ4
4 1/5760 Φ4

1Φ8 −1/2880

Φ2
1Φ2

2Φ8 7/288 Φ4
2Φ8 −1/2880 Φ2

1Φ4Φ8 −3/16 Φ2
2Φ4Φ8 −3/16

Φ2
4Φ8 −1/48 Φ2

8 1/24 Φ16 1 Φ6
1Φ3 1/1088640

Φ4
1Φ2

2Φ3 31/51840 Φ2
1Φ4

2Φ3 31/51840 Φ6
2Φ3 1/1088640 Φ4

1Φ3Φ4 −1/8640

Φ2
1Φ2

2Φ3Φ4 7/864 Φ4
2Φ3Φ4 −1/8640 Φ2

1Φ3Φ2
4 7/864 Φ2

2Φ3Φ2
4 7/864

Φ3Φ3
4 1/144 Φ2

1Φ3Φ8 −1/72 Φ2
2Φ3Φ8 −1/72 Φ3Φ4Φ8 1/4

Φ4
1Φ2

3 241/51840 Φ2
1Φ2

2Φ2
3 −175/5184 Φ4

2Φ2
3 1/51840 Φ2

1Φ2
3Φ4 25/864

Φ2
2Φ2

3Φ4 1/864 Φ2
3Φ2

4 1/864 Φ2
3Φ8 −1/72 Φ2

1Φ3
3 −25/1944

Φ2
2Φ3

3 −1/1944 Φ3
3Φ4 1/324 Φ4

3 1/19440 Φ6
1Φ6 1/1088640

Φ4
1Φ2

2Φ6 31/51840 Φ2
1Φ4

2Φ6 31/51840 Φ6
2Φ6 1/1088640 Φ4

1Φ4Φ6 −1/8640

Φ2
1Φ2

2Φ4Φ6 7/864 Φ4
2Φ4Φ6 −1/8640 Φ2

1Φ2
4Φ6 7/864 Φ2

2Φ2
4Φ6 7/864

Φ3
4Φ6 1/144 Φ2

1Φ6Φ8 −1/72 Φ2
2Φ6Φ8 −1/72 Φ4Φ6Φ8 1/4

Φ4
1Φ3Φ6 −1/3240 Φ2

1Φ2
2Φ3Φ6 7/324 Φ4

2Φ3Φ6 −1/3240 Φ2
1Φ3Φ4Φ6 −1/54

Φ2
2Φ3Φ4Φ6 −1/54 Φ3Φ2

4Φ6 −1/54 Φ3Φ6Φ8 2/9 Φ2
1Φ2

3Φ6 −25/648

Φ2
2Φ2

3Φ6 −1/648 Φ2
3Φ4Φ6 1/108 Φ3

3Φ6 5/243 Φ4
1Φ2

6 1/51840

Φ2
1Φ2

2Φ2
6 −175/5184 Φ4

2Φ2
6 241/51840 Φ2

1Φ4Φ2
6 1/864 Φ2

2Φ4Φ2
6 25/864

Φ2
4Φ2

6 1/864 Φ2
6Φ8 −1/72 Φ2

1Φ3Φ2
6 −1/648 Φ2

2Φ3Φ2
6 −25/648

Φ3Φ4Φ2
6 1/108 Φ2

3Φ2
6 11/648 Φ2

1Φ3
6 −1/1944 Φ2

2Φ3
6 −25/1944

Φ4Φ3
6 1/324 Φ3Φ3

6 5/243 Φ4
6 1/19440 Φ4

1Φ12 −1/8640

Φ2
1Φ2

2Φ12 7/864 Φ4
2Φ12 −1/8640 Φ2

1Φ4Φ12 −5/144 Φ2
2Φ4Φ12 −5/144

Φ2
4Φ12 7/144 Φ8Φ12 1/12 Φ2

1Φ3Φ12 −1/54 Φ2
2Φ3Φ12 −1/54

Φ3Φ4Φ12 5/9 Φ2
3Φ12 1/108 Φ2

1Φ6Φ12 −1/54 Φ2
2Φ6Φ12 −1/54

Φ4Φ6Φ12 5/9 Φ3Φ6Φ12 14/27 Φ2
6Φ12 1/108 Φ2

12 1/36

Φ24 1/3 Φ2
1Φ9 −1/27 Φ2

2Φ9 −1/27 Φ4Φ9 2/9

Φ3Φ9 16/27 Φ6Φ9 4/27 Φ2
1Φ18 −1/27 Φ2

2Φ18 −1/27

Φ4Φ18 2/9 Φ3Φ18 4/27 Φ6Φ18 16/27 Φ4
1Φ5 −1/3600

Φ2
1Φ2

2Φ5 7/360 Φ4
2Φ5 −1/3600 Φ2

1Φ4Φ5 −1/60 Φ2
2Φ4Φ5 −1/60

Φ2
4Φ5 −1/60 Φ5Φ8 1/5 Φ2

1Φ3Φ5 −1/90 Φ2
2Φ3Φ5 −1/90

Φ3Φ4Φ5 1/15 Φ2
3Φ5 −1/90 Φ2

1Φ5Φ6 −1/90 Φ2
2Φ5Φ6 −1/90

Φ4Φ5Φ6 1/15 Φ3Φ5Φ6 8/45 Φ5Φ2
6 −1/90 Φ5Φ12 1/15

Φ2
5 1/75 Φ4

1Φ10 −1/3600 Φ2
1Φ2

2Φ10 7/360 Φ4
2Φ10 −1/3600

Φ2
1Φ4Φ10 −1/60 Φ2

2Φ4Φ10 −1/60 Φ2
4Φ10 −1/60 Φ8Φ10 1/5

Φ2
1Φ3Φ10 −1/90 Φ2

2Φ3Φ10 −1/90 Φ3Φ4Φ10 1/15 Φ2
3Φ10 −1/90

Φ2
1Φ6Φ10 −1/90 Φ2

2Φ6Φ10 −1/90 Φ4Φ6Φ10 1/15 Φ3Φ6Φ10 8/45

Φ2
6Φ10 −1/90 Φ10Φ12 1/15 Φ5Φ10 24/25 Φ2

10 1/75

Φ20 2/5 Φ15 4/15 Φ30 4/15 Φ2
1Φ7 −1/21

Φ2
2Φ7 −1/21 Φ4Φ7 2/7 Φ3Φ7 4/21 Φ6Φ7 4/21

Φ2
1Φ14 −1/21 Φ2

2Φ14 −1/21 Φ4Φ14 2/7 Φ3Φ14 4/21

Φ6Φ14 4/21

For even orthogonal groups and when the characteristic polynomial is coprime to Φ1Φ2,
the characteristic polynomial defines two conjugacy classes over Q. They have the same
mass.
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Table 3.12: Masses for the group SO4

Char. pol. mass Char. pol. mass Char. pol. mass
Φ4

1 1/144 Φ2
1Φ2

2 1/8 Φ4
2 1/144

Φ2
4 −1/24 Φ2

1Φ3 1/9 Φ2
3 −1/36

Φ2
2Φ6 1/9 Φ2

6 −1/36 Φ12 1/6

Table 3.13: Masses for the group SO8

Char. pol. mass Char. pol. mass Char. pol. mass
Φ8

1 1/58060800 Φ6
1Φ2

2 1/15360 Φ4
1Φ4

2 1357/165888

Φ2
1Φ6

2 1/15360 Φ8
2 1/58060800 Φ4

1Φ2
2Φ4 1/64

Φ2
1Φ4

2Φ4 1/64 Φ4
1Φ2

4 −55/13824 Φ2
1Φ2

2Φ2
4 17/768

Φ4
2Φ2

4 −55/13824 Φ4
4 1/7680 Φ2

1Φ2
2Φ8 3/16

Φ2
1Φ4Φ8 3/32 Φ2

2Φ4Φ8 3/32 Φ2
8 1/32

Φ6
1Φ3 1/25920 Φ4

1Φ2
2Φ3 1/96 Φ2

1Φ4
2Φ3 41/5184

Φ2
1Φ2

2Φ3Φ4 1/8 Φ2
1Φ3Φ2

4 1/432 Φ4
1Φ2

3 −19/1728

Φ2
1Φ2

2Φ2
3 1/96 Φ4

2Φ2
3 −1/5184 Φ2

3Φ2
4 1/864

Φ2
1Φ3

3 1/648 Φ4
3 1/25920 Φ4

1Φ2
2Φ6 41/5184

Φ2
1Φ4

2Φ6 1/96 Φ6
2Φ6 1/25920 Φ2

1Φ2
2Φ4Φ6 1/8

Φ2
2Φ2

4Φ6 1/432 Φ2
1Φ2

2Φ3Φ6 23/81 Φ2
2Φ2

3Φ6 1/648

Φ4
1Φ2

6 −1/5184 Φ2
1Φ2

2Φ2
6 1/96 Φ4

2Φ2
6 −19/1728

Φ2
4Φ2

6 1/864 Φ2
1Φ3Φ2

6 1/648 Φ2
3Φ2

6 41/2592

Φ2
2Φ3

6 1/648 Φ4
6 1/25920 Φ4

1Φ12 1/864

Φ2
1Φ2

2Φ12 1/48 Φ4
2Φ12 1/864 Φ2

4Φ12 1/48

Φ2
1Φ3Φ12 5/108 Φ2

3Φ12 1/432 Φ2
2Φ6Φ12 5/108

Φ2
6Φ12 1/432 Φ2

12 1/48 Φ24 1/4

Φ2
1Φ9 1/9 Φ3Φ9 1/9 Φ2

2Φ18 1/9

Φ6Φ18 1/9 Φ4
1Φ5 1/100 Φ2

1Φ2
2Φ5 3/20

Φ2
1Φ3Φ5 1/5 Φ2

5 1/100 Φ2
1Φ2

2Φ10 3/20

Φ4
2Φ10 1/100 Φ2

2Φ6Φ10 1/5 Φ2
10 1/100

Φ20 3/10 Φ15 1/5 Φ30 1/5

Φ2
1Φ7 3/7 Φ2

2Φ14 3/7

3.7.2 Some essentially self-dual, algebraic, level one, automorphic cuspidal
representations of GLn for n ≤ 13

The following tables list the non-zero

card(S(w1, . . . , wn)), card(Oo(w1, . . . , wn)) and card(Oe(w1, . . . , w2n))

as defined in the introduction. These values depend on Assumption 3.4.2.4 when wi =

wi+1 + 1 for some i or

• wn = 1
2 for card(S(w1, . . . , wn)),
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• wn = 1 for card(Oo(w1, . . . , wn)),

• wn = 0 for card(Oe(w1, . . . , w2n)).

Much more data is available at http://www.math.ens.fr/~taibi/dimtrace/.

Table 3.14: card (S(w))
2w card. 2w card. 2w card. 2w card.
11 1 23 2 33 2 43 3
15 1 25 1 35 3 45 3
17 1 27 2 37 2 47 4
19 1 29 2 39 3 49 3
21 1 31 2 41 3 51 4
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Table 3.15: card (S(w1, w2))
(2w1, 2w2) card. (2w1, 2w2) card. (2w1, 2w2) card. (2w1, 2w2) card.
(19, 7) 1 (31, 5) 1 (35, 25) 5 (39, 33) 4
(21, 5) 1 (31, 7) 3 (35, 27) 3 (39, 35) 1
(21, 9) 1 (31, 9) 2 (35, 29) 2 (39, 37) 1
(21, 13) 1 (31, 11) 3 (35, 31) 1 (41, 1) 1
(23, 7) 1 (31, 13) 4 (37, 1) 1 (41, 3) 1
(23, 9) 1 (31, 15) 4 (37, 5) 4 (41, 5) 6
(23, 13) 1 (31, 17) 3 (37, 7) 3 (41, 7) 4
(25, 5) 1 (31, 19) 4 (37, 9) 7 (41, 9) 9
(25, 7) 1 (31, 21) 3 (37, 11) 5 (41, 11) 6
(25, 9) 2 (31, 23) 2 (37, 13) 9 (41, 13) 13
(25, 11) 1 (31, 25) 2 (37, 15) 6 (41, 15) 10
(25, 13) 2 (33, 5) 3 (37, 17) 9 (41, 17) 13
(25, 15) 1 (33, 7) 2 (37, 19) 8 (41, 19) 11
(25, 17) 1 (33, 9) 5 (37, 21) 10 (41, 21) 14
(25, 19) 1 (33, 11) 2 (37, 23) 7 (41, 23) 11
(27, 3) 1 (33, 13) 6 (37, 25) 9 (41, 25) 15
(27, 7) 2 (33, 15) 4 (37, 27) 6 (41, 27) 11
(27, 9) 1 (33, 17) 6 (37, 29) 5 (41, 29) 11
(27, 11) 2 (33, 19) 5 (37, 31) 4 (41, 31) 9
(27, 13) 2 (33, 21) 5 (37, 33) 2 (41, 33) 8
(27, 15) 2 (33, 23) 3 (39, 3) 3 (41, 35) 4
(27, 17) 1 (33, 25) 4 (39, 5) 2 (41, 37) 3
(27, 19) 1 (33, 27) 2 (39, 7) 7 (43, 3) 5
(27, 21) 1 (33, 29) 1 (39, 9) 5 (43, 5) 3
(29, 5) 2 (35, 3) 2 (39, 11) 8 (43, 7) 9
(29, 7) 1 (35, 5) 1 (39, 13) 8 (43, 9) 7
(29, 9) 3 (35, 7) 5 (39, 15) 10 (43, 11) 11
(29, 11) 1 (35, 9) 4 (39, 17) 8 (43, 13) 11
(29, 13) 4 (35, 11) 5 (39, 19) 11 (43, 15) 15
(29, 15) 2 (35, 13) 5 (39, 21) 10 (43, 17) 13
(29, 17) 3 (35, 15) 6 (39, 23) 10 (43, 19) 17
(29, 19) 2 (35, 17) 5 (39, 25) 10 (43, 21) 14
(29, 21) 2 (35, 19) 7 (39, 27) 9 (43, 23) 16
(29, 25) 1 (35, 21) 6 (39, 29) 7 (43, 25) 16
(31, 3) 2 (35, 23) 5 (39, 31) 6 (43, 27) 16
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Table 3.16: card (S(w1, w2, w3))
(2wi)i card. (2wi)i card. (2wi)i card. (2wi)i card.
(23, 13, 5) 1 (27, 21, 7) 2 (29, 19, 13) 5 (31, 13, 5) 3
(23, 15, 3) 1 (27, 21, 9) 4 (29, 19, 15) 1 (31, 13, 7) 2
(23, 15, 7) 1 (27, 21, 11) 2 (29, 19, 17) 1 (31, 13, 9) 4
(23, 17, 5) 1 (27, 21, 13) 3 (29, 21, 3) 5 (31, 15, 3) 3
(23, 17, 9) 1 (27, 21, 15) 1 (29, 21, 5) 1 (31, 15, 5) 2
(23, 19, 3) 1 (27, 21, 17) 1 (29, 21, 7) 10 (31, 15, 7) 5
(23, 19, 11) 1 (27, 23, 3) 1 (29, 21, 9) 4 (31, 15, 9) 3
(25, 13, 3) 1 (27, 23, 5) 3 (29, 21, 11) 8 (31, 15, 11) 2
(25, 13, 7) 1 (27, 23, 7) 1 (29, 21, 13) 4 (31, 17, 1) 2
(25, 15, 5) 1 (27, 23, 9) 2 (29, 21, 15) 5 (31, 17, 5) 7
(25, 15, 9) 1 (27, 23, 11) 2 (29, 21, 17) 1 (31, 17, 7) 4
(25, 17, 3) 2 (27, 23, 13) 1 (29, 21, 19) 1 (31, 17, 9) 9
(25, 17, 7) 2 (27, 23, 15) 1 (29, 23, 1) 1 (31, 17, 11) 3
(25, 17, 11) 1 (27, 23, 17) 1 (29, 23, 3) 2 (31, 17, 13) 5
(25, 19, 1) 1 (27, 25, 5) 2 (29, 23, 5) 5 (31, 19, 3) 6
(25, 19, 5) 2 (27, 25, 7) 1 (29, 23, 7) 5 (31, 19, 5) 4
(25, 19, 9) 2 (27, 25, 9) 1 (29, 23, 9) 6 (31, 19, 7) 10
(25, 19, 13) 1 (27, 25, 11) 1 (29, 23, 11) 7 (31, 19, 9) 8
(25, 21, 3) 2 (27, 25, 13) 1 (29, 23, 13) 5 (31, 19, 11) 9
(25, 21, 7) 2 (27, 25, 15) 1 (29, 23, 15) 5 (31, 19, 13) 6
(25, 21, 11) 2 (27, 25, 17) 1 (29, 23, 17) 3 (31, 19, 15) 4
(25, 21, 15) 1 (29, 9, 7) 1 (29, 23, 19) 1 (31, 21, 1) 3
(27, 9, 5) 1 (29, 11, 5) 1 (29, 25, 3) 3 (31, 21, 3) 1
(27, 13, 5) 2 (29, 13, 3) 1 (29, 25, 5) 3 (31, 21, 5) 11
(27, 13, 7) 1 (29, 13, 5) 1 (29, 25, 7) 7 (31, 21, 7) 7
(27, 13, 9) 1 (29, 13, 7) 3 (29, 25, 9) 4 (31, 21, 9) 15
(27, 15, 3) 1 (29, 13, 9) 1 (29, 25, 11) 7 (31, 21, 11) 9
(27, 15, 5) 1 (29, 15, 1) 1 (29, 25, 13) 4 (31, 21, 13) 12
(27, 15, 7) 2 (29, 15, 5) 3 (29, 25, 15) 5 (31, 21, 15) 6
(27, 15, 9) 1 (29, 15, 7) 2 (29, 25, 17) 3 (31, 21, 17) 6
(27, 17, 5) 4 (29, 15, 9) 3 (29, 25, 19) 2 (31, 23, 1) 1
(27, 17, 7) 1 (29, 15, 13) 1 (29, 25, 21) 1 (31, 23, 3) 6
(27, 17, 9) 3 (29, 17, 3) 3 (29, 27, 1) 1 (31, 23, 5) 6
(27, 17, 11) 1 (29, 17, 5) 1 (29, 27, 5) 1 (31, 23, 7) 12
(27, 17, 13) 1 (29, 17, 7) 6 (29, 27, 7) 2 (31, 23, 9) 11
(27, 19, 3) 2 (29, 17, 9) 3 (29, 27, 9) 3 (31, 23, 11) 13
(27, 19, 5) 2 (29, 17, 11) 3 (29, 27, 11) 1 (31, 23, 13) 10
(27, 19, 7) 3 (29, 17, 13) 1 (29, 27, 13) 2 (31, 23, 15) 10
(27, 19, 9) 3 (29, 19, 1) 1 (29, 27, 15) 1 (31, 23, 17) 6
(27, 19, 11) 3 (29, 19, 3) 1 (29, 27, 17) 1 (31, 23, 19) 3
(27, 19, 13) 2 (29, 19, 5) 6 (29, 27, 19) 1 (31, 25, 1) 3
(27, 19, 15) 1 (29, 19, 7) 3 (31, 9, 5) 1 (31, 25, 3) 2
(27, 21, 1) 1 (29, 19, 9) 7 (31, 11, 3) 1 (31, 25, 5) 11
(27, 21, 5) 4 (29, 19, 11) 4 (31, 11, 7) 1 (31, 25, 7) 9
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Table 3.17: card (S(w1, w2, w3, w4))
(2wi)i card. (2wi)i card. (2wi)i card. (2wi)i card.
(25, 17, 9, 5) 1 (27, 19, 13, 9) 3 (27, 23, 15, 7) 7 (27, 25, 19, 7) 3
(25, 17, 13, 5) 1 (27, 19, 15, 3) 2 (27, 23, 15, 9) 4 (27, 25, 19, 9) 6
(25, 19, 9, 3) 1 (27, 19, 15, 5) 1 (27, 23, 15, 11) 5 (27, 25, 19, 11) 3
(25, 19, 11, 5) 1 (27, 19, 15, 7) 1 (27, 23, 15, 13) 1 (27, 25, 19, 13) 3
(25, 19, 13, 3) 1 (27, 19, 15, 9) 1 (27, 23, 17, 1) 5 (27, 25, 21, 3) 4
(25, 19, 13, 5) 1 (27, 19, 17, 5) 1 (27, 23, 17, 3) 2 (27, 25, 21, 7) 4
(25, 19, 13, 7) 1 (27, 19, 17, 9) 1 (27, 23, 17, 5) 6 (27, 25, 21, 9) 2
(25, 19, 13, 9) 1 (27, 21, 9, 3) 2 (27, 23, 17, 7) 5 (27, 25, 21, 11) 3
(25, 19, 15, 5) 1 (27, 21, 9, 7) 1 (27, 23, 17, 9) 7 (27, 25, 21, 13) 1
(25, 21, 11, 7) 1 (27, 21, 11, 3) 1 (27, 23, 17, 11) 3 (27, 25, 21, 15) 1
(25, 21, 13, 5) 1 (27, 21, 11, 5) 2 (27, 23, 17, 13) 4 (27, 25, 23, 3) 1
(25, 21, 13, 7) 1 (27, 21, 11, 7) 2 (27, 23, 19, 3) 5 (27, 25, 23, 9) 1
(25, 21, 15, 3) 1 (27, 21, 13, 3) 5 (27, 23, 19, 5) 1 (27, 25, 23, 11) 1
(25, 21, 15, 5) 1 (27, 21, 13, 5) 2 (27, 23, 19, 7) 6 (29, 15, 7, 5) 1
(25, 21, 15, 7) 2 (27, 21, 13, 7) 6 (27, 23, 19, 9) 2 (29, 15, 9, 3) 1
(25, 21, 15, 9) 1 (27, 21, 13, 9) 2 (27, 23, 19, 11) 3 (29, 15, 13, 3) 1
(25, 21, 17, 5) 1 (27, 21, 15, 1) 1 (27, 23, 19, 13) 1 (29, 17, 7, 3) 1
(25, 21, 17, 7) 1 (27, 21, 15, 3) 2 (27, 23, 19, 15) 1 (29, 17, 9, 5) 3
(25, 21, 17, 9) 1 (27, 21, 15, 5) 4 (27, 23, 21, 1) 1 (29, 17, 11, 3) 2
(25, 23, 9, 3) 1 (27, 21, 15, 7) 4 (27, 23, 21, 5) 1 (29, 17, 11, 7) 1
(25, 23, 11, 1) 1 (27, 21, 15, 9) 4 (27, 23, 21, 9) 1 (29, 17, 13, 1) 1
(25, 23, 11, 5) 2 (27, 21, 15, 11) 2 (27, 25, 9, 3) 2 (29, 17, 13, 5) 4
(25, 23, 13, 3) 1 (27, 21, 17, 3) 5 (27, 25, 11, 1) 1 (29, 17, 13, 7) 1
(25, 23, 13, 7) 1 (27, 21, 17, 7) 6 (27, 25, 11, 3) 1 (29, 17, 13, 9) 2
(25, 23, 15, 1) 1 (27, 21, 17, 9) 2 (27, 25, 11, 5) 2 (29, 17, 15, 3) 1
(25, 23, 15, 5) 3 (27, 21, 17, 11) 3 (27, 25, 13, 3) 5 (29, 17, 15, 7) 1
(25, 23, 15, 9) 1 (27, 21, 19, 3) 1 (27, 25, 13, 5) 1 (29, 19, 7, 5) 1
(25, 23, 15, 11) 1 (27, 21, 19, 5) 1 (27, 25, 13, 7) 4 (29, 19, 9, 3) 4
(25, 23, 17, 3) 1 (27, 21, 19, 7) 1 (27, 25, 13, 9) 1 (29, 19, 9, 5) 1
(25, 23, 17, 5) 1 (27, 21, 19, 9) 1 (27, 25, 15, 1) 3 (29, 19, 9, 7) 1
(25, 23, 17, 7) 1 (27, 21, 19, 11) 1 (27, 25, 15, 3) 2 (29, 19, 11, 1) 1
(25, 23, 17, 11) 1 (27, 23, 7, 3) 2 (27, 25, 15, 5) 5 (29, 19, 11, 3) 1
(25, 23, 19, 5) 1 (27, 23, 9, 1) 1 (27, 25, 15, 7) 3 (29, 19, 11, 5) 4
(27, 17, 9, 3) 1 (27, 23, 9, 5) 2 (27, 25, 15, 9) 5 (29, 19, 11, 7) 1
(27, 17, 9, 7) 1 (27, 23, 11, 3) 5 (27, 25, 15, 11) 1 (29, 19, 11, 9) 1
(27, 17, 13, 3) 2 (27, 23, 11, 5) 1 (27, 25, 17, 3) 7 (29, 19, 13, 3) 8
(27, 17, 13, 7) 2 (27, 23, 11, 7) 4 (27, 25, 17, 5) 2 (29, 19, 13, 5) 4
(27, 19, 9, 5) 1 (27, 23, 13, 1) 4 (27, 25, 17, 7) 7 (29, 19, 13, 7) 6
(27, 19, 11, 3) 2 (27, 23, 13, 3) 1 (27, 25, 17, 9) 4 (29, 19, 13, 9) 4
(27, 19, 11, 5) 1 (27, 23, 13, 5) 6 (27, 25, 17, 11) 5 (29, 19, 13, 11) 1
(27, 19, 13, 1) 1 (27, 23, 13, 7) 3 (27, 25, 17, 13) 1 (29, 19, 15, 1) 2
(27, 19, 13, 3) 1 (27, 23, 13, 9) 6 (27, 25, 19, 1) 3 (29, 19, 15, 3) 2
(27, 19, 13, 5) 4 (27, 23, 15, 3) 7 (27, 25, 19, 3) 2 (29, 19, 15, 5) 5
(27, 19, 13, 7) 1 (27, 23, 15, 5) 3 (27, 25, 19, 5) 5 (29, 19, 15, 7) 3
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Table 3.18: card (S(w1, w2, w3, w4))

(2wi)i card. (2wi)i card. (2wi)i card.
(23, 21, 17, 11, 3) 1 (27, 19, 15, 13, 5) 1 (27, 23, 13, 7, 5) 1
(25, 19, 15, 9, 3) 1 (27, 19, 17, 9, 3) 2 (27, 23, 13, 9, 3) 4
(25, 21, 13, 9, 3) 1 (27, 19, 17, 11, 5) 2 (27, 23, 13, 9, 7) 1
(25, 21, 15, 7, 3) 1 (27, 19, 17, 13, 3) 1 (27, 23, 13, 11, 5) 1
(25, 21, 15, 9, 1) 1 (27, 21, 13, 7, 3) 2 (27, 23, 15, 7, 3) 2
(25, 21, 15, 9, 5) 1 (27, 21, 13, 9, 1) 1 (27, 23, 15, 7, 5) 1
(25, 21, 15, 11, 3) 1 (27, 21, 13, 9, 5) 1 (27, 23, 15, 9, 1) 2
(25, 21, 15, 13, 1) 1 (27, 21, 13, 11, 3) 1 (27, 23, 15, 9, 3) 1
(25, 21, 17, 9, 3) 2 (27, 21, 15, 7, 1) 1 (27, 23, 15, 9, 5) 8
(25, 21, 17, 11, 1) 1 (27, 21, 15, 7, 5) 2 (27, 23, 15, 9, 7) 1
(25, 21, 17, 11, 5) 2 (27, 21, 15, 9, 3) 4 (27, 23, 15, 11, 3) 3
(25, 21, 17, 13, 3) 1 (27, 21, 15, 9, 5) 1 (27, 23, 15, 11, 5) 4
(25, 21, 17, 13, 7) 1 (27, 21, 15, 9, 7) 2 (27, 23, 15, 11, 7) 2
(25, 21, 19, 11, 3) 2 (27, 21, 15, 11, 1) 2 (27, 23, 15, 13, 1) 1
(25, 21, 19, 13, 1) 1 (27, 21, 15, 11, 5) 4 (27, 23, 15, 13, 3) 1
(25, 21, 19, 15, 3) 1 (27, 21, 15, 13, 3) 2 (27, 23, 15, 13, 5) 4
(25, 23, 15, 9, 3) 1 (27, 21, 15, 13, 5) 1 (27, 23, 15, 13, 7) 2
(25, 23, 17, 7, 3) 1 (27, 21, 15, 13, 7) 1 (27, 23, 15, 13, 9) 1
(25, 23, 17, 11, 3) 2 (27, 21, 17, 7, 3) 5 (27, 23, 17, 5, 3) 1
(25, 23, 17, 11, 5) 1 (27, 21, 17, 9, 1) 3 (27, 23, 17, 7, 1) 2
(25, 23, 17, 11, 7) 1 (27, 21, 17, 9, 5) 5 (27, 23, 17, 7, 5) 5
(25, 23, 17, 13, 1) 1 (27, 21, 17, 9, 7) 1 (27, 23, 17, 9, 3) 11
(25, 23, 17, 13, 5) 1 (27, 21, 17, 11, 3) 7 (27, 23, 17, 9, 5) 4
(25, 23, 17, 13, 7) 1 (27, 21, 17, 11, 5) 2 (27, 23, 17, 9, 7) 4
(25, 23, 17, 13, 9) 1 (27, 21, 17, 11, 7) 5 (27, 23, 17, 11, 1) 3
(25, 23, 19, 9, 5) 1 (27, 21, 17, 13, 1) 3 (27, 23, 17, 11, 3) 3
(25, 23, 19, 11, 3) 2 (27, 21, 17, 13, 5) 7 (27, 23, 17, 11, 5) 14
(25, 23, 19, 11, 5) 1 (27, 21, 17, 13, 7) 2 (27, 23, 17, 11, 7) 6
(25, 23, 19, 11, 7) 1 (27, 21, 17, 13, 9) 2 (27, 23, 17, 11, 9) 2
(25, 23, 19, 13, 3) 1 (27, 21, 17, 15, 3) 2 (27, 23, 17, 13, 3) 12
(25, 23, 19, 13, 5) 1 (27, 21, 17, 15, 7) 1 (27, 23, 17, 13, 5) 7
(25, 23, 19, 13, 7) 1 (27, 21, 19, 7, 1) 1 (27, 23, 17, 13, 7) 12
(25, 23, 19, 15, 3) 1 (27, 21, 19, 9, 3) 5 (27, 23, 17, 13, 9) 4
(25, 23, 19, 15, 7) 2 (27, 21, 19, 11, 1) 4 (27, 23, 17, 13, 11) 1
(25, 23, 19, 15, 9) 1 (27, 21, 19, 11, 5) 6 (27, 23, 17, 15, 1) 1
(25, 23, 21, 11, 3) 1 (27, 21, 19, 11, 7) 1 (27, 23, 17, 15, 5) 5
(25, 23, 21, 11, 5) 1 (27, 21, 19, 11, 9) 1 (27, 23, 17, 15, 7) 2
(25, 23, 21, 13, 3) 1 (27, 21, 19, 13, 3) 5 (27, 23, 17, 15, 9) 2
(25, 23, 21, 13, 5) 1 (27, 21, 19, 13, 5) 1 (27, 23, 19, 7, 3) 4
(27, 19, 13, 9, 3) 1 (27, 21, 19, 13, 7) 3 (27, 23, 19, 7, 5) 1
(27, 19, 15, 7, 3) 1 (27, 21, 19, 15, 1) 3 (27, 23, 19, 9, 1) 3
(27, 19, 15, 9, 1) 1 (27, 21, 19, 15, 5) 4 (27, 23, 19, 9, 3) 4
(27, 19, 15, 9, 5) 2 (27, 21, 19, 15, 9) 2 (27, 23, 19, 9, 5) 13
(27, 19, 15, 11, 3) 1 (27, 21, 19, 17, 3) 1 (27, 23, 19, 9, 7) 2
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Table 3.19: card (S(w1, w2, w3, w4, w5, w6))
(2wi)i card. (2wi)i card. (2wi)i card.
(25, 21, 17, 13, 7, 3) 1 (25, 23, 21, 19, 11, 7) 1 (27, 23, 17, 15, 7, 1) 4
(25, 23, 17, 11, 7, 3) 1 (25, 23, 21, 19, 13, 5) 1 (27, 23, 17, 15, 7, 5) 3
(25, 23, 17, 13, 7, 1) 1 (27, 21, 15, 13, 7, 3) 1 (27, 23, 17, 15, 9, 3) 8
(25, 23, 17, 13, 9, 3) 2 (27, 21, 17, 11, 7, 3) 1 (27, 23, 17, 15, 9, 5) 1
(25, 23, 19, 13, 7, 3) 2 (27, 21, 17, 13, 5, 3) 1 (27, 23, 17, 15, 9, 7) 1
(25, 23, 19, 13, 9, 1) 2 (27, 21, 17, 13, 7, 1) 1 (27, 23, 17, 15, 11, 1) 2
(25, 23, 19, 13, 9, 5) 3 (27, 21, 17, 13, 7, 5) 2 (27, 23, 17, 15, 11, 5) 3
(25, 23, 19, 13, 11, 3) 2 (27, 21, 17, 13, 9, 3) 4 (27, 23, 17, 15, 13, 3) 1
(25, 23, 19, 15, 7, 1) 2 (27, 21, 17, 13, 9, 5) 1 (27, 23, 19, 9, 5, 3) 1
(25, 23, 19, 15, 9, 3) 2 (27, 21, 17, 15, 7, 3) 2 (27, 23, 19, 9, 7, 1) 1
(25, 23, 19, 15, 9, 5) 2 (27, 21, 17, 15, 9, 5) 2 (27, 23, 19, 11, 5, 1) 1
(25, 23, 19, 15, 11, 1) 3 (27, 21, 19, 13, 7, 3) 3 (27, 23, 19, 11, 7, 3) 7
(25, 23, 19, 15, 11, 5) 3 (27, 21, 19, 13, 9, 1) 1 (27, 23, 19, 11, 9, 1) 2
(25, 23, 19, 15, 13, 3) 1 (27, 21, 19, 13, 9, 3) 2 (27, 23, 19, 11, 9, 5) 4
(25, 23, 19, 17, 9, 1) 2 (27, 21, 19, 13, 9, 5) 2 (27, 23, 19, 13, 5, 3) 7
(25, 23, 19, 17, 9, 5) 2 (27, 21, 19, 13, 11, 3) 1 (27, 23, 19, 13, 7, 1) 7
(25, 23, 19, 17, 11, 3) 2 (27, 21, 19, 13, 11, 5) 1 (27, 23, 19, 13, 7, 3) 3
(25, 23, 19, 17, 13, 1) 1 (27, 21, 19, 15, 5, 3) 1 (27, 23, 19, 13, 7, 5) 8
(25, 23, 19, 17, 13, 5) 1 (27, 21, 19, 15, 7, 1) 1 (27, 23, 19, 13, 9, 3) 25
(25, 23, 21, 11, 7, 3) 1 (27, 21, 19, 15, 9, 3) 4 (27, 23, 19, 13, 9, 5) 9
(25, 23, 21, 13, 7, 1) 2 (27, 21, 19, 15, 9, 5) 2 (27, 23, 19, 13, 9, 7) 6
(25, 23, 21, 13, 9, 3) 2 (27, 21, 19, 15, 11, 3) 2 (27, 23, 19, 13, 11, 1) 6
(25, 23, 21, 13, 11, 1) 1 (27, 21, 19, 15, 11, 5) 1 (27, 23, 19, 13, 11, 3) 3
(25, 23, 21, 15, 7, 3) 2 (27, 21, 19, 15, 11, 7) 1 (27, 23, 19, 13, 11, 5) 7
(25, 23, 21, 15, 9, 1) 2 (27, 21, 19, 17, 9, 5) 1 (27, 23, 19, 13, 11, 7) 2
(25, 23, 21, 15, 9, 5) 2 (27, 21, 19, 17, 11, 3) 2 (27, 23, 19, 15, 5, 1) 6
(25, 23, 21, 15, 11, 3) 5 (27, 23, 15, 11, 7, 3) 1 (27, 23, 19, 15, 7, 3) 13
(25, 23, 21, 15, 11, 5) 1 (27, 23, 15, 13, 7, 1) 1 (27, 23, 19, 15, 7, 5) 3
(25, 23, 21, 15, 11, 7) 2 (27, 23, 15, 13, 9, 3) 2 (27, 23, 19, 15, 9, 1) 15
(25, 23, 21, 15, 13, 5) 1 (27, 23, 17, 9, 7, 3) 2 (27, 23, 19, 15, 9, 3) 8
(25, 23, 21, 17, 7, 1) 2 (27, 23, 17, 11, 5, 3) 3 (27, 23, 19, 15, 9, 5) 24
(25, 23, 21, 17, 7, 5) 1 (27, 23, 17, 11, 7, 1) 2 (27, 23, 19, 15, 9, 7) 5
(25, 23, 21, 17, 9, 3) 3 (27, 23, 17, 11, 7, 5) 2 (27, 23, 19, 15, 11, 1) 1
(25, 23, 21, 17, 9, 7) 1 (27, 23, 17, 11, 9, 3) 3 (27, 23, 19, 15, 11, 3) 18
(25, 23, 21, 17, 11, 1) 3 (27, 23, 17, 13, 5, 1) 1 (27, 23, 19, 15, 11, 5) 8
(25, 23, 21, 17, 11, 5) 3 (27, 23, 17, 13, 7, 3) 12 (27, 23, 19, 15, 11, 7) 9
(25, 23, 21, 17, 11, 7) 1 (27, 23, 17, 13, 7, 5) 1 (27, 23, 19, 15, 11, 9) 1
(25, 23, 21, 17, 13, 3) 3 (27, 23, 17, 13, 9, 1) 6 (27, 23, 19, 15, 13, 1) 8
(25, 23, 21, 17, 13, 7) 1 (27, 23, 17, 13, 9, 3) 1 (27, 23, 19, 15, 13, 3) 2
(25, 23, 21, 17, 15, 1) 1 (27, 23, 17, 13, 9, 5) 9 (27, 23, 19, 15, 13, 5) 8
(25, 23, 21, 17, 15, 5) 1 (27, 23, 17, 13, 9, 7) 1 (27, 23, 19, 15, 13, 7) 3
(25, 23, 21, 19, 7, 3) 1 (27, 23, 17, 13, 11, 3) 4 (27, 23, 19, 15, 13, 9) 3
(25, 23, 21, 19, 9, 1) 1 (27, 23, 17, 13, 11, 7) 1 (27, 23, 19, 17, 5, 3) 4
(25, 23, 21, 19, 9, 5) 1 (27, 23, 17, 15, 5, 3) 2 (27, 23, 19, 17, 7, 1) 6
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Table 3.20: card (Oo(w))

w card. w card. w card. w card.
11 1 21 1 29 2 37 2
15 1 23 2 31 2 39 3
17 1 25 1 33 2 41 3
19 1 27 2 35 3 43 3

Table 3.21: card (Oo(w1, w2))

(w1, w2) card. (w1, w2) card. (w1, w2) card. (w1, w2) card.
(13, 6) 1 (21, 12) 5 (25, 6) 4 (28, 7) 6
(13, 8) 1 (21, 14) 5 (25, 8) 6 (28, 9) 8
(15, 6) 1 (21, 16) 4 (25, 10) 6 (28, 11) 8
(15, 8) 1 (21, 18) 3 (25, 12) 9 (28, 13) 10
(15, 10) 1 (21, 20) 1 (25, 14) 8 (28, 15) 11
(15, 12) 1 (22, 3) 1 (25, 16) 9 (28, 17) 9
(16, 7) 1 (22, 5) 1 (25, 18) 9 (28, 19) 10
(16, 9) 1 (22, 7) 2 (25, 20) 8 (28, 21) 9
(17, 4) 1 (22, 9) 4 (25, 22) 5 (28, 23) 5
(17, 8) 2 (22, 11) 2 (25, 24) 2 (28, 25) 3
(17, 10) 2 (22, 13) 4 (26, 5) 3 (29, 4) 4
(17, 12) 2 (22, 15) 3 (26, 7) 5 (29, 6) 5
(17, 14) 2 (22, 17) 2 (26, 9) 5 (29, 8) 10
(18, 5) 1 (22, 19) 1 (26, 11) 6 (29, 10) 11
(18, 7) 1 (23, 4) 1 (26, 13) 8 (29, 12) 13
(18, 9) 1 (23, 6) 3 (26, 15) 6 (29, 14) 15
(18, 11) 1 (23, 8) 4 (26, 17) 7 (29, 16) 17
(18, 13) 1 (23, 10) 6 (26, 19) 6 (29, 18) 15
(19, 6) 2 (23, 12) 5 (26, 21) 4 (29, 20) 17
(19, 8) 2 (23, 14) 7 (26, 23) 1 (29, 22) 15
(19, 10) 3 (23, 16) 7 (27, 2) 1 (29, 24) 13
(19, 12) 3 (23, 18) 6 (27, 4) 2 (29, 26) 10
(19, 14) 3 (23, 20) 5 (27, 6) 5 (29, 28) 4
(19, 16) 2 (23, 22) 2 (27, 8) 7 (30, 3) 2
(19, 18) 1 (24, 3) 1 (27, 10) 9 (30, 5) 5
(20, 5) 1 (24, 5) 2 (27, 12) 10 (30, 7) 7
(20, 7) 2 (24, 7) 3 (27, 14) 13 (30, 9) 10
(20, 9) 1 (24, 9) 4 (27, 16) 11 (30, 11) 11
(20, 11) 2 (24, 11) 5 (27, 18) 13 (30, 13) 13
(20, 13) 2 (24, 13) 5 (27, 20) 12 (30, 15) 13
(20, 15) 1 (24, 15) 5 (27, 22) 10 (30, 17) 15
(21, 4) 1 (24, 17) 4 (27, 24) 8 (30, 19) 13
(21, 6) 2 (24, 19) 3 (27, 26) 3 (30, 21) 13
(21, 8) 4 (24, 21) 1 (28, 3) 2 (30, 23) 10
(21, 10) 3 (25, 4) 2 (28, 5) 3 (30, 25) 8
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Table 3.22: card (Oo(w1, w2, w3))

(wi)i card. (wi)i card. (wi)i card.
(12, 8, 4) 1 (16, 9, 5) 1 (17, 12, 7) 5
(13, 8, 5) 1 (16, 9, 7) 1 (17, 12, 9) 6
(13, 10, 3) 1 (16, 10, 2) 1 (17, 12, 11) 2
(13, 10, 5) 1 (16, 10, 4) 2 (17, 13, 2) 1
(13, 10, 7) 1 (16, 10, 6) 2 (17, 13, 4) 4
(13, 12, 5) 1 (16, 10, 8) 1 (17, 13, 6) 5
(13, 12, 7) 1 (16, 11, 3) 1 (17, 13, 8) 3
(13, 12, 9) 1 (16, 11, 5) 2 (17, 13, 10) 2
(14, 7, 3) 1 (16, 11, 7) 1 (17, 14, 3) 4
(14, 8, 4) 1 (16, 11, 9) 1 (17, 14, 5) 6
(14, 9, 5) 1 (16, 12, 2) 1 (17, 14, 7) 8
(14, 10, 4) 1 (16, 12, 4) 3 (17, 14, 9) 7
(14, 10, 6) 1 (16, 12, 6) 3 (17, 14, 11) 6
(14, 12, 2) 1 (16, 12, 8) 2 (17, 14, 13) 2
(14, 12, 6) 1 (16, 12, 10) 2 (17, 15, 2) 2
(14, 12, 8) 1 (16, 13, 3) 2 (17, 15, 4) 2
(15, 8, 3) 1 (16, 13, 5) 2 (17, 15, 6) 3
(15, 8, 5) 1 (16, 13, 7) 2 (17, 15, 8) 4
(15, 8, 7) 1 (16, 13, 9) 1 (17, 15, 10) 2
(15, 9, 4) 1 (16, 13, 11) 1 (17, 15, 12) 1
(15, 10, 3) 1 (16, 14, 2) 2 (17, 16, 1) 1
(15, 10, 5) 2 (16, 14, 4) 2 (17, 16, 3) 2
(15, 10, 7) 1 (16, 14, 6) 3 (17, 16, 5) 4
(15, 10, 9) 1 (16, 14, 8) 3 (17, 16, 7) 6
(15, 11, 4) 1 (16, 14, 10) 2 (17, 16, 9) 7
(15, 11, 6) 1 (16, 14, 12) 1 (17, 16, 11) 3
(15, 12, 3) 2 (17, 6, 3) 1 (17, 16, 13) 4
(15, 12, 5) 2 (17, 7, 4) 1 (18, 6, 4) 1
(15, 12, 7) 3 (17, 8, 3) 1 (18, 7, 3) 1
(15, 12, 9) 2 (17, 8, 5) 3 (18, 7, 5) 1
(15, 13, 4) 1 (17, 8, 7) 1 (18, 8, 2) 1
(15, 13, 6) 1 (17, 9, 2) 1 (18, 8, 4) 3
(15, 13, 8) 1 (17, 9, 4) 1 (18, 8, 6) 2
(15, 14, 1) 1 (17, 9, 6) 1 (18, 9, 3) 2
(15, 14, 5) 2 (17, 10, 3) 3 (18, 9, 5) 3
(15, 14, 7) 3 (17, 10, 5) 3 (18, 9, 7) 2
(15, 14, 9) 3 (17, 10, 7) 4 (18, 10, 2) 2
(15, 14, 13) 1 (17, 10, 9) 2 (18, 10, 4) 4
(16, 6, 4) 1 (17, 11, 2) 1 (18, 10, 6) 4
(16, 7, 5) 1 (17, 11, 4) 3 (18, 10, 8) 2
(16, 8, 2) 1 (17, 11, 6) 1 (18, 11, 3) 3
(16, 8, 4) 1 (17, 11, 8) 1 (18, 11, 5) 4
(16, 8, 6) 1 (17, 12, 3) 3 (18, 11, 7) 4
(16, 9, 3) 1 (17, 12, 5) 7 (18, 11, 9) 2
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Table 3.23: card (Oo(w1, w2, w3, w4))

(wi)i card. (wi)i card. (wi)i card.
(13, 10, 9, 4) 1 (15, 12, 11, 6) 4 (15, 14, 13, 10) 3
(13, 12, 7, 4) 1 (15, 12, 11, 8) 2 (16, 8, 7, 3) 1
(13, 12, 9, 4) 1 (15, 12, 11, 10) 1 (16, 10, 7, 3) 1
(13, 12, 9, 6) 1 (15, 13, 7, 3) 2 (16, 10, 7, 5) 1
(13, 12, 11, 4) 1 (15, 13, 7, 5) 1 (16, 10, 8, 4) 1
(14, 10, 9, 5) 1 (15, 13, 8, 2) 1 (16, 10, 9, 3) 2
(14, 12, 7, 3) 1 (15, 13, 8, 4) 1 (16, 10, 9, 5) 2
(14, 12, 8, 4) 1 (15, 13, 8, 6) 1 (16, 10, 9, 7) 1
(14, 12, 9, 3) 1 (15, 13, 9, 3) 3 (16, 11, 6, 3) 1
(14, 12, 9, 5) 2 (15, 13, 9, 5) 4 (16, 11, 7, 4) 1
(14, 12, 9, 7) 1 (15, 13, 9, 7) 2 (16, 11, 8, 5) 1
(14, 12, 10, 4) 1 (15, 13, 10, 4) 2 (16, 11, 9, 2) 1
(14, 12, 10, 6) 1 (15, 13, 10, 6) 2 (16, 11, 9, 4) 2
(14, 12, 11, 3) 1 (15, 13, 10, 8) 1 (16, 11, 9, 6) 2
(14, 12, 11, 5) 1 (15, 13, 11, 1) 1 (16, 11, 9, 8) 1
(14, 12, 11, 7) 1 (15, 13, 11, 3) 2 (16, 11, 10, 3) 1
(14, 13, 8, 5) 1 (15, 13, 11, 5) 3 (16, 11, 10, 7) 1
(14, 13, 10, 5) 1 (15, 13, 11, 7) 3 (16, 12, 5, 3) 1
(14, 13, 10, 7) 1 (15, 13, 11, 9) 1 (16, 12, 6, 4) 2
(15, 10, 5, 4) 1 (15, 14, 5, 2) 1 (16, 12, 7, 3) 2
(15, 10, 7, 4) 1 (15, 14, 7, 2) 1 (16, 12, 7, 5) 3
(15, 10, 7, 6) 1 (15, 14, 7, 4) 4 (16, 12, 8, 2) 1
(15, 10, 9, 2) 1 (15, 14, 7, 6) 2 (16, 12, 8, 4) 3
(15, 10, 9, 4) 1 (15, 14, 8, 3) 1 (16, 12, 8, 6) 3
(15, 10, 9, 6) 1 (15, 14, 8, 5) 1 (16, 12, 9, 1) 1
(15, 10, 9, 8) 1 (15, 14, 9, 2) 3 (16, 12, 9, 3) 5
(15, 11, 7, 5) 1 (15, 14, 9, 4) 6 (16, 12, 9, 5) 6
(15, 11, 9, 3) 1 (15, 14, 9, 6) 7 (16, 12, 9, 7) 5
(15, 11, 9, 5) 1 (15, 14, 9, 8) 3 (16, 12, 10, 2) 2
(15, 11, 9, 7) 1 (15, 14, 10, 3) 2 (16, 12, 10, 4) 5
(15, 12, 5, 4) 2 (15, 14, 10, 5) 3 (16, 12, 10, 6) 4
(15, 12, 7, 2) 1 (15, 14, 10, 7) 1 (16, 12, 10, 8) 3
(15, 12, 7, 4) 2 (15, 14, 11, 2) 2 (16, 12, 11, 3) 5
(15, 12, 7, 6) 3 (15, 14, 11, 4) 7 (16, 12, 11, 5) 6
(15, 12, 8, 3) 1 (15, 14, 11, 6) 8 (16, 12, 11, 7) 3
(15, 12, 9, 2) 1 (15, 14, 11, 8) 7 (16, 12, 11, 9) 1
(15, 12, 9, 4) 5 (15, 14, 11, 10) 2 (16, 13, 4, 3) 1
(15, 12, 9, 6) 4 (15, 14, 12, 3) 3 (16, 13, 5, 4) 1
(15, 12, 9, 8) 3 (15, 14, 12, 5) 3 (16, 13, 6, 3) 2
(15, 12, 10, 1) 1 (15, 14, 12, 7) 2 (16, 13, 6, 5) 2
(15, 12, 10, 3) 1 (15, 14, 13, 2) 1 (16, 13, 7, 2) 1
(15, 12, 10, 5) 2 (15, 14, 13, 4) 4 (16, 13, 7, 4) 2
(15, 12, 11, 2) 2 (15, 14, 13, 6) 3 (16, 13, 7, 6) 2
(15, 12, 11, 4) 4 (15, 14, 13, 8) 3 (16, 13, 8, 3) 4
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Table 3.24: card (Oo(w1, w2, w3, w4, w5))

(wi)i card. (wi)i card. (wi)i card.
(13, 10, 9, 6, 3) 1 (14, 12, 11, 6, 4) 1 (14, 13, 11, 9, 6) 2
(13, 11, 9, 8, 4) 1 (14, 12, 11, 7, 1) 1 (14, 13, 12, 7, 1) 1
(13, 12, 7, 6, 3) 1 (14, 12, 11, 7, 3) 1 (14, 13, 12, 7, 3) 1
(13, 12, 9, 4, 3) 1 (14, 12, 11, 7, 5) 1 (14, 13, 12, 8, 4) 1
(13, 12, 9, 6, 1) 1 (14, 12, 11, 8, 2) 2 (14, 13, 12, 9, 5) 1
(13, 12, 9, 6, 3) 1 (14, 12, 11, 8, 4) 2 (15, 10, 7, 6, 3) 1
(13, 12, 9, 6, 5) 1 (14, 12, 11, 8, 6) 1 (15, 10, 9, 4, 3) 1
(13, 12, 9, 8, 3) 2 (14, 12, 11, 9, 3) 1 (15, 10, 9, 6, 1) 1
(13, 12, 9, 8, 5) 1 (14, 12, 11, 9, 5) 1 (15, 10, 9, 6, 3) 2
(13, 12, 10, 6, 2) 1 (14, 12, 11, 10, 4) 1 (15, 10, 9, 6, 5) 1
(13, 12, 10, 8, 4) 1 (14, 13, 7, 5, 4) 1 (15, 10, 9, 7, 2) 1
(13, 12, 11, 6, 3) 2 (14, 13, 8, 6, 4) 1 (15, 10, 9, 8, 3) 2
(13, 12, 11, 8, 3) 1 (14, 13, 8, 7, 3) 1 (15, 11, 7, 6, 2) 1
(13, 12, 11, 8, 5) 1 (14, 13, 8, 7, 5) 1 (15, 11, 8, 6, 3) 1
(14, 10, 7, 6, 2) 1 (14, 13, 9, 3, 2) 1 (15, 11, 9, 5, 3) 1
(14, 10, 9, 6, 2) 1 (14, 13, 9, 5, 2) 1 (15, 11, 9, 6, 2) 2
(14, 10, 9, 7, 1) 1 (14, 13, 9, 5, 4) 2 (15, 11, 9, 6, 4) 2
(14, 10, 9, 8, 2) 1 (14, 13, 9, 6, 1) 1 (15, 11, 9, 7, 1) 1
(14, 11, 9, 5, 2) 1 (14, 13, 9, 7, 2) 1 (15, 11, 9, 7, 3) 2
(14, 11, 9, 6, 3) 1 (14, 13, 9, 7, 4) 3 (15, 11, 9, 7, 5) 1
(14, 11, 9, 7, 2) 1 (14, 13, 9, 7, 6) 2 (15, 11, 9, 8, 2) 3
(14, 11, 9, 7, 4) 1 (14, 13, 9, 8, 3) 1 (15, 11, 9, 8, 4) 2
(14, 11, 9, 8, 1) 1 (14, 13, 10, 5, 3) 1 (15, 11, 9, 8, 6) 1
(14, 11, 9, 8, 5) 1 (14, 13, 10, 6, 2) 1 (15, 11, 10, 5, 4) 1
(14, 12, 7, 6, 4) 1 (14, 13, 10, 6, 4) 1 (15, 11, 10, 7, 4) 1
(14, 12, 8, 6, 3) 1 (14, 13, 10, 7, 1) 1 (15, 12, 7, 4, 3) 1
(14, 12, 9, 4, 2) 1 (14, 13, 10, 7, 3) 2 (15, 12, 7, 6, 1) 1
(14, 12, 9, 5, 3) 1 (14, 13, 10, 7, 5) 2 (15, 12, 7, 6, 3) 2
(14, 12, 9, 6, 2) 2 (14, 13, 10, 8, 2) 1 (15, 12, 7, 6, 5) 1
(14, 12, 9, 6, 4) 2 (14, 13, 10, 8, 4) 2 (15, 12, 8, 4, 2) 1
(14, 12, 9, 7, 3) 2 (14, 13, 10, 8, 6) 1 (15, 12, 8, 5, 3) 1
(14, 12, 9, 7, 5) 1 (14, 13, 10, 9, 3) 2 (15, 12, 8, 6, 2) 2
(14, 12, 9, 8, 2) 1 (14, 13, 10, 9, 5) 1 (15, 12, 8, 6, 4) 2
(14, 12, 9, 8, 4) 3 (14, 13, 10, 9, 7) 1 (15, 12, 9, 4, 1) 1
(14, 12, 9, 8, 6) 1 (14, 13, 11, 5, 2) 2 (15, 12, 9, 4, 3) 2
(14, 12, 10, 5, 2) 1 (14, 13, 11, 5, 4) 1 (15, 12, 9, 5, 2) 2
(14, 12, 10, 6, 1) 1 (14, 13, 11, 6, 3) 1 (15, 12, 9, 6, 1) 2
(14, 12, 10, 6, 3) 2 (14, 13, 11, 7, 2) 3 (15, 12, 9, 6, 3) 8
(14, 12, 10, 6, 5) 1 (14, 13, 11, 7, 4) 3 (15, 12, 9, 6, 5) 4
(14, 12, 10, 7, 2) 2 (14, 13, 11, 7, 6) 1 (15, 12, 9, 7, 2) 4
(14, 12, 10, 7, 4) 1 (14, 13, 11, 8, 3) 1 (15, 12, 9, 7, 4) 4
(14, 12, 10, 8, 3) 2 (14, 13, 11, 8, 5) 1 (15, 12, 9, 8, 1) 4
(14, 12, 10, 8, 5) 2 (14, 13, 11, 9, 2) 1 (15, 12, 9, 8, 3) 6
(14, 12, 11, 6, 2) 2 (14, 13, 11, 9, 4) 2 (15, 12, 9, 8, 5) 8
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Table 3.25: card (Oo(w1, w2, w3, w4, w5, w6))

(wi)i card. (wi)i card. (wi)i card.
(13, 11, 10, 8, 4, 3) 1 (14, 12, 11, 8, 4, 2) 1 (14, 13, 10, 8, 7, 1) 1
(13, 12, 9, 8, 5, 4) 1 (14, 12, 11, 8, 5, 1) 2 (14, 13, 10, 8, 7, 3) 2
(13, 12, 9, 8, 7, 2) 1 (14, 12, 11, 8, 5, 3) 4 (14, 13, 10, 8, 7, 5) 1
(13, 12, 10, 8, 5, 3) 1 (14, 12, 11, 8, 6, 2) 3 (14, 13, 10, 9, 5, 2) 1
(13, 12, 11, 6, 5, 4) 1 (14, 12, 11, 8, 6, 4) 3 (14, 13, 10, 9, 5, 4) 1
(13, 12, 11, 8, 3, 2) 1 (14, 12, 11, 8, 7, 1) 2 (14, 13, 10, 9, 7, 2) 2
(13, 12, 11, 8, 5, 2) 2 (14, 12, 11, 8, 7, 3) 3 (14, 13, 10, 9, 7, 4) 1
(13, 12, 11, 8, 5, 4) 2 (14, 12, 11, 8, 7, 5) 2 (14, 13, 11, 6, 4, 3) 2
(13, 12, 11, 8, 7, 2) 1 (14, 12, 11, 9, 4, 3) 1 (14, 13, 11, 7, 4, 2) 2
(13, 12, 11, 8, 7, 4) 2 (14, 12, 11, 9, 5, 2) 3 (14, 13, 11, 7, 5, 1) 1
(13, 12, 11, 8, 7, 6) 1 (14, 12, 11, 9, 5, 4) 3 (14, 13, 11, 7, 5, 3) 2
(13, 12, 11, 9, 5, 3) 1 (14, 12, 11, 9, 6, 3) 3 (14, 13, 11, 7, 6, 2) 2
(13, 12, 11, 9, 7, 1) 1 (14, 12, 11, 9, 7, 2) 2 (14, 13, 11, 7, 6, 4) 2
(13, 12, 11, 10, 5, 2) 1 (14, 12, 11, 9, 7, 4) 3 (14, 13, 11, 8, 4, 1) 1
(13, 12, 11, 10, 5, 4) 2 (14, 12, 11, 9, 7, 6) 1 (14, 13, 11, 8, 4, 3) 5
(13, 12, 11, 10, 7, 2) 2 (14, 12, 11, 10, 4, 2) 1 (14, 13, 11, 8, 5, 2) 3
(13, 12, 11, 10, 7, 4) 2 (14, 12, 11, 10, 5, 1) 1 (14, 13, 11, 8, 6, 1) 2
(13, 12, 11, 10, 7, 6) 2 (14, 12, 11, 10, 5, 3) 3 (14, 13, 11, 8, 6, 3) 6
(13, 12, 11, 10, 9, 2) 1 (14, 12, 11, 10, 6, 2) 3 (14, 13, 11, 8, 6, 5) 4
(13, 12, 11, 10, 9, 6) 1 (14, 12, 11, 10, 6, 4) 3 (14, 13, 11, 8, 7, 2) 1
(14, 11, 9, 8, 4, 3) 1 (14, 12, 11, 10, 7, 1) 2 (14, 13, 11, 8, 7, 4) 1
(14, 11, 9, 8, 6, 3) 1 (14, 12, 11, 10, 7, 3) 5 (14, 13, 11, 9, 4, 2) 3
(14, 11, 10, 8, 5, 3) 1 (14, 12, 11, 10, 7, 5) 3 (14, 13, 11, 9, 5, 1) 1
(14, 12, 9, 7, 5, 2) 1 (14, 12, 11, 10, 8, 2) 2 (14, 13, 11, 9, 5, 3) 6
(14, 12, 9, 7, 5, 4) 1 (14, 12, 11, 10, 8, 4) 3 (14, 13, 11, 9, 6, 2) 4
(14, 12, 9, 8, 5, 3) 2 (14, 12, 11, 10, 8, 6) 1 (14, 13, 11, 9, 6, 4) 6
(14, 12, 9, 8, 6, 2) 1 (14, 12, 11, 10, 9, 1) 1 (14, 13, 11, 9, 7, 1) 2
(14, 12, 9, 8, 6, 4) 1 (14, 12, 11, 10, 9, 3) 1 (14, 13, 11, 9, 7, 3) 4
(14, 12, 9, 8, 7, 3) 1 (14, 12, 11, 10, 9, 5) 1 (14, 13, 11, 9, 7, 5) 3
(14, 12, 10, 6, 5, 2) 1 (14, 13, 9, 6, 4, 3) 1 (14, 13, 11, 9, 8, 2) 1
(14, 12, 10, 7, 5, 1) 1 (14, 13, 9, 7, 4, 2) 1 (14, 13, 11, 9, 8, 4) 3
(14, 12, 10, 7, 5, 3) 1 (14, 13, 9, 7, 5, 3) 1 (14, 13, 11, 9, 8, 6) 2
(14, 12, 10, 8, 4, 3) 1 (14, 13, 9, 7, 6, 4) 1 (14, 13, 11, 10, 4, 1) 1
(14, 12, 10, 8, 5, 2) 2 (14, 13, 9, 8, 4, 3) 2 (14, 13, 11, 10, 4, 3) 4
(14, 12, 10, 8, 5, 4) 2 (14, 13, 9, 8, 6, 3) 3 (14, 13, 11, 10, 5, 2) 1
(14, 12, 10, 8, 6, 1) 1 (14, 13, 9, 8, 6, 5) 1 (14, 13, 11, 10, 5, 4) 1
(14, 12, 10, 8, 6, 3) 2 (14, 13, 10, 6, 4, 2) 1 (14, 13, 11, 10, 6, 1) 2
(14, 12, 10, 8, 7, 2) 2 (14, 13, 10, 6, 5, 3) 1 (14, 13, 11, 10, 6, 3) 8
(14, 12, 10, 8, 7, 4) 1 (14, 13, 10, 7, 5, 2) 2 (14, 13, 11, 10, 6, 5) 4
(14, 12, 10, 9, 5, 3) 1 (14, 13, 10, 7, 5, 4) 1 (14, 13, 11, 10, 7, 2) 3
(14, 12, 11, 6, 5, 1) 1 (14, 13, 10, 8, 4, 2) 2 (14, 13, 11, 10, 7, 4) 1
(14, 12, 11, 7, 5, 2) 1 (14, 13, 10, 8, 5, 3) 4 (14, 13, 11, 10, 8, 1) 1
(14, 12, 11, 7, 5, 4) 2 (14, 13, 10, 8, 6, 2) 1 (14, 13, 11, 10, 8, 3) 5
(14, 12, 11, 8, 3, 1) 1 (14, 13, 10, 8, 6, 4) 2 (14, 13, 11, 10, 8, 5) 4
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Table 3.26: card (Oe(w1, w2))

(w1, w2) card. (w1, w2) card. (w1, w2) card. (w1, w2) card.
(13, 2) 1 (24, 7) 2 (29, 6) 6 (33, 0) 1
(14, 3) 1 (24, 9) 2 (29, 8) 2 (33, 2) 6
(15, 4) 1 (24, 13) 2 (29, 10) 3 (33, 4) 4
(16, 1) 1 (25, 2) 4 (29, 12) 3 (33, 6) 6
(16, 5) 1 (25, 4) 2 (29, 14) 3 (33, 8) 3
(17, 2) 1 (25, 6) 2 (29, 18) 4 (33, 10) 6
(17, 6) 2 (25, 8) 2 (30, 1) 4 (33, 12) 3
(18, 1) 1 (25, 10) 3 (30, 3) 4 (33, 14) 4
(18, 3) 1 (25, 14) 3 (30, 5) 3 (33, 16) 3
(18, 7) 1 (26, 1) 2 (30, 7) 4 (33, 18) 4
(19, 2) 1 (26, 3) 4 (30, 9) 3 (33, 22) 4
(19, 4) 2 (26, 5) 2 (30, 11) 3 (34, 1) 6
(19, 8) 2 (26, 7) 2 (30, 13) 3 (34, 3) 4
(20, 1) 1 (26, 9) 3 (30, 15) 3 (34, 5) 6
(20, 3) 2 (26, 11) 2 (30, 19) 3 (34, 7) 6
(20, 5) 1 (26, 15) 3 (31, 0) 1 (34, 9) 3
(20, 9) 2 (27, 0) 1 (31, 2) 4 (34, 11) 6
(21, 2) 2 (27, 2) 2 (31, 4) 6 (34, 13) 4
(21, 4) 1 (27, 4) 4 (31, 6) 2 (34, 15) 3
(21, 6) 2 (27, 6) 2 (31, 8) 6 (34, 17) 4
(21, 10) 2 (27, 8) 3 (31, 10) 3 (34, 19) 4
(22, 1) 2 (27, 10) 2 (31, 12) 3 (34, 23) 4
(22, 3) 1 (27, 12) 3 (31, 14) 3 (35, 0) 3
(22, 5) 2 (27, 16) 3 (31, 16) 4 (35, 2) 4
(22, 7) 2 (28, 1) 4 (31, 20) 4 (35, 4) 6
(22, 11) 2 (28, 3) 2 (32, 1) 4 (35, 6) 6
(23, 0) 1 (28, 5) 4 (32, 3) 6 (35, 8) 6
(23, 2) 1 (28, 7) 3 (32, 5) 4 (35, 10) 3
(23, 4) 2 (28, 9) 2 (32, 7) 3 (35, 12) 8
(23, 6) 2 (28, 11) 3 (32, 9) 6 (35, 14) 3
(23, 8) 2 (28, 13) 3 (32, 11) 3 (35, 16) 4
(23, 12) 3 (28, 17) 3 (32, 13) 3 (35, 18) 4
(24, 1) 2 (29, 0) 1 (32, 15) 4 (35, 20) 4
(24, 3) 2 (29, 2) 4 (32, 17) 3 (35, 24) 5
(24, 5) 2 (29, 4) 2 (32, 21) 4 (36, 1) 6
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Table 3.27: card (Oe(w1, w2, w3, w4))

(wi)i card. (wi)i card. (wi)i card.
(12, 9, 5, 2) 1 (14, 12, 10, 2) 1 (15, 12, 7, 2) 2
(12, 10, 7, 1) 1 (14, 12, 10, 4) 1 (15, 12, 7, 4) 3
(13, 9, 5, 1) 1 (14, 13, 6, 1) 1 (15, 12, 8, 1) 3
(13, 9, 7, 3) 1 (14, 13, 7, 2) 1 (15, 12, 8, 3) 2
(13, 10, 5, 2) 1 (14, 13, 8, 1) 2 (15, 12, 8, 5) 2
(13, 10, 7, 4) 1 (14, 13, 9, 0) 1 (15, 12, 9, 2) 4
(13, 11, 5, 3) 1 (14, 13, 9, 4) 1 (15, 12, 9, 4) 1
(13, 11, 7, 1) 1 (14, 13, 10, 3) 1 (15, 12, 9, 6) 2
(13, 12, 7, 2) 1 (14, 13, 11, 2) 1 (15, 12, 10, 1) 2
(13, 12, 8, 1) 1 (15, 7, 4, 2) 1 (15, 12, 10, 3) 2
(13, 12, 9, 4) 1 (15, 8, 5, 2) 1 (15, 12, 10, 5) 1
(13, 12, 10, 3) 1 (15, 9, 4, 2) 1 (15, 12, 10, 7) 1
(14, 8, 5, 3) 1 (15, 9, 5, 1) 1 (15, 12, 11, 4) 1
(14, 9, 4, 1) 1 (15, 9, 5, 3) 1 (15, 12, 11, 8) 1
(14, 9, 6, 1) 1 (15, 9, 6, 2) 1 (15, 13, 3, 1) 1
(14, 9, 7, 2) 1 (15, 9, 7, 1) 1 (15, 13, 4, 2) 1
(14, 10, 5, 1) 1 (15, 9, 7, 3) 1 (15, 13, 5, 1) 1
(14, 10, 6, 2) 1 (15, 10, 3, 2) 1 (15, 13, 5, 3) 2
(14, 10, 7, 1) 1 (15, 10, 5, 0) 1 (15, 13, 6, 2) 2
(14, 10, 7, 3) 1 (15, 10, 5, 2) 1 (15, 13, 6, 4) 1
(14, 10, 8, 2) 1 (15, 10, 5, 4) 1 (15, 13, 7, 1) 3
(14, 10, 8, 4) 1 (15, 10, 6, 1) 1 (15, 13, 7, 3) 1
(14, 11, 4, 1) 1 (15, 10, 7, 2) 3 (15, 13, 7, 5) 2
(14, 11, 5, 2) 1 (15, 10, 7, 4) 1 (15, 13, 8, 0) 1
(14, 11, 6, 1) 1 (15, 10, 7, 6) 1 (15, 13, 8, 2) 2
(14, 11, 6, 3) 1 (15, 10, 8, 1) 1 (15, 13, 8, 4) 1
(14, 11, 7, 0) 1 (15, 10, 8, 3) 1 (15, 13, 8, 6) 1
(14, 11, 7, 4) 1 (15, 10, 9, 4) 1 (15, 13, 9, 1) 3
(14, 11, 8, 1) 1 (15, 11, 4, 2) 1 (15, 13, 9, 3) 2
(14, 11, 8, 3) 1 (15, 11, 5, 1) 2 (15, 13, 9, 5) 1
(14, 11, 8, 5) 1 (15, 11, 5, 3) 1 (15, 13, 9, 7) 1
(14, 11, 9, 2) 1 (15, 11, 6, 2) 1 (15, 13, 10, 2) 3
(14, 12, 4, 2) 1 (15, 11, 7, 1) 2 (15, 13, 10, 4) 1
(14, 12, 5, 1) 1 (15, 11, 7, 3) 3 (15, 13, 11, 1) 1
(14, 12, 5, 3) 1 (15, 11, 8, 2) 2 (15, 13, 11, 3) 2
(14, 12, 6, 2) 1 (15, 11, 8, 4) 1 (15, 13, 11, 5) 1
(14, 12, 6, 4) 1 (15, 11, 9, 1) 1 (15, 14, 5, 2) 1
(14, 12, 7, 1) 2 (15, 11, 9, 3) 1 (15, 14, 5, 4) 1
(14, 12, 7, 5) 1 (15, 11, 9, 5) 1 (15, 14, 6, 1) 1
(14, 12, 8, 0) 1 (15, 12, 4, 1) 1 (15, 14, 7, 2) 3
(14, 12, 8, 2) 1 (15, 12, 5, 2) 3 (15, 14, 7, 6) 1
(14, 12, 8, 6) 1 (15, 12, 6, 1) 2 (15, 14, 8, 1) 2
(14, 12, 9, 1) 1 (15, 12, 6, 3) 2 (15, 14, 8, 3) 1
(14, 12, 9, 3) 1 (15, 12, 7, 0) 1 (15, 14, 9, 0) 1
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Table 3.28: card (Oe(w1, w2, w3, w4, w5, w6))

(wi)i card. (wi)i card. (wi)i card.
(13, 11, 10, 6, 4, 3) 1 (14, 12, 10, 6, 3, 2) 1 (14, 12, 11, 9, 5, 0) 1
(13, 12, 8, 7, 4, 1) 1 (14, 12, 10, 6, 4, 1) 2 (14, 12, 11, 9, 5, 2) 2
(13, 12, 9, 6, 3, 2) 1 (14, 12, 10, 6, 4, 3) 2 (14, 12, 11, 9, 6, 1) 1
(13, 12, 9, 7, 5, 1) 1 (14, 12, 10, 6, 5, 2) 1 (14, 12, 11, 9, 6, 3) 1
(13, 12, 9, 8, 5, 2) 1 (14, 12, 10, 7, 3, 1) 1 (14, 12, 11, 9, 7, 2) 2
(13, 12, 10, 6, 4, 2) 1 (14, 12, 10, 7, 4, 0) 1 (14, 12, 11, 9, 7, 4) 1
(13, 12, 10, 7, 4, 1) 1 (14, 12, 10, 7, 4, 2) 2 (14, 12, 11, 9, 8, 3) 1
(13, 12, 10, 7, 4, 3) 1 (14, 12, 10, 7, 5, 1) 2 (14, 12, 11, 10, 5, 1) 2
(13, 12, 10, 8, 5, 1) 1 (14, 12, 10, 7, 5, 3) 2 (14, 12, 11, 10, 7, 3) 1
(13, 12, 10, 8, 6, 2) 1 (14, 12, 10, 7, 6, 2) 1 (14, 13, 7, 6, 4, 1) 1
(13, 12, 10, 9, 4, 1) 2 (14, 12, 10, 8, 4, 1) 3 (14, 13, 8, 6, 3, 1) 1
(13, 12, 10, 9, 6, 1) 1 (14, 12, 10, 8, 5, 0) 1 (14, 13, 8, 7, 4, 1) 1
(13, 12, 10, 9, 6, 3) 1 (14, 12, 10, 8, 5, 2) 2 (14, 13, 8, 7, 5, 2) 1
(13, 12, 11, 6, 5, 2) 1 (14, 12, 10, 8, 6, 1) 2 (14, 13, 9, 6, 2, 1) 1
(13, 12, 11, 7, 5, 3) 1 (14, 12, 10, 8, 6, 3) 2 (14, 13, 9, 6, 3, 2) 1
(13, 12, 11, 8, 3, 2) 1 (14, 12, 10, 8, 7, 2) 1 (14, 13, 9, 6, 4, 1) 2
(13, 12, 11, 8, 5, 4) 1 (14, 12, 10, 9, 4, 0) 2 (14, 13, 9, 6, 4, 3) 1
(13, 12, 11, 8, 7, 2) 1 (14, 12, 10, 9, 4, 2) 1 (14, 13, 9, 7, 3, 1) 1
(14, 10, 8, 6, 3, 2) 1 (14, 12, 10, 9, 5, 1) 3 (14, 13, 9, 7, 4, 2) 1
(14, 11, 8, 7, 3, 2) 1 (14, 12, 10, 9, 6, 0) 1 (14, 13, 9, 7, 5, 1) 2
(14, 11, 9, 6, 4, 1) 1 (14, 12, 10, 9, 6, 2) 2 (14, 13, 9, 8, 3, 0) 1
(14, 11, 9, 8, 3, 2) 1 (14, 12, 10, 9, 7, 1) 1 (14, 13, 9, 8, 4, 1) 3
(14, 11, 10, 6, 4, 2) 1 (14, 12, 10, 9, 7, 3) 2 (14, 13, 9, 8, 5, 2) 2
(14, 11, 10, 6, 5, 3) 1 (14, 12, 11, 5, 3, 2) 1 (14, 13, 9, 8, 6, 1) 1
(14, 11, 10, 7, 4, 1) 1 (14, 12, 11, 6, 3, 1) 2 (14, 13, 9, 8, 6, 3) 1
(14, 11, 10, 7, 5, 2) 1 (14, 12, 11, 6, 4, 2) 2 (14, 13, 10, 5, 4, 1) 1
(14, 11, 10, 8, 4, 2) 1 (14, 12, 11, 6, 5, 1) 1 (14, 13, 10, 6, 2, 0) 1
(14, 11, 10, 8, 5, 1) 1 (14, 12, 11, 6, 5, 3) 1 (14, 13, 10, 6, 3, 1) 2
(14, 11, 10, 9, 4, 3) 1 (14, 12, 11, 7, 2, 1) 1 (14, 13, 10, 6, 4, 2) 3
(14, 12, 8, 5, 3, 1) 1 (14, 12, 11, 7, 3, 2) 1 (14, 13, 10, 6, 5, 1) 2
(14, 12, 8, 6, 4, 1) 1 (14, 12, 11, 7, 4, 1) 2 (14, 13, 10, 6, 5, 3) 1
(14, 12, 8, 7, 4, 0) 1 (14, 12, 11, 7, 4, 3) 1 (14, 13, 10, 7, 2, 1) 1
(14, 12, 8, 7, 5, 1) 1 (14, 12, 11, 7, 5, 2) 3 (14, 13, 10, 7, 3, 2) 2
(14, 12, 9, 6, 3, 1) 1 (14, 12, 11, 7, 5, 4) 1 (14, 13, 10, 7, 4, 1) 3
(14, 12, 9, 6, 4, 2) 1 (14, 12, 11, 7, 6, 3) 1 (14, 13, 10, 7, 4, 3) 2
(14, 12, 9, 6, 5, 1) 1 (14, 12, 11, 8, 3, 1) 2 (14, 13, 10, 7, 5, 0) 1
(14, 12, 9, 7, 4, 1) 1 (14, 12, 11, 8, 4, 2) 2 (14, 13, 10, 7, 5, 2) 2
(14, 12, 9, 7, 5, 0) 1 (14, 12, 11, 8, 5, 1) 3 (14, 13, 10, 7, 5, 4) 2
(14, 12, 9, 7, 5, 2) 1 (14, 12, 11, 8, 6, 2) 2 (14, 13, 10, 7, 6, 1) 1
(14, 12, 9, 8, 5, 1) 2 (14, 12, 11, 8, 6, 4) 1 (14, 13, 10, 8, 3, 1) 2
(14, 12, 9, 8, 6, 2) 1 (14, 12, 11, 8, 7, 1) 1 (14, 13, 10, 8, 4, 0) 2
(14, 12, 10, 5, 3, 1) 1 (14, 12, 11, 8, 7, 3) 1 (14, 13, 10, 8, 4, 2) 1
(14, 12, 10, 5, 4, 2) 1 (14, 12, 11, 9, 3, 2) 1 (14, 13, 10, 8, 5, 1) 5
(14, 12, 10, 6, 2, 1) 1 (14, 12, 11, 9, 4, 1) 1 (14, 13, 10, 8, 5, 3) 1
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